Discriminative Clustering for Image Co-segmentation

Armand Joulin

Francis Bach

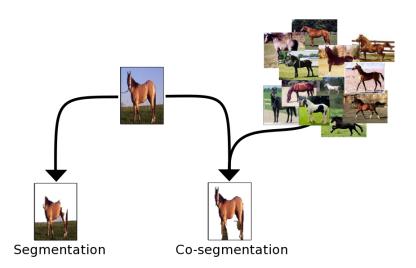
Jean Ponce

INRIA

Ecole Normale Supérieure, Paris

January 2010

Introduction



Introduction

- ► **Task**: dividing simultaneously *q* images in *k* different segments
 - When k = 2, this reduces to dividing images into foreground and background regions.
- Our approach considers simultaneously the object recognition and the segmentation problems
 - Semi-supervised discriminative clustering
- Well-adapted to segmentation problems for 2 reasons :
 - ▶ Re-use existing features for supervised classification
 - ▶ Introduce spatial and local color-consistency constraints.

Prior work

- ▶ Rother et al. (2006), Hochbaum and Singh (2009)
- ▶ Identical or similar objects

► Goal: objects are different instances from same object class

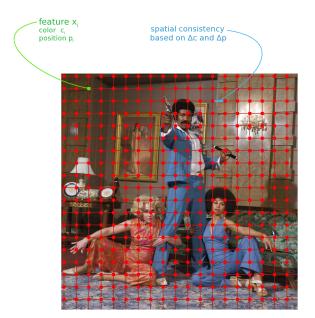
Problem Notations

- ▶ Input: *q* images.
 - \blacktriangleright Each image i is reduced to a subsampled grid of n_i pixels
- ▶ For the *j*-th pixel (among the $\sum_{i=1}^{q} n_i$ pixels), we denote by :
 - $c^j \in \mathbb{R}^3$ its color,
 - $ightharpoonup p^j \in \mathbb{R}^2$ its position within the corresponding image,
 - \triangleright x^j an additional k-dimensional feature vector.

Problem Notations

- ▶ Input: *q* images.
 - ightharpoonup Each image *i* is reduced to a subsampled grid of n_i pixels
- ▶ For the *j*-th pixel (among the $\sum_{i=1}^{q} n_i$ pixels), we denote by :
 - $c^j \in \mathbb{R}^3$ its color,
 - $p^j \in \mathbb{R}^2$ its position within the corresponding image,
 - \triangleright x^j an additional k-dimensional feature vector.
- ▶ **Goal**: find $y = \text{vector of size } \sum_{i=1}^{q} n_i \text{ such that}$
 - $y_i = 1$ if the *i*-th pixel is in the foreground
 - ▶ -1 otherwise.

Problem Notations



Local consistency and discriminative clustering

- Co-segmenting images relies on two tasks :
 - 1. Within an image: maximize local spatial and appearance consistency (normalized cuts)
 - 2. Over all images: maximize the separability of two classes between different images (semi-supervised SVMs)

Local consistency through Laplacian matrices

(Shi and Malik, 2000)

- ► Spatial consistency *within* an image *i* is enforced through a similarity matrix *W*^{*i*}
 - W^i is based on color features (c^j) and spatial position (p^j)
 - ► Similarity between two pixels *I* and *m* within an image *i*:

$$W_{lm}^{i} = \exp(-\lambda_{p} \|p^{m} - p^{l}\|^{2} - \lambda_{c} \|c^{m} - c^{l}\|^{2}), \tag{1}$$

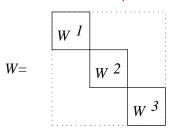
Local consistency through Laplacian matrices

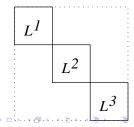
(Shi and Malik, 2000)

- ► Spatial consistency *within* an image *i* is enforced through a similarity matrix *W*^{*i*}
 - W^i is based on color features (c^j) and spatial position (p^j)
 - ▶ Similarity between two pixels *l* and *m* within an image *i*:

$$W_{lm}^{i} = \exp(-\lambda_{p} \|p^{m} - p'\|^{2} - \lambda_{c} \|c^{m} - c'\|^{2}), \tag{1}$$

- ▶ Concatenate all similarity matrices into a block-diagonal matrix W (with W_i on its diagonal)
- Normalized Laplacian matrix $L = I_n D^{-1/2}WD^{-1/2}$





► Generative clustering (e.g., K-means)

► Generative clustering (e.g., K-means)

▶ Discriminative clustering (Xu et al., 2002, Bach and Harchaoui, 2007)

