
Y LeCun
Deep Learning

&
Convolutional Networks

In Vision
VRML, Paris 2013-07-23

Yann LeCun
Center for Data Science & Courant Institute, NYU
yann@cs.nyu.edu
http://yann.lecun.com

mailto:yann@cs.nyu.edu
http://yann.lecun.com/

Y LeCun
Deep Learning = Learning Representations/Features

The traditional model of pattern recognition (since the late 50's)
Fixed/engineered features (or fixed kernel) + trainable
classifier

End-to-end learning / Feature learning / Deep learning
Trainable features (or kernel) + trainable classifier

“Simple” Trainable
Classifier

hand-crafted
Feature Extractor

Trainable
Classifier

Trainable
Feature Extractor

Y LeCun
This Basic Model has not evolved much since the 50's

The first learning machine: the Perceptron
Built at Cornell in 1960

The Perceptron was a linear classifier on
top of a simple feature extractor
The vast majority of practical applications
of ML today use glorified linear classifiers
or glorified template matching.
Designing a feature extractor requires
considerable efforts by experts.

y=sign (∑
i=1

N

W i F i (X)+b)

A
Featur e Extra ctor

Wi

Y LeCun
Architecture of “Mainstream”Pattern Recognition Systems

Modern architecture for pattern recognition
Speech recognition: early 90's – 2011

Object Recognition: 2006 - 2012

fixed unsupervised supervised

ClassifierMFCC Mix of Gaussians

Classifier
SIFT
HoG

K-means
Sparse Coding

Pooling

fixed unsupervised supervised

Low-level
Features

Mid-level
Features

Y LeCun
Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Trainable
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Y LeCun
Trainable Feature Hierarchy

Hierarchy of representations with increasing level of abstraction

Each stage is a kind of trainable feature transform

Image recognition
Pixel edge texton motif part object→ → → → →

Text
Character word word group clause sentence story→ → → → →

Speech
Sample spectral band sound … phone phoneme word→ → → → → →

Y LeCun

Learning Representations: a challenge for
ML, CV, AI, Neuroscience, Cognitive Science...

How do we learn representations of the perceptual
world?

How can a perceptual system build itself by
looking at the world?
How much prior structure is necessary

ML/AI: how do we learn features or feature hierarchies?
What is the fundamental principle? What is the
learning algorithm? What is the architecture?

Neuroscience: how does the cortex learn perception?
Does the cortex “run” a single, general
learning algorithm? (or a small number of
them)

CogSci: how does the mind learn abstract concepts on
top of less abstract ones?

Deep Learning addresses the problem of learning
hierarchical representations with a single algorithm

or perhaps with a few algorithms

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform

Y LeCun
The Mammalian Visual Cortex is Hierarchical

[picture from Simon Thorpe]

[Gallant & Van Essen]

The ventral (recognition) pathway in the visual cortex has multiple stages
Retina - LGN - V1 - V2 - V4 - PIT - AIT
Lots of intermediate representations

Y LeCun
Let's be inspired by nature, but not too much

It's nice imitate Nature,
But we also need to understand

How do we know which
details are important?

Which details are merely the
result of evolution, and the
constraints of biochemistry?

For airplanes, we developed
aerodynamics and compressible
fluid dynamics.

We figured that feathers and
wing flapping weren't crucial

QUESTION: What is the
equivalent of aerodynamics for
understanding intelligence?

L'Avion III de Clément Ader, 1897
(Musée du CNAM, Paris)

His “Eole” took off from the ground in 1890,

13 years before the Wright Brothers, but you

probably never heard of it (unless you are french).

Y LeCun
Trainable Feature Hierarchies: End-to-end learning

A hierarchy of trainable feature transforms
Each module transforms its input representation into a higher-level
one.

High-level features are more global and more invariant

Low-level features are shared among categories

Trainable
Feature

Transform

Trainable
Feature

Transform

Trainable
Classifier/
Predictor

Learned Internal Representations

How can we make all the modules trainable and get them to learn
appropriate representations?

Y LeCun
Three Types of Deep Architectures

Feed-Forward: multilayer neural nets, convolutional nets

Feed-Back: Stacked Sparse Coding, Deconvolutional Nets [Zeiler et al.]

Bi-Drectional: Deep Boltzmann Machines, Stacked Auto-Encoders

Y LeCun
Three Types of Training Protocols

Purely Supervised
Initialize parameters randomly
Train in supervised mode

typically with SGD, using backprop to compute gradients

Used in most practical systems for speech and image
recognition

Unsupervised, layerwise + supervised classifier on top
Train each layer unsupervised, one after the other
Train a supervised classifier on top, keeping the other layers
fixed
Good when very few labeled samples are available

Unsupervised, layerwise + global supervised fine-tuning
Train each layer unsupervised, one after the other
Add a classifier layer, and retrain the whole thing supervised
Good when label set is poor (e.g. pedestrian detection)

Unsupervised pre-training often uses regularized auto-encoders

Y LeCun
Do we really need deep architectures?

Theoretician's dilemma: “We can approximate any function as close as we
want with shallow architecture. Why would we need deep ones?”

kernel machines (and 2-layer neural nets) are “universal”.

Deep learning machines

Deep machines are more efficient for representing certain classes of
functions, particularly those involved in visual recognition

they can represent more complex functions with less “hardware”

We need an efficient parameterization of the class of functions that are
useful for “AI” tasks (vision, audition, NLP...)

Y LeCun

Why would deep architectures be more efficient?

