Category-level Localization

Andrew Zisserman
Visual Geometry Group
University of Oxford
http://www.robots.ox.ac.uk/~vgg

Includes slides from: Yusuf Aytar, Ondra Chum, Alyosha Efros, Mark Everingham, Pedro Felzenszwalb, Rob Fergus, Kristen Grauman, Bastian Leibe, Ivan Laptev, Fei-Fei Li, Marcin Marszalek, Pietro Perona, Deva Ramanan, Bernt Schiele, Jamie Shotton, Josef Sivic and Andrea Vedaldi
What we would like to be able to do...

- Visual scene understanding

**What** is in the image and **where**

- Object categories, identities, properties, activities, relations, …
Recognition Tasks

• **Image Classification**
  – Does the image contain an aeroplane?

• **Object Class Detection/Localization**
  – Where are the aeroplanes (if any)?

• **Object Class Segmentation**
  – Which pixels are part of an aeroplane (if any)?
Things vs. Stuff

**Thing (n):** An object with a specific size and shape.

**Stuff (n):** Material defined by a homogeneous or repetitive pattern of fine-scale properties, but has no specific or distinctive spatial extent or shape.

Ted Adelson, Forsyth et al. 1996.

Slide: Geremy Heitz
Recognition Task

• **Object Class Detection/Localization**
  – Where are the aeroplanes (if any)?

• **Challenges**
  – Imaging factors e.g. lighting, pose, occlusion, clutter
  – Intra-class variation

• **Compared to Classification**
  – Detailed prediction e.g. bounding box
  – Location usually provided for training
Challenges: Background Clutter
Challenges: Occlusion and truncation
Challenges: Intra-class variation
Object Category Recognition by Learning

• Difficult to define model of a category. Instead, learn from example images
Level of Supervision for Learning

- Image-level label
- Bounding box
- Pixel-level segmentation
- "Parts"
Preview of typical results
Class of model: Pictorial Structure

- Intuitive model of an object
- Model has two components
  1. parts (2D image fragments)
  2. structure (configuration of parts)
- Dates back to Fischler & Elschlager 1973

Is this complexity of representation necessary?
Which features?
Restrict spatial deformations
Problem of background clutter

- Use a sub-window
  - At correct position, no clutter is present
  - Slide window to detect object
  - Change size of window to search over scale
Outline

1. Sliding window detectors

2. Features and adding spatial information

3. Histogram of Oriented Gradients (HOG)

4. PASCAL VOC and a state of the art detection algorithm

5. The future and challenges
Outline

1. Sliding window detectors
   • Start: feature/classifier agnostic
   • Method
   • Problems/limitations

2. Features and adding spatial information

3. Histogram of Oriented Gradients (HOG)

4. PASCAL VOC and a state of the art detection algorithm

5. The future and challenges
Detection by Classification

- Basic component: binary classifier
Detection by Classification

• Detect objects in clutter by **search**

• **Sliding window**: exhaustive search over position and scale
Detection by Classification

• Detect objects in clutter by **search**

• **Sliding window**: exhaustive search over position and scale
Detection by Classification

- Detect objects in clutter by **search**

- **Sliding window**: exhaustive search over position and scale (can use same size window over a spatial pyramid of images)
Window (Image) Classification

Features usually engineered
Classifier learnt from data

Training Data

Feature Extraction

Classifier

\[ P(c|\mathbf{x}) \propto F(\mathbf{x}) \]
Problems with sliding windows …

- aspect ratio
- granuality (finite grid)
- partial occlusion
- multiple responses

See work by

- Christoph Lampert et al CVPR 08, ECCV 08
Outline

1. Sliding window detectors

2. Features and adding spatial information
   - Bag of visual word (BoW) models
   - Beyond BoW I: Implicit Shape Model (ISM) models
   - Beyond BoW II: Grids and spatial pyramids