- Discriminative clustering framework based on positive definite kernels
- ▶ Histograms of features \Rightarrow kernel matrix K based on the χ^2 -distance:

$$K_{lm} = \exp\left(-\lambda_h \sum_{d=1}^k \frac{(x_d^l - x_d^m)^2}{x_d^l + x_d^m}\right),$$
 (2)

▶ Equivalent to mapping each of our n k-dimensional vectors x^j , $j=1,\ldots,n$ into a high-dimensional Hilbert space $\mathcal F$ through a feature map Φ , so that $K_{ml}=\Phi(x^m)^T\Phi(x^l)$

Minimize with respect to both the predictor f and the labels y (Xu et al., 2002):

$$\frac{1}{n} \sum_{j=1}^{n} \ell(y_j, f^T \Phi(x^j)) + \lambda_k ||f||^2,$$
 (3)

where ℓ is a loss function.

▶ Minimize with respect to both the predictor f and the labels y (Xu et al., 2002):

$$\frac{1}{n} \sum_{j=1}^{n} \ell(y_j, f^T \Phi(x^j)) + \lambda_k ||f||^2,$$
 (3)

where ℓ is a loss function.

Square loss function $(\ell(a,b)=(a-b)^2)$, solution in closed form (Bach and Harchaoui, 2007)

$$g(y) = \min_{f} \frac{1}{n} \sum_{j=1}^{n} \ell(y_j, f^T \Phi(x^j)) + \lambda_k ||f||^2 = \text{tr}(Ayy^T)$$

where
$$A = \lambda_k (I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T) (n \lambda_k I_n + K)^{-1} (I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T)$$
.

▶ Linear in $Y = yy^{\top} \in \mathbb{R}^{n \times n}$

Cluster size constraints

- ▶ Putting all pixels into a single class leads to perfect separation
 - ► Constrain the number of elements in each class (Xu et al., 2002)

Cluster size constraints



- ▶ Putting all pixels into a single class leads to perfect separation
 - Constrain the number of elements in each class (Xu et al., 2002)
- Multiple images:
 - constrain the number of elements of each class in each image to be upper bounded by λ_1 and lower bounded by λ_0 .
 - ▶ Denote $\delta_i \in \mathbb{R}^n$ the indicator vector of the *i*-th image

Problem formulation

- Combining:
 - spatial consistency through Laplacian matrix L
 - discriminative cost through matrix A and cluster size constraints

$$\begin{aligned} & \min_{y \in \{-1,1\}^n} \operatorname{tr}(\big(A + \frac{\mu}{n}L\big)yy^T\big), \\ \text{subject to} & & \forall i, \ \lambda_0 \mathbf{1}_n \leqslant (yy^\top + \mathbf{1}_n \mathbf{1}_n^T)\delta_i \leqslant \lambda_1 \mathbf{1}_n. \end{aligned}$$

- ► Combinatorial optimization problem
 - Convex relaxation with semi-definite programming (Goemans and Williamson, 1995)

Optimization - Convex Relaxation

$$\label{eq:subject_to_subject_to} \begin{split} \min_{y \in \{-1,1\}^n} \operatorname{tr}(\big(A + \frac{\mu}{n}L\big)yy^T\big), \\ \text{subject to} \quad \forall i, \ \lambda_0 \mathbf{1}_n \leqslant \big(yy^\top + \mathbf{1}_n \mathbf{1}_n^T\big)\delta_i \leqslant \lambda_1 \mathbf{1}_n. \end{split}$$

- Reparameterize problem with $Y = yy^T$
- Y referred to as the equivalence matrix
 - $Y_{ij} = 1$ if points i and j belong to the same cluster
 - $ightharpoonup Y_{ij}=-1$ if points i and j do not belong to the same cluster
- ➤ *Y* is symmetric, positive semidefinite, with diagonal equal to one, and unit rank.

Optimization - Convex Relaxation

▶ Denote by \mathcal{E} the *elliptope*, i.e., the convex set defined by:

$$\mathcal{E} = \{ Y \in \mathbb{R}^{n \times n} \; , \; Y = Y^T \; , \; \mathsf{diag}(Y) = \mathbf{1}_n \; , \; Y \succeq \mathbf{0} \},$$

▶ Reformulated optimization problem :

$$\begin{aligned} \min_{Y \in \mathcal{E}} \mathrm{tr}\big(Y\big(A + \frac{\mu}{n}L\big)\big), \\ \text{subject to} \quad \forall i, \ \lambda_0 \mathbf{1}_n \leqslant (Y + \mathbf{1}_n \mathbf{1}_n^T) \delta_i \leqslant \lambda_1 \mathbf{1}_n \\ & \mathrm{rank}(Y) = \mathbf{1} \end{aligned}$$

