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Abstract. In this work we investigate a weakly-supervised approach to
learning facial attributes of humans in video. Given a small set of images
labeled with attributes and a much larger unlabeled set of video tracks,
we train a classifier to recognize these attributes in video data. We make
two contributions. First, we show that training on video data improves
classification performance over training on images alone. Second, and
more significantly, we show that tracks in video provide a natural mech-
anism for generalizing training data – in this case to new poses, light-
ing conditions and expressions. The advantage of our method is demon-
strated on the classification of gender and age attributes in the movie
“Love, Actually”. We show that the semi-supervised approach adds a
significant performance boost, for example for gender increasing average
precision from 0.75 on static images alone to 0.85.

1 Introduction

Classification of people according to their attributes is an area of active research,
both as a first step in the larger problem of image search and classification on
identity [1, 2], and as a goal in and of itself. For example, cultural sociologists are
interested in measuring the evolution over time of the characterization of gen-
der [3] in TV and movies. Video analysis for these purposes currently requires
hours of tedious manual labeling, rendering large-scale experiments infeasible.
Automating the detection and classification of human traits in video will poten-
tially increase the quantity and diversity of experimental data.

Our goal in this paper is to learn and classify human attributes in video.
The idea we explore is that video tracks provide a virtually free and limitless
source of training data, since many human attributes, e.g. gender, race, age, hair
colour, are unchanged over the course of a track. For example, if we can correctly
determine the gender of a face in a video face-track, we can then apply that label
to the rest of frames within the track, including faces that would normally be
difficult to classify. We can thus take advantage of the full variation in poses and
viewpoints.

It might be thought that videos could be classified by training a classifier
on photos of faces, for example from flickr. However, as we show quantitatively,
training on still image data does not generalize well to video data. Although
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image data sets contain a wide variety of distinct faces, the style of photo is
often similar: the subject is usually facing the camera and smiling, and there are
no strong shadows or unusual lighting conditions. Different poses or viewpoints
are rare. In contrast, video, such as a feature length movie, often contains only a
few distinct subjects, but their faces contain a wide variety of expressions, poses,
and viewpoint (see Figure 1).

Fig. 1. Labeled still images from the FaceTracer database (top row) versus faces from
video (four bottom rows). Faces in video contain more variety of expression, lighting,
and viewpoint.

This is a shame as labeled still image training data for human attributes is
readily available from several public databases [1, 2], and also can be obtained
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automatically. For example, many attributes can be obtained by crawling the
descriptions and photos available on dating web sites, or, in the case of gender,
by using web image search engines for common male and female names [4].

Previous work on classifying facial attributes [1, 2] has used strong supervi-
sion in the form of fully labeled still image datasets. Here we also train from
fully labeled still images but show that results can be significantly improved
by incorporating a large pool of additional unlabeled videos. To achieve that
we turn to semi-supervised learning [5, 6] and in particular self-training, where
labels are hypothesized for the most confidently classified unlabeled examples.
These predicted labels are then considered as additional labeled training data.
Whilst very simple, this strategy may suffer from limited generalization [5] as
only confidently classified unlabeled data lying far from the decision boundary
is considered for labeling. To overcome this problem, we employ the video tracks
to provide additional generalization over pose, lighting and expression. In par-
ticular, we select tracks which contain faces that are very confidently classified,
and then use other faces in the track with a low classification score in order
to provide training examples close to the decision boundary. We illustrate this
approach here by learning a classifier for the attributes gender and age from
faces.

This strategy contrasts with others who have used tracks for providing train-
ing data. The closest work is that of Yan et al. [7] where tracks in video are
considered as constraints in support vector machine classifier training, forcing
the same classification output for all detections along the track. Others have used
video for person/object recognition and retrieval [4, 8–10], but in these works de-
tections within a track are used only as additional labels or query examples and
no semi-supervised learning is performed.

The paper is organized as follows: section 2 describes the train and test
datasets and attribute annotation; section 3 reviews the video processing pipeline
used to obtain tracks and a face descriptor vector for each face in the track;
section 4 then compares classification performance for training on still images
alone to also training on faces from video tracks; the semi-supervised approach
is developed in section 5 and the performance investigated fully in section 6.

