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Introduction

Structured Prediction

I Prediction Function: input domain X , output domain Y

f : X → Y

I Structured Prediction: Y defined over multiple variables, which are
subject to

I dependencies, constraints, and relations.

I Structured Output Learning: given {(xi , yi )}i=1,...,N , learn f
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Introduction

Examples: Structured Prediction

Object recognition

I X : image

I Y: bounding box object annotations
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Introduction

Examples: Structured Prediction

Denoising
I X : image
I Y: image
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Introduction

Examples: Structured Prediction

Segmentation

I X : image

I Y: binary segmentation mask
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Introduction

Advances in Structured Prediction

Advances in...

1. Graphical models: standard language, tools and best practises,
discriminative models

2. Approximate inference: message passing algorithms, energy
minimization

3. MAP-based parameter learning: max-margin approaches
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Introduction

Advances in Graphical Models

Graphical Models

I Statistical models for multiple random variables

I In a sense: universal

I Multiple forms,
I Undirected graphical models (Markov networks,

Markov random fields, Conditional random fields)
I Directed graphical models (Bayesian networks)
I Factor graphs (2000-)

2010: cross-domain defacto standard for structured models

I Books: (Koller and Friedman, 2009), (Wainwright and
Jordan, 2008), (Bishop, 2007)

I Conferences: UAI, AISTATS, NIPS, ICML

I Journals: JMLR, MLJ
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Introduction

Advances in Approximate Inference

Interesting questions about graphical models are hard:

I computing marginal distributions

I computing modes

I computing normalizing constants

Progress

I Message passing algorithms (1997-): loopy BP, TRW, higher-order
decompositions

I Graph-based energy minimization (1998-): graphcut methods,
α-expansion, QPBO
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Introduction

Advances in Parameter Learning

Parameter learning, traditionally

I fixed or few parameters, cross-validation

I maximum likelihood estimation

MAP-based training

I Often: computing mode is easier than computing marginals

I Max-margin methods (2001-): structured SVM, structured
Perceptron

I Extends to other structured models (graph matching, sliding window
classifiers, etc.)
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Introduction

Talk

1. Higher-order Interactions in MRFs

2. Parameter Learning in MRFs
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Higher-order Interactions

Challenge: Higher-order Potentials
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Higher-order Interactions

Challenge: Higher-order Potentials

Yi

Xi

ψ2
i

ψ1
i

ψ3
i,k Yk

I Xi : observation variables (image statistics)
I Yi : dependent variables (foreground/background)
I ψ2

i : observation interactions
I ψ3

i,k : pairwise interactions
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Higher-order Interactions

Challenge: Higher-order Potentials (cont)

Sometimes one knows that a labeling must satisfy global properties.

Consider object segmentation

I “Connectedness”: the resulting object
segmentations should be connected

I “Hole-free”: the object segmentations
should have no holes

I etc.

These properties are

I global properties,

I cannot be modelled by pairwise potentials,

I have not been successfully addressed.
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Higher-order Interactions

Challenge: Higher-order Potentials (cont)

Yi

Xi

ψ2
i

ψ1
i

ψ3
i,k Yk
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Higher-order Interactions

Challenge: Higher-order Potentials (cont)

Yi

Xi

ψ2
i

ψ1
i

ψ3
i,k Yk
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Higher-order Interactions

Challenge: Higher-order Potentials (cont)

Yi

Xi

ψ2
i

ψ1
i

ψ3
i,k Yk
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Higher-order Interactions

Connectivity: Connected Subgraph Polytope

(Nowozin and Lampert, CVPR 2009),
(Nowozin and Lampert, SIAM IMS 2010, accepted)

Roadmap

I Global potential ψV : connectivity

I We want to restrict output labeling to labelings which are globally
connected in the graph structure

I Derive a polyhedral set which captures connected subgraphs

I This set is the connected subgraph polytope

I Use MAP-MRF linear programming relaxation, but intersect with
this set
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Higher-order Interactions

Connected Subgraph Polytope (cont)

