
Y LeCun
Deep Learning

&
Convolutional Networks

In Vision (part 2)
VRML, Paris 2013-07-23

Yann LeCun
Center for Data Science & Courant Institute, NYU
yann@cs.nyu.edu
http://yann.lecun.com

mailto:yann@cs.nyu.edu
http://yann.lecun.com/

Y LeCun

Energy-Based
Unsupervised Learning

Y LeCun
Energy-Based Unsupervised Learning

Learning an energy function (or contrast function) that takes
Low values on the data manifold
Higher values everywhere else

Y1

Y2

Y LeCun

Capturing Dependencies Between Variables
with an Energy Function

The energy surface is a “contrast function” that takes low values on the
data manifold, and higher values everywhere else

Special case: energy = negative log density
Example: the samples live in the manifold

Y1

Y2

Y 2=(Y 1)
2

Y LeCun
Transforming Energies into Probabilities (if necessary)

Y

P(Y|W)

Y

E(Y,W)

The energy can be interpreted as an unnormalized negative log density

Gibbs distribution: Probability proportional to exp(-energy)
Beta parameter is akin to an inverse temperature

Don't compute probabilities unless you absolutely have to
Because the denominator is often intractable

Y LeCun
Learning the Energy Function

parameterized energy function E(Y,W)
Make the energy low on the samples
Make the energy higher everywhere else
Making the energy low on the samples is easy
But how do we make it higher everywhere else?

Y LeCun
Seven Strategies to Shape the Energy Function

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA

 2. push down of the energy of data points, push up everywhere else
Max likelihood (needs tractable partition function)

 3. push down of the energy of data points, push up on chosen locations
 contrastive divergence, Ratio Matching, Noise Contrastive
Estimation, Minimum Probability Flow

 4. minimize the gradient and maximize the curvature around data points
score matching

 5. train a dynamical system so that the dynamics goes to the manifold
denoising auto-encoder

 6. use a regularizer that limits the volume of space that has low energy
Sparse coding, sparse auto-encoder, PSD

 7. if E(Y) = ||Y - G(Y)||^2, make G(Y) as "constant" as possible.
Contracting auto-encoder, saturating auto-encoder

Y LeCun
#1: constant volume of low energy

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA...

E (Y)=∥W T WY −Y∥
2

PCA K-Means,
Z constrained to 1-of-K code

E (Y)=minz∑i
∥Y −W i Z i∥

2

Y LeCun

#2: push down of the energy of data points,
push up everywhere else

Max likelihood (requires a tractable partition function)

Y

P(Y)

Y

E(Y)

Maximizing P(Y|W) on training samples

make this big

make this bigmake this small

Minimizing -log P(Y,W) on training samples

make this small

Y LeCun

#2: push down of the energy of data points,
push up everywhere else

Gradient of the negative log-likelihood loss for one sample Y:

Pushes down on the
energy of the samples

Pulls up on the
energy of low-energy Y's

Y

Y

E(Y)Gradient descent:

Y LeCun

#3. push down of the energy of data points,
push up on chosen locations

contrastive divergence, Ratio Matching, Noise Contrastive Estimation,
Minimum Probability Flow

Contrastive divergence: basic idea
Pick a training sample, lower the energy at that point
From the sample, move down in the energy surface with noise
Stop after a while
Push up on the energy of the point where we stopped
This creates grooves in the energy surface around data manifolds
CD can be applied to any energy function (not just RBMs)

Persistent CD: use a bunch of “particles” and remember their positions
Make them roll down the energy surface with noise
Push up on the energy wherever they are
Faster than CD

RBM

E (Y , Z)=−Z T WY E (Y)=−log∑z
eZ T WY

Y LeCun

#6. use a regularizer that limits
the volume of space that has low energy

 Sparse coding, sparse auto-encoder, Predictive Saprse Decomposition

Y LeCun

Sparse Modeling,
Sparse Auto-Encoders,

Predictive Sparse Decomposition
LISTA

Y LeCun
How to Speed Up Inference in a Generative Model?

