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Abstract: Most of the non-asymptotic theoretical work in regression is
carried out for the square loss, where estimators can be obtained through
closed-form expressions. In this paper, we use and extend tools from the
convex optimization literature, namely self-concordant functions, to provide
simple extensions of theoretical results for the square loss to the logistic loss.
We apply the extension techniques to logistic regression with regularization
by the ℓ2-norm and regularization by the ℓ1-norm, showing that new results
for binary classification through logistic regression can be easily derived
from corresponding results for least-squares regression.

Received October 2009.

1. Introduction

The theoretical analysis of statistical methods is usually greatly simplified when
the estimators have closed-form expressions. For methods based on the mini-
mization of a certain functional, such as M-estimation methods [1], this is true
when the function to minimize is quadratic, i.e., in the context of regression, for
the square loss.

When such loss is used, asymptotic and non-asymptotic results may be de-
rived with classical tools from probability theory (see, e.g., [2]). When the objec-
tive function which is minimized in M-estimation is not amenable to closed-form
solutions, local approximations are then needed for obtaining and analyzing a
solution of the optimization problem. In the asymptotic regime, this has led to
interesting developments and extensions of results from the quadratic case, e.g.,
consistency or asymptotic normality (see, e.g., [1]). However, the situation is
different when one wishes to derive non-asymptotic results, i.e., results where
all constants of the problem are explicit. Indeed, in order to prove results as
sharp as for the square loss, much notation and many assumptions have to be
introduced regarding second and third derivatives; this makes the derived results
much more complicated than the ones for closed-form estimators [3, 4, 5].

A similar situation occurs in convex optimization, for the study of Newton’s
method for obtaining solutions of unconstrained optimization problems. It is
known to be locally quadratically convergent for convex problems. However,
its classical analysis requires cumbersome notations and assumptions regarding
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second and third-order derivatives (see, e.g., [6, 7]). This situation was greatly
enhanced with the introduction of the notion of self-concordant functions, i.e.,
functions whose third derivatives are controlled by their second derivatives.With
this tool, the analysis is much more transparent [7, 8]. While Newton’s method
is a commonly used algorithm for logistic regression (see, e.g., [9, 10]), leading to
iterative least-squares algorithms, we don’t focus in the paper on the resolution
of the optimization problems, but on the statistical analysis of the associated
global minimizers.

In this paper, we aim to borrow tools from convex optimization and self-
concordance to analyze the statistical properties of logistic regression. Since the
logistic loss does not itself lead to a self-concordant objective function, we in-
troduce in Section 2 a new type of functions with a different control of the
third derivatives. For these functions, we prove two types of results: first, we
provide lower and upper Taylor expansions, i.e., Taylor expansions which are
globally lower-bounding or upper-bounding a given function. Second, we prove
results on the behavior of Newton’s method which are similar to the ones for
self-concordant functions. We then apply them in Sections 3, 4 and 5 to the one-
step Newton iterate from the population solution of the corresponding problem
(i.e., ℓ2 or ℓ1-regularized logistic regression). This essentially shows that the
analysis of logistic regression can be done non-asymptotically using the local
quadratic approximation of the logistic loss, without complex additional as-
sumptions. Since this approximation corresponds to a weighted least-squares
problem, results from least-squares regression can thus be naturally extended.

In order to consider such extensions and make sure that the new results
closely match the corresponding ones for least-squares regression, we derive in
Appendix G new Bernstein-like concentration inequalities for quadratic forms
of bounded random variables, obtained from general results on U-statistics [11].

We first apply in Section 4 the extension technique to regularization by the
ℓ2-norm, where we consider two settings, a situation with no assumptions re-
garding the conditional distribution of the observations, and another one where
the model is assumed well-specified and we derive asymptotic expansions of the
generalization performance with explicit bounds on remainder terms. In Sec-
tion 5, we consider regularization by the ℓ1-norm and extend two known recent
results for the square loss, one on model consistency [12, 13, 14, 15] and one
on prediction efficiency [16]. The main contribution of this paper is to make
these extensions as simple as possible, by allowing the use of non-asymptotic
second-order Taylor expansions.

Notation. For x ∈ R
p and q > 1, we denote by ‖x‖q the ℓq-norm of x, defined

as ‖x‖qq =
∑p

i=1 |xi|q. We also denote by ‖x‖∞ = maxi∈{1,...,p} |xi| its ℓ∞-norm.
We denote by λmax(Q) and λmin(Q) the largest and smallest eigenvalue of a
symmetric matrix Q. We use the notation Q1 4 Q2 (resp. Q1 < Q2) for the
positive semi-definiteness of the matrix Q2 −Q1 (resp. Q1 −Q2).

For a ∈ R, sign(a) denotes the sign of a, defined as sign(a) = 1 if a > 0, −1
if a < 0, and 0 if a = 0. For a vector v ∈ R

p, sign(v) ∈ {−1, 0, 1}p denotes the
vector of signs of elements of v.
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Moreover, given a vector v ∈ R
p and a subset I of {1, . . . , p}, |I| denotes the

cardinal of the set I, vI denotes the vector in R
|I| of elements of v indexed by I.

Similarly, for a matrix A ∈ R
p×p, AIJ denotes the submatrix of A composed of

elements of A whose rows are in I and columns are in J . Finally, we let denote
P and E general probability measures and expectations.

2. Taylor expansions and Newton’s method

In this section, we consider a generic function F : Rp → R, which is convex and
three times differentiable. We denote by F ′(w) ∈ R

p its gradient at w ∈ R
p, by

F ′′(w) ∈ R
p×p its Hessian at w ∈ R

p. We denote by λ(w) = λmin(F
′′(w)) > 0

the smallest eigenvalue of the Hessian F ′′(w) at w ∈ R
p.

If λ(w) > 0, i.e., the Hessian is invertible at w, we can define the Newton step
as ∆N (w) = −F ′′(w)−1F ′(w), and the Newton decrement ν(F,w) at w, defined
through:

ν(F,w)2 = F ′(w)⊤F ′′(w)−1F ′(w) = ∆N (w)⊤F ′′(w)∆N (w).

The one-step Newton iterate w + ∆N (w) is the minimizer of the second-order
Taylor expansion of F at w, i.e., of the function Hw : v 7→ F (w) + F ′(w)(v −
w) + 1

2 (v − w)⊤F ′′(w)(v − w). Moreover, the Newton decrement is equal to
Hw(w) − minv∈Rp Hw(v). Newton’s method consists in successively applying
the same iteration until convergence. For more background and details about
Newton’s method, see, e.g., [7, 6, 17].

2.1. Self-concordant functions

We now review some important properties of self-concordant functions [7, 8],
i.e., three times differentiable convex functions such that for all u, v ∈ R

p, the
function g : t 7→ F (u+ tv) satisfies for all t ∈ R, |g′′′(t)| 6 2g′′(t)3/2.

The local behavior of self-concordant functions is well-studied and lower and
upper Taylor expansions can be derived (similar to the ones we derive in Propo-
sition 1). Moreover, bounds are available for the behavior of Newton’s method;
given a self-concordant function F , if w ∈ R

p is such that ν(F,w) 6 1/4, then F
attains its unique global minimum at some w∗ ∈ R

p, and we have the following
bound on the error w − w∗ (see, e.g., [8]), according to the metric defined by
the Hessian matrix F ′′(w):

(w − w∗)⊤F ′′(w)(w − w∗) 6 4ν(F,w)2. (1)

Moreover, the newton decrement at the one-step Newton iterate from w ∈ R
p

can be upper-bounded as follows:

ν(F,w +∆N (w)) 6 ν(F,w)2, (2)

which allows to prove an upper-bound of the error of the one-step iterate, by
application of Eq. (1) to w+∆N (w). Note that these bounds are not the sharpest,



F. Bach/Self-concordant analysis for logistic regression 387

but are sufficient in our context. These are commonly used to show the global
convergence of the damped Newton’s method [8] or of Newton’s method with
backtracking line search [7], as well as a precise upper bound on the number of
iterations to reach a given precision.

Note that in the context of machine learning and statistics, self-concordant
functions have been used for bandit optimization and online learning [18], but for
barrier functions related to constrained optimization problems, and not directly
for M-estimation.

2.2. Modifications of self-concordant functions

The logistic function u 7→ log(1+e−u) is not self-concordant as the third deriva-
tive is bounded by a constant times the second derivative (without the power
3/2). However, similar bounds can be derived with a different control of the
third derivatives. Proposition 1 provides lower and upper Taylor expansions
while Proposition 2 considers the behavior of Newton’s method. Proofs may
be found in Appendix A and follow closely the ones for regular self-concordant
functions found in [8].

Proposition 1 (Taylor expansions). Let F : Rp 7→ R be a convex three times
differentiable function such that for all w, v ∈ R

p, the function g(t) = F (w+ tv)
satisfies for all t ∈ R, |g′′′(t)| 6 R‖v‖2 × g′′(t), for some R > 0. We then have
for all w, v, z ∈ R

p:

F (w + v) > F (w) + v⊤F ′(w) +
v⊤F ′′(w)v

R2‖v‖22
(e−R‖v‖2 +R‖v‖2 − 1), (3)

F (w + v) 6 F (w) + v⊤F ′(w) +
v⊤F ′′(w)v

R2‖v‖22
(eR‖v‖2 −R‖v‖2 − 1), (4)

z⊤[F ′(w + v)−F ′(w)−F ′′(w)v]

[z⊤F ′′(w)z]1/2
6 [v⊤F ′′(w)v]1/2

eR‖v‖2−1−R‖v‖2
R‖v‖2

, (5)

e−R‖v‖2F ′′(w) 4 F ′′(w + v) 4 eR‖v‖2F ′′(w). (6)

Inequalities in Eq. (3) and Eq. (4) provide upper and lower second-order
Taylor expansions of F , while Eq. (5) provides a first-order Taylor expansion
of F ′ and Eq. (6) can be considered as an upper and lower zero-order Taylor
expansion of F ′′. Note the difference here between Eqs. (3-4) and regular third-
order Taylor expansions of F : the remainder term in the Taylor expansion from
Eq. (4), i.e., F (w + v) − F (w) − v⊤F ′(w) − 1