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V ,E ), consider
indicator variables yi ∈ {0, 1}, i ∈ V . Let C = {y : G ′ =
(V ′,E ′) connected, with V ′ = {i : yi = 1},E ′ = (V ′ × V ′) ∩ E} denote
the finite set of connected subgraphs of G . Then we call the convex hull
Z = conv(C ) the connected subgraph polytope.
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Higher-order Interactions

Connected Subgraph Polytope (cont)
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Higher-order Interactions

Connected Subgraph Polytope (cont)
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Higher-order Interactions

Connected Subgraph Polytope (cont)
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Higher-order Interactions

Connected Subgraph Polytope (cont)
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Higher-order Interactions

Connected Subgraph Polytope (cont)

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V ,E ), consider
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Higher-order Interactions

Hardness Results

Theorem (Karp, 2002)

It is NP-hard to optimize a linear function over Z = conv(C ).

The problem is known as Maximum-Weight Connected Subgraph
Problem and has been shown to be NP-hard (Karp, 2002).
Therefore,

I we plan to intersect conv(C ) with the MAP-MRF LP relaxation
I hence, we will optimize a linear function over this polytope,
I from the theorem it follows that optimizing a linear function over

conv(C ) is NP-hard.
I (moreover: no additional results about Z known)

What to do?

I From insight into the polytope we will derive a tight relaxation to
conv(C ) which is polynomially solvable.
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Higher-order Interactions

Facets and Valid Inequalities

Convex polytopes have two equivalent
representations

I As a convex combination of extreme
points

I As a set of facet-defining linear
inequalities

A linear inequality with respect to a
polytope can be

I valid, does not cut off the polytope,

I representing a face, valid and touching,

I facet-defining, representing a face of
dimension one less than the polytope.

Z

d>1 y ≤ 1

d>2 y ≤ 1
d>3 y ≤ 1
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Higher-order Interactions

Warmup

Some basic properties about the connected subgraph polytope Z . Note
that Z depends on the graph structure.

Lemma
dim(Z ) = |V |, that is, Z has full dimension.

Lemma
For all i ∈ V , the inequalities yi ≥ 0 and yi ≤ 1 are facet-defining for Z .
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Higher-order Interactions

An Exponential-sized Class of Facet-defining Inequalities

Theorem
The following linear inequalities are facet-defining for Z = conv(C ).

yi + yj −
∑
k∈S

yk ≤ 1, ∀(i , j) /∈ E : ∀S ∈ S̄(i , j). (1)

y0 + y2 − y1 ≤ 1.
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Higher-order Interactions

Intuition

yi + yj −
∑
k∈S

yk ≤ 1, ∀(i , j) /∈ E : ∀S ∈ S̄(i , j)

If two vertices i and j are selected (yi = yj = 1, shown in black), then
any set of vertices which separate them (set S) must contain at least one
selected vertex.

i j

S

. . . . . . . . .. . .

Figure: Vertex i and j and one vertex separator set S ∈ S̄(i , j).
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Higher-order Interactions

Formulation

Theorem
C, the set of all connected subgraphs, can be described exactly by the
following constraint set.

yi + yj −
∑
k∈S

yk ≤ 1,∀(i , j) /∈ E : ∀S ∈ S(i , j), (2)

yi ∈ {0, 1}, i ∈ V . (3)

This means
I inequalities together with integrality are a formulation of the set of

connected subgraphs,
I we can attempt to relax (3) to

yi ∈ [0; 1], i ∈ V .

I Problem: number of inequalities (2) is exponential in |V |.
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Higher-order Interactions

Separation Problem

Optimization over the relaxed formulation

I still tractable,

I finding violated inequalities – the separation problem – can be solved
efficiently.