Factor Graph with an asymmetric factor

Inference Z → Y is easy
Run Z through deterministic decoder, and sample Y

Inference Y → Z is hard, particularly if Decoder function is many-to-one
MAP: minimize sum of two factors with respect to Z
Z* = argmin_z Distance[Decoder(Z), Y] + FactorB(Z)

Examples: K-Means (1of K), Sparse Coding (sparse), Factor Analysis

INPUT

Decoder

Y

Distance

Z
LATENT

VARIABLE

Factor B

Generative Model

Factor A

Y LeCun
Sparse Coding & Sparse Modeling

Sparse linear reconstruction

Energy = reconstruction_error + code_prediction_error + code_sparsity

E (Y i , Z)=∥Y i
−W d Z∥

2
+ λ∑ j

∣z j∣

[Olshausen & Field 1997]

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES

∑ j
.

Y → Ẑ=argmin Z E (Y , Z)Inference is slow

DETERMINISTIC

FUNCTION
FACTOR

VARIABLE

Y LeCun
Encoder Architecture

Examples: most ICA models, Product of Experts

INPUT Y Z
LATENT

VARIABLE

Factor B

Encoder Distance

Fast Feed-Forward Model

Factor A'

Y LeCun
Encoder-Decoder Architecture

Train a “simple” feed-forward function to predict the result of a complex
optimization on the data points of interest

INPUT

Decoder

Y

Distance

Z
LATENT

VARIABLE

Factor B

[Kavukcuoglu, Ranzato, LeCun, rejected by every conference, 2008-2009]

Generative Model

Factor A

Encoder Distance

Fast Feed-Forward Model

Factor A'

1. Find optimal Zi for all Yi; 2. Train Encoder to predict Zi from Yi

Y LeCunWhy Limit the Information Content of the Code?

INPUT SPACE FEATURE
SPACE

Training sample

Input vector which is NOT a training sample

Feature vector

Y LeCunWhy Limit the Information Content of the Code?

INPUT SPACE FEATURE
SPACE

Training sample

Input vector which is NOT a training sample

Feature vector

Training based on minimizing the reconstruction error
over the training set

Y LeCunWhy Limit the Information Content of the Code?

INPUT SPACE FEATURE
SPACE

Training sample

Input vector which is NOT a training sample

Feature vector
BAD: machine does not learn structure from training data!!
It just copies the data.

Y LeCunWhy Limit the Information Content of the Code?

Training sample

Input vector which is NOT a training sample

Feature vector

IDEA: reduce number of available codes.

INPUT SPACE FEATURE
SPACE

Y LeCunWhy Limit the Information Content of the Code?

Training sample

Input vector which is NOT a training sample

Feature vector

IDEA: reduce number of available codes.

INPUT SPACE FEATURE
SPACE

Y LeCunWhy Limit the Information Content of the Code?

Training sample

Input vector which is NOT a training sample

Feature vector

IDEA: reduce number of available codes.

INPUT SPACE FEATURE
SPACE

Y LeCun
Predictive Sparse Decomposition (PSD): sparse auto-encoder

Prediction the optimal code with a trained encoder

Energy = reconstruction_error + code_prediction_error + code_sparsity

E Y i , Z =∥Y i
−W d Z∥

2
∥Z−ge W e ,Y i

∥
2
∑ j

∣z j∣

ge (W e , Y i
)=shrinkage(W e Y i

)

[Kavukcuoglu, Ranzato, LeCun, 2008 → arXiv:1010.3467],

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES

∑ j
.

∥Z− Z∥
2ge W e ,Y i

Y LeCun
PSD: Basis Functions on MNIST

Basis functions (and encoder matrix) are digit parts

Y LeCun

Training on natural images
patches.

12X12
256 basis functions

Predictive Sparse Decomposition (PSD): Training

Y LeCun

Learned Features on natural patches:
V1-like receptive fields

Y LeCun

ISTA/FISTA: iterative algorithm that converges to optimal sparse code

INPUT Y ZW e sh()

S

+

[Gregor & LeCun, ICML 2010], [Bronstein et al. ICML 2012], [Rolfe & LeCun ICLR 2013]

Lateral Inhibition

Better Idea: Give the “right” structure to the encoder

Y LeCun

Think of the FISTA flow graph as a recurrent neural net where We and S are
trainable parameters

INPUT Y ZW e sh()

S

+

Time-Unfold the flow graph for K iterations

Learn the We and S matrices with “backprop-through-time”