2 Databases and attributes

We train the attribute classifier from labeled face images and unlabeled video
tracks from Hollywood movies. It is then tested on tracks from a disjoint movie.
Here we describe the data, ground truth attribute annotation and performance
measure.

2.1 Labeled image database

The labeled still images are obtained from the FaceTracer database, available on
the web [1]. The FaceTracer database consists of 15,000 images downloaded from
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the Internet. The images were collected and labeled by researchers using a stan-
dard search engine, and contain both amateur photos and professional photos
of celebrities. Some subjects are represented multiple times. A subset of these
images are labeled by at least one of several attributes. The choices for each at-
tribute were determined by the FaceTracer creators. The attributes that we use
are gender (male/female) and age (baby/child/youth/middle-aged/senior). We
group age into two supersets, young and old; the first containing baby/child/youth
and the second containing middle-aged and senior. There are 303 labeled images
for gender and 208 for age. The top row of figure 1 shows some typical images
from the FaceTracer database.

2.2 Unlabeled track database

The unlabeled movie set consists of tracks from five distinct Hollywood movies:
Roman Holiday, a black and white feature made in 1953; The Graduate, a
coming-of-age drama made in 1967; Desperately Seeking Susan, a thriller/romantic
comedy made in 1985; When Harry Met Sally, a romantic comedy with a small
cast made in 1989; and Insomnia, a thriller made in 2002. The five movies have
no overlapping actors with each other or with the test set. We chose a wide
variety of eras and genres so that our work would be applicable across different
time periods for sociological research. After face detection, tracking, and filtering
(described in section 3), there are a total of 3,661 tracks. Of these, 43.6% are
female and 57.4% are male, and 35.3% are young and 65.7% are old. However,
the number of distinct people is only around 200.

2.3 Test set

The test set consists of 1,708 tracks from the movie Love, Actually, produced in
2003. This movie, made up of several interweaving story lines, contains a wide
variety of characters. The gender distribution in the test set is 35.8% female and
the age distribution is 33.1% young.

2.4 Ground truth annotation and performance measure

Each track is represented by the face with the highest facial feature score (see
below) and this is annotated to provide the ground truth. The annotation is
positive (female), negative (male) or ambiguous. Tracks labeled ambiguous are
not reported for the training or test sets. Of course, in the semi-supervised
learning we do not use the ground truth track labels on the ‘unlabeled’ Hollywood
tracks, but these are required so that the performance of the learning can be
assessed.

Average precision (AP) is used as the performance measure. So, for example,
in gender classification the AP is unity if all the females are returned first before
the males.
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3 Video processing

We review here the video processing pipeline of Everingham et al. [8] and Sivic
et al. [11], which we adopt without change. Section 3.3 describes the kernel and
learning framework and here we differ from the approach of [11].

3.1 Face extraction and tracking

Faces in the video are detected using the OpenCV [12] implementation of the
Viola and Jones face detector [13]. A color histogram-based shot detector is
run, and the faces are then grouped into tracks on a shot-by-shot basis using
the Kanade-Lucas-Tomasi tracker [14]. The tracker is seeded with feature points
from every face detection, and it is run in both the forward and backward di-
rections to ensure that good feature points from late in the track help form
connections between faces. The output point tracks are aggregated into face
tracks by counting, for each pair of faces, the number of point tracks in common
and normalizing by the total number of point tracks. Intra-frame detected face
tracks are then merged using agglomerative clustering based on the overlap of
the faces. Aggregating point tracks to create face tracks in this manner is robust
in that it can handle missing detections and it does not make any false con-
nections between people of different identity (no drift). For example, successful
tracking of nearly 45,000 face detections with no mistakes is reported in [11].
This property is important here as we rely on the tracker to provide additional
noise-free training data during the semi-supervised learning.