2v
⊤F ′′(w)v is upper-bounded by

v⊤F ′′(w)v
R2‖v‖2

2

(eR‖v‖2 − 1
2R

2‖v‖22 − R‖v‖2 − 1); for ‖v‖2 small, we obtain a term

proportional to ‖v‖32 (like a regular local Taylor expansion), but the bound
remains valid for all v and does not grow as fast as a third-order polynomial.
Moreover, a regular Taylor expansion with a uniformly bounded third-order
derivative would lead to a bound proportional to ‖v‖32, which does not take into
account the local curvature of F at w. Taking into account this local curvature
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through the Hessian matrices is key to obtaining sharp and simple bounds on
the behavior of Newton’s method (see proof in Appendix A):

Proposition 2 (Behavior of Newton’s method). Let F : Rp 7→ R be a convex
three times differentiable function such that for all w, v ∈ R

p, the function g(t) =
F (w + tv) satisfies for all t ∈ R, |g′′′(t)| 6 R‖v‖2 × g′′(t), for some R > 0. Let
λ(w) > 0 be the lowest eigenvalue of F ′′(w) for some w ∈ R

p. If ν(F,w) 6

λ(w)1/2

2R , then F has a unique global minimizer w∗ ∈ R
p and we have:

(

w − w∗)⊤F ′′(w)
(

w − w∗)
6 16ν(F,w)2, (7)

Rν(F,w +∆N (w))

λ(w +∆N (w))1/2
6

(

Rν(F,w)

λ(w)1/2

)2

, (8)

(

w +∆N (w)− w∗)⊤F ′′(w)
(

w +∆N (w) − w∗)
6

16R2

λ(w)
ν(F,w)4 . (9)

Eq. (7) extends Eq. (1) while Eq. (8) extends Eq. (2). Note that the notion
and the results are not invariant by affine transform (contrary to self-concordant
functions) and that we still need a (non-uniformly) lower-bounded Hessian. The
last two propositions constitute the main technical contribution of this paper.
We now apply these to logistic regression and its regularized versions.

3. Application to logistic regression

We consider n pairs of observations (xi, yi) in R
p × {−1, 1} and the following

objective function for logistic regression:

Ĵ0(w) =
1

n

n
∑

i=1

log
(

1 + exp(−yiw
⊤xi)

)

=
1

n

n
∑

i=1

{

ℓ(w⊤xi)−
yi
2
w⊤xi

}

, (10)

where ℓ : u 7→ log(e−u/2 + eu/2) is an even convex function. A short calculation
leads to ℓ′(u) = −1/2+σ(u), ℓ′′(u) = σ(u)[1−σ(u)], ℓ′′′(u) = σ(u)[1−σ(u)][1−
2σ(u)], where σ(u) = (1 + e−u)−1 is the sigmoid function. Note that we have
for all u ∈ R, |ℓ′′′(u)| 6 ℓ′′(u). The cost function Ĵ0 defined in Eq. (10) is
proportional to the negative conditional log-likelihood of the data under the
conditional model P(yi = si|xi) = σ(siw

⊤xi).
If R = maxi∈{1,...,n} ‖xi‖2 denotes the maximum ℓ2-norm of all input data

points, then the cost function Ĵ0 defined in Eq. (10) satisfies the assumptions
of Proposition 2. Indeed, we have, with the notations of Proposition 2,

|g′′′(t)| =

∣

∣

∣

∣

1

n

n
∑

i=1

ℓ′′′[(w + tv)⊤xi](x
⊤
i v)

3

∣

∣

∣

∣

6
1

n

n
∑

i=1

ℓ′′[(w + tv)⊤xi](x
⊤
i v)

2‖v‖2‖xi‖2 6 R‖v‖2 × g′′(t).
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Throughout this paper, we will consider a certain vector w ∈ R
p (usually de-

fined through the population functionals) and consider the one-step Newton
iterate from this w. Results from Section 2.2 will allow us to show that this
approximates the global minimum of Ĵ0 or a regularized version thereof.

Throughout this paper, we consider a fixed design setting (i.e., x1, . . . , xn are
consider deterministic) and we make the following assumptions:

(A1) Independent outputs : The outputs yi ∈ {−1, 1}, i = 1, . . . , n are indepen-
dent (but usually not identically distributed).

(A2) Bounded inputs : maxi∈{1,...,n} ‖xi‖2 6 R.

We define the model as well-specified if there exists w0 ∈ R
p such that for

all i = 1, . . . , n, P(yi = si) = σ(siw
⊤
0 xi), which is equivalent to E(yi/2) =

1
2σ(w

⊤
0 xi) − 1

2σ(−w⊤
0 xi) = σ(w⊤

0 xi) − 1
2 = ℓ′(w⊤

0 xi), and implies var(yi/2) =
1
4Ey

2
i −

(

σ(w⊤
0 xi)− 1

2

)2
= σ(w⊤

0 xi)(1− σ(w⊤
0 xi)) = ℓ′′(w⊤

0 xi). However, we do
not always make such assumptions in the paper.

We use the matrix notation X = [x1, . . . , xn]
⊤ ∈ R

n×p for the design ma-
trix and εi = yi/2 − E(yi/2), for i = 1, . . . , n, which formally corresponds to
the additive noise in least-squares regression. We also use the notation Q =
1
nX

⊤Diag(var(yi/2))X ∈ R
p×p and q = 1

nX
⊤ε ∈ R

p. By assumption, we have
E(qq⊤) = 1

nQ.

We denote by J0 the expectation of Ĵ0 (with respect to the distribution of
the observed outputs y1, . . . , yn), i.e.:

J0(w) = E
[

Ĵ0(w)
]

=
1

n

n
∑

i=1

{

ℓ(w⊤xi)− E(yi/2)w
⊤xi

}

.

Note that with our notation, Ĵ0(w) = J0(w) − q⊤w. In this paper we consider
J0(ŵ) as the generalization performance of a certain estimator ŵ. This corre-
sponds to the average Kullback-Leibler divergence to the best model when the
model is well-specified, and is common for the study of logistic regression and
more generally generalized linear models [19, 20]. Measuring the classification
performance through the 0–1 loss [21] is out of the scope of this paper.

The function J0 is nonnegative, therefore it has a nonnegative infimum. This
infimum might or might not be attained at a finite w0 ∈ R

p; when the model is
well-specified, it is always attained (but this is not a necessary condition), and,
unless the design matrix X has rank p, is usually not unique.

The difference between the analysis through self-concordance and the classical
asymptotic analysis is best seen when the model is well-specified, and exactly
mimics the difference between self-concordant analysis of Newton’s method and
its classical analysis. The usual analysis of logistic regression requires that the
logistic function u 7→ log(1+e−u) is strongly convex (i.e., with a strictly positive
lower-bound on the second derivative), which is true only on a compact subset
of R. Thus, non-asymptotic results such as the ones from [5, 3] require an upper
bound M on |w⊤

0 xi|, where w0 is the generating loading vector; then, the second
derivative of the logistic loss is lower bounded by (1 + eM )−1, and this lower
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bound may be very small when M gets large. Our analysis does not require such
a bound because of the fine control of the third derivative.

4. Regularization by the ℓ2-norm

We denote by Ĵλ(w) = Ĵ0(w) +
λ
2 ‖w‖22 the empirical ℓ2-regularized functional.

For λ > 0, the function Ĵλ is strongly convex and we denote by ŵλ the unique
global minimizer of Ĵλ. In this section, our goal is to find upper and lower
bounds on the generalization performance J0(ŵλ), under minimal assumptions
(Section 4.2) or when the model is well-specified (Section 4.3).

4.1. Reproducing kernel Hilbert spaces and smoothing splines

In this paper we focus explicitly on linear logistic regression, i.e., on a generalized
linear model that allows linear dependency between xi and the distribution
of yi. Although apparently limiting, in the context of regularization by the ℓ2-
norm, this setting contains non-parametric and non-linear methods based on
splines or reproducing kernel Hilbert spaces (RKHS) [22]. Indeed, because of
the representer theorem [23], minimizing the cost function

1

n

n
∑

i=1

{

ℓ[f(xi)]−
yi
2
f(xi)

}

+
λ

2
‖f‖2F ,

with respect to the function f in the RKHS F (with norm ‖ · ‖F and positive
definite kernel k), is equivalent to minimizing the cost function

1

n

n
∑

i=1

{

ℓ[(Tβ)i]−
yi
2
(Tβ)i

}

+
λ

2
‖β‖22, (11)

with respect to β ∈ R
p, where T ∈ R

n×p is a square root of the kernel matrix
K ∈ R

n×n defined as Kij = k(xi, xj), i.e., such that K = TT⊤. The unique
solution of the original problem f is then obtained as f(x) =

∑n
i=1 αik(x, xi),

where α is any vector satisfying TT⊤α = Tβ (which can be obtained by matrix
pseudo-inversion [24]). Similar developments can be carried out for smoothing
splines (see, e.g., [22, 25]). By identifying the matrix T with the data matrix X ,
the optimization problem in Eq. (11) is identical to minimizing Ĵ0(w)+

λ
2 ‖w‖22,

and thus our results apply to estimation in RKHSs.

4.2. Minimal assumptions (misspecified model)

In this section, we do not assume that the model is well-specified. We obtain the
following theorem (see proof in Appendix B), which only assumes boundedness
of the covariates and independence of the outputs:
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Theorem 1 (Misspecified model). Assume (A1), (A2) and λ = 19R2

√

log(8/δ)
n ,

with δ ∈ (0, 1). Then, with probability at least 1− δ, for all w0 ∈ R
p,

J0(ŵλ) 6 J0(w0) +
(

10 + 100R2‖w0‖22
)

√

log(8/δ)

n
. (12)

In particular, if the global minimum of J0 is attained at w0 (which is not
an assumption of Theorem 1), we obtain an oracle inequality as J0(w0) =
infw∈Rp J0(w). The lack of additional assumptions unsurprisingly gives rise to a
slow rate of n−1/2.

This is to be compared with [26], which uses different proof techniques but
obtains similar results for all convex Lipschitz-continuous losses (and not only
for the logistic loss). However, the techniques presented in this paper allow
the derivation of much more precise statements in terms of bias and variance
(and with better rates), that involves some knowledge of the problem. We do
not pursue detailed results here, but focus in the next section on well-specified
models, where results have a simpler form.