Get the best approximate solution within K iterations

Y

Z

W e

sh()+ S sh()+ S

LISTA: Train We and S matrices
to give a good approximation quickly

Y LeCun
Learning ISTA (LISTA) vs ISTA/FISTA

Number of LISTA or FISTA iterations

R
ec

on
st

ru
ct

io
n

Er
ro

r

Y LeCun
LISTA with partial mutual inhibition matrix

Proportion of S matrix elements that are non zero

R
ec

on
st

ru
ct

io
n

Er
ro

r

Smallest elements
removed

Y LeCunLearning Coordinate Descent (LcoD): faster than LISTA

Number of LISTA or FISTA iterations

R
ec

on
st

ru
ct

io
n

Er
ro

r

Y LeCun

Architecture

 Rectified linear units

Classification loss: cross-entropy

Reconstruction loss: squared error

Sparsity penalty: L1 norm of last hidden layer

Rows of Wd and columns of We constrained in unit sphere

W e

()
+ S +

W c

W d

Can be repeated

Encoding

Filters

Lateral

Inhibition
Decoding

Filters

X̄

Ȳ

X

L1 Z̄

X

Y

0

()
+

[Rolfe & LeCun ICLR 2013]

Discriminative Recurrent Sparse Auto-Encoder (DrSAE)

Y LeCun

Image = prototype + sparse sum of “parts” (to move around the manifold)

DrSAE Discovers manifold structure of handwritten digits

Y LeCun

Replace the dot products with dictionary element by convolutions.
Input Y is a full image
Each code component Zk is a feature map (an image)
Each dictionary element is a convolution kernel

Regular sparse coding

Convolutional S.C.

∑
k

. * Zk

Wk

Y =

“deconvolutional networks” [Zeiler, Taylor, Fergus CVPR 2010]

Convolutional Sparse Coding

Y LeCun

Convolutional Formulation
Extend sparse coding from PATCH to IMAGE

PATCH based learning CONVOLUTIONAL learning

Convolutional PSD: Encoder with a soft sh() Function

Y LeCun
Convolutional Sparse Auto-Encoder on Natural Images

Filters and Basis Functions obtained with 1, 2, 4, 8, 16, 32, and 64 filters.

Y LeCun

Phase 1: train first layer using PSD

FEATURES

Y Z

∥Y i
−Ỹ∥

2

∣z j∣

W d Z λ∑ .

∥Z−Z̃∥
2g e (W e ,Y i)

Using PSD to Train a Hierarchy of Features

Y LeCun

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

FEATURES

Y ∣z j∣

g e (W e ,Y i)

Using PSD to Train a Hierarchy of Features

Y LeCun

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

FEATURES

Y ∣z j∣

g e (W e ,Y i)

Y Z

∥Y i
−Ỹ∥

2

∣z j∣

W d Z λ∑ .

∥Z−Z̃∥
2g e (W e ,Y i)

Using PSD to Train a Hierarchy of Features

Y LeCun

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor

FEATURES

Y ∣z j∣

g e (W e ,Y i)

∣z j∣

g e (W e ,Y i)

Using PSD to Train a Hierarchy of Features

Y LeCun

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor

Phase 5: train a supervised classifier on top

Phase 6 (optional): train the entire system with supervised back-propagation

FEATURES

Y ∣z j∣

g e (W e ,Y i)

∣z j∣

g e (W e ,Y i)

classifier

Using PSD to Train a Hierarchy of Features

Y LeCun

[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. ArXiv 2012]

ConvNet

Color+Skip

Supervised

ConvNet

Color+Skip

Unsup+Sup

ConvNet

B&W

Unsup+Sup

ConvNet

B&W

Supervised

Pedestrian Detection: INRIA Dataset. Miss rate vs false
positives

Y LeCun

Unsupervised Learning:
Invariant Features

Y LeCun
Learning Invariant Features with L2 Group Sparsity

Unsupervised PSD ignores the spatial pooling step.
Could we devise a similar method that learns the pooling layer as well?
Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features

Minimum number of pools must be non-zero

Number of features that are on within a pool doesn't matter

Pools tend to regroup similar features

INPUT Y Z

∥Y i
−Ỹ∥

2 W d Z

FEATURES

λ∑ .

∥Z−Z̃∥
2g e (W e ,Y i)

√ (∑ Z k
2)

L2 norm within
each pool

E (Y,Z)=∥Y −W d Z∥2+∥Z−g e (W e ,Y)∥
2+∑

j √ ∑
k∈P j

Z k
2

Y LeCun

Learning Invariant Features with L2 Group Sparsity

Idea: features are pooled in group.
Sparsity: sum over groups of L2 norm of activity in group.