3.2 Facial descriptors

The output of the face detector exhibits some noise over location and scale.
Facial feature (eye, mouth, etc.) localization is therefore useful as a means to
better align pairs of faces, and subsequently extract descriptors based on the
facial features after a viewpoint normalization. We follow the approach of [8],
which combines a discriminative model of feature appearance in the form of
boosted classifiers using Haar-like features [13] with a generative model of feature
locations. The location model uses a mixture of Gaussians, where each mixture
component has a tree-structured covariance such that efficient inference for the
MAP locations can be performed using the generalized distance transform [15].

Following [8] we also use the score (log-probability) of the joint facial feature
model to remove false positive faces. Face tracks are then considered unreliable
and removed if they are short (less than 5 frames) or if their minimal facial
feature score is low (less than -15). We experimentally determined that these
thresholds provided a good balance between eliminating false positives and ob-
taining enough true positives. We additionally use a higher threshold on facial
feature score for the unlabeled track data. We only include a face from a true
positive track in the classification if its facial feature confidence score is greater
than zero.
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A pixel-wise descriptor of the local appearance around a facial feature is ex-
tracted by taking the vector of pixels in the patch and normalizing (so that the
intensity has zero mean and unit variance) to obtain local photometric invari-
ance. The descriptor for each face in the track is then formed by concatenating
descriptors extracted around 13 frontal facial feature locations, e.g. the corners
and centers of the eyes, nose and mouth. This results in a 1,937 dimensional
descriptor for each face in the track.

3.3 Kernel and classifier

To measure similarity between faces, we use the intersection kernel, as originally
described by [16]. Given two d-dimensional face descriptor vectors x and y the
intersection kernel is given by

K(x, y) =
d∑

i=1

min(xi, yi). (1)

We use the explicit feature map of Maji and Berg [17] to approximate the in-
tersection kernel. This represents each dimension of the descriptor vector by 20
components. Thus the 1,937 original descriptor vector is represented as a 38,740
dimensional vector. A linear support vector machine is then used as a classifier
using the efficient LIBLINEAR package [18].

We have compared this method with the min-min distance SVM classifier
used by Sivic et al. [11]. The performances are very similar, but the intersection
kernel and linear SVM is orders of magnitude faster at a cost of storing larger
feature vectors.

4 Images vs tracks

As previously illustrated in Figure 1, faces in video typically have greater vari-
ability in pose, lighting and expression than those in still images. Here we in-
vestigate the effect of this on face attribute classification applied to video data.
Gender classifiers are trained from different data sources, namely, (i) faces from
the still image set, (ii) faces with high facial feature scores from the tracks of
the training videos and, (iii) all faces from the tracks of the training videos. The
performance is then measured on the test set. To compare the classifiers against
each other for the same number of annotations, we count using all the faces
in the track (case (iii)) as a single annotation. For each labeled set size, three
subsets of the training data are randomly chosen in order to obtain the mean
and standard deviation of the AP. Results for different numbers of annotations
over the three different training methods are shown in Fig. 2.

We observe that the use of video training data results in improved gender
classification compared to the classifier learned from the same amounts of labeled
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Fig. 2. Comparison of training on still images or video tracks for gender classification.
Average precision of the classifier is measured on the test set.

faces in still images. For low numbers of labeled images, the variance is quite
high (0.18 in the case of 20 annotations), but as the variance decreases, using
still images from video (case (ii)) provides a consistent advantage. This confirms
our hypothesized importance of video data for training. Moreover, by automat-
ically propagating manual labels among the faces in the track and, in this way,
generating additional training samples (case (iii)), we are able to significantly
increase classification performance further. We conclude that faces within the
same track contain non-redundant and highly useful information which helps to
improve the classifier.

5 Semi-supervised learning with unlabeled tracks

As we have seen above, training on labeled video track data improves the classi-
fication results on video compared to training on still images. We now describe
how this can be achieved in a semi-supervised setting where the tracks are un-
labeled. We will use the attribute gender as our running example.

Suppose we have trained an initial classifier on the fully labeled still images.
One natural way to try to include unlabeled video training data is to hypothesize
the track labels on the basis of the initial classifier, e.g. if all the faces in the track
are classified as positive. However, there are two problems with this approach.
The first is that the initial classifier can be quite inaccurate on video, leading
us to hypothesize the wrong labels and thus add noise to the training data. The
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Input: Labeled face still images. Unlabeled video face tracks.