This highlights two opposite strategies for the theoretical analysis of regu-
larized problems: the first one, followed by [26, 27], is mostly loss-independent
and relies on advanced tools from empirical process theory, namely uniform
concentration inequalities. Results are widely applicable and make very few as-
sumptions. However, they tend to give performance guarantees which are far
below the observed performances of such methods in applications. The second
strategy, which we follow in this paper, is to restrict the loss class (to square
or logistic) and derive the limiting convergence rate, which does depend on
unknown constants (typically the best linear classifier itself). Once the limit is
obtained, we believe it gives a better interpretation of the practical performance
of these methods, and if one really wishes to make no assumption, taking upper
bounds on these quantities, we may get back results obtained with the generic
strategy, which is exactly what Theorem 1 is achieving.

Thus, a detailed analysis of the convergence rate, as done in Theorem 2 in
the next section, serves two purposes: first, it gives a sharp result that relies
on constants which depend on the underlying generating distribution; second,
the constants can be maximized out and more general results may be obtained,
with fewer assumptions but worse convergence rates.

4.3. Well-specified models

We now assume that the model is well-specified, i.e., that the probability that
yi = 1 is a sigmoid function of a linear function of xi, which is equivalent to:

(A3) Well-specified model : There exists w0 ∈ R
p such that E(yi/2) = ℓ′(w⊤

0 xi).

Theorem 2 will give upper and lower bounds on the expected risk of the
ℓ2-regularized estimator ŵλ, i.e., J0(ŵλ). We use the following definitions for
the two degrees of freedom and biases, which are usual in the context of ridge
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regression and spline smoothing (see, e.g., [22, 25, 28]):

degrees of freedom (1) : d1 = trQ(Q+ λI)−1,
degrees of freedom (2) : d2 = trQ2(Q+ λI)−2,
bias (1) : b1 = λ2w⊤

0 (Q+ λI)−1w0,
bias (2) : b2 = λ2w⊤

0 Q(Q+ λI)−2w0.

Note that we always have the inequalities d2 6 d1 6 min{R2/λ, n} and b2 6

b1 6 min{λ‖w0‖22, λ2w⊤
0 Q

−1w0}, and that these quantities depend on the reg-
ularization parameter λ. In the context of RKHSs outlined in Section 4.1, we
have d1 = trK(K + nλDiag(σ2

i ))
−1, a quantity which is also usually referred

to as the degrees of freedom [29]. In the context of the analysis of ℓ2-regularized
methods, it is necessary to consider the two degrees of freedom, as outlined in
Theorems 2 and 3, and in [28].

Moreover, we denote by κ > 0 the following quantity, which relates the two
types of biases and degrees of freedom:

κ =
R

λ1/2

(

d1
n

+ b1

)(

d2
n

+ b2

)−1/2

. (13)

Such quantity is an extension of the one used by [30] in the context of kernel
Fisher discriminant analysis used as a test for homogeneity. In order to obtain
asymptotic equivalents, we require κ to be small, which, as shown later in this
section, occurs in many interesting cases when n is large enough.

In this section, we will apply results from Section 2 to the functions Ĵλ and J0.
Essentially, we will consider local quadratic approximations of these functions
around the generating loading vector w0, leading to replacing the actual esti-
mator ŵλ by the one-step Newton iterate from w0 (which cannot be computed
in practice because w0 is unknown, and thus only serves for the analysis). This
is only possible if the Newton decrement ν(Ĵλ, w0) is small enough, which leads
to additional constraints (in particular the upper-bound on κ). The following
theorem, whose proof can be found in Appendix C, provides a non-asymptotic
expansion of the generalization performance:

Theorem 2 (Asymptotic generalization performance). Assume (A1), (A2)
and (A3). Assume moreover κ 6 1/16, where κ is defined in Eq. (13). If
t ∈ [0, 1/4] satisfies t3(d2 + nb2)

1/2 6 12, then, with probability at least 1 −
exp(−t2(d2 + nb2)):

∣

∣

∣

∣

J0(ŵλ)− J0(w0)−
1

2

(

b2 +
d2
n

)∣

∣

∣

∣

6

(

b2 +
d2
n

)

(69t+ 2560κ). (14)

Relationship to previous work. When the dimension p of w0 is bounded,
then under the regular asymptotic regime (n tends to +∞), b2+

d2

n tends to zero

and thus J0(ŵλ) has the following expansion J0(w0)+
1
2

(

b2+
d2

n

)

, a result which
has been obtained by several authors in several settings [31, 32]. In this asymp-
totic regime, the optimal λ, the one for which b2 +

d2

n is minimal, is known to
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be of order O(n−1) [33]. The main contribution of the analysis presented in this
section is to allow a non asymptotic analysis with explicit constants. Moreover,
note that for the square loss, the bound in Eq. (14) holds with κ = 0, which can
be linked to the fact that our self-concordant analysis from Propositions 1 and
2 is applicable with R = 0 for the square loss (see proof in Appendix C. Note
that the constants in the previous theorem could probably be improved.

Conditions for asymptotic equivalence. In order to have the remainder
term in Eq. (14) negligible with high probability compared to the lowest order
term in the expansion of J0(ŵλ), we need to have d2+nb2 large and κ small (so
that t can be taken taking small while t2(d2 + nb2) is large, and hence we have
a result with high-probability). The assumption that d2+nb2 grows unbounded
when n tends to infinity is a classical assumption in the study of smoothing
splines and RKHSs [34, 35], and simply states that the convergence rate of
the excess risk J0(ŵλ) − J0(w0), i.e., b2 + d2/n, is slower than for parametric
estimation, i.e., slower than n−1.

Study of parameter κ. First, using b2 6 b1 and d2 6 d1, we always have

κ > R
λ1/2

(

d1

n +b1
)1/2

; thus an upper bound on κ implies an upperbound on d1

n +b1
which is needed in the proof of Theorem 2 to show that the Newton decrement

is small enough. Moreover, κ is bounded by the sum of κbias =
R
√
2

λ1/2 b1b
−1/2
2 and

κvar =
R
√
2

λ1/2

(

d1

n

)(

d2

n

)−1/2
.

Under simple assumptions on the eigenvalues of Q (or equivalently the eigen-
values of Diag(σi)K Diag(σi)), one can show that κvar is small. In particular,
with simple decay conditions on these eigenvalues, d1 and d2 have the same
order, i.e., d2/d1 is bounded from below. In this case, κ is upper-bounded by a

constant times R
λ1/2

(

d1/n)
1/2 6 R2

λn1/2 , and thus we requires that λn1/2 is large,
which is a common assumption in regularized risk minimization [28, 30].

For the bias term κbias = R
√
2

λ1/2 b1b
−1/2
2 , a simple condition for κbias can be

obtained if w⊤
0 Q

−1w0 is assumed bounded (in the context of RKHSs this is a
stricter condition that the generating function is inside the RKHS, and is used
by [36] in the context of sparsity-inducing norms). In this case, b1 and b2 have
the same order than λ2, and thus, κbias is less than a constant times λ1/2 and
we thus require λ small, which is also a natural assumption in regularized risk
minimization. Note that in this case, the bias terms b1 and d2 are negligible
compared to the variance terms d1/n and d2/n as soon as λ is asymptotically
greater than n−1/2.

Variance term. Note that the diagonal matrix Diag(σ2
i ) is upperbounded by

1
4I, i.e., Diag(σ2

i ) 4
1
4I, so that the degrees of freedom for logistic regression

are always less than the corresponding ones for least-squares regression (for λ
multiplied by 4). Indeed, the pairs (xi, yi) for which the conditional distribution
is close to deterministic are such that σ2

i is close to zero. And thus it should
reduce the variance of the estimator, as little noise is associated with these
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points, and the effect of this reduction is exactly measured by the reduction in
the degrees of freedom.

Moreover, the rate of convergence d2/n of the variance term has been stud-
ied by many authors (see, e.g., [22, 25, 30]) and depends on the decay of the
eigenvalues of Q (the faster the decay, the smaller d2). The degrees of freedom
usually grows with n, but in many cases is slower than n1/2, leading to rates in
Eq. (14), which are faster than the ones in Eq. (12).

4.4. Smoothing parameter selection

In this section, we obtain a criterion similar to Mallow’s CL [37] to estimate
the generalization error and select in a data-driven way the regularization pa-
rameter λ (referred to as the smoothing parameter when dealing with splines or
RKHSs). The following theorem shows that with a data-dependent criterion, we
may obtain a good estimate of the generalization performance, up to a constant
term q⊤w0 independent of λ (see proof in Appendix D):

Theorem 3 (Data-driven estimation of generalization performance). Assume
(A1), (A2) and (A3). Let Q̂λ = 1

n

∑n
i=1 ℓ

′′(ŵ⊤
λ xi)xix

⊤
i and q = 1

n

∑n
i=1(yi/2−

E(yi/2))xi. Assume moreover κ 6 1/16, where κ is defined in Eq. (13). If
t ∈ [0, 1/4] satisfies t3(d2 + nb2)

1/2 6 12, then, with probability at least 1 −
exp(−t2(d2 + nb2)):
∣

∣

∣

∣

J0(ŵλ)−Ĵ0(ŵλ)−
1

n
tr Q̂λ(Q̂λ+λI)−1−q⊤w0

∣

∣

∣

∣

6

(

b2+
d2
n

)(

69t+2560κ+12κ

√

nb1 + d1
nb2 + d2

)

. (15)

Note that there is an additional term κ
√

nb1+d1

nb2+d2

in Eq. (15), which corre-

sponds to the approximation of trQ(Q+ λ) (which is unknown) by tr Q̂λ(Q̂λ +
λI)−1, which is known. The previous theorem, which can be considered as a
non-asymptotic version of results in [31, 32] could be further extended to ob-
tain oracle inequalities when minimizing the data-driven criterion Ĵ0(ŵλ) +
1
n tr Q̂λ(Q̂λ + λI)−1, similar to results obtained in [35, 28] for the square loss.
Note that contrary to least-squares regression with Gaussian noise, there is no
need to estimate the unknown noise variance (of course only when the logistic
model is actually well-specified); however, the matrix Q used to define the de-
grees of freedom does depend on w0 and thus requires that Q̂λ is used as an
estimate. Finally, criteria based on generalized cross-validation [38, 4] could be
studied with similar tools.