A deep architecture trades space for time (or breadth for depth)
more layers (more sequential computation),
but less hardware (less parallel computation).

Example1: N-bit parity
requires N-1 XOR gates in a tree of depth log(N).
Even easier if we use threshold gates
requires an exponential number of gates of we restrict ourselves
to 2 layers (DNF formula with exponential number of minterms).

Example2: circuit for addition of 2 N-bit binary numbers
Requires O(N) gates, and O(N) layers using N one-bit adders with
ripple carry propagation.
Requires lots of gates (some polynomial in N) if we restrict
ourselves to two layers (e.g. Disjunctive Normal Form).
Bad news: almost all boolean functions have a DNF formula with
an exponential number of minterms O(2^N).....

[Bengio & LeCun 2007 “Scaling Learning Algorithms Towards AI”]

Y LeCun
Shallow vs Deep == lookup table vs multi-step algorithm

“shallow & wide” vs “deep and narrow” == “more memory” vs “more time”
Look-up table vs algorithm
Few functions can be computed in two steps without an
exponentially large lookup table
Using more than 2 steps can reduce the “memory” by an
exponential factor.

Step 1

Step 2

Step 3

Step 4

Step 1 (look up table/templates)

Step 2

Y LeCun
Which Models are Deep?

2-layer models are not deep (even if you
train the first layer)

Because there is no feature
hierarchy

Neural nets with 1 hidden layer are not deep

SVMs and Kernel methods are not deep
Layer1: kernels; layer2: linear
The first layer is “trained” in with
the simplest unsupervised method
ever devised: using the samples as
templates for the kernel functions.
“glorified template matching”

Classification trees are not deep
No hierarchy of features. All
decisions are made in the input
space

Y LeCun
Are Graphical Models Deep?

There is no opposition between graphical models and deep learning.
Many deep learning models are formulated as factor graphs
Some graphical models use deep architectures inside their factors

Graphical models can be deep (but most are not).

Factor Graph: sum of energy functions
Over inputs X, outputs Y and latent variables Z. Trainable parameters: W

Each energy function can contain a deep network

The whole factor graph can be seen as a deep network

−log P (X ,Y , Z /W)∝E (X ,Y , Z ,W)=∑i
E i(X ,Y ,Z ,W i)

E1(X1,Y1)

E2(X2,Z1,Z2)

E3(Z2,Y1) E4(Y3,Y4)

X1 Z3 Y2Y1Z2
Z1 X2

Y LeCun
Deep Learning: A Theoretician's Nightmare?

Deep Learning involves non-convex loss functions
With non-convex losses, all bets are off
Then again, every speech recognition system ever deployed
has used non-convex optimization (GMMs are non convex).

But to some of us all “interesting” learning is non convex
Convex learning is invariant to the order in which sample are
presented (only depends on asymptotic sample frequencies).
Human learning isn't like that: we learn simple concepts
before complex ones. The order in which we learn things
matter.

Y LeCun
Deep Learning: A Theoretician's Nightmare?

No generalization bounds?
Actually, the usual VC bounds apply: most deep learning
systems have a finite VC dimension
We don't have tighter bounds than that.
But then again, how many bounds are tight enough to be
useful for model selection?

It's hard to prove anything about deep learning systems
Then again, if we only study models for which we can prove
things, we wouldn't have speech, handwriting, and visual
object recognition systems today.

Y LeCun
Deep Learning: A Theoretician's Paradise?

Deep Learning is about representing high-dimensional data
There has to be interesting theoretical questions there
What is the geometry of natural signals?
Is there an equivalent of statistical learning theory for
unsupervised learning?
What are good criteria on which to base unsupervised
learning?

Deep Learning Systems are a form of latent variable factor graph
Internal representations can be viewed as latent variables to
be inferred, and deep belief networks are a particular type of
latent variable models.
The most interesting deep belief nets have intractable loss
functions: how do we get around that problem?

Lots of theory at the 2012 IPAM summer school on deep learning
Wright's parallel SGD methods, Mallat's “scattering transform”,
Osher's “split Bregman” methods for sparse modeling,
Morton's “algebraic geometry of DBN”,....

Y LeCun

Deep Learning and Feature Learning Today

Deep Learning has been the hottest topic in speech recognition in the last 2 years
A few long-standing performance records were broken with deep
learning methods
Microsoft and Google have both deployed DL-based speech
recognition system in their products
Microsoft, Google, IBM, Nuance, AT&T, and all the major academic
and industrial players in speech recognition have projects on deep
learning

Deep Learning is the hottest topic in Computer Vision
Feature engineering is the bread-and-butter of a large portion of the
CV community, which creates some resistance to feature learning
But the record holders on ImageNet and Semantic Segmentation are
convolutional nets

Deep Learning is becoming hot in Natural Language Processing

Deep Learning/Feature Learning in Applied Mathematics
The connection with Applied Math is through sparse coding,
non-convex optimization, stochastic gradient algorithms, etc...

