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What this talk is about

Exploiting self-similarities in images and learned
sparse representations.

A fast online algorithm for learning dictionaries and
factorizing matrices in general.

Various formulations for image and video processing,
leading to state-of-the-art results in image denoising
and demosaicking.
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The Image Denoising Problem

y︸︷︷︸
measurements

= xorig︸︷︷︸
original image

+ w︸︷︷︸
noise
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Sparse representations for image restoration

y︸︷︷︸
measurements

= xorig︸︷︷︸
original image

+ w︸︷︷︸
noise

Energy minimization problem

E (x) = ||y − x||22︸ ︷︷ ︸
data fitting term

+ ψ(x)︸︷︷︸
relation to image model

Some classical priors

Smoothness λ||Lx||22
Total variation λ||∇x||21
Wavelet sparsity λ||Wx||1
. . .
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What is a Sparse Linear Model?

Let x in Rm be a signal.

Let D = [d1, . . . ,dp] ∈ Rm×p be a set of
normalized “basis vectors”.
We call it dictionary.

D is “adapted” to x if it can represent it with a few basis vectors—that
is, there exists a sparse vector α in Rp such that x ≈ Dα. We call α
the sparse code.x


︸ ︷︷ ︸
x∈Rm

≈

 d1 d2 · · · dp


︸ ︷︷ ︸

D∈Rm×p


α[1]
α[2]

...
α[p]


︸ ︷︷ ︸

α∈Rp,sparse
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The Sparse Decomposition Problem

min
α∈Rp

1

2
||x−Dα||22︸ ︷︷ ︸

data fitting term

+ λψ(α)︸ ︷︷ ︸
sparsity-inducing

regularization

ψ induces sparsity in α. It can be

the `0 “pseudo-norm”. ||α||0
M
= #{i s.t. α[i ] 6= 0} (NP-hard)

the `1 norm. ||α||1
M
=

∑p
i=1 |α[i ]| (convex)

. . .

This is a selection problem.
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Sparse representations for image restoration

Designed dictionaries

[Haar, 1910], [Zweig, Morlet, Grossman ∼70s], [Meyer, Mallat,
Daubechies, Coifman, Donoho, Candes ∼80s-today]. . .
(see [Mallat, 1999])
Wavelets, Curvelets, Wedgelets, Bandlets, . . . lets

Learned dictionaries of patches

[Olshausen and Field, 1997], [Engan et al., 1999], [Lewicki and
Sejnowski, 2000], [Aharon et al., 2006]

min
αi ,D∈C

∑
i

1

2
||xi −Dαi ||22︸ ︷︷ ︸
reconstruction

+λψ(αi )︸ ︷︷ ︸
sparsity

ψ(α) = ||α||0 (“`0 pseudo-norm”)

ψ(α) = ||α||1 (`1 norm)
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Sparse representations for image restoration

Solving the denoising problem

[Elad and Aharon, 2006]

Extract all overlapping 8× 8 patches yi .

Solve a matrix factorization problem:

min
αi ,D∈C

n∑
i=1

1

2
||yi −Dαi ||22︸ ︷︷ ︸
reconstruction

+λψ(αi)︸ ︷︷ ︸
sparsity

,

with n > 100, 000

Average the reconstruction of each patch.
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Sparse representations for image restoration
K-SVD: [Elad and Aharon, 2006]

Dictionary trained on a noisy version of the image boat.
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Sparse representations for image restoration
Inpainting, [Mairal, Sapiro, and Elad, 2008b]
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Optimization for Dictionary Learning

min
α∈Rp×n

D∈C

n∑
i=1

1

2
||xi −Dαi ||22 + λ||αi ||1

C M
= {D ∈ Rm×p s.t. ∀j = 1, . . . , p, ||dj ||2 ≤ 1}.

Classical optimization alternates between D and α.

Good results, but very slow!

[Mairal et al., 2009a]: Online learning can

handle potentially infinite or dynamic datasets,

be dramatically faster than batch algorithms.