3. Histogram of Oriented Gradients (HOG)

4. PASCAL VOC and a state of the art detection algorithm

5. The future and challenges
Recap: Bag of (visual) Words representation

- Detect affine invariant local features (e.g. affine-Harris)
- Represent by high-dimensional descriptors, e.g. 128-D for SIFT
- Map descriptors onto a common vocabulary of visual words

Represent sliding window as a histogram over visual words – a bag of words

- Summarizes sliding window content in a fixed-length vector suitable for classification
<table>
<thead>
<tr>
<th>Visual Words</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airplanes</td>
<td><img src="image1" alt="Airplanes Examples" /></td>
</tr>
<tr>
<td>Motorbikes</td>
<td><img src="image2" alt="Motorbikes Examples" /></td>
</tr>
<tr>
<td>Faces</td>
<td><img src="image3" alt="Faces Examples" /></td>
</tr>
<tr>
<td>Wild Cats</td>
<td><img src="image4" alt="Wild Cats Examples" /></td>
</tr>
<tr>
<td>Leaves</td>
<td><img src="image5" alt="Leaves Examples" /></td>
</tr>
<tr>
<td>People</td>
<td><img src="image6" alt="People Examples" /></td>
</tr>
<tr>
<td>Bikes</td>
<td><img src="image7" alt="Bikes Examples" /></td>
</tr>
</tbody>
</table>
Intuition

- Visual words represent “iconic” image fragments
- Feature detectors and SIFT give invariance to local rotation and scale
- Discarding spatial information gives configuration invariance
Learning from positive ROI examples

Bag of Words

Feature Vector
Sliding window detector

- Classifier: SVM with linear kernel
- BOW representation for ROI

Example detections for dog

Lampert et al CVPR 08: Efficient branch and bound search over all windows
Discussion: ROI as a Bag of Visual Words

• Advantages
  – No explicit modelling of spatial information ⇒ high level of invariance to position and orientation in image
  – Fixed length vector ⇒ standard machine learning methods applicable

• Disadvantages
  – No explicit modelling of spatial information ⇒ less discriminative power
  – Inferior to state of the art performance
Beyond BOW I: Pictorial Structure

- Intuitive model of an object
- Model has two components
  1. parts (2D image fragments)
  2. structure (configuration of parts)
- Dates back to Fischler & Elschlager 1973

Example spatial structures:

Fully connected shape model

“Star” shape model
Implicit Shape Model (ISM)

Leibe, Leonardis, Schiele, 03/04

• Basic ideas
  – Learn an appearance codebook
  – Learn a star-topology structural model
    • Features are considered independent given object centre

• Algorithm: probabilistic Generalized Hough Transform
Codebook Representation

• Extraction of local object features
  – Interest Points (e.g. Harris detector)
  – Sparse representation of the object appearance

• Collect features from whole training set

• Example:
  
Class specific vocabulary
Leibe & Schiele 03/04: Generalized Hough Transform

- **Learning**: for every cluster, store possible “occurrences”

- **Recognition**: for new image, let the matched patches vote for possible object positions
Leibe & Schiele 03/04: Generalized Hough Transform

Interest Points → Matched Codebook Entries → Probabilistic Voting

Voting Space (continuous) → Backprojection of Maximum
Scale Voting: Efficient Computation

- Mean-Shift formulation for refinement
  - Scale-adaptive balloon density estimator

\[
\hat{p}(o_n, x) = \frac{1}{V_b} \sum_k \sum_j p(o_n, x_j | f_k, \ell_k) K \left( \frac{x - x_j}{b} \right)
\]
Detection Results

- Qualitative Performance
  - Recognizes different kinds of cars
  - Robust to clutter, occlusion, low contrast, noise
Discussion: ISM and related models

Advantages
• Scale and rotation invariance can be built into the representation from the start
• Relatively cheap to learn and test (inference)
• Works well for many different object categories
• Max-margin extensions possible, Maji & Malik, CVPR09