[Hyvärinen Hoyer 2001]: “subspace ICA”
decoder only, square

[Welling, Hinton, Osindero NIPS 2002]: pooled product of experts
encoder only, overcomplete, log student-T penalty on L2 pooling

[Kavukcuoglu, Ranzato, Fergus LeCun, CVPR 2010]: Invariant PSD
encoder-decoder (like PSD), overcomplete, L2 pooling

[Le et al. NIPS 2011]: Reconstruction ICA
Same as [Kavukcuoglu 2010] with linear encoder and tied decoder

[Gregor & LeCun arXiv:1006:0448, 2010] [Le et al. ICML 2012]
Locally-connect non shared (tiled) encoder-decoder

INPUT

Y
Encoder only (PoE, ICA),

Decoder Only or

Encoder-Decoder (iPSD, RICA)
Z INVARIANT

FEATURES

λ∑ .

√ (∑ Z k
2)

L2 norm within
each pool

SIMPLE
FEATURES

Y LeCun
Groups are local in a 2D Topographic Map

The filters arrange
themselves spontaneously
so that similar filters enter
the same pool.
The pooling units can be
seen as complex cells
Outputs of pooling units are
invariant to local
transformations of the input

For some it's
translations, for others
rotations, or other
transformations.

Y LeCun
Image-level training, local filters but no weight sharing

Training on 115x115 images. Kernels are 15x15 (not shared across
space!)

[Gregor & LeCun 2010]

Local receptive fields

No shared weights

4x overcomplete

L2 pooling

Group sparsity over pools

Input

Reconstructed Input

(Inferred) Code

Predicted Code

Decoder

Encoder

Y LeCun
Image-level training, local filters but no weight sharing

Training on 115x115 images. Kernels are 15x15 (not shared across
space!)

Y LeCun

119x119 Image Input
100x100 Code

20x20 Receptive field size
sigma=5 Michael C. Crair, et. al. The Journal of Neurophysiology

Vol. 77 No. 6 June 1997, pp. 3381-3385 (Cat)

K Obermayer and GG Blasdel, Journal of
Neuroscience, Vol 13, 4114-4129 (Monkey)Topographic Maps

Y LeCun
Image-level training, local filters but no weight sharing

Color indicates orientation (by fitting Gabors)

Y LeCun
Invariant Features Lateral Inhibition

Replace the L1 sparsity term by a lateral inhibition matrix
Easy way to impose some structure on the sparsity

[Gregor, Szlam, LeCun NIPS 2011]

Y LeCun
Invariant Features via Lateral Inhibition: Structured Sparsity

 Each edge in the tree indicates a zero in the S matrix (no mutual inhibition)

Sij is larger if two neurons are far away in the tree

Y LeCun
Invariant Features via Lateral Inhibition: Topographic Maps

Non-zero values in S form a ring in a 2D topology
Input patches are high-pass filtered

Y LeCun
Invariant Features through Temporal Constancy

Object is cross-product of object type and instantiation parameters
Mapping units [Hinton 1981], capsules [Hinton 2011]

small medium large

Object type Object size[Karol Gregor et al.]

Y LeCun
What-Where Auto-Encoder Architecture

St St-1 St-2

C
1
t C

1
t-1 C

1
t-2 C

2
t

Decoder

W1 W1 W1 W2

Predicted
input

C
1
t C

1
t-1 C

1
t-2 C

2
t

St St-1 St-2

Inferred
code

Predicted
code

InputEncoder

f ∘ W̃ 1 f ∘ W̃ 1 f ∘ W̃ 1

W̃ 2

f

W̃ 2

W̃ 2

Y LeCun
Low-Level Filters Connected to Each Complex Cell

C1
(where)

C2
(what)

Y LeCun

Input

Generating Images

Generating images

Y LeCun

Future
Challenges

Y LeCun
The Graph of Deep Learning Sparse Modeling Neuroscience↔ ↔

Architecture of V1

[Hubel, Wiesel 62]

Basis/Matching Pursuit

[Mallat 93; Donoho 94]

Sparse Modeling

[Olshausen-Field 97]

Neocognitron

[Fukushima 82]
Backprop

[many 85]

Convolutional Net

[LeCun 89]

Sparse Auto-Encoder

[LeCun 06; Ng 07]

Restricted

Boltzmann

Machine

[Hinton 05]

Normalization

[Simoncelli 94]

Speech Recognition

[Goog, IBM, MSFT 12]

Object Recog

[Hinton 12]
Scene Labeling

[LeCun 12]

Connectomics

[Seung 10]

Object Reco

[LeCun 10]

Compr. Sensing

[Candès-Tao 04]

L2-L1 optim

[Nesterov,

Nemirovski

Daubechies,

Osher....]