Try by yourself! http://www.di.ens.fr/willow/SPAMS/
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Optimization for Dictionary Learning
Inpainting a 12-Mpixel photograph
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Exploiting Image Self-Similarities
Buades et al. [2006], Efros and Leung [1999], Dabov et al. [2007]

Image pixels are well explained by a Nadaraya-Watson estimator:

x̂[i ] =
n∑

j=1

Kh(yi − yj)∑n
l=1 Kh(yi − yl)

y[j ], (1)

Successful application to texture synthesis: Efros and Leung [1999]
. . . to image denoising (Non-Local Means): Buades et al. [2006]
. . . to image demosaicking: Buades et al. [2009]

Block-Matching with 3D filtering (BM3D) Dabov et al. [2007],
Similar patches are jointly denoised with orthogonal wavelet thresholding
+ several (good) heuristics: =⇒ state-of-the-art denoising results, less
artefacts, higher PSNR.
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Non-local Sparse Image Models

non-local means: stable estimator. Can fail when there are no
self-similarities.

sparse representations: “unique” patches also admit a sparse
approximation on the learned dictionary. potentially unstable
decompositions.

Improving the stability of sparse decompositions is a current topic of
research in statistics Bach [2008], Meinshausen and Buehlmann [2010].
Mairal et al. [2009b]: Similar patches should admit similar patterns:

Sparsity vs. joint sparsity
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Non-local Sparse Image Models

Sparsity vs. joint sparsity

Joint sparsity is achieved through specific regularizerers such as

||A||0,∞
M
=

k∑
i=1

||αi ||0, (not convex, not a norm)

||A||1,2
M
=

k∑
i=1

||αi ||2. (convex norm)

(2)
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Non-local Sparse Image Models

Basic scheme for image denoising:

1 Cluster patches

Si
M
= {j = 1, . . . , n s.t. ||yi − yj ||22 ≤ ξ}, (3)

2 Learn a dictionary with group-sparsity regularization

min
(Ai )

n
i=1,D∈C

n∑
i=1

||Ai ||1,2

|Si |
s.t. ∀i

∑
j∈Si

||yj −Dαij ||22 ≤ εi (4)

3 Estimate the final image by averaging the representations

Details:

Greedy clustering (linear time) and online learning.

Eventually use two passes.

Use non-convex regularization for the final reconstruction.
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Non-local Sparse Image Models
Demosaicking

Key components for image demosaicking:

1 introduce a binary mask in the formulation.

2 Learn the dictionary on a database of clean images.

3 Eventually relearn the dictionary on a first estimate of the
reconstructed image.
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Non-local Sparse Image Models
RAW Image Processing

White
balance.

Black
substraction.

Denoising

Demosaicking

Conversion
to sRGB.
Gamma

correction.

Since the dictionary adapts to the input data, this scheme is not limited
to natural images!
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Non-local Sparse Image Models
Denoising results, synthetic noise

Average PSNR on 10 standard images (higher is better)

σ GSM FOE KSVD BM3D SC LSC LSSC
5 37.05 37.03 37.42 37.62 37.46 37.66 37.67

10 33.34 33.11 33.62 34.00 33.76 33.98 34.06
15 31.31 30.99 31.58 32.05 31.72 31.99 32.12
20 29.91 29.62 30.18 30.73 30.29 30.60 30.78
25 28.84 28.36 29.10 29.72 29.18 29.52 29.74
50 25.66 24.36 25.61 26.38 25.83 26.18 26.57

100 22.80 21.36 22.10 23.25 22.46 22.62 23.39

Improvement over BM3D is significant only for large values of σ.
The comparison is made with GSM (Gaussian Scale Mixture) Portilla
et al. [2003], FOE (Field of Experts) Roth and Black [2005], KSVD Elad
and Aharon [2006] and BM3D Dabov et al. [2007].
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Non-local Sparse Image Models
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Non-local Sparse Image Models
Demosaicking results, Kodak database

Average PSNR on the Kodak dataset (24 images)

Im. AP DL LPA SC LSC LSSC

Av. 39.21 40.05 40.52 40.88 41.13 41.39

The comparison is made with AP (Alternative Projections) Gunturk
et al. [2002], DL Zhang and Wu [2005] and LPA Paliy et al. [2007] (best
known result on this database).
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Non-local Sparse Image Models
Demosaicking results, Kodak database

More importantly than a PSNR improvement:

Regular sparsity on the left, Joint-sparsity on the right
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Conclusion

Clustering of patches stabilizes the decompositions and improves
the results quality,

and lead to state-of-the-art results for image denoising and
demosaicking.

Not the end of the story

download the paper for preliminary raw image processing results.

other applications coming (deblurring, superresolution)

structured sparsity: Jenatton et al. [2009] . . .

task-driven dictionaries . . .

Tutorial on Sparse Coding available at
http://www.di.ens.fr/~mairal/tutorial_iccv09/
Software for learning dictionaries with efficient sparse solvers
http://www.di.ens.fr/willow/SPAMS/. Image processing functions
and group-sparsity solvers coming soon.
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