5. Regularization by the ℓ1-norm

In this section, we consider an estimator ŵλ obtained as a minimizer of the ℓ1-
regularized empirical risk, i.e., Ĵ0(w)+λ‖w‖1. It is well-known that the estimator
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has some zero components [39]. In this section, we extend some of the recent
results [12, 13, 14, 15, 16, 40] for the square loss (i.e., the Lasso) to the logistic
loss. We assume throughout this section that the model is well-specified, that
is, that the observations yi, i = 1, . . . , n, are generated according to the logistic
model P(yi = si) = σ(siw

⊤
0 xi).

We denote byK = {j ∈ {1, . . . , p}, (w0)j 6= 0} the set of non-zero components
of w0 and s = sign(w0) ∈ {−1, 0, 1}p the vector of signs of w0. On top of
Assumptions (A1), (A2) and (A3), we will make the following assumption
regarding normalization for each covariate (which can always be imposed by
renormalization), i.e.,

(A4) Normalized covariates : for all j = 1, . . . , p, 1
n

∑n
i=1 |(xi)j |2 6 1.

In this section, we consider two different results, one on model consistency
(Section 5.1) and one on efficiency (Section 5.2). As for the square loss, they
will both depend on additional assumptions regarding the square p× p matrix
Q = 1

n

∑n
i=1 ℓ

′′(w⊤
0 xi)xix

⊤
i . This matrix is a weighted Gram matrix, which

corresponds to the unweighted one for the square loss. As already shown in [5, 3],
usual assumptions for the Gram matrix for the square loss are extended, for the
logistic loss setting using the weighted GrammatrixQ. In this paper, we consider
two types of results based on specific assumptions on Q, but other ones could
be considered as well (such as assumptions which can be verified in polynomial
time [41, 42]). The main contribution of using self-concordant analysis is to allow
simple extensions from the square loss with short proofs and sharper bounds, in
particular by avoiding an exponential constant in the maximal value of |w⊤

0 xi|,
i = 1, . . . , n.

5.1. Model consistency condition

The following theorem provides a sufficient condition for model consistency. It
is based on the consistency condition ‖QKcKQ−1

KKsK‖∞ < 1, which is exactly
the same as the one for the square loss [15, 12, 14] (see proof in Appendix E):

Theorem 4 (Model consistency for ℓ1-regularization). Assume (A1), (A2),
(A3) and (A4). Assume that there exists η, ρ, µ > 0 such that

‖QKcKQ−1
KKsK‖∞ 6 1− η, (16)

λmin(QKK) > ρ and minj∈K |(w0)j | > µ. Assume λ|K|1/2 6 min
{

ρµ
4 , ηρ3/2

64R|K|1/2
}

.

Then the probability that the vector of signs of ŵλ is different from s = sign(w0)
is upperbounded by

4p exp

(

− nλ2η2

16

)

. (17)

Comparison with square loss. For the square loss, the previous theorem

simplifies [15, 12]: with our notations, the constraint λ 6
ηρ3/2

64R|K| , which is the

only one depending on R, can be removed (indeed, the square loss allows the
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application of our adapted self-concordant analysis with the constant R = 0).
On the one hand, the favorable scaling between p and n, i.e., log p = O(n) for

λ proportional to
√

n−1 log p, is preserved. However, on the other hand, the
terms in R may be large as R is the radius of the entire data (i.e., with all p
covariates). Bounds with the radius of the data on only the relevant features in
K could be derived as well (see details in the proof in Appendix E).

Necessary condition. In the case of the square loss, a weak form of Eq. (16),
i.e., ‖QKcKQ−1

KKsK‖∞ 6 1 turns out to be necessary and sufficient for asymp-
totic correct model selection [14]. While the weak form is clearly necessary for
model consistency, and the strict form sufficient (as proved in Theorem 4), we
are currently investigating whether the weak condition is also sufficient for the
logistic loss.

5.2. Efficiency

Another type of result has been derived, based on different proof techniques [16]
and aimed at efficiency (i.e., predictive performance). Here again, we can ex-
tend the result in a very simple way. We assume, given K the set of non-zero
components of w0:

(A5) Restricted eigenvalue condition:

ρ = min
‖∆Kc‖163‖∆K‖1

(∆⊤Q∆)1/2

‖∆K‖2
> 0.

Note that the assumption made in [16] is slightly stronger but only depends
on the cardinality of K (by minimizing with respect to all sets of indices with
cardinality equal to the one of K). The following theorem provides an estimate
of the estimation error as well as an oracle inequality for the generalization
performance (see proof in Appendix F):

Theorem 5 (Efficiency for ℓ1-regularization). Assume (A1), (A2), (A3),

(A4), and (A5). For all λ 6
ρ2

48R|K| , with probability at least 1− 2pe−λn2/5, we

have:

‖ŵλ − w0‖1 6 12λ|K|ρ−2,

J0(ŵλ)− J0(w0) 6 12λ2|K|ρ−2.

We obtain a result which directly mimics the one obtained in [16] for the
square loss with the exception of the added bound on λ. In particular, if we

take λ =
√

10 log(p)
n , we get with probability at least 1 − 2/p, an upper bound

on the generalization performance J0(ŵλ) 6 J0(w0) + 120 logp
n |K|ρ−2. Again,

the proof of this result is a direct extension of the corresponding one for the
square loss, with few additional assumptions owing to the proper self-concordant
analysis.
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6. Conclusion

We have provided an extension of self-concordant functions that allows the sim-
ple extensions of theoretical results for the square loss to the logistic loss. We
have applied these techniques to regularization by the ℓ2-norm and regulariza-
tion by the ℓ1-norm, showing that new results for logistic regression can be easily
derived from corresponding results for least-squares regression, without added
complex assumptions.

The present work could be extended in several interesting ways to differ-
ent settings. First, for logistic regression, other extensions of theoretical results
from least-squares regression could be carried out: for example, the analysis
of sequential experimental design for logistic regression leads to many assump-
tions that could be relaxed (see, e.g., [43]). Also, other regularization frame-
works based on sparsity-inducing norms could be applied to logistic regression
with similar guarantees than for least-squares regression, such as group Lasso
for grouped variables [44] or non-parametric problems [36], or resampling-based
procedures [45, 46] that allow to get rid of sufficient consistency conditions.

Second, the techniques developed in this paper could be extended to other
M-estimation problems: indeed, other generalized linear models beyond logistic
regression could be considered where higher-order derivatives can be expressed
through cumulants [19]. Moreover, similar developments could be made for den-
sity estimation for the exponential family, which would in particular lead to
interesting developments for Gaussian models in high dimensions, where ℓ1-
regularization has proved useful [47, 48] and the objective function obtained
from the log-likelihood is actually self-concordant. Finally, other losses for bi-
nary or multi-category classification are of clear interest [21], potentially with
different controls of the third derivatives.

Appendix A: Proofs of optimization results

We follow the proof techniques of [8], by simply changing the control of the
third-order derivative. We denote by F ′′′(w) the third-order derivative of F ,
which is itself a function from R

p × R
p × R

p to R. The assumptions made in
Propositions 1 and 2 are in fact equivalent to (see similar proof in [8]):

∀u, v, w ∈ R
p, |F ′′′[u, v, t]| 6 R‖u‖2[v⊤F ′′(w)v]1/2[t⊤F ′′(w)t]1/2. (18)

A.1. Univariate functions

We first consider univariate functions and prove the following lemma that gives
upper and lower Taylor expansions:

Lemma 1. Let g be a convex three times differentiable function g : R → R such
that for all t ∈ R, |g′′′(t)| 6 Sg′′(t), for some S > 0. Then, for all t > 0:

g′′(0)

S2
(e−St + St− 1) 6 g(t)− g(0)− g′(0)t 6

g′′(0)

S2
(eSt − St− 1). (19)
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Proof. Let us first assume that g′′(t) is strictly positive for all t ∈ R. We have,

for all t > 0: −S 6
d log g′′(t)

dt 6 S. Then, by integrating once between 0 and t,
taking exponentials, and then integrating twice:

−St 6 log g′′(t)− log g′′(0) 6 St,

g′′(0)e−St
6 g′′(t) 6 g′′(0)eSt, (20)

g′′(0)S−1(1 − e−St) 6 g′(t)− g′(0) 6 g′′(0)S−1(eSt − 1),

g(t) > g(0) + g′(0)t+ g′′(0)S−2(e−St + St− 1), (21)

g(t) 6 g(0) + g′(0)t+ g′′(0)S−2(eSt − St− 1), (22)

which leads to Eq. (19).
Let us now assume only that g′′(0) > 0. If we denote by A the connected

component that contains 0 of the open set {t ∈ R, g′′(t) > 0}, then the preceding
developments are valid on A; thus, Eq. (20) implies that A is not upper-bounded.
The same reasoning on−g ensures that A = R and hence g′′(t) is strictly positive
for all t ∈ R. Since the problem is invariant by translation, we have shown that
if there exists t0 ∈ R such that g′′(t0) > 0, then for all t ∈ R, g′′(t) > 0.

Thus, we need to prove Eq. (19) for g′′ always strictly positive (which is done
above) and for g′′ identically equal to zero, which implies that g is linear, which
is then equivalent to Eq. (19).

Note the difference with a classical uniform bound on the third derivative,
which leads to a third-order polynomial lower bound, which tends to −∞ more
quickly than Eq. (21). Moreover, Eq. (22) may be interpreted as an upper-bound
on the remainder in the Taylor expansion of g around 0, i.e.:

g(t)− g(0)− g′(0)t− g′′(0)

2
t2 6 g′′(0)S−2

(

eSt − 1

2
S2t2 − St− 1

)

.

The right hand-side is equivalent to St3

6 g′′(0) for t close to zero (which should be
expected from a three-times differentiable function such that g′′′(0) 6 Sg′′(0)),
but still provides a good bound for t away from zero (which cannot be obtained
from a regular Taylor expansion).