Theorem (Polynomial-time Separation)

For a given point y ∈ [0; 1]|V | to find a violated inequality (1) or prove
that no such violated inequality exists requires only time polynomial in
|V |.
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Higher-order Interactions

Summary: Connected Subgraph Polytope

I Convex hull of all connected subgraphs

I Convex and described by finite set of linear inequalities

I NP-hard to optimize over, exponentially sized description

I Identified a general class of facet-defining, polynomial-time separable
inequalities → relaxation

I Devised an efficient separation procedure (by solving linear max-flow
problems on a auxiliary graph)

→ Let’s put this into practise for random fields!
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Higher-order Interactions

From Polytopes to Potentials

Remember the MAP-MRF LP relaxation

I µj(y) = [µ1(yj), . . . , µ|V |(yj)]
> ∈ [0; 1]|V |,

the set of variables indicating assignment to class j over all vertices

Enforce connectivity for the vertices assigned to the j ’th class:

EV
hard(j)(y) =

{
0 µj(y) ∈ Z
∞ otherwise

I Realized by intersecting the feasible set of µj(y) with the Connected
Subgraph Polytope.

I Alternatively: soft potential EV
soft(j)
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Higher-order Interactions

Toy Experiment: Denoising

Simple denoising task

I 30× 30 grid graph, 4-nn connectivity

I Two classes: foreground, background

I Denoise X-pattern from noisy measurements

Setup

I Noisy observations (Gaussian noise, σ)

I Associative/attractive pairwise Potts
potentials (noise level k)

1. MRF

2. MRFcomp: MRF + select largest connected
foreground component

3. CMRF (MRF with hard connectedness
potential)

X pattern
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Noisy X pattern
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Higher-order Interactions

Results
MRF result

5 10 15 20 25 30

5

10

15

20

25

30

MRFcomp result

5 10 15 20 25 30

5

10

15

20

25

30

CMRF result

5 10 15 20 25 30

5

10

15

20

25

30

Figure: MRF/MRFcomp/CMRF: E = −985.61, E = −974.16, E = −984.21
MRF result
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Figure: MRF/MRFcomp/CMRF: E = −980.13, E = −974.03, E = −976.83
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Higher-order Interactions

Results (cont)

Discretized (σ, k)-parameter plane, mean error over 30 runs
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labeling error.
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Higher-order Interactions

Results (cont)

For this toy experiment

I Connectivity assumption is known to be true

I Connectivity prior produces excellent results

I Truly global potential is tractable
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Higher-order Interactions

Experiment: Recognition and Segmentation
(Nowozin and Lampert, CVPR 2009), PASCAL VOC 2008

Figure: Image/CRF/CRF+conn. Case where connectedness helps: the local
evidence is scattered, enforcing connectedness (right) helps.

Figure: Image/CRF/CRF+conn. Connectedness can remove clutter: local evidence
(edges on the runway) is overridden.
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Higher-order Interactions

Conclusions

Summary

I Experimentally: connectedness prior reduces error on synthetic and
real tasks

I Overcome the limitation of only considering local interactions in
discrete random field models

I Principled way to derive global potential functions

I Polyhedral combinatorics opens a way to better model high-level
vision tasks
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Parameter Learning

Challenge: Parameter Learning

Parameter learning required for

I structured models in general,

I high level vision tasks,

I combining multiple features.

→ plenty of methods exist

(→ even just for CRFs, even just for image segmentation)
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Parameter Learning

Challenge: Parameter Learning

Parameter learning required for

I structured models in general,

I high level vision tasks,

I combining multiple features.

→ plenty of methods exist

(→ even just for CRFs, even just for image segmentation)
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Parameter Learning

Task: Object Class Image Segmentation

I PASCAL VOC 2009 segmentation challenge
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Parameter Learning

Reference Structure Learning

Szummer et al., 2008 pixel grid struct. SVM
Nowozin & Lampert, 2008 superpixels struct. SVM

Reynolds & Murphy, 2007 superpixel tree piecewise, CV
Plath et al., 2009 superpixel tree piecewise, CV

Winn & Shotton, 2006 pixel grid, pixel blocks CV
Shotton et al., 2007 pixel grid piecewise, holdout valida-

tion
Kohli et al., 2008 pixel grid, superpixels piecewise, CV
Ladický et al., 2009 pixel grid, superpixels piecewise, heuristic
Gould et al., 2008 superpixels piecewise
Batra et al., 2008 superpixels CMLE (BP)