1. Train initial classifier from fully labeled still images.

2. Iteratively add training data from the unlabeled videos:
(a) Classify all faces in all unlabeled face tracks.

(b) In each track, i, select the closest face, minFi, and the furthest face,
maxFi, from the current decision boundary.

(c) Consider only tracks whose maximum classification score is in the top
10% of tracks.

(d) Use minFi scores to choose a track from each movie. Choose the track
with the smallest minFi for each of the m movies.

(e) From the m selected face tracks, add the maxFi face and the minFi

face to the pool of labeled faces if it is not too closely correlated
(normalized correlation between face descriptors below 0.9) to faces
that have been previously added.

(f) Re-train the classifier from the extended labeled set.

Output: Classifier trained from labeled still image faces and video face tracks
with hypothesized labels.

Fig. 3. The algorithm for semi-supervised learning from labeled face still images and
unlabeled video face tracks.

second, more pernicious problem, is that the initial classifier does well on the
same types of faces, and that adding this data in as labeled examples might
overtrain, rather than generalize, the classifier.

For example, often the initial classifier can determine with high accuracy that
Audrey Hepburn is a female; as there are many tracks of Audrey Hepburn in
the movie Roman Holiday, the most confident tracks according to the classifier
contain a disproportionate number of different instances of Audrey Hepburn;
hypothesizing that Audrey Hepburn is a female thus does not actually aide in
improving the classifier at all, but rather skews the hyperplane towards more
Hepburn-like female faces. The classifier then has a harder time recognizing that
Cate Blanchett, e.g., is female.

Solving these two problems ((i) avoiding noisy training data; and (ii) avoiding
correlation in the training data) is crucial to achieving success in the semi-
supervised approach. To solve the first problem we only consider confident tracks,
i.e. tracks with the most confident classified face in the top 10% of tracks. This
threshold was selected manually, but could be chosen automatically on a small
separate validation set. In addition we require that the facial feature score for
that face is above a conservative threshold – this ensures that for the face chosen
in the track the facial features are well detected. The key idea then is to obtain
generalization by adding the face in a positive track minimizing the classifier
score, as well as the face maximizing the classifier score. The minimum, i.e. the
face from the track closest to the decision boundary, is typically a face that
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Fig. 4. Maximally confident faces versus minimally confident faces for each track. Blue
crosses are positive (female) tracks and red circles are negative (male) tracks. The
green lines indicate thresholds beyond which all the tracks have the same label. Top
row shows an early iteration, middle row a midway iteration, and bottom row the final
iteration. Note the increase in separation and spread of the classes as the iterations
proceed.
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differs significantly from the type of faces in the FaceTracer training still images
(e.g. different pose, expression or lighting as in Figure 4) but, as the attribute
does not change on a track, it is guaranteed to be positive (provided the max is
a positive).

The semi-supervised learning then proceeds in an iterative manner, with at
each iteration a number of max/min pairs from the track above a classifica-
tion threshold being added (for the positives) as well as a number of max/min
pairs below a classification threshold (for the negatives). We address the second,
correlation, problem by choosing only a few tracks per training movie at each
iteration and adding only faces not too closely correlated (normalized correlation
between face descriptors below 0.9) to faces that have been previously added.
The algorithm is detailed in Figure 3.

Figure 4 illustrates the progress of the algorithm starting from the initial
classifier trained on FaceTracer images (the details of the experiment are given
in Section 6). Each point on this graph is a track. The minimally confident score
in the track is plotted against the maximally confident score. (Some tracks only
have a few faces when filtered by facial feature score, which is why there are
points along the line x=y.)

The tracks we’re most interested in are those whose maximum confidence
score is high enough to ensure that the track is correct, but whose minimum con-
fidence score is low. This is the area in the lower right hand corner of the graph.
For females, these are faces with maximum score (x axis) high and minimum
score low; for males, it’s faces with minimum score (y axis) low and maximum
score high.

