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« Raters (usually students) view video in entirety twice and
view each incidence multiple times; usually 10% overlap
for inter-rater reliability

Goal: Video to Statistics

+ Automatically find attributes, and number of
occurrences, in video data

* Minimize supervision (many different possible
attributes)

Hollywood movies from different time periods

— The Graduate, Roman Holiday, When Harry Met Sally,
Love, Actually

* Institut National de I’Audiovisuel

— R&D: L. Laborelli and D. Teruggi

— 1.5 Mhours of annotated audiovisual archives, 50
years of TV

Currently: focus on facial attributes
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ACTUALITES

FRANCAISES

3y Gender:
Males (108): 86.23%
Females (19): 13.8%

i i Facial hair:
Face Plpe“ne Mustache (11): 8.0%
Detection None (115): 92.0%
Expression:

Description Smiling (29): 21.0%
; Unsmiling (96): 79.0%
Tracking Hair color:

Classification Blond (4): 2.
Not blond (124): 97.1%
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Face Pipeline: Detection

* Run face detection on each frame (Viola-
Jones)

Face Pipeline: Description

+ Face representation - local image descriptors at
facial feature points

Extended pictorial structure model

Face Pipeline: Tracking

» Measure “connectedness” of a pair of faces by
point tracks intersecting both

» Doesn’t require contiguous detections
* Independent evidence — no drift
» Faces into tracks

SN
[Everingham et al. 2006] o

Face Pipeline: Classification

+ Classify tracks using SVM

+ Distance between tracks is the minimum
distance between facial features (not a
kernel):

D(T, T) =min(d(x,y) | x €T, .,y €T)
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Classification: Matching face
sets

Training data
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Training data

Need annotated training data

Ideally we would train on a large number
of attributes with limited supervision
Looked at two sources: video or still
images

Mechanical Turk (Amazon)

— Large scale coordination of manual tasks

— Turks label one frame of the track or a single
still image

Training from still images vs
video

+ Still images:
+ Variation across people

+ Potentially labeled data from web
for free

+ Higher quality (resolution, no
motion blur)

— Not much variation in expression
* Videos:
+ Variation across
viewpoint/expression
+ Same domain as the testing set
— Not much variation in people

Current results: gender
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Current work

Preliminary conclusions: Better to train on
videos

Ongoing work: Study how to combine still
images and videos to improve attribute labeling
More attributes:

— Race, age, hair color, eye wear

— Use upper body detection to capture clothing,
hairstyles

— Dynamic attributes: smoking, drinking, smiling
Video to Statistics

— Understand where we fail so even when we miss
faces, we can report statistics