Disadvantages
• Requires searching for modes in the Hough space
• Similar to sliding window in this respect
• Is such a degree of invariance required? (many objects are horizontal)
Beyond BOW II: Grids and spatial pyramids

Start from BoW for ROI

- no spatial information recorded
- sliding window detector
Adding Spatial Information to Bag of Words

Bag of Words

Concatenate Feature Vector

Keeps fixed length feature vector for a window

[Fergus et al, 2005]
Tiling defines (records) the spatial correspondence of the words

If codebook has V visual words, then representation has dimension 4V

Fergus et al ICCV 05
Spatial Pyramid – represent correspondence

- As in scene/image classification can use pyramid kernel

[1 BoW] 4 BoW 16 BoW

• As in scene/image classification can use pyramid kernel

[Grauman & Darrell, 2005] [Lazebnik et al, 2006]
Dense Visual Words

• Why extract only **sparse** image fragments?

• Good where lots of invariance and matches are needed, but not relevant to sliding window detection?

• Extract **dense** visual words on an overlapping grid

• More “detail” at the expense of invariance

• Pyramid histogram of visual words (PHOW)

[Luong & Malik, 1999]
[Varma & Zisserman, 2003]
[Vogel & Schiele, 2004]
[Jurie & Triggs, 2005]
[Fei-Fei & Perona, 2005]
[Bosch et al, 2006]
Outline

1. Sliding window detectors
2. Features and adding spatial information
3. Histogram of Oriented Gradients + linear SVM classifier
   - Dalal & Triggs pedestrian detector
   - HOG and history
   - Training an object detector
4. PASCAL VOC and a state of the art detection algorithm
5. The future and challenges
• Objective: detect (localize) standing humans in an image

• Sliding window classifier

• Train a binary classifier on whether a window contains a standing person or not

• Histogram of Oriented Gradients (HOG) feature

• Although HOG + SVM originally introduced for pedestrians has been used very successfully for many object categories
Feature: Histogram of Oriented Gradients (HOG)

- tile 64 x 128 pixel window into 8 x 8 pixel cells
- each cell represented by histogram over 8 orientation bins (i.e. angles in range 0-180 degrees)
Histogram of Oriented Gradients (HOG) continued

- Adds a second level of overlapping spatial bins re-normalizing orientation histograms over a larger spatial area.

- Feature vector dimension (approx) = 16 x 8 (for tiling) x 8 (orientations) x 4 (for blocks) = 4096
Window (Image) Classification

- HOG Features
- Linear SVM classifier

Feature Extraction -> \([\ldots]\) -> Classifier

\[ F(x) \]

\[ P(c|x) \propto F(x) \]

pedestrian/Non-pedestrian

Training Data
Averaged examples
Advantages of linear SVM:

- **Training (Learning)**
  
  - Very efficient packages for the linear case, e.g. LIBLINEAR for batch training and Pegasos for on-line training.
  
  - Complexity $O(N)$ for $N$ training points (cf $O(N^3)$ for general SVM)

- **Testing (Detection)**

  Non-linear
  \[
  f(x) = \sum_{i}^{S} \alpha_{i} k(x_{i}, x) + b
  \]
  
  $S = \# \text{ of support vectors}$
  
  Linear
  \[
  f(x) = \sum_{i}^{S} \alpha_{i} x_{i}^{\top} x + b = w^{\top} x + b
  \]

  Independent of size of training data

More on linear/non-linear in the image classification practical
Learned model

\[ f(x) = w^\top x + b \]
What do negative weights mean?

\[ wx > 0 \]
\[ (w_+ - w_-)x > 0 \]
\[ w_+ > w_-x \]

Complete system should compete pedestrian/pillar/doorway models

Discriminative models come equipped with own bg
(avoid firing on doorways by penalizing vertical edges)

Slide from Deva Ramanan
What is represented by HOG

Inverting and Visualizing Features for Object Detection

Carl Vondrick  Aditya Khosla  Tomasz Malisiewicz  Antonio Torralba

http://web.mit.edu/vondrick/ihog/index.html
What is represented by HOG
Why does HOG + SVM work so well?

