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Y LeCun
Deep Learning = Learning Representations/Features

The traditional model of pattern recognition (since the late 50's)
Fixed/engineered features (or fixed kernel) + trainable 
classifier

End-to-end learning / Feature learning / Deep learning
Trainable features (or kernel) + trainable classifier

“Simple” Trainable 
Classifier

hand-crafted
Feature Extractor

Trainable 
Classifier

Trainable
Feature Extractor
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This Basic Model has not evolved much since the 50's

The first learning machine: the Perceptron 
Built at Cornell in 1960

The Perceptron was a linear classifier on 
top of a simple feature extractor
The vast majority of practical applications 
of ML today use glorified linear classifiers 
or glorified template matching.
Designing a feature extractor requires 
considerable efforts by experts.
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Architecture of “Mainstream”Pattern Recognition Systems

Modern architecture for pattern recognition
Speech recognition: early 90's – 2011

Object Recognition: 2006 - 2012

fixed unsupervised supervised

ClassifierMFCC Mix of Gaussians

Classifier
SIFT
HoG

K-means
Sparse Coding

Pooling

fixed unsupervised supervised

Low-level
Features

Mid-level
Features
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Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Trainable 
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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Trainable Feature Hierarchy

Hierarchy of representations with increasing level of abstraction

Each stage is a kind of trainable feature transform

Image recognition
Pixel  edge  texton  motif  part  object→ → → → →

Text
Character  word  word group  clause  sentence  story→ → → → →