Y LeCun

In Many Fields, Feature Learning Has Caused a Revolution
(methods used in commercially deployed systems)

Speech Recognition I (late 1980s)
Trained mid-level features with Gaussian mixtures (2-layer classifier)

Handwriting Recognition and OCR (late 1980s to mid 1990s)
Supervised convolutional nets operating on pixels

Face & People Detection (early 1990s to mid 2000s)
Supervised convolutional nets operating on pixels (YLC 1994, 2004,
Garcia 2004)
Haar features generation/selection (Viola-Jones 2001)

Object Recognition I (mid-to-late 2000s: Ponce, Schmid, Yu, YLC....)
Trainable mid-level features (K-means or sparse coding)

Low-Res Object Recognition: road signs, house numbers (early 2010's)
Supervised convolutional net operating on pixels

Speech Recognition II (circa 2011)
Deep neural nets for acoustic modeling

Object Recognition III, Semantic Labeling (2012, Hinton, YLC,...)
Supervised convolutional nets operating on pixels

Y LeCun
In Several Fields, Feature Learning Has Caused Revolutions:

Speech Recognition, Handwriting Recogntiion

U= unsupervised, S=supervised, X=unsupervised+supervised
 Low-level feat. → mid-level feat. → classifier → contextual post-proc

Speech Recognition
Early 1980s: Dyn. time Warping

Late 1980s: Gaussian Mix. Model

1990s: discriminative GMM

2010: deep neural nets

Handwriting Recognition and OCR
Early 80's: features+classifier

Late 80's: supervised convnet

Mid 90's: convnet+CRF

U X S

S

S S S

S S S

S S S S

U S

X X S

SS

Y LeCun
In Several Fields, Feature Learning Has Caused Revolutions:

Object Detection, Object Recognition, Scene Labeling

Face & People Detection (1993-now)
Supervised ConvNet on pixels (93, 94, 05, 07)

Selected Haar features + Adaboost (2001)

Unsup+Sup ConvNet on raw pixels (2011)

Object Recognition
SIFT/HoG+sparse code+pool+SVM (06)

unsup+sup convnet (07,10)

supervised convnet (2012)

Semantic Segmentation / scene labeling
unsup mid-lvl, CRF (2009, 10, 11, 12)

supervised convnet (2008, 12, 13)

S S S

S S S

X X S

S S S

U S S

U S

X X S

S S S

S S

Y LeCun

What Are
Good Feature?

Y LeCun

Discovering the Hidden Structure in High-Dimensional Data
The manifold hypothesis

Learning Representations of Data:

Discovering & disentangling the independent
explanatory factors

The Manifold Hypothesis:
Natural data lives in a low-dimensional (non-linear) manifold

Because variables in natural data are mutually dependent

Y LeCun
Discovering the Hidden Structure in High-Dimensional Data

Example: all face images of a person
1000x1000 pixels = 1,000,000 dimensions

But the face has 3 cartesian coordinates and 3 Euler angles

And humans have less than about 50 muscles in the face

Hence the manifold of face images for a person has <56 dimensions

The perfect representations of a face image:
Its coordinates on the face manifold

Its coordinates away from the manifold

We do not have good and general methods to learn functions that turns an
image into this kind of representation

Ideal
Feature

Extractor [
1 . 2
−3
0 . 2

−2 .. .
]

Face/not face
Pose
Lighting
Expression

Y LeCun

Data Manifold & Invariance:
Some variations must be eliminated

Azimuth-Elevation manifold. Ignores lighting. [Hadsell et al. CVPR 2006]

Y LeCun
Basic Idea for Invariant Feature Learning

Embed the input non-linearly into a high(er) dimensional space
In the new space, things that were non separable may become
separable

Pool regions of the new space together
Bringing together things that are semantically similar. Like
pooling.

Non-Linear
Function

Pooling
Or

Aggregation

Input
high-dim

Unstable/non-smooth
 features

Stable/invariant
features

Y LeCun
Non-Linear Expansion → Pooling

Entangled data manifolds

Non-Linear Dim
Expansion,

Disentangling

Pooling.
Aggregation

Y LeCun
Sparse Non-Linear Expansion → Pooling

Use clustering to break things apart, pool together similar things

Clustering,
Quantization,
Sparse Coding

Pooling.
Aggregation

Y LeCun

Overall Architecture:
Normalization → Filter Bank → Non-Linearity → Pooling

Stacking multiple stages of
[Normalization Filter Bank Non-Linearity Pooling].→ → →

Normalization: variations on whitening
Subtractive: average removal, high pass filtering

Divisive: local contrast normalization, variance normalization

Filter Bank: dimension expansion, projection on overcomplete basis
Non-Linearity: sparsification, saturation, lateral inhibition....

Rectification (ReLU), Component-wise shrinkage, tanh,
winner-takes-all

Pooling: aggregation over space or feature type
 X i ; L p :

p√ X i
p ; PROB :

1
b

log (∑i e
bX i)

Classifier
feature

Pooling

Non-

Linear

Filter

Bank
Norm

feature

Pooling

Non-

Linear

Filter

Bank
Norm

Y LeCun

Deep Supervised Learning
(modular approach)

Y LeCun
Multimodule Systems: Cascade

Complex learning machines can be
built by assembling modules into
networks

 Simple example: sequential/layered
feed-forward architecture (cascade)

Forward Propagation:

Y LeCun
Multimodule Systems: Implementation

Each module is an object
Contains trainable
parameters
Inputs are arguments
Output is returned, but also
stored internally
Example: 2 modules m1, m2

Torch7 (by hand)
hid = m1:forward(in)
out = m2:forward(hid)

Torch7 (using the nn.Sequential class)
model = nn.Sequential()
model:add(m1)
model:add(m2)
out = model:forward(in)

Y LeCun
Computing the Gradient in Multi-Layer Systems

Y LeCun
Computing the Gradient in Multi-Layer Systems

Y LeCun
Computing the Gradient in Multi-Layer Systems

Y LeCun
Jacobians and Dimensions

Y LeCun
Back Propgation

Y LeCun
Multimodule Systems: Implementation

Backpropagation through a module
Contains trainable parameters
Inputs are arguments
Gradient with respect to input is
returned.
Arguments are input and
gradient with respect to output

Torch7 (by hand)
hidg =
m2:backward(hid,outg)
ing = m1:backward(in,hidg)

Torch7 (using the nn.Sequential class)
ing =
model:backward(in,outg)

Y LeCun
Linear Module

Y LeCun
Tanh module (or any other pointwise function)

Y LeCun
Euclidean Distance Module

Y LeCun
Any Architecture works

Any connection is permissible
Networks with loops must be
“unfolded in time”.