• Similar to SIFT, records spatial arrangement of histogram orientations
• Compare to learning only edges:
  – Complex junctions can be represented
  – Avoids problem of early thresholding
  – Represents also soft internal gradients
• Older methods based on edges have become largely obsolete

• HOG gives fixed length vector for window, suitable for feature vector for SVM
Contour-fragment models

Shotton et al ICCV 05, Opelt et al ECCV 06

- Generalized Hough like representation using contour fragments
- Contour fragments learnt from edges of training images
- Hough like voting for detection
Training a sliding window detector

- Object **detection** is inherently asymmetric: much more “non-object” than “object” data

- Classifier needs to have very low false positive rate
- Non-object category is very complex – need lots of data
Bootstrapping

1. Pick negative training set at random
2. Train classifier
3. Run on training data
4. Add false positives to training set
5. Repeat from 2

• Collect a finite but diverse set of non-object windows
• Force classifier to concentrate on **hard negative** examples
• For some classifiers can ensure equivalence to training on entire data set
Example: train an upper body detector

- Training data – used for training and validation sets
  - 33 Hollywood2 training movies
  - 1122 frames with upper bodies marked

- First stage training (bootstrapping)
  - 1607 upper body annotations jittered to 32k positive samples
  - 55k negatives sampled from the same set of frames

- Second stage training (retraining)
  - 150k hard negatives found in the training data
Training data – positive annotations
Positive windows

Note: common size and alignment
Jittered positives
Jittered positives
Random negatives
Random negatives
Window (Image) first stage classification

Jittered positives → HOG Feature Extraction → Linear SVM Classifier

- $f(x) = \mathbf{w}^\top \mathbf{x} + b$
- find high scoring false positives detections
- these are the hard negatives for the next round of training
- cost = # training images $\times$ inference on each image
Hard negatives
Hard negatives
First stage performance on validation set
Precision – Recall curve

- **Precision**: % of returned windows that are correct
- **Recall**: % of correct windows that are returned

![Diagram showing precision-recall curve and the relationship between precision, recall, and correct/returned windows.](image)
First stage performance on validation set

![Graph showing precision-recall curve]

- **Initial (0.23)**

Axes:
- **Y-axis:** Precision
- **X-axis:** Recall

Values:
- Precision range: 0 to 1
- Recall range: 0 to 1
Performance after retraining
Effects of retraining
Side by side

before retraining

after retraining
Side by side

before retraining

after retraining
Side by side

before retraining

after retraining
Tracked upper body detections
Notes

• Training (bootstrapping, retraining) can be done in a more principled way using Structured Output learning with the cutting plane algorithm
  – See Christoph Lampert’s lecture on Wednesday

• An object category detector can be learnt from a single positive example
  – See Exemplar SVM by Malisiewicz, Gupta, Efros, ICCV 2011
Accelerating Sliding Window Search

• Sliding window search is slow because so many windows are needed e.g. $x \times y \times \text{scale} \approx 100,000$ for a $320 \times 240$ image

• Most windows are clearly not the object class of interest

• Can we speed up the search?
Cascaded Classification

• Build a sequence of classifiers with increasing complexity

More complex, slower, lower false positive rate

• Reject easy non-objects using simpler and faster classifiers
Cascaded Classification

• Slow expensive classifiers only applied to a few windows ⇒ significant speed-up

• Controlling classifier complexity/speed:
  – Number of support vectors [Romdhani et al, 2001]
  – Number of features [Viola & Jones, 2001]
  – Type of SVM kernel [Vedaldi et al, 2009]
  – Number of parts [Felzenszwalb et al, 2011]
“Accelerating” Training