- Rank constraint is not convex
- ► Convex relaxation by removing the rank constraint

Optimization

$$\begin{split} \min_{Y \in \mathcal{E}} \mathrm{tr} \big(Y \big(A + \frac{\mu}{n} L \big) \big), \\ \text{subject to} \quad \forall i, \ \lambda_0 \mathbf{1}_n \leqslant \big(Y + \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} \big) \delta_i \leqslant \lambda_1 \mathbf{1}_n \end{split}$$

- ► SDP: semidefinite program (Boyd and Vandenberghe, 2002)
- ▶ General purpose toolboxes would solve this problem in $O(n^7)$
- ▶ Bach and Harchaoui (2007) considers a partial dualization technique that scales up to thousands of data points.
- ➤ To gain another order of magnitude: optimization through low-rank matrices (Journée et al, 2008)

Efficient low-rank optimization (Journée et al, 2008)

- ▶ Replace constraints by penalization \Rightarrow optimization of a convex function f(Y) on the elliptope \mathcal{E} .
- Empirically: global solution has low rank r
- ▶ Property: a local minimum of f(Y) over the rank constrained elliptope

$$\mathcal{E}_d = \{ Y \in \mathcal{E}, \operatorname{rank}(Y) = d \}$$

is a global minimum of f(Y) over \mathcal{E} , if d > r.

Efficient low-rank optimization (Journée et al, 2008)

- ▶ Replace constraints by penalization \Rightarrow optimization of a convex function f(Y) on the elliptope \mathcal{E} .
- Empirically: global solution has low rank r
- ▶ Property: a local minimum of f(Y) over the rank constrained elliptope

$$\mathcal{E}_d = \{ Y \in \mathcal{E}, \operatorname{rank}(Y) = d \}$$

is a global minimum of f(Y) over \mathcal{E} , if d > r.

- Adaptive procedure to automatically find r
- ▶ Manifold-based trust-region method for a given *d* (Absil et al., 2008)

Low-rank optimization (Journée et al., 2008)

- ▶ Final (combinatorial) goal: minimize f(Y) over the rank-one constrained elliptope $\mathcal{E}_1 = \{Y \in \mathcal{E}, \operatorname{rank}(Y) = 1\}$
- ▶ Convex relaxation: minimize f(Y) over the unconstrained elliptope \mathcal{E}
- ▶ Subproblems: minimize f(Y) over the rank-d constrained elliptope $\mathcal{E}_d = \{Y \in \mathcal{E}, \operatorname{rank}(Y) = d\}$ for $d \ge 2$
 - ▶ It is a Riemanian manifold for $d \ge 2$
 - ▶ If *d* is large enough, there is no local minima
 - Find a local minimum with trust-region method
- ► Adaptive procedure:
 - ▶ Start with d = 2
 - ▶ Find local minimum over $\mathcal{E}_d = \{Y \in \mathcal{E}, \operatorname{rank}(Y) = d\}$
 - Check global optimality condition
 - Stop or augment d

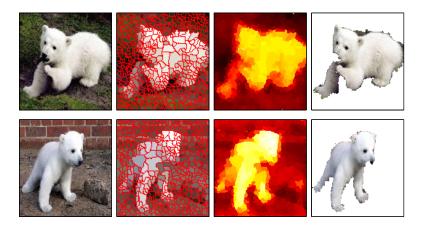
Preclustering

- ▶ Cost function f uses a full $n \times n$ matrix $A + (\mu/n)L$
 - \Rightarrow memory issues
- ► To reduce the total number of pixels
 - superpixels obtained from an oversegmentation of our images (watershed, Meyer, 2001)

Rounding

- ▶ In order to retrieve $y \in \{-1,1\}$ from our relaxed solution Y, we compute the largest eigenvector $e \in \mathbb{R}^n$ of Y.
- ▶ Final clustering is y = sign(e).
- Other techniques could be used (e.g., rounding)
- Additional post-processing to remove some artefacts

Method overview (co-segmentation on two bear images)



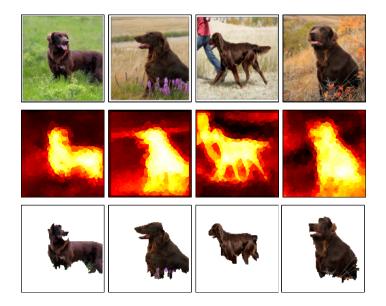
► From left to right: input images, over-segmentations, scores obtained by our algorithm and co-segmentations.