The figure shows three iterations of the algorithm and the corresponding min-
max graph and faces chosen. In the beginning, the data is not as well separated,
with both the blue and red points largely centered around zero. As the algorithm
progresses, the classification scores become more spread out. Note that the points
in the plots are color-coded according to the gender for visualization purposes,
but the algorithm does not have access to the labels.

The faces beside each graph are the tracks chosen in this iteration; the max-
imum and minimum face by classification score are added to the classifier. The
least confident face is often not frontal – the eyes may be closed, the viewpoint
shifted, or the expression changed. The final iteration shows that the classifier
does make some mistakes, labeling a male as female and including that (incor-
rect) data in the next round. But as we show in the next section, this does not
seem to too adversely affect the classification. Note also the increase in separation
and spread of the classes as the iterations proceed.

6 Experimental results

We report results on the gender and age attributes. In all the experiments
the training data is FaceTracer labeled images, the unlabeled tracks are from
the Hollywood movies, and the test data is the film ‘Love Actually’.
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Fig. 5. Results for gender classification on three splits of 200 labelled still images. The
leftmost point, at iteration 0, is the mean average precision when no video data is
included in the classifier. Our approach, Min-max, performs similarly to the Oracle
and outperforms the standard self-training (Max) approach.

We compare our semi-supervised method to two other possible approaches.
The first method we test against is the semi-supervised approach of Section 5,
modified to select a threshold so that only face tracks with the correct labels
are added. We refer to this as the Oracle approach. The only difference between
the Oracle and actual approach is the possibility of incorrect labels, i.e. noisy
supervision, which may have an adverse effect.

Second, we also compare our method to the natural approach of adding
the most confident faces at each iteration. Given the classification, this method
chooses the face from each movie that is most confidently classified (e.g. most
positive for females and most negative for males). We then exclude that track
from the pool of unlabeled training data; without exclusion, the classifier chooses
the same track at every iteration. We call this method Max.

Figures 5 and 6 show the mean and standard deviations for the three methods
over 60 iterations of gender classification and age classification. The size of the
labeled set is 200 images. Figure 7 shows some examples of the most confidently
classified faces after 60 iterations. Our method is able to deal with a wide variety
of pose, lighting, and expression, including tracks taken from photos, blurry faces,
and partially obscured faces.
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Fig. 6. Results for age classification on three splits of 200 labelled still images. The
leftmost point, at iteration 0, is the mean average precision when no video data is
included in the classifier. Our approach, Min-max, performs similarly to the Oracle
and outperforms the standard self-training (Max) approach.

The Min-max method achieves comparable results to Oracle, improving the
mean average precision by almost 10% for gender and 5% for age. Though we
observe with Min-max that the classifier does sometimes mislabel data, adding
incorrectly classified faces to the training set, this does not seem to worsen per-
formance. Furthermore, in some cases Min-max may outperform Oracle, because
the threshold chosen by Oracle could be quite high in some instances. Oracle
chooses the threshold so that no faces are misclassified; if there is an outlier, the
threshold could be so high as to remove the advantage of obtaining minimum
faces from the track.

The intuitive Max method does not perform well. It appears that the classifier
overtrains, only improving on faces that it already classifies well. In examining
the blue-red min-max graphs (similar to figure 4) for Max, we do not see the
gradual separation of the training data into two classes, indicating that the
classifier is not improving its performance.

7 Discussion

We have shown that tracks, which are readily available in video data, can be har-
nessed to provide a natural means of generalization in semi-supervised learning.
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Fig. 7. Examples of most confidently labeled faces at final iteration of the test set. The
top two rows are the most confidently classified gender faces (female and male) and
the bottom two rows are the most confidently classified age faces (young and old). Our
method is able to accurately classify these despite the wide variety of pose, lighting,
and expression.

We are now applying this learning method to other track invariant attributes,
such as race, age, eyewear (glasses), facial hair (beards, mustache), color of hair,
etc. Of course, the method is not applicable to attributes that change within a
track, such as expression or smoking. A similar method could be applied to learn
attributes for other trackable objects, such as pedestrians and cars.

There are obvious links between our training method and finding the maxi-
mally violated constraints in cutting plane optimization algorithms, and we are
currently investigating this.
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