Throughout the proofs, we will use the fact that the functions u 7→ eu−1
u

and u 7→ eu−1−u
u2 can be extended to continuous functions on R, which are thus

bounded on any compact set. The bound will depend on the chosen compact
and can be obtained easily.

A.2. Proof of Proposition 1

By applying Lemma 1 (Eq. (21) and Eq. (22)) to g(t) = F (w + tv) (with
constant S = R‖v‖2) and taking t = 1, we get the desired first two inequalities
in Eq. (3) and Eq. (4). By considering the function g(t) = u⊤F ′′(w + tv)u, we
have g′(t) = F ′′′(w+ tv)[u, u, v], which is such that |g′(t)| 6 ‖v‖2Rg(t), leading
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to g(0)e−‖v‖2Rt 6 g(t) 6 g(0)e‖v‖2Rt. By applying the last inequality to all
u ∈ R

p, and taking t = 1, we obtain Eq. (6).
In order to prove Eq. (5), we consider h(t) = z⊤(F ′(w + tv) − F ′(w) −

F ′′(w)vt). We have h(0) = 0, h′(0) = 0 and h′′(t) = F ′′′(w + tv)[v, v, z] 6

R‖v‖2etR‖v‖2 [z⊤F ′′(w)z]1/2[v⊤F ′′(w)v]1/2 using Eq. (6) and Eq. (18). Thus, by
integrating between 0 and t,

h′(t) 6 [z⊤F ′′(w)z]1/2[v⊤F ′′(w)v]1/2(etR‖v‖2 − 1),

which implies h(1) 6 [z⊤F ′′(w)z]1/2[v⊤F ′′(w)v]1/2
∫ 1

0 (e
tR‖v‖2 − 1)dt, which in

turn leads to Eq. (5).
Using similar techniques, i.e., by considering the function t 7→ z⊤[F ′′(w +

tv)− F ′′(w)]u, we can prove that for all z, u, v, w ∈ R
p, we have:

z⊤[F ′′(w+ v)−F ′′(w)]u 6
eR‖v‖2 − 1

‖v‖2
[v⊤F ′′(w)v]1/2[z⊤F ′′(w)z]1/2‖u‖2, (23)

and also

z⊤[F ′′(w + v)− F ′′(w)]u 6 (eR‖v‖2 − 1)[u⊤F ′′(w)u]1/2[z⊤F ′′(w)z]1/2. (24)

A.3. Proof of Proposition 2

Since we have assumed that λ(w) > 0, then by Eq. (6), the Hessian of F is
everywhere invertible, and hence the function F is strictly convex. Therefore, if
the minimum is attained, it is unique.

Let v ∈ R
p be such that v⊤F ′′(w)v = 1. Without loss of generality, we may

assume that F ′(w)⊤v is nonnegative. This implies that for all t 6 0, F (w+tv) >
F (w) + tF ′(w)⊤v > F (w). Moreover, let us denote κ = −v⊤F ′(w)R‖v‖2 ∈ R+,

which is nonnegative and such that κ 6
R|v⊤F ′(w)|

λ(w)1/2
6

Rν(F,w)

λ(w)1/2
6 1/2. From

Eq. (3), for all t > 0, we have:

F (w + tv) > F (w) + v⊤F ′(w)t +
1

R2‖v‖22
(e−R‖v‖2t +R‖v‖2t− 1)

> F (w) +
1

R2‖v‖22

[

e−R‖v‖2t + (1 − κ)R‖v‖2t− 1
]

.

Moreover, a short calculation shows that for all κ ∈ (0, 1]:

e−2κ(1−κ)−1

+ (1− κ)2κ(1− κ)−1 − 1 > 0. (25)

This implies that for t0 = 2(R‖v‖2)−1κ(1 − κ)−1, F (w + t0v) > F (w). Since

t0 6
2

1−κ |v⊤F ′(w)| 6 2ν(F,w)
(

1− ν(F,w)R
λ(w)1/2

)−1

6 4ν(F,w), we also have F (w+

tv) > F (w) for t = 4ν(F,w).
Since this is true for all v such that v⊤F ′′(w)v = 1, this shows that the

value of the function F on the entire ellipsoid (since F ′′(w) is positive definite)
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v⊤F ′′(w)v = 16ν(F,w)2 is greater or equal to the value at w; thus, by convexity,
there must be a minimizer w∗—which is unique because of Eq. (6)—of F such
that

(w − w∗)⊤F ′′(w)(w − w∗) 6 16ν(F,w)2 ,

leading to Eq. (7).
In order to prove Eq. (9), we will simply apply Eq. (7) at w+v, which requires

to upper-bound ν(F,w+ v), where v = −F ′′(w)−1F ′(w) is the Newton step; we
have:

‖F ′′(w)−1/2F ′(w + v)‖2
=

∥

∥F ′′(w)−1/2[F ′(w + v)− F ′(w) − F ′′(w)v]
∥

∥

2

=

∥

∥

∥

∥

∫ 1

0

F ′′(w)−1/2[F ′′(w + tv)− F ′′(w)]vdt

∥

∥

∥

∥

2

6

∫ 1

0

∥

∥

∥

∥

F ′′(w)−1/2[F ′′(w + tv)− F ′′(w)]F ′′(w)−1/2F ′′(w)1/2v

∥

∥

∥

∥

2

dt

6

∫ 1

0

∥

∥

∥

∥

[

F ′′(w)−1/2F ′′(w + tv)F ′′(w)−1/2 − I
]

F ′′(w)1/2v

∥

∥

∥

∥

2

dt.

Moreover, we have from Eq. (6):

(e−tR‖v‖2 − 1)I 4 F ′′(w)−1/2F ′′(w + tv)F ′′(w)−1/2 − I 4 (etR‖v‖2 − 1)I.

Thus,

‖F ′′(w)−1/2F ′(w + v)‖2 6

∫ 1

0

max{etR‖v‖2 − 1, 1− e−tR‖v‖2}‖F ′′(w)1/2v‖2dt

= ν(F,w)

∫ 1

0

(etR‖v‖2−1)dt= ν(F,w)
eR‖v‖2 −1−R‖v‖2

R‖v‖2
.

Therefore, using Eq. (6) again, we obtain:

ν(F,w+v) = ‖F ′′(w+v)−1/2F ′(w+v)‖2 6 ν(F,w)eR‖v‖2/2
eR‖v‖2 − 1−R‖v‖2

R‖v‖2
.

We have R‖v‖2 6 Rλ(w)−1/2ν(F,w) 6 1/2, and thus, we get, from the conti-

nuity of the function t 7→ et−1−t
t2 ,

eR‖v‖2/2
eR‖v‖2 − 1−R‖v‖2

R‖v‖2
6 R‖v‖2 6 Rν(F,w)λ(w)−1/2 ,

leading to:

ν(F,w + v) 6
R

λ(w)1/2
ν(F,w)2. (26)
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Moreover, we have:

Rν(F,w + v)

λ(w + v)1/2
6

ReR‖v‖2/2

λ(w)1/2
ν(F,w + v)

6
R

λ(w)1/2
ν(F,w)eR‖v‖2

eR‖v‖2−1−R‖v‖2
R‖v‖2

,

6
R

λ(w)1/2
ν(F,w) ×R‖v‖2 6

(

R

λ(w)1/2
ν(F,w)

)2

6 1/4,

which leads to Eq. (8). Moreover, it shows that we can apply Eq. (7) at w + v
and get:

[(w∗ − w − v)⊤F ′′(w)(w∗ − w − v)]1/2

6 eR‖v‖2/2[(w∗ − w − v)⊤F ′′(w + v)(w∗ − w − v)]1/2

6 4eR‖v‖2/2ν(F,w + v) 6 4R‖v‖2ν(F,w),

which leads to the desired result, i.e., Eq. (9).

Appendix B: Proof of Theorem 1

Following [26, 27], we denote by wλ the unique global minimizer of the expected
regularized risk Jλ(w) = J0(w) +

λ
2 ‖w‖22. We simply apply Eq. (7) from Propo-

sition 2 to Ĵλ and wλ, to obtain, if the Newton decrement (see Section 2 for its
definition) ν(Ĵλ, wλ)

2 is less than λ/4R2, that ŵλ and its population counterpart
wλ are close, i.e.:

(ŵλ − wλ)
⊤Ĵ ′′

λ (wλ)(ŵλ − wλ) 6 16ν(Ĵλ, wλ)
2.

We can then apply the upper Taylor expansion in Eq. (4) from Proposition 1
to Jλ and wλ, to obtain, with v = ŵλ − wλ (which is such that R‖v‖2 6

4Rν(Ĵλ,wλ)
λ1/2 6 2):

Jλ(ŵλ)− Jλ(wλ) 6
v⊤J ′′

λ (wλ)v

R2‖v‖22
(eR‖v‖2 −R‖v‖2 − 1) 6 20ν(Ĵλ, wλ)

2.

Therefore, for any w0 ∈ R
p, since wλ is the minimizer of Jλ(w) = J0(w)+

λ
2 ‖w‖22:

J0(ŵλ) 6 Jλ(ŵλ) 6 Jλ(wλ) + 20ν(Ĵλ, wλ)
2
6 J0(w0) +

λ

2
‖w0‖22 + 20ν(Ĵλ, wλ)

2.

(27)
We can now apply the concentration inequality from Proposition 4 in Ap-

pendix G, i.e., Eq. (46), with u = log(8/δ). We use λ = 19R2
√

log(8/δ)
n . In order

to actually have ν(Ĵλ, wλ) 6 λ1/2/2R (so that we can apply our self-concordant
analysis), it is sufficient that:

41R2u/λn 6 λ/8R2, 63(u/n)3/2R2/λ 6 λ/16R2, 8(u/n)2R2/λ 6 λ/16R2,
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leading to the constraints u 6 n/125. We then get with probability at least
1− δ = 1− 8e−u (for u 6 n/125):

J0(ŵλ) 6 J0(w0)+
λ

2
‖w0‖22+20

λ

4R2
6 J0(w0)+

(10 + 100R2‖w0‖22)
√

log(8/δ)√
n

.