Results

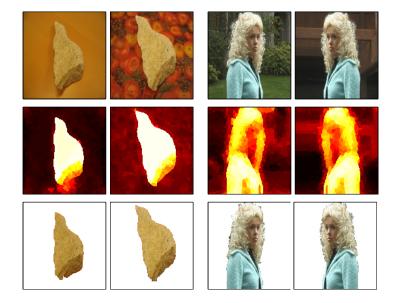
Results on two different problems:

- Simple problems: images with foreground objects which are identical or very similar in appearance and with few images to co-segment
- ► Hard problems: images whose foreground objects exhibit higher appearance variations and with more images to co-segment (up to 30).

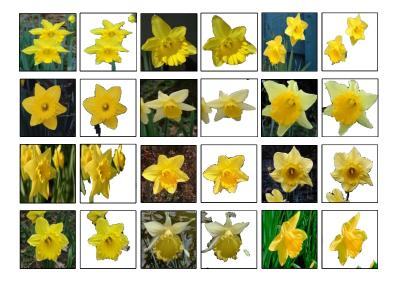
Results - similar objects



Results - similar objects

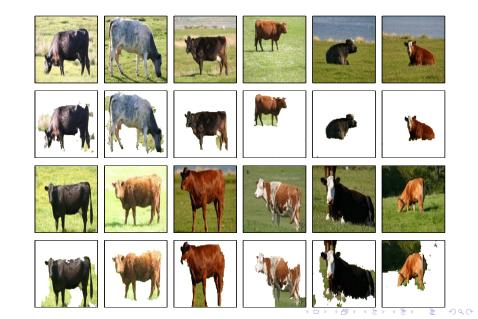


Results - similar objects



Results - similar classes - Faces

Results - similar classes - Cows



Results - similar classes - Horses

Results - similar classes - Cats

Results - similar classes - Bikes

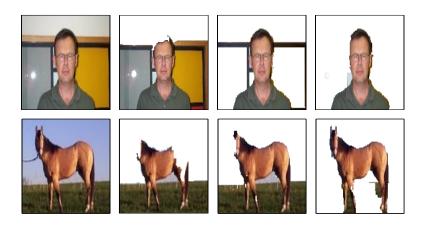
Results - similar classes - Planes

Comparison with MN-cut (Cour, Benezit, and Shi, 2005)

Segmentation accuracies on the Weizman horses and MSRC databases.

class	#	cosegm.	independent	Ncut	uniform
Cars (front)	6	87.65 ± 0.1	$\textbf{89.6}\ \pm\textbf{0.1}$	51.4 ± 1.8	64.0 ± 0.1
Cars (back)	6	$\textbf{85.1}\ \pm\textbf{0.2}$	$83.7\ \pm0.5$	54.1 ± 0.8	71.3 ± 0.2
Face	30	$\textbf{84.3}\ \pm\textbf{0.7}$	$72.4\ \pm1.3$	67.7 ± 1.2	60.4 ± 0.7
Cow	30	$\textbf{81.6}\ \pm\textbf{1.4}$	$78.5\ \pm1.8$	60.1 ± 2.6	66.3 ± 1.7
Horse	30	$\textbf{80.1}\ \pm\textbf{0.7}$	$77.5\ \pm1.9$	50.1 ± 0.9	68.6 ± 1.9
Cat	24	$\textbf{74.4}\ \pm\textbf{2.8}$	$71.3\ \pm1.3$	59.8 ± 2.0	59.2 ± 2.0
Plane	30	73.8 ± 0.9	62.5 ± 1.9	$51.9\ \pm0.5$	$\textbf{75.9}\ \pm \textbf{2.0}$
Bike	30	$63.3\ \pm0.5$	61.1 ± 0.4	60.7 ± 2.6	59.0 ± 0.6

Comparing co-segmentation with independent segmentations



► From left to right: original image, multiscale normalized cut, our algorithm on a single image, our algorithm on 30 images.

Conclusion

- Co-segmentation through semi-supervised discriminative clustering
 - Within an image: maximize local spatial and appearance consistency (normalized cuts)
 - 2. Over all images: maximize the separability of two classes between different images (semi-supervised SVMs)

Conclusion

- Co-segmentation through semi-supervised discriminative clustering
 - Within an image: maximize local spatial and appearance consistency (normalized cuts)
 - Over all images: maximize the separability of two classes between different images (semi-supervised SVMs)
- Future work
 - Add negative images
 - More than 2 classes
 - Feature selection
 - Scale up to hundred of thousands
 - Change the loss function