Discriminative Decorrelation for Clustering and Classification
Bharath Hariharan, Jitendra Malik and Deva Ramanan, ECCV 2012

Problem: 
**SVM training is expensive**
- Mining for hard negatives, bootstrapping

Solution: 
**LDA (Linear Discriminant Analysis)**
- *Extremely fast training, very similar performance*
Linear Discriminant Analysis (LDA)

**Assumptions**

\[ P(x|y) = N(x; \mu_y, \Sigma) \]

\( \mu_y \) are class-dependent

covariance matrix \( \Sigma \) is class-independent

**Learning - Classification**

\( x \) is classified as a positive

if \( P(y = 1|x) > P(y = 0|x) \)

\[ w = \Sigma^{-1}(\mu_1 - \mu_0) \]

difference in class means
Pedestrian Detection
Linear Discriminant Models

\[ w = \Sigma^{-1}(\mu_1 - \mu_0) \]

- \( \mu_1 \) – quick to compute
- \( \mu_0, \Sigma \) – compute once, use for any class
- no need for costly bootstrapping and hard negatives
- very fast for learning multiple classes
- Intuition: covariance learns correlation on HOGs in advance, so learning the classifier can concentrate on discriminative gradients
- whitened HOG also better for clustering
Pedestrian Detection
Linear Discriminant Models

Precision-Recall graph on INRIA dataset

SVM (AP = 0.7966)
LDA (AP = 0.7510)
Summary: Sliding Window Detection

• Can convert any image classifier into an object detector by sliding window. Efficient search methods available.

• Requirements for invariance are reduced by searching over e.g. translation and scale

• Spatial correspondence can be “engineered in” by spatial tiling
Outline

1. Sliding window detectors
2. Features and adding spatial information
3. HOG + linear SVM classifier
4. PASCAL VOC and a state of the art detection algorithm
   - VOC challenge
   - Felzenswalb et al. – multiple parts, latent SVM
5. The future and challenges
The PASCAL Visual Object Classes (VOC) Dataset and Challenge

Mark Everingham
Luc Van Gool
Chris Williams
John Winn
Andrew Zisserman
The PASCAL VOC Challenge

• Challenge in visual object recognition funded by PASCAL network of excellence

• Publicly available dataset of annotated images

• Main competitions are classification (is there an X in this image), detection (where are the X’s), and segmentation (which pixels belong to X)

• “Taster competitions” in 2-D human “pose estimation” (2007-12) and static action classes (2010-12)

• Standard evaluation protocol (software supplied)
Dataset Content

• 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, train, TV

• Real images downloaded from flickr, not filtered for “quality”

• Complex scenes, scale, pose, lighting, occlusion, ...
Annotation

- Complete annotation of all objects
- Annotated in one session with written guidelines

**Occluded**
Object is significantly occluded within BB

**Truncated**
Object extends beyond BB

**Difficult**
Not scored in evaluation

**Pose**
Facing left
Examples

Aeroplane

Bicycle

Bird

Boat

Bottle

Bus

Car

Cat

Chair

Cow
Examples

Dining Table  Dog  Horse  Motorbike  Person

Potted Plant  Sheep  Sofa  Train  TV/Monitor
Challenges

20 object classes

1. Classification Challenge: Name Objects
   - Predict whether at least one object of a given class is present in an image

2. Detection Challenge: Localize objects
   - Predict the bounding boxes of all objects of a given class in an image (if any)

3. Segmentation Challenge:
   - For each pixel, predict the class of the object containing that pixel or ‘background’.
Detection: Evaluation of Bounding Boxes

• Area of Overlap (AO) Measure

\[
AO(B_{gt}, B_p) = \frac{|B_{gt} \cap B_p|}{|B_{gt} \cup B_p|}
\]

Detection if \(AO(B_{gt}, B_p) > \text{Threshold} \) 50%

• Evaluation: Average precision per class on predictions
Precision/Recall - Motorbike