Any module is permissible
As long as it is continuous and
differentiable almost everywhere
with respect to the parameters, and
with respect to non-terminal inputs.

Y LeCun
Module-Based Deep Learning with Torch7

Torch7 is based on the Lua language
Simple and lightweight scripting language, dominant in the game industry
Has a native just-in-time compiler (fast!)
Has a simple foreign function interface to call C/C++ functions from Lua

Torch7 is an extension of Lua with
A multidimensional array engine with CUDA and OpenMP backends
A machine learning library that implements multilayer nets, convolutional
nets, unsupervised pre-training, etc
Various libraries for data/image manipulation and computer vision
A quickly growing community of users

Single-line installation on Ubuntu and Mac OSX:
curl -s https://raw.github.com/clementfarabet/torchinstall/master/install-all | bash

Torch7 Machine Learning Tutorial (neural net, convnet, sparse auto-encoder):
http://code.cogbits.com/wiki/doku.php

Y LeCun
Example: building a Neural Net in Torch7

Net for SVHN digit recognition

10 categories

Input is 32x32 RGB (3 channels)

1500 hidden units

Creating a 2-layer net

Make a cascade module

Reshape input to vector

Add Linear module

Add tanh module

Add Linear Module

Add log softmax layer

Create loss function module

Noutputs = 10;
nfeats = 3; Width = 32; height = 32
ninputs = nfeats*width*height
nhiddens = 1500

 Simple 2layer neural network
model = nn.Sequential()
model:add(nn.Reshape(ninputs))
model:add(nn.Linear(ninputs,nhiddens))
model:add(nn.Tanh())
model:add(nn.Linear(nhiddens,noutputs))
model:add(nn.LogSoftMax())

criterion = nn.ClassNLLCriterion()

 See Torch7 example at http://bit.ly/16tyLAx

Y LeCun
Example: Training a Neural Net in Torch7

one epoch over training set

Get next batch of samples

Create a “closure” feval(x) that takes the
parameter vector as argument and returns
the loss and its gradient on the batch.

Run model on batch

backprop

Normalize by size of batch

Return loss and gradient

call the stochastic gradient optimizer

for t = 1,trainData:size(),batchSize do
 inputs,outputs = getNextBatch()
 local feval = function(x)
 parameters:copy(x)
 gradParameters:zero()
 local f = 0
 for i = 1,#inputs do
 local output = model:forward(inputs[i])
 local err = criterion:forward(output,targets[i])
 f = f + err
 local df_do = criterion:backward(output,targets[i])
 model:backward(inputs[i], df_do)
 end
 gradParameters:div(#inputs)
 f = f/#inputs
 return f,gradParameters
 end – of feval
 optim.sgd(feval,parameters,optimState)
end

Y LeCun
Deep Supervised Learning is Non-Convex

Example: what is the loss function for the simplest 2-layer neural net ever
Function: 1-1-1 neural net. Map 0.5 to 0.5 and -0.5 to -0.5
(identity function) with quadratic cost:

Y LeCun
Backprop in Practice

Use ReLU non-linearities (tanh and logistic are falling out of favor)

Use cross-entropy loss for classification

Use Stochastic Gradient Descent on minibatches

Shuffle the training samples

Normalize the input variables (zero mean, unit variance)

Schedule to decrease the learning rate

Use a bit of L1 or L2 regularization on the weights (or a combination)
But it's best to turn it on after a couple of epochs

Use “dropout” for regularization
Hinton et al 2012 http://arxiv.org/abs/1207.0580

Lots more in [LeCun et al. “Efficient Backprop” 1998]

Lots, lots more in “Neural Networks, Tricks of the Trade” (2012 edition)
edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

Y LeCun

Convolutional
Networks

http://code.cogbits.com/wiki/doku.php

Y LeCun
Convolutional Nets

Are deployed in many practical applications
Image reco, speech reco, Google's and Baidu's photo taggers

Have won several competitions
ImageNet, Kaggle Facial Expression, Kaggle Multimodal
Learning, German Traffic Signs, Connectomics, Handwriting....

Are applicable to array data where nearby values are correlated
Images, sound, time-frequency representations, video,
volumetric images, RGB-Depth images,.....

One of the few models that can be trained purely supervised

input

83x83

Layer 1

64x75x7
5

Layer 2

64@14x14

Layer 3

256@6x6 Layer 4

256@1x1
Output

101

9x9

convolution

(64 kernels)

9x9

convolution

(4096 kernels)

10x10 pooling,

5x5 subsampling
6x6 pooling

4x4 subsamp

http://bit.ly/16tyLAx

Y LeCun
Fully-connected neural net in high dimension

Example: 200x200 image
Fully-connected, 400,000 hidden units = 16 billion parameters
Locally-connected, 400,000 hidden units 10x10 fields = 40
million params
Local connections capture local dependencies

Y LeCun

Shared Weights & Convolutions:
Exploiting Stationarity

Features that are useful on one part of
the image and probably useful
elsewhere.