Scattering

Transform

[Mallat 10]

Stochastic Optimization

[Nesterov, Bottou

Nemirovski,....]

Sparse Modeling

[Bach, Sapiro. Elad]
MCMC, HMC

Cont. Div.

[Neal, Hinton]

Visual Metamers

[Simoncelli 12]

Y LeCun
Integrating Feed-Forward and Feedback

Marrying feed-forward convolutional nets with
generative “deconvolutional nets”

Deconvolutional networks

[Zeiler-Graham-Fergus ICCV 2011]

Feed-forward/Feedback networks allow
reconstruction, multimodal prediction, restoration,
etc...

Deep Boltzmann machines can do this, but
there are scalability issues with training

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform

Y LeCun
Integrating Deep Learning and Structured Prediction

Deep Learning systems can be assembled into
factor graphs

Energy function is a sum of factors

Factors can embed whole deep learning
systems

X: observed variables (inputs)

Z: never observed (latent variables)

Y: observed on training set (output
variables)

Inference is energy minimization (MAP) or free
energy minimization (marginalization) over Z
and Y given an X

Energy Model
(factor graph)

E(X,Y,Z)

X
(observed)

Z
(unobserved)

Y
(observed on
training set)

Y LeCun

Energy Model
(factor graph)

Integrating Deep Learning and Structured Prediction

Deep Learning systems can be assembled into
factor graphs

Energy function is a sum of factors

Factors can embed whole deep learning
systems

X: observed variables (inputs)

Z: never observed (latent variables)

Y: observed on training set (output
variables)

Inference is energy minimization (MAP) or free
energy minimization (marginalization) over Z
and Y given an X

F(X,Y) = MIN_z E(X,Y,Z)

F(X,Y) = -log SUM_z exp[-E(X,Y,Z)]

Energy Model
(factor graph)

E(X,Y,Z)

X
(observed)

Z
(unobserved)

Y
(observed on
training set)

F(X,Y) = Marg_z E(X,Y,Z)

Y LeCun
Integrating Deep Learning and Structured Prediction

Integrting deep learning and structured
prediction is a very old idea

In fact, it predates structured
prediction

Globally-trained convolutional-net +
graphical models

trained discriminatively at the word
level

Loss identical to CRF and structured
perceptron

Compositional movable parts model

A system like this was reading 10 to 20%
of all the checks in the US around 1998

Y LeCun

Energy Model
(factor graph)

Integrating Deep Learning and Structured Prediction

Deep Learning systems can be assembled into
factor graphs

Energy function is a sum of factors

Factors can embed whole deep learning
systems

X: observed variables (inputs)

Z: never observed (latent variables)

Y: observed on training set (output
variables)

Inference is energy minimization (MAP) or free
energy minimization (marginalization) over Z
and Y given an X

F(X,Y) = MIN_z E(X,Y,Z)

F(X,Y) = -log SUM_z exp[-E(X,Y,Z)]

Energy Model
(factor graph)

E(X,Y,Z)

X
(observed)

Z
(unobserved)

Y
(observed on
training set)

F(X,Y) = Marg_z E(X,Y,Z)

Y LeCun
Future Challenges

Integrated feed-forward and feedback
Deep Boltzmann machine do this, but there are issues of scalability.

Integrating supervised and unsupervised learning in a single algorithm
Again, deep Boltzmann machines do this, but....

Integrating deep learning and structured prediction (“reasoning”)
This has been around since the 1990's but needs to be revived

Learning representations for complex reasoning
“recursive” networks that operate on vector space representations
of knowledge [Pollack 90's] [Bottou 2010] [Socher, Manning, Ng
2011]

Representation learning in natural language processing
[Y. Bengio 01],[Collobert Weston 10], [Mnih Hinton 11] [Socher 12]

Better theoretical understanding of deep learning and convolutional nets
e.g. Stephane Mallat's “scattering transform”, work on the sparse
representations from the applied math community....