For u > n/125, the bound in Eq. (12) is always satisfied. Indeed, this implies
with our choice of λ that λ > R2 (i.e., λ is rather large. We have λ

2 ‖ŵλ‖22 6

Ĵλ(ŵλ) 6 Ĵλ(0) = log 2, which implies that ‖ŵλ‖22 is bounded from above by
2 log(2)λ−1 6 2R−2, from which we can easily get that

J0(ŵλ) 6 J0(w0) + 1 +R2‖w0‖22,

which is smaller than the right hand-side of Eq. (12).

Appendix C: Proof of Theorem 2

We denote by JT
0 the second-order Taylor expansion of J0 around w0, equal

to JT
0 (w) = J0(w0) +

1
2 (w − w0)

⊤Q(w − w0), with Q = J ′′
0 (w0), and ĴT

0 the

expansion of Ĵ0 around w0, equal to JT
0 (w) − q⊤w. We denote by ŵN

λ the one-

step Newton iterate from w0 for the function Ĵλ, defined as the global minimizer
of ĴT

0 + λ
2 ‖ · ‖22 and equal to ŵN

λ = w0 + (Q+ λI)−1(q − λw0).

What the following proposition shows is that we can replace Ĵ0 by ĴT
0 for

obtaining the estimator and that we can replace J0 by JT
0 for measuring its

performance, i.e., we may do as if we had a weighted least-squares cost, as long
as the Newton decrement is small enough:

Proposition 3 (Quadratic approximation of risks). Assume ν(Ĵλ, w0)
2 = (q−

λw0)
⊤(Q + λI)−1(q − λw0) 6

λ
4R2 . We then have:

|J0(ŵλ)−JT
0 (ŵN

λ )| 6 15Rν(Ĵλ, w0)
2

λ1/2
‖Q1/2(ŵN

λ −w0)‖2+
40R2

λ
ν(Ĵλ, w0)

4. (28)

Proof. We show that (1) ŵN
λ is close to ŵλ using Proposition 2 on the behavior

of Newton’s method, (2) that ŵN
λ is close to w0 by using its closed form ŵN

λ =
w0 + (Q + λI)−1(q − λw0), and (3) that J0 and JT

0 are close around w0 using
Proposition 1 on upper and lower Taylor expansions.

We first apply Eq. (9) from Proposition 2 to get

(ŵλ − ŵN
λ )⊤Ĵ ′′

λ (w0)(ŵλ − ŵN
λ ) 6

16R2

λ
ν(Ĵλ, w0)

4. (29)

This implies that ŵλ and ŵN
λ are close, i.e., using Ĵ ′′

λ (w0) < λI:

‖ŵλ − ŵN
λ ‖2 6 λ−1(ŵλ − ŵN

λ )⊤Ĵ ′′
λ (w0)(ŵλ − ŵN

λ )

6
16R2

λ2
ν(Ĵλ, w0)

4
6

4

λ
ν(Ĵλ, w0)

2
6

1

R2
.
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Thus, using the closed form expression for ŵN
λ = w0 +(Q+λI)−1(q−λw0), we

obtain

‖ŵλ − w0‖ 6 ‖ŵλ − ŵN
λ ‖+ ‖w0 − ŵN

λ ‖

6 2
ν(Ĵλ, w0)

λ1/2
+

ν(Ĵλ, w0)

λ1/2
6

3ν(Ĵλ, w0)

λ1/2
6

3

2R
.

We can now apply Eq. (3) from Proposition 2 to get for all v such that R‖v‖2 6
3/2 (and using the continuity of t 7→ et−1−t

t2 ):

|J0(w0 + v)− JT
0 (w0 + v)| 6 (v⊤Qv)R‖v‖2/4. (30)

Thus, using Eq. (30) for v = ŵλ − w0 and v = ŵN
λ − w0 :

|J0(ŵλ)− JT
0 (ŵN

λ )|
6 |J0(ŵλ)− JT

0 (ŵλ)|+ |JT
0 (ŵN

λ )− JT
0 (ŵλ)|,

6
R

4
‖ŵλ −w0‖2 ‖Q1/2(ŵλ −w0)‖22 +

1

2

∣

∣

∣
‖Q1/2(ŵλ −w0)‖22 −‖Q1/2(ŵN

λ −w0)‖22
∣

∣

∣
,

6
3Rν(Ĵλ, w0)

4λ1/2
‖Q1/2(ŵλ − w0)‖22 +

1

2

∣

∣

∣
‖Q1/2(ŵλ − w0)‖22 − ‖Q1/2(ŵN

λ − w0)‖22
∣

∣

∣
,

6
3Rν(Ĵλ, w0)

4λ1/2
‖Q1/2(ŵN

λ − w0)‖22

+

(

1

2
+
3

4

)

∣

∣

∣
‖Q1/2(ŵλ − w0)‖22 − ‖Q1/2(ŵN

λ − w0)‖22
∣

∣

∣
,

6
3Rν(Ĵλ, w0)

4λ1/2
‖Q1/2(ŵN

λ − w0)‖22

+
5

4
‖Q1/2(ŵλ − ŵN

λ )‖22 +
5

2
‖Q1/2(ŵλ − ŵN

λ )‖2‖Q1/2(ŵN
λ − w0)‖2.

From Eq. (29), we have ‖Q1/2(ŵλ−ŵN
λ )‖22 6 16R2

λ ν(Ĵλ, w0)
4. We thus obtain,

using that ‖Q1/2(ŵN
λ − w0)‖2 6 ν(Ĵ0, w0):

|J0(ŵλ)−JT
0 (ŵN

λ )|6
(

3

4
+
5

2

√
32

)

ν(Ĵλ, w0)
2

R−1λ1/2
‖Q1/2(ŵN

λ −w0)‖2+
40R2

λ
ν(Ĵλ, w0)

4,

which leads to the desired result.

We can now go on with the proof of Theorem 2. From Eq. (28) in Proposition 3
above, we have, if ν(Ĵλ, w0)

2 6 λ/4R2,

J0(ŵλ) = JT
0 (ŵN

λ ) +B

= J0(w0) +
1

2
(q − λw0)

⊤Q(Q+ λI)−2(q − λw0) +B

= J0(w0) +
1

2
λw⊤

0 Q(Q+ λI)−2λw0 +
1

2
q⊤Q(Q+ λI)−2q

−λw⊤
0 (Q + λI)−2Qq +B

= J0(w0) +
d2
2n

+
b2
2

+B + C,
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with C = −λw⊤
0 (Q+ λI)−2Qq +

1

2
tr(Q + λI)−2Q

(

qq⊤− 1

n
Q

)

,

|B| 6
15Rν(Ĵλ, w0)

2

λ1/2
‖Q1/2(ŵN

λ − w0)‖2 +
40R2

λ
ν(Ĵλ, w0)

4.

We can now bound each term separately and check that we indeed have ν(Ĵλ,
w0)

2 6 λ/4R2 (which allows to apply Proposition 2). First, from Eq. (13), we
can derive

b2 +
d2
n

6 b1 +
d1
n

6
κλ1/2

R

(

b2 +
d2
n

)1/2
6

κλ1/2

R

(

b1 +
d1
n

)1/2
,

which implies the following identities:

b2 +
d2
n

6 b1 +
d1
n

6
κ2λ

R2
. (31)

We have moreover:

ν(Ĵλ, w0)
2 = (q − λw0)

⊤(Q+ λI)−1(q − λw0)

= b1 +
d1
n

+ tr
(

Q+ λI)−1

(

qq⊤ − Q

n

)

− 2λw⊤
0 (Q+ λI)−1q.

We can now apply concentration inequalities from Appendix G, together with
the following applications of Bernstein’s inequality. Indeed, we have λw⊤

0 (Q +
λI)−2Qq =

∑n
i=1 Zi, with

|Zi| 6
λ

n
|w⊤

0 (Q + λI)−2Qxi|

6
λ

n

(

w⊤
0 (Q + λI)−2Qw0

)1/2 (
x⊤
i (Q+ λI)−2Qxi

)1/2
6

b
1/2
2

n
Rλ−1/2.

Moreover, EZ2
i 6

λ2

n w⊤
0 (Q + λI)−2Q3(Q + λI)−2w0 6

1
nb2. We can now apply

Bernstein inequality [2] to get with probability at least 1 − 2e−u (and using
Eq. (31)):

λw⊤
0 (Q+ λI)−2Qq 6

√

2b2u

n
+

u

3n
b
1/2
2 Rλ−1/2

6

√

2b2u

n
+

uκ

3n
.

Similarly, with probability at least 1− 2e−u, we have:

λw⊤
0 (Q+ λI)−1q 6

√

2b2u

n
+

uκ

3n
.

We thus get, from Eq. (47) and through the union bound, with probability at
least 1− 20e−u:
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ν(Ĵλ, w0)
2

6

(

b1 +
d1
n

)

+

(

32d
1/2
2 u1/2

n
+

18u

n
+

53Rd
1/2
1 u3/2

n3/2λ1/2
+ 9

R2u2

λn2

)

+

(

2

√

2b2u

n
+

2κu

3n

)

,

6 b1 +
d1
n

+
64u1/2

n1/2

(

b2 +
d2
n

)1/2
+

u

n

(

18 +
κ

6

)

+
R2

λ

9u2

n2

+
53n1/2κu3/2

n3/2
,

6
λκ2

R2
+ E,

together with C 6 E. We now take u = (nb2 + d2)t
2 and assume t 6 1/4,

κ 6 1/16, and t3(nb2 + d2)
1/2 6 12, so that, we have

E 6 64t
(

b2 +
d2
n

)

+ t2
(

b2 +
d2
n

)(

18 +
2κ

3

)

+
9R2

λ
t4
(

b2 +
d2
n

)2

+53n1/2κt3
(

b2 +
d2
n

)3/2
,

6
(

b2 +
d2
n

)

(

64t+
(

18 +
2κ

3

)

t2 +
9R2

λ
t4
λκ2

R2
+ 53κt3(nb2 + d2)

1/2

)

,

6
(

b2 +
d2
n

)

(

64t+ 18t2 +
2κ

3
t2 + 9κ2t4 + 53κt3(nb2 + d2)

1/2

)

,

6
(

b2 +
d2
n

)

(

68.5t+
2κ

3× 16
+ 9κ/16× 16× 16 + 53κ× 12

64

)

,

6
(

b2 +
d2
n

)(

69t+ 10κ
)

6 20
(

b2 +
d2
n

)

.