All units share the same set of weights

Shift equivariant processing:
When the input shifts, the output
also shifts but stays otherwise
unchanged.

Convolution
with a learned kernel (or filter)
Non-linearity: ReLU (rectified
linear)

The filtered “image” Z is called a feature
map

Aij=∑kl
W kl X i+ j. k+ l

Z ij=max(0, Aij)

Example: 200x200 image
400,000 hidden units with
10x10 fields = 1000
params
10 feature maps of size
200x200, 10 filters of size
10x10

Y LeCun
Multiple Convolutions with Different Kernels

Detects multiple motifs at each
location

The collection of units looking at
the same patch is akin to a
feature vector for that patch.

The result is a 3D array, where
each slice is a feature map.

Multiple
convolutions

Y LeCun
Early Hierarchical Feature Models for Vision

[Hubel & Wiesel 1962]:
simple cells detect local features

complex cells “pool” the outputs of simple
cells within a retinotopic neighborhood.

Cognitron & Neocognitron [Fukushima 1974-1982]

pooling
subsampling

“Simple cells”
“Complex
cells”

Multiple
convolutions

http://arxiv.org/abs/1207.0580

Y LeCun

The Convolutional Net Model
(Multistage Hubel-Wiesel system)

pooling
subsampling

“Simple cells”
“Complex cells”

Multiple
convolutions

Retinotopic Feature Maps

[LeCun et al. 89]
[LeCun et al. 98]

Training is supervised
With stochastic gradient
descent

Y LeCun

Feature Transform:
Normalization → Filter Bank → Non-Linearity → Pooling

Stacking multiple stages of
[Normalization Filter Bank Non-Linearity Pooling].→ → →

Normalization: variations on whitening
Subtractive: average removal, high pass filtering

Divisive: local contrast normalization, variance normalization

Filter Bank: dimension expansion, projection on overcomplete basis
Non-Linearity: sparsification, saturation, lateral inhibition....

Rectification, Component-wise shrinkage, tanh, winner-takes-all

Pooling: aggregation over space or feature type, subsampling
 X i ; L p :

p√ X i
p ; PROB :

1
b

log (∑i e
bX i)

Classifier
feature

Pooling

Non-

Linear

Filter

Bank
Norm

feature

Pooling

Non-

Linear

Filter

Bank
Norm

Y LeCun

Feature Transform:
Normalization → Filter Bank → Non-Linearity → Pooling

Filter Bank → Non-Linearity = Non-linear embedding in high dimension
Feature Pooling = contraction, dimensionality reduction, smoothing
Learning the filter banks at every stage
Creating a hierarchy of features
Basic elements are inspired by models of the visual (and auditory) cortex

Simple Cell + Complex Cell model of [Hubel and Wiesel 1962]

Many “traditional” feature extraction methods are based on this

SIFT, GIST, HoG, SURF...

 [Fukushima 1974-1982], [LeCun 1988-now],
since the mid 2000: Hinton, Seung, Poggio, Ng,....

Classifier
feature

Pooling

Non-

Linear

Filter

Bank
Norm

feature

Pooling

Non-

Linear

Filter

Bank
Norm

Y LeCun
Convolutional Network (ConvNet)

Non-Linearity: half-wave rectification, shrinkage function, sigmoid
Pooling: average, L1, L2, max
Training: Supervised (1988-2006), Unsupervised+Supervised (2006-now)

input

83x83

Layer 1

64x75x75 Layer 2

64@14x14

Layer 3

256@6x6 Layer 4

256@1x1 Output

101

9x9

convolution

(64 kernels)

9x9

convolution

(4096 kernels)

10x10 pooling,

5x5 subsampling
6x6 pooling

4x4 subsamp

Y LeCun
Convolutional Network Architecture

Y LeCun
Convolutional Network (vintage 1990)

filters → tanh → average-tanh → filters → tanh → average-tanh → filters → tanh

Curved
manifold

Flatter
manifold

Y LeCun

“Mainstream” object recognition pipeline 2006-2012:
 somewhat similar to ConvNets

Fixed Features + unsupervised mid-level features + simple classifier
SIFT + Vector Quantization + Pyramid pooling + SVM

[Lazebnik et al. CVPR 2006]

SIFT + Local Sparse Coding Macrofeatures + Pyramid pooling + SVM

[Boureau et al. ICCV 2011]

SIFT + Fisher Vectors + Deformable Parts Pooling + SVM

[Perronin et al. 2012]

Oriented

 Edges

Winner

Takes All
Histogram

(sum)

Filter

Bank

feature

Pooling

Non-

Linearity

Filter

Bank

feature

Pooling

Non-

Linearity
Classifier

Fixed (SIFT/HoG/...)