- NLPR_DD_DC (58.3)
- NYUCLA_HIERARCHY (56.9)
- OXFORD_DPM_MK (56.6)
- NUS_CONTEXT_SVM (55.8)
- UVA_SELSEARCH (54.4)
- UOCTTI_LSVMD_MDP (50.3)
- MISSOURI_LCC_TREE_CODING (48.6)
- MISSOURI_TREE_MAX_POOLING (48.6)
- CMIC_GS_DPM (41.6)
- BROOKES_STRUCT_DET_CRF (41.1)
- CMIC_SYNTHDPM (38.6)
- CORNELL_DVM_VIEWPOINT (38.2)
Precision/Recall - Person

NLPR_DD_DC (51.6)
UOCTTI_WL-SSVM_GRAMMAR (49.2)
UOCTTI_LSVM_MDPM (46.3)
NYU_UCLA_HIERARCHY (43.6)
OXFORD_DPM_MD (43.3)
MISSOURI_TREE_MAX_POOLING (42.9)
MISSOURI_LCC_TREE_CODING (41.9)
CMIC_SYNTHDPM (40.7)
BROOKES_STRUCT_DET_CRF (38.4)
NUSCONTEXT_SVM (36.8)
UVA_SELSEARCH (30.4)
CORNELL_ISVM_VIEWPOINT (7.9)
Precision/Recall – Potted plant

![Precision/Recall Graph]

- UVA_SELSEARCH (16.2)
- NLPR_DD_DC (14.7)
- NYUUC_HIERARCHY (14.3)
- NUS_CONTEXT_SVM (12.3)
- OXFORD_DPM_MK (12.1)
- MISSOURI_LCC_TREE_CODING (11.6)
- MISSOURI_TREE_MAX_POOLING (11.6)
- UOCTTI_LSVM_MDPM (8.8)
- CMIC_GS_DPM (8.3)
- CMIC_SYNTHDPM (7.5)
- CORNELL_ISVM_VIEWPOINT (1.7)
- BROOKES_STRUCT_DET_CRF (1.5)
“True Positives” - Motorbike

NLPR_DD_DC

NYUUCLA_HIERARCHY

OXFORD_DPM_MK
“False Positives” - Motorbike

NLPR_DD_DC

NYUUCLA_HIERARCHY

OXFORD_DPM_MK
“True Positives” - Cat

NYUUCLA_HIERARCHY

OXFORD_DPM_MK

UVA_SELSEARCH
“False Positives” - Cat

NYUUCLA_HIERARCHY

OXFORD_DPM_MK

UVA_SELSEARCH
ImageNet Challenge 2013

Introduction

This challenge evaluates algorithms for object detection and image classification at large scale. This year there will be three competitions:

1. A PASCAL-style detection challenge on fully labeled data for 200 categories of objects,
2. An image classification challenge with 1000 categories, and
3. An image classification plus object localization challenge with 1000 categories.

One high level motivation is to allow researchers to compare progress in detection across a wider variety of objects -- taking advantage of the quite expensive labeling effort. Another motivation is to measure the progress of computer vision for large scale image indexing for retrieval and annotation.

History

- ILSVRC 2012
- ILSVRC 2011
Object Detection with Discriminatively Trained Part Based Models

Pedro F. Felzenszwalb, David Mcallester, Deva Ramanan, Ross Girshick
PAMI 2010
Single rigid template usually not enough to represent a category

1. Many objects (e.g. humans) are articulated, or have parts that can vary in configuration

2. Many object categories look very different from different viewpoints, or from instance to instance
Discriminative part-based models

• One component of person model
Object Hypothesis

• Position of root + each part
• Each part: HOG filter (at higher resolution)