This implies that ν(Ĵλ, w0)
2 6

λ
R2

20+1
256 6

λ
4R2 , so that we can apply Proposi-

tion 2. Thus, by denoting e2 = b2 +
d2

n , e1 = b1 +
d1

n , and α = 69t+ 10κ 6 20,

we have ν(Ĵλ, w0)
2 6 e1 + e2α and we get a global upper bound:

B + |C| 6 e2α+
40R2

λ
(e1 + e2α)

2 +
15Re

1/2
2

λ1/2
(e1 + e2α)(1 + α)1/2.

With e1 + e2α 6 e
1/2
2 (κλ1/2/R)(1 + α), we get

B + |C| 6 e2α+ 40κ2e2(1 + α)2 + 15κe2(1 + α)3/2

6 e2α+ e2κ(40× 21× 21/16 + 15(21)3/2) 6 e2(69t+ 2560κ),

which leads to the desired result, i.e., Eq. (14).
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Appendix D: Proof of Theorem 3

We follow the same proof technique than for Theorem 2 in Appendix C. We
have:

J0(ŵλ) = Ĵ0(ŵλ) + q⊤(ŵλ − w0) + q⊤w0

= Ĵ0(ŵλ) + q⊤(ŵλ − ŵNN
λ ) + q⊤(ŵN

λ − w0)

− q⊤Ĵ ′′
λ (ŵ

N
λ )−1Ĵ ′

λ(ŵ
N
λ ) + q⊤w0,

where ŵNN
λ = ŵN

λ − Ĵ ′′
λ (ŵ

N
λ )−1Ĵ ′

λ(ŵ
N
λ ) is the two-step Newton iterate from w0.

We have, from Eq. (26) in Appendix A.3, ν(Ĵλ, ŵ
N
λ ) 6 2R

λ1/2 ν(Ĵλ, w0)
2, which

then implies (with Eq. (9)):

(ŵλ−ŵNN
λ )⊤(Q+λI)(ŵλ−ŵNN

λ ) 6
16R2

λ

(

2R

λ1/2
ν(Ĵλ, w0)

2

)4

6
512R6ν(Ĵλ, w0)

8

λ3
,

which in turn implies

|q⊤(ŵλ − ŵNN
λ )| 6 [q(Q + λI)−1q]1/2

32R3ν(Ĵλ, w0)
4

λ3/2

6
R[q(Q+ λI)−1q]1/2

λ1/2

32R2ν(Ĵλ, w0)
4

λ
. (32)

Moreover, we have from the closed-form expression of ŵN
λ :

∣

∣q⊤(ŵN
λ − w0)−

d1
n

∣

∣ 6
∣

∣ tr(Q+ λI)−1(qq⊤ −Q/n)
∣

∣+ λw⊤
0 (Q+ λI)−1q. (33)

Finally, we have, using Eq. (5) from Proposition 1:
∣

∣q⊤Ĵ ′′
λ (ŵ

N
λ )−1Ĵ ′

λ(ŵ
N
λ )

∣

∣ =
∣

∣q⊤Ĵ ′′
λ (ŵ

N
λ )−1[Ĵ ′

0(ŵ
N
λ )− Ĵ ′

0(w0)−Q(ŵN
λ − w0)]

∣

∣

6
[

q⊤Ĵ ′′
λ (ŵ

N
λ )−1QĴ ′′

λ (ŵ
N
λ )−1q

]1/2[
∆⊤Q∆

]1/2
R‖∆‖2

6 2
[

q⊤Q(Q+ λI)−2q
]1/2‖Q1/2∆‖2

Rν(Ĵλ, w0)

λ1/2
, (34)

where ∆ = ŵN
λ − w0 satisfies ‖∆‖2 6 Ĵλ, w0)λ

−1/2.

What also needs to be shown is that
∣

∣ tr Q̂λ(Q̂λ +λI)−1 − trQ(Q+λI)−1
∣

∣ is

small enough; by noting that Q = J ′′
0 (w0), Q̂λ = J ′′

0 (w0 + v), and v = ŵλ −w0,
we have, using Eq. (24) from Appendix A.2 and with (δi) the canonical basis
of Rp:

∣

∣ tr Q̂λ(Q̂λ + λI)−1 − trQ(Q+ λI)−1
∣

∣

= λ
∣

∣ tr
[

(Q̂λ + λI)−1(Q− Q̂λ)(Q + λI)−1
]
∣

∣

6 λ

p
∑

i=1

∣

∣δ⊤i (Q̂λ + λI)−1(Q − Q̂λ)(Q + λI)−1δi
∣

∣

6 λR

p
∑

i=1

‖Q1/2(Q+ λI)−1δi‖2‖Q1/2(Q̂λ + λI)−1δi‖2‖v‖2

6 2R‖v‖2
p

∑

i=1

δ⊤i Q(Q+ λI)−1δi = 2R‖v‖2d1. (35)
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All the terms in Eqs. (32,33,34,35) that need to be added to obtain the required
upperbound are essentially the same than the ones proof of Theorem 2 in Ap-
pendix C (with smaller constants). Thus the rest of the proof follows if we add
the term due to

∣

∣ tr Q̂λ(Q̂λ + λI)−1 − trQ(Q+ λI)−1
∣

∣, which adds terms of the
form, using notations from Appendix C,

2R‖v‖2d1/n 6
6R(e1 + αe2)

1/2

λ1/2
e1 6 12κe

1/2
2 e

1/2
1 = 12e2 × κe

−1/2
2 e

1/2
1 .

Appendix E: Proof of Theorem 4

We follow the same proof technique than for the Lasso [15, 12, 14], i.e., we
consider w̃ the minimizer of Ĵ0(w)+λs⊤w subject to wKc = 0 (which is unique
because QKK is invertible), and (1) show that w̃K has the correct (non zero)
signs and (2) that it is actually the unrestricted minimum of Ĵ0(w) + λ‖w‖1
over R

p, i.e., using optimality conditions for nonsmooth convex optimization
problems [49], that ‖[Ĵ ′

0(w̃)]Kc‖∞ 6 λ. All this will be shown by replacing w̃ by
the proper one-step Newton iterate from w0.

Correct signs on K. We directly use Proposition 2 with the function wK 7→
Ĵ0(wK , 0) + λs⊤KwK—where (wK , 0) denotes the p-dimensional vector obtained
by completing wK by zeros—to obtain from Eq. (7):

(w̃K − (w0)K)⊤QKK(w̃K − (w0)K) 6 16(qK − λsK)⊤Q−1
KK(qK − λsK) = 16ν2,

as soon as ν2 = (qK − λsK)⊤Q−1
KK(qK − λsK) 6

ρ
4R2 , and thus as soon as

qKQ−1
KKqK 6

ρ
8R2 and λ2s⊤KQ−1

KKsK 6
ρ

8R2 . We thus have:

‖w̃ − w0‖∞ 6 ‖w̃K − (w0)K‖2 6 ρ−1/2‖Q1/2
KK(w̃K − (w0)K)‖2 6 4ρ−1/2ν.

We therefore get the correct signs for the covariates indexed by K, as soon as
‖w̃ − w0‖2∞ 6 minj∈K |(w0)j |2 = µ2, i.e., as soon as

max
{

qKQ−1
KKqK , λ2s⊤KQ−1

KKsK
}

6 min
{ ρ

16
µ2,

ρ

8R2

}

. (36)

Note that s⊤KQ−1
KKsK 6 |K|ρ−1, thus the previous inequality is mplied by the

following constraints:

λ 6
ρ

4|K|1/2 min
{

µ,R−1
}

, (37)

qKQ−1
KKqK 6

ρ

16
min

{

µ2, R−2
}

. (38)

Gradient condition on Kc. We denote by w̃N the one-step Newton iterate
from w0 for the minimization of Ĵ0(w) + λs⊤w restricted to wKc = 0, equal to
w̃N

K = (w0)K +Q−1
KK(qK − λsK). From Eq. (9) in Proposition 2, we get:

(w̃K−w̃N
K)⊤QKK(w̃K−w̃N

K) 6
16R2

ρ

[

(qK−λsK)⊤Q−1
KK(qK−λsK)

]2
=

16R2ν4

ρ
.

(39)
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We thus have

‖w̃ − w̃N‖2 6 ρ−1/2 4Rν2

ρ1/2
=

4Rν2

ρ
6 1/R,

‖w0 − w̃N‖2 6 ρ−1/2ν 6 1/2R,

‖w̃ − w0‖2 6 ‖w̃ − w̃N‖2 + ‖w0 − w̃N‖2 6 3νρ−1/2
6 3R/2.

Note that up to here, all bounds R may be replaced by the maximal ℓ2-norm of
all data points, reduced to variables in K.

In order to check the gradient condition, we compute the gradient of Ĵ0 along
the directions in Kc, to obtain for all z ∈ R

p, using Eq. (5) and with any v such

that R‖v‖2 6 3/2 (and using the continuity of t 7→ et−1−t
t2 ):

∣

∣z⊤[Ĵ ′
0(w0 + v)−T̂ ′

0(w0 + v)]
∣

∣

(z⊤Qz)1/2
6 (v⊤Qv)1/2

eR‖v‖2−1−R‖v‖2
R‖v‖2

6 2(v⊤Qv)1/2R‖v‖2,

where T̂ ′
0(w) = Ĵ ′

0(w0)+Ĵ ′′
0 (w0)(w−w0) is the derivative of the Taylor expansion

of Ĵ0 around w0. This implies, since diag(Q) 6 1/4, the following ℓ∞-bound on
the difference Ĵ0 and its Taylor expansion:

‖[Ĵ ′
0(w0 + v)− T̂ ′

0(w0 + v)]Kc‖∞ 6 (v⊤Qv)1/2R‖v‖2.