Y LeCun
Communities

DeepLearning.net
– http://deeplearning.net
– Maintained by Yoshua Bengio's group

International Conference on Learning Representations
– https://sites.google.com/site/representationlearning2013/
– Open review system
– Papers and videos available online
– Takes place in April
– Extended version of selected papers published in JMLR
– https://plus.google.com/communities/108755902083074010353

“Deep Learning” community on Google+
– https://plus.google.com/communities/112866381580457264725

Y LeCunSOFTWARE
Torch7: learning library that supports neural net training

– http://www.torch.ch
– http://code.cogbits.com/wiki/doku.php (tutorial with demos by C. Farabet)
- http://eblearn.sf.net (C++ Library with convnet support by P. Sermanet)

Python-based learning library (U. Montreal)

- http://deeplearning.net/software/theano/ (does automatic differentiation)

RNN

– www.fit.vutbr.cz/~imikolov/rnnlm (language modeling)
– http://sourceforge.net/apps/mediawiki/rnnl/index.php (LSTM)

Misc

– www.deeplearning.net//software_links

CUDAMat & GNumpy

– code.google.com/p/cudamat
– www.cs.toronto.edu/~tijmen/gnumpy.html

Y LeCunREFERENCES
Convolutional Nets

– LeCun, Bottou, Bengio and Haffner: Gradient-Based Learning Applied to Document
Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998

- Krizhevsky, Sutskever, Hinton “ImageNet Classification with deep convolutional neural
networks” NIPS 2012

– Jarrett, Kavukcuoglu, Ranzato, LeCun: What is the Best Multi-Stage Architecture for
Object Recognition?, Proc. International Conference on Computer Vision (ICCV'09),
IEEE, 2009

- Kavukcuoglu, Sermanet, Boureau, Gregor, Mathieu, LeCun: Learning Convolutional
Feature Hierachies for Visual Recognition, Advances in Neural Information Processing
Systems (NIPS 2010), 23, 2010

– see yann.lecun.com/exdb/publis for references on many different kinds of convnets.

– see http://www.cmap.polytechnique.fr/scattering/ for scattering networks (similar to
convnets but with less learning and stronger mathematical foundations)

Y LeCunREFERENCES
Applications of Convolutional Nets

– Farabet, Couprie, Najman, LeCun, “Scene Parsing with Multiscale Feature Learning,
Purity Trees, and Optimal Covers”, ICML 2012

– Pierre Sermanet, Koray Kavukcuoglu, Soumith Chintala and Yann LeCun: Pedestrian
Detection with Unsupervised Multi-Stage Feature Learning, CVPR 2013

- D. Ciresan, A. Giusti, L. Gambardella, J. Schmidhuber. Deep Neural Networks
Segment Neuronal Membranes in Electron Microscopy Images. NIPS 2012

- Raia Hadsell, Pierre Sermanet, Marco Scoffier, Ayse Erkan, Koray Kavackuoglu, Urs
Muller and Yann LeCun: Learning Long-Range Vision for Autonomous Off-Road Driving,
Journal of Field Robotics, 26(2):120-144, February 2009

– Burger, Schuler, Harmeling: Image Denoisng: Can Plain Neural Networks Compete
with BM3D?, Computer Vision and Pattern Recognition, CVPR 2012,

Y LeCunREFERENCES
Applications of RNNs

– Mikolov “Statistical language models based on neural networks” PhD thesis 2012
– Boden “A guide to RNNs and backpropagation” Tech Report 2002
– Hochreiter, Schmidhuber “Long short term memory” Neural Computation 1997
– Graves “Offline arabic handwrting recognition with multidimensional neural networks”
Springer 2012
– Graves “Speech recognition with deep recurrent neural networks” ICASSP 2013

Y LeCunREFERENCES
Deep Learning & Energy-Based Models

– Y. Bengio, Learning Deep Architectures for AI, Foundations and Trends in Machine
Learning, 2(1), pp.1-127, 2009.

– LeCun, Chopra, Hadsell, Ranzato, Huang: A Tutorial on Energy-Based Learning, in
Bakir, G. and Hofman, T. and Schölkopf, B. and Smola, A. and Taskar, B. (Eds),
Predicting Structured Data, MIT Press, 2006

– M. Ranzato Ph.D. Thesis “Unsupervised Learning of Feature Hierarchies” NYU 2009

Practical guide

– Y. LeCun et al. Efficient BackProp, Neural Networks: Tricks of the Trade, 1998

– L. Bottou, Stochastic gradient descent tricks, Neural Networks, Tricks of the Trade
Reloaded, LNCS 2012.

– Y. Bengio, Practical recommendations for gradient-based training of deep
architectures, ArXiv 2012

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