K-means

Sparse Coding
Spatial Max

Or average
Any simple

classifier

Unsupervised Supervised

Y LeCun
Tasks for Which Deep Convolutional Nets are the Best

Handwriting recognition MNIST (many), Arabic HWX (IDSIA)
OCR in the Wild [2011]: StreetView House Numbers (NYU and others)
Traffic sign recognition [2011] GTSRB competition (IDSIA, NYU)
Pedestrian Detection [2013]: INRIA datasets and others (NYU)
Volumetric brain image segmentation [2009] connectomics (IDSIA, MIT)
Human Action Recognition [2011] Hollywood II dataset (Stanford)
Object Recognition [2012] ImageNet competition
Scene Parsing [2012] Stanford bgd, SiftFlow, Barcelona (NYU)
Scene parsing from depth images [2013] NYU RGB-D dataset (NYU)
Speech Recognition [2012] Acoustic modeling (IBM and Google)
Breast cancer cell mitosis detection [2011] MITOS (IDSIA)

The list of perceptual tasks for which ConvNets hold the record is growing.
Most of these tasks (but not all) use purely supervised convnets.

Y LeCun
Ideas from Neuroscience and Psychophysics

The whole architecture: simple cells and complex cells
Local receptive fields
Self-similar receptive fields over the visual field (convolutions)
Pooling (complex cells)
Non-Linearity: Rectified Linear Units (ReLU)
LGN-like band-pass filtering and contrast normalization in the input
Divisive contrast normalization (from Heeger, Simoncelli....)

Lateral inhibition

Sparse/Overcomplete representations (Olshausen-Field....)
Inference of sparse representations with lateral inhibition
Sub-sampling ratios in the visual cortex

between 2 and 3 between V1-V2-V4

Crowding and visual metamers give cues on the size of the pooling areas

Y LeCun
Simple ConvNet Applications with State-of-the-Art Performance

Traffic Sign Recognition (GTSRB)
German Traffic Sign Reco
Bench

99.2% accuracy

#1: IDSIA; #2 NYU

House Number Recognition (Google)
Street View House Numbers

94.3 % accuracy

Y LeCun

THIS IS ONE STAGE OF THE CONVNET

One Stage: Contrast Norm → Filter Bank → Shrinkage → L2 Pooling

subtr activ e+
d ivisiv e

contr ast n orm
aliza tion

Con vol utio n
s

 Shri nka ge

L2
 Po olin g &

sub-s am

p ling

Y LeCun

Results on Caltech101 with sigmoid non-linearity

← like HMAX model

Y LeCun

Local Contrast Normalization

Performed on the state of every layer, including
the input
Subtractive Local Contrast Normalization

Subtracts from every value in a feature a
Gaussian-weighted average of its neighbors
(high-pass filter)

Divisive Local Contrast Normalization
Divides every value in a layer by the standard
deviation of its neighbors over space and over
all feature maps

Subtractive + Divisive LCN performs a kind of
approximate whitening.

Y LeCun

The Effect of Architectural Elements

Pyramid pooling on last layer: 1% improvement over regular pooling
Shrinkage non-linearity + lateral inhibition: 1.6% improvement over tanh
Discriminative term in sparse coding: 2.8% improvement

Y LeCun
Results on Caltech101: purely supervised

with soft-shrink, L2 pooling, contrast normalization

Supervised learning with soft-shrinkage non-linearity, L2 complex cells, and
sparsity penalty on the complex cell outputs: 71%
Caltech101 is pathological, biased, too small, etc...

Y LeCun

What does Local Contrast Normalization Do?

Original

Reconstuction
With LCN

Reconstruction
Without LCN

Y LeCun

Optimal
Stimuli
for each
Complex
Cell

Why Do Random Filters Work?

Random
Filters
For
Simple
Cells

Trained
Filters
For
Simple
Cells

Y LeCun

Small NORB dataset

Two-stage system: error rate versus number of labeled training samples

No normalization

Random filters

No normalization

Unsup filters

Unsup+Sup filters

Sup filters

Y LeCun
Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

CONV 11x11/ReLU 96fm

LOCAL CONTRAST NORM

MAX POOL 2x2sub

FULL 4096/ReLU

FULL CONNECT

CONV 11x11/ReLU 256fm

LOCAL CONTRAST NORM

MAX POOLING 2x2sub

CONV 3x3/ReLU 384fm

CONV 3x3ReLU 384fm

CONV 3x3/ReLU 256fm

MAX POOLING

FULL 4096/ReLU

Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops
4M

16M

37M

442K

1.3M

884K

307K

35K

4Mflop

16M

37M

74M

224M

149M

223M

105M

Y LeCun
Object Recognition: ILSVRC 2012 results

ImageNet Large Scale Visual Recognition Challenge
1000 categories, 1.5 Million labeled training samples

Y LeCun
Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

Method: large convolutional net
650K neurons, 832M synapses, 60M parameters

Trained with backprop on GPU

Trained “with all the tricks Yann came up with in
the last 20 years, plus dropout” (Hinton, NIPS
2012)

Rectification, contrast normalization,...

Error rate: 15% (whenever correct class isn't in top 5)
Previous state of the art: 25% error

A REVOLUTION IN COMPUTER VISION

Acquired by Google in Jan 2013
Deployed in Google+ Photo Tagging in May 2013

Y LeCun
Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

Y LeCun
Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

TEST
IMAGE RETRIEVED IMAGES

Y LeCun
ConvNet-Based Google+ Photo Tagger

Searched my personal collection for “bird”

Samy
Bengio
???