We now have, using Eq. (39), the previous inequality and the closed form ex-
pression for w̃N :

‖Ĵ ′
0(w̃)Kc‖∞ 6 ‖T̂ ′

0(w̃
N )Kc‖∞

+‖T̂ ′
0(w̃

N )Kc − T̂ ′
0(w̃)Kc‖∞ + ‖T̂ ′

0(w̃)Kc − Ĵ ′
0(w̃)Kc‖∞,

6 ‖[Ĵ ′
0(w0) +Q(w̃N − w0)]Kc‖∞

+‖[Q(w̃ − w̃N )]Kc‖∞ +R‖w̃ − w0‖2‖Q1/2(w̃ − w0)‖2,
6 ‖ − qKc +QKcKQ−1

KK(qK − λsK)‖∞
+‖QKcKQ

−1/2
KK Q

1/2
KK(w̃K − w̃N

K)‖∞ +3νRρ−1/2(4Rν2ρ−1/2 + ν),

6 ‖qKc −QKcKQ−1
KK(qK − λsK)‖∞

+
1

4
‖Q1/2

KK(w̃K − w̃N
K)‖2 +

9R

ρ1/2
ν2,

6 ‖qKc −QKcKQ−1
KK(qK − λsK)‖∞ +

1

4

16R

ρ1/2
ν2 +

9R

ρ1/2
ν2,

6 ‖qKc −QKcKQ−1
KK(qK − λsK)‖∞ +

16R

ρ1/2
ν2

6 ‖qKc −QKcKQ−1
KKqK‖∞ + ‖QKcKQ−1

KKλsK‖∞ +
16R

ρ1/2
ν2.

Thus, in order to get ‖Ĵ ′
0(w̃)Kc‖∞ 6 λ, we need

‖qKc −QKcKQ−1
KKqK‖∞ 6 ηλ/4, (40)
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and

max
{

qKQ−1
KKqK , λ2s⊤KQ−1

KKsK
}

6
ληρ1/2

64R
. (41)

In terms of upper bound on λ we then get:

λ 6 min

{

ρ

4|K|1/2µ,
ρ

4|K|1/2R
−1,

ηρ3/2

64R|K|

}

,

which can be reduced λ 6 min
{

ρ
4|K|1/2µ,

ηρ3/2

64R|K|

}

. In terms of upper bound on

q⊤KQ−1
KKqK we get:

q⊤KQ−1
KKqK 6 min

{

ρ

16
µ2,

ρ

16
R−2,

ληρ1/2

64R

}

,

which can be reduced to q⊤KQ−1
KKqK 6 min

{

ρ
16µ

2, ληρ1/2

64R

}

, using the constraint

on λ. This can be further reduced to q⊤KQ−1
KKqK 6

λ2|K|
ρ .

We now derive and use concentration inequalities. We first use Bernstein’s
inequality (using for all k and i, |(xi)k − QkKQ−1

KK(xi)K ||εi| 6 R/ρ1/2 and
Qkk 6 1/4), and the union bound to get

P(‖qKc −QKcKQ−1
KKqK‖∞ > λη/4) 6 2p exp

(

− nλ2η2/32

1/4 + Rληρ−1/2/12

)

6 2p exp

(

−nλ2η2

16

)

,

as soon as Rληρ−1/2 6 3, i.e., as soon as, λ 6 3ρ1/2R−1, which is indeed satisfied
because of our assumption on λ. We also use Bernstein’s inequality to get

P(q⊤KQ−1
KKqK > t) 6 P

(

‖qK‖∞ >

√

ρt

|K|

)

6 2|K| exp
(

− nρt

|K|

)

.

The union bound then leads to the desired result, by noting that

2p exp

(

− nλ2η2

16

)

+ 2|K| exp(−nλ2) 6 4p exp

(

− nλ2η2

16

)

Appendix F: Proof of Theorem 5

We follow the proof technique of [16]. We have Ĵ0(ŵλ) = J0(ŵλ)− q⊤ŵλ. Thus,
because ŵλ is a minimizer of Ĵ0(w) + λ‖w‖1,

J0(ŵλ)− q⊤ŵλ + λ‖ŵλ‖1 6 J0(w0)− q⊤w0 + λ‖w0‖1, (42)

which implies, since J0(ŵλ) > J0(w0):

λ‖ŵλ‖1 6 λ‖w0‖1 + ‖q‖∞‖ŵλ − w0‖1,
λ‖(ŵλ)K‖1 + λ‖(ŵλ)Kc‖1 6 λ‖(w0)K‖1

+‖q‖∞
(

‖(ŵλ)K − (w0)K‖1 + ‖(ŵλ)Kc‖1
)

.
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If we denote by ∆ = ŵλ − w0 the estimation error, we deduce:

(λ− ‖q‖∞)‖∆Kc‖1 6 (λ+ ‖q‖∞)‖∆K‖1.

If we assume ‖q‖∞ 6 λ/2, then, we have ‖∆Kc‖1 6 3‖∆K‖1, and thus using
(A5), we get ∆⊤Q∆ > ρ2‖∆K‖22. From Eq. (42), we thus get:

J0(ŵλ)− J0(w0) 6 q⊤(ŵλ − w0)− λ‖ŵλ‖1 + λ‖w0‖1,

J0(w0 +∆)− J0(w0) 6 (‖q‖∞ + λ)‖∆‖1 6
3λ

2
‖∆‖1. (43)

Using Eq. (3) in Proposition 1 with J0, we obtain:

J0(w0 +∆)− J0(w0) >
∆⊤Q∆

R2‖∆‖22
(

e−R‖∆‖2 +R‖∆‖2 − 1
)

,

which implies, using ∆⊤Q∆ > ρ2‖∆K‖22 and Eq. (43):

ρ2‖∆K‖22
R2‖∆‖22

(

e−R‖∆‖2 +R‖∆‖2 − 1
)

6
3λ

2
‖∆‖1. (44)

We can now use, with s = |K|, ‖∆‖2 6 ‖∆‖1 6 4‖∆K‖1 6 4
√
s‖∆K‖2 to get:

ρ2
(

e−R‖∆‖2 +R‖∆‖2 − 1
)

6
3λ

2

(4
√
s‖∆K‖2)2R‖∆‖2

‖∆K‖22
6 24λsR2‖∆‖2.

This implies using Eq. (25), that R‖∆‖2 6 48λRs/ρ2

1−24λsR/ρ2 6 2 a soon as Rλsρ−2 6

1/48, which itself implies that 1
(R‖∆‖2)2

(

e−R‖∆‖2 +R‖∆‖2−1
)

> 1/2, and thus,

from Eq. (44),

‖∆K‖2 6
3λ

2
× 4

√
s‖∆K‖2.

The second result then follows from Eq. (43) (using Bernstein inequality for an
upper bound on P(‖q‖∞ > λ/2)).

Appendix G: Concentration inequalities

In this section, we derive concentration inequalities for quadratic forms of bounded
random variables that extend the ones already known for Gaussian random vari-
ables [28]. The following proposition is a simple corollary of a general concen-
tration result on U-statistics [11].

Proposition 4. Let y1, . . . , yn be n vectors in R
p such that ‖yi‖2 6 b for all

i = 1, . . . , n and Y = [y⊤1 , . . . , y
⊤
n ]

⊤ ∈ R
n×p. Let ε ∈ R

n be a vector of zero-mean
independent random variables almost surely bounded by 1 and with variances σ2

i ,
i = 1, . . . , n. Let S = Diag(σi)

⊤Y Y ⊤ Diag(σi). Then, for all u > 0:

P
[

|ε⊤Y Y ⊤ε− trS| > 32 tr(S2)1/2u1/2 + 18λmax(S)u

+ 126b(trS)1/2u3/2 + 39b2u2
]

6 8e−u. (45)
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Proof. We apply Theorem 3.4 from [11], with Ti = εi, gi,j(ti, tj) = y⊤i yjtitj if
|ti|, |tj | 6 1 and zero otherwise. We then have (following notations from [11]):

A = max
i,j

|y⊤i yj | 6 b2,

B2 = max
i∈{1,...,n}

∑

j<i

(y⊤i yj)
2σ2

j 6 max
i∈{1,...,n}

∑

j<i

y⊤i yib
2σ2

j 6 b2 tr(S),

C2 =
∑

j<i

(y⊤i yj)
2σ2

jσ
2
i 6

1

2
tr(S2),

D 6
1

2
λmax(S).

Thus (using ε = 4 in [11]):

P

(∣

∣

∣

∣

∑

j 6=i

y⊤i yjεiεj

∣

∣

∣

∣

> 44.8Cu1/2+35.36Du+124.56Bu3/2+A38.26u2

)

6 5.542e−u.

Moreover, we have from Bernstein’s inequality [2]:

P

(∣

∣

∣

∣

n
∑

i=1

y⊤i yi(ε
2
i − σ2

i )

∣

∣

∣

∣

> u1/2
√
2b2 trS +

b2u

3

)

6 2e−u,

leading to the desired result, noting that for u 6 log(8), the bound is trivial.

We can apply to our setting to get, with yi =
1
n (P +λI)−1/2xi (with ‖xi‖2 6

R), leading to b = 1
2Rn−1λ−1/2 and S = 1

n Diag(σ)X(P + λI)−1X⊤Diag(σ).

Misspecifiedmodels. If no assumptions are made, we simply have: λmax(S) 6
(trS2)1/2 6 tr(S) 6 R2/λn and we get after bringing terms together:

P

[

q⊤(P + λI)−1q >
41R2u

λn
+

R2

λ

(

8
u2

n2
+ 63

u3/2

n3/2

)]

6 8e−u. (46)

Well-specified models In this case, P = Q and λmax(S) 6 1/n, trS = d1/n,
trS2 = d2/n

2.

P

[
∣

∣

∣

∣

q⊤(P +λI)−1q− d1
n

∣

∣

∣

∣

>
32d

1/2
2 u1/2

n
+

18u

n
+

53Rd
1/2
1 u3/2

n3/2λ1/2
+9

R2u2

λn2

]

6 8e−u.

(47)

Acknowledgements

I would like to thank Sylvain Arlot, Jean-Yves Audibert and Guillaume Obozin-
ski for fruitful discussions related to this work. This work was partially supported
by a grant from the Agence Nationale de la Recherche (MGA Project ANR-07-
BLAN-0311) and a grant from the European Research Council (ERC grant
SIERRA-239993).



F. Bach/Self-concordant analysis for logistic regression 412

References

[1] A. W. Van der Vaart. Asymptotic Statistics. Cambridge University
Press, 1998. MR1652247

[2] P. Massart. Concentration Inequalities and Model Selection: Ecole d’été
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