Score is sum of filter scores minus deformation costs

$z = (p_0, ..., p_n)$

$p_0$: location of root
$p_1, ..., p_n$: location of parts
Score of a Hypothesis

\[ \text{score}(p_0, \ldots, p_n) = \sum_{i=0}^{n} F_i \cdot \phi(H, p_i) - \sum_{i=1}^{n} d_i \cdot (dx_i^2, dy_i^2) \]

- Appearance term
- Spatial prior

\[ \text{score}(z) = \beta \cdot \Psi(H, z) \]

- Concatenation of filters and deformation parameters
- Concatenation of HOG features and part displacement features

- Linear classifier applied to feature subset defined by hypothesis
Single rigid template usually not enough to represent a category

1. Many objects (e.g. humans) are articulated, or have parts that can vary in configuration

2. Many object categories look very different from different viewpoints, or from instance to instance

Slide by N. Snavely
Multiple components

- Mixture of deformable part-based models
  - One component per “aspect” e.g. front/side view
- Each component has global template + deformable parts
- Discriminative training from bounding boxes alone
Training

• Training data = images + bounding boxes
• Need to learn: model structure, filters, deformation costs
Latent SVM (MI-SVM)

Classifiers that score an example $x$ using

$$f_\beta(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$$

$\beta$ are model parameters
$z$ are latent values

Training data $D = (\langle x_1, y_1 \rangle, \ldots, \langle x_n, y_n \rangle)$ \hspace{1cm} $y_i \in \{-1, 1\}$

We would like to find $\beta$ such that: $y_i f_\beta(x_i) > 0$

Minimize

$$L_D(\beta) = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^{n} \max(0, 1 - y_i f_\beta(x_i))$$

SVM objective
Latent SVM Training

\[ L_D(\beta) = \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^{n} \max(0, 1 - y_i f_\beta(x_i)) \]

• Convex if we fix \( z \) for positive examples

• Optimization:
  – Initialize \( \beta \) and iterate:
    • Pick best \( z \) for each positive example
    • Optimize \( \beta \) with \( z \) fixed

• Local minimum: needs good initialization
  – Parts initialized heuristically from root

\{ Alternation strategy \}
Person Model

- root filters
  - coarse resolution
- part filters
  - finer resolution
- deformation models

Handles partial occlusion/truncation
Person model with 3 left-right components

- Mixture model using max over multiple components with left-right pairs
Car Model

root filters
course resolution

part filters
finer resolution

deformation
models
Car Detections

high scoring true positives

high scoring false positives
Person Detections

high scoring true positives

high scoring false positives
(not enough overlap)
Comparison of Models

![Comparison of Models](image-url)
Summary

• Discriminative learning of model with latent variables for **single feature** (HOG):
  – Latent variables can learn best alignment in the ROI training annotation
  – Parts can be thought of as local SIFT vectors
  – Some similarities to Implicit Shape Model but with discriminative/careful training throughout

NB: Code available for latent model!
Outline

1. Sliding window detectors
2. Features and adding spatial information
3. HOG + linear SVM classifier
4. PASCAL VOC and a state of the art detection algorithm
5. The future and challenges
There are alternatives to sliding - jumping window

Position of visual word with respect to the object

learn the position/scale/aspect ratio of the ROI with respect to the visual word

Handles change of aspect ratio
Current Research Challenges

- Improving precision, e.g. by context
  - from scene properties: GIST, BoW, stuff
  - from other objects, e.g. Felzenszwalb et al, PAMI 10
  - from geometry of scene, e.g. Hoiem et al CVPR 06

- Improving recall, e.g. missed due to occlusion/truncation
  - Winn & Shotton, Layout Consistent Random Field, CVPR 06
  - Vedaldi & Zisserman, NIPS 09
  - Yang et al, Layered Object Detection, CVPR 10
  - Tang et al, Detection and Tracking of Occluded People, BMVC 12

- Weak and noisy supervision, e.g. dot or image level
  - Deselaers et al, IJCV 2012
  - Arteta et al, CVPR 13