Schnitzspan et al., 2008 multiscale grid mixed SVM and CMLE
(BP)

Kumar & Hebert, 2003 pixel blocks pseudolikelihood
Munoz et al., 2009 pixel grid, superpixels piecewise, struct. SVM
He et al., 2004 pixel grid, blocks piecewise, CMLE (con-

trastive div.)
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Parameter Learning

Parameter Learning

Status quo

I method of choice: piecewise training and cross validation

I advanced methods are used, but advantage is unclear: structured
SVM, approximations (pseudolikelihood, loopy BP, contrastive
divergence)

This work

I Simple and tractable model

I Examine some effects and choices in parameter learning
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Parameter Learning

Model

Yi

Yj

Yk Yl

Ym Yn

Yo

Xk

Xj

Xi

Xo

Xl

Xm Xn

I Log-linear CRF on hierarchical segmentation (≈ 100 superpixels)

I ≥ 105 parameters, jointly learned, multiple features

I Loss due to representation, but still ≥ 90% VOC 2009 segmentation
measure possible
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Parameter Learning

Result 1: Learning Tradeoff
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Figure: VOC 2009 segmentation accuracy on the validation set as a function of
the training set size and number of LBFGS iterations.

I Training set size is the limiting dimension
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Parameter Learning

Result 2: Feature Combination

Unary features seg-val Train time D

SIFT 6.13% 22h01m 11,193
QHOG 8.40% 19h30m 11,193
QPHOG 7.35% 36h03m 11,193
STF 6.76% 39h36m 42,945
QHOG,QPHOG 10.92% 24h35m 21,945
SIFT,QHOG,QPHOG 14.54% 26h17m 32,697
SIFT,QHOG,QPHOG,STF 15.04% 41h39m 75,201

Table: The result of feature combination at the unary factors.

I No surprise: the more features, the better

I Despite many parameters: no overfitting observed
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Parameter Learning

Result 3: Piecewise Training

Model seg-val Training time

Unary only, 9.98% 2h15m
Piecewise, Potts 14.50% (2h15)+10h28m

Joint 14.54% 26h17m

I Piecewise training competitive
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Parameter Learning

Result 4: Structured SVM

Pairwise Accuracy (val) Training time
factor CMLE SVM CMLE SVM

E 2,P 13.65% 13.21% 24h11m 165h10m
... ... ...

I Performance competitive with maximum likelihood

I For many parameters and large values of C : intractable using simple
cutting-plane model
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Conclusion

Best practises for CRF parameter learning in tractable models

I Our observation: many parameters do not hurt, infact they help

I Limiting dimension: training data

I Piecewise training works well

Open questions and future directions

I More robust structured SVM methods (recent works: “1-slack”
formulation, bundle methods)

I Intractable models: what conclusions hold?

I Intractable models: good approximate inference → good parameter
learning? cf. (Kulesza and Pereira, 2007), (Finley and Joachims,
2008), (Martins et al., 2009)
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MAP-MRF LP Relaxation

(Integer) linear programming formulation for MAP-MRF

min
µ

∑
i∈V

∑
yi∈Yi

µi (yi )
(
E{i}(yi ; x,w)

)
+

∑
(i,j)
∈E

∑
(yi ,yj )
∈Yi×Yj

µi,j(yi , yj)
(
E{i,j}(yi , yj ; x,w)

)

sb.t.
∑
yi∈Yi

µi (yi ) = 1, i ∈ V ,

∑
yj∈Yj

µi,j(yi , yj) = µi (yi ), (i , j) ∈ E , yi ∈ Yi ,

µi (yi ) ∈ {0, 1}, i ∈ V , yi ∈ Yi ,

µi,j(yi , yj) ∈ {0, 1}, (i , j) ∈ E , (yi , yj) ∈ Yi × Yj .

Figure: Variables in the
LP for our example:
4 · 4 node variables,
4 · 4 · 4 = 64 edge
variables.
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