Y LeCun

Another ImageNet-trained ConvNet
[Zeiler & Fergus 2013]

Convolutional Net with 8 layers, input is 224x224 pixels
conv-pool-conv-pool-conv-conv-conv-full-full-full
Rectified-Linear Units (ReLU): y = max(0,x)
Divisive contrast normalization across features [Jarrett et al.
ICCV 2009]

Trained on ImageNet 2012 training set
1.3M images, 1000 classes
10 different crops/flips per image

Regularization: Dropout
[Hinton 2012]
zeroing random subsets of units

Stochastic gradient descent
for 70 epochs (7-10 days)
With learning rate annealing

Y LeCun
Object Recognition on-line demo [Zeiler & Fergus 2013]

http://horatio.cs.nyu.edu

Y LeCun
ConvNet trained on ImageNet [Zeiler & Fergus 2013]

Y LeCun

State of the art with
only 6 training examples

Features are generic: Caltech 256

Network first
trained on
ImageNet.

Last layer
chopped off

Last layer trained
on Caltech 256,

first layers N-1
kept fixed.

State of the art
accuracy with only
6 training
samples/class

3: [Bo, Ren, Fox. CVPR, 2013] 16: [Sohn, Jung, Lee, Hero ICCV 2011]

Y LeCun
Features are generic: PASCAL VOC 2012

Network first trained on ImageNet.

Last layer trained on Pascal VOC, keeping N-1 first layers fixed.

[15] K. Sande, J. Uijlings, C. Snoek, and A. Smeulders. Hybrid coding for selective search. In
PASCAL VOC Classification Challenge 2012,
[19] S. Yan, J. Dong, Q. Chen, Z. Song, Y. Pan, W. Xia, Z. Huang, Y. Hua, and S. Shen. Generalized
hierarchical matching for sub-category aware object classification. In PASCAL VOC Classification
Challenge 2012

Y LeCun

96x96

input:120x120

output: 3x3

 Traditional Detectors/Classifiers must be applied to every location on
a large input image, at multiple scales.
 Convolutional nets can replicated over large images very cheaply.
 The network is applied to multiple scales spaced by 1.5.

Applying a ConvNet on
Sliding Windows is Very Cheap!

Y LeCun

 Computational cost for replicated convolutional net:
96x96 -> 4.6 million multiply-accumulate operations
120x120 -> 8.3 million multiply-accumulate ops
240x240 -> 47.5 million multiply-accumulate ops
480x480 -> 232 million multiply-accumulate ops

 Computational cost for a non-convolutional detector
of the same size, applied every 12 pixels:

96x96 -> 4.6 million multiply-accumulate operations
120x120 -> 42.0 million multiply-accumulate
operations
240x240 -> 788.0 million multiply-accumulate ops
480x480 -> 5,083 million multiply-accumulate ops

96x96 window

12 pixel shift

84x84 overlap

Building a Detector/Recognizer:
Replicated Convolutional Nets

Y LeCun

ConvNets for Image Segmentation

Biological Image Segmentation
[Ning et al. IEEE-TIP 2005]

Pixel labeling with large context
using a convnet
Cleanup using a CRF

Similar to a field of expert

Y LeCun

ConvNet in Connectomics
[Jain, Turaga, Seung 2007-present]

3D ConvNet

Volumetric

Images

Each voxel
labeled as
“membrane”
or
“non-membra
ne” using a
7x7x7 voxel
neighborhood

Y LeCun

Input imageInput image Stereo LabelsStereo Labels

Classifier OutputClassifier Output

ConvNets for Image Segmentation

Image Labeling for Off-Road Robots [Hadsell JFR 2008]
ConvNet labels pixels as one of 3 categories

Traversible/flat (green), non traversible (red), foot of obstacle (purple)

Labels obtained from stereo vision and SLAM

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Y LeCun

[Osadchy,Miller LeCun JMLR 2007],[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. CVPR 2013]

Pedestrian Detection, Face Detection

Y LeCun

Feature maps from all stages are pooled/subsampled and sent to the final
classification layers

Pooled low-level features: good for textures and local motifs
High-level features: good for “gestalt” and global shape

[Sermanet, Chintala, LeCun CVPR 2013]

7x7 filter+tanh

38 feat maps

Input

78x126xYUV

L2 Pooling

3x3

2040 9x9

filters+tanh

68 feat maps

Av Pooling

2x2 filter+tanh

ConvNet Architecture with Multi-Stage Features

Y LeCun

[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. ArXiv 2012]

ConvNet

Color+Skip

Supervised

ConvNet

Color+Skip

Unsup+Sup

ConvNet

B&W

Unsup+Sup

ConvNet

B&W

Supervised

Pedestrian Detection: INRIA Dataset. Miss rate vs false
positives

Y LeCun

Results on “Near Scale” Images (>80 pixels tall, no occlusions)

Daimler
p=21790

ETH
p=804

TudBrussels
p=508

INRIA
p=288

Y LeCun

Results on “Reasonable” Images (>50 pixels tall, few occlusions)

Daimler
p=21790

ETH
p=804

TudBrussels
p=508

INRIA
p=288

Y LeCun

128 stage-1 filters on Y channel.

Unsupervised training with convolutional predictive sparse decomposition

Unsupervised pre-training with convolutional PSD

Y LeCun

Stage 2 filters.

Unsupervised training with convolutional predictive sparse decomposition

Unsupervised pre-training with convolutional PSD

Y LeCun

VIDEOS

Y LeCun

VIDEOS

Y LeCun

Semantic Labeling:
Labeling every pixel with the object it belongs to

[Farabet et al. ICML 2012, PAMI 2013]

Would help identify obstacles, targets, landing sites, dangerous areas
Would help line up depth map with edge maps

Y LeCun
Scene Parsing/Labeling: ConvNet Architecture

Each output sees a large input context:
46x46 window at full rez; 92x92 at ½ rez; 184x184 at ¼ rez

[7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->

Trained supervised on fully-labeled images

Laplacian

Pyramid

Level 1

Features

Level 2

Features

Upsampled

Level 2 Features

Categories

Y LeCun

Method 1: majority over super-pixel regions

[Farabet et al. IEEE T. PAMI 2013]
M

ulti-sca le C
onvN

et
Super-pix el bound ary hype theses

C
onvolut ional clas sifier

Majority

Vote

Over

Superpixels

Input image

Superpixel boundaries

Features from

Convolutional net

(d=768 per pixel)

“soft” categories scores

Categories aligned

With region

boundaries

Y LeCun

Method 2: optimal cover of purity tree

Spanning Tree
From pixel
Similarity graph

Distribution of
Categories within
Each Segment

2-layer
Neural
net

[Farabet et al. ICML 2012]

Y LeCun
Scene Parsing/Labeling: Performance

Stanford Background Dataset [Gould 1009]: 8 categories

[Farabet et al. IEEE T. PAMI 2013]

Y LeCun
Scene Parsing/Labeling: Performance

[Farabet et al. IEEE T. PAMI 2012]

SIFT Flow Dataset
[Liu 2009]:
33 categories

Barcelona dataset
[Tighe 2010]:
170 categories.

Y LeCun
Scene Parsing/Labeling: SIFT Flow dataset (33 categories)

Samples from the SIFT-Flow dataset (Liu)

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
Scene Parsing/Labeling: SIFT Flow dataset (33 categories)

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
Scene Parsing/Labeling

No post-processing
Frame-by-frame
ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware

But communicating the features over ethernet limits system
performance

Y LeCun
Scene Parsing/Labeling: Temporal Consistency

Causal method for temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]

Y LeCun

Temporal Consistency

Spatio-Temporal Super-Pixel segmentation
[Couprie et al ICIP 2013]

[Couprie et al JMLR under review]

Majority vote over super-pixels

Y LeCun
NYU RGB-Depth Indoor Scenes Dataset

407024 RGB-D images of apartments

1449 labeled frames, 894 object categories
[Silberman et al. 2012]

Y LeCun

NYU RGB-D Dataset

Captured with a Kinect on a steadycam

Y LeCun

Results

Y LeCun

Results

Depth helps a bit
Helps a lot for floor and props

Helps surprisingly little for structures, and hurts for furniture

[C. Cadena, J. Kosecka “Semantic Parsing for Priming Object Detection in RGB-D Scenes”
Semantic Perception Mapping and Exploration (SPME), Karlsruhe 2013]

Y LeCun

Architecture for indoor RGB-D Semantic Segmentation

Similar to outdoors semantic segmentation method
Convnet with 4 input channels

Vote over superpixels

Y LeCun
Scene Parsing/Labeling on RGB+Depth Images

With temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]

Y LeCun
Scene Parsing/Labeling on RGB+Depth Images

With temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]

Y LeCun

Labeling Videos

Temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013]
[Couprie, Farabet, Najman, LeCun ICIP 2013]
[Couprie, Farabet, Najman, LeCun submitted to JMLR]

Y LeCun
Semantic Segmentation on RGB+D Images and Videos

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]

Y LeCun

Building a ConvNet Model: Example in Torch7

– http://www.torch.ch (Torch7: Lua-based dev environment for ML, CV....)
– http://code.cogbits.com/wiki/doku.php (Torch7 tutorials/demos by C. Farabet)
- http://eblearn.sf.net (C++ Library with convnet support by P. Sermanet)

model = nn.Sequential()

 stage 1 : filter bank > squashing > L2 pooling > normalization

model:add(nn.SpatialConvolutionMM(nfeats, nstates[1], filtsiz, filtsiz))

model:add(nn.Tanh())
model:add(nn.SpatialLPPooling(nstates[1],2,poolsiz,poolsiz,poolsiz,poolsiz))

model:add(nn.SpatialSubtractiveNormalization(nstates[1], normkernel))

 stage 2 : filter bank > squashing > L2 pooling > normalization

model:add(nn.SpatialConvolutionMM(nstates[1],nstates[2],filtsiz,filtsiz))

model:add(nn.Tanh())
model:add(nn.SpatialLPPooling(nstates[2],2,poolsiz,poolsiz,poolsiz,poolsiz))

model:add(nn.SpatialSubtractiveNormalization(nstates[2], normkernel))

 stage 3 : 2 fullyconnected layers

model:add(nn.Reshape(nstates[2]*filtsize*filtsize))

model:add(nn.Linear(nstates[2]*filtsize*filtsize, nstates[3]))

model:add(nn.Tanh())

model:add(nn.Linear(nstates[3], noutputs))

Y LeCun

Backprop in Practice

Use ReLU non-linearities (tanh and logistic are falling out of favor)
Use cross-entropy loss for classification
Use Stochastic Gradient Descent on minibatches
Shuffle the training samples
Normalize the input variables (zero mean, unit variance)
Schedule to decrease the learning rate
Use a bit of L1 or L2 regularization on the weights (or a combination)

But it's best to turn it on after a couple of epochs

Use “dropout” for regularization
Hinton et al 2012 http://arxiv.org/abs/1207.0580

Lots more in [LeCun et al. “Efficient Backprop” 1998]
Lots, lots more in “Neural Networks, Tricks of the Trade” (2012 edition)
edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 29
	Slide 30
	Slide 31
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 55
	Slide 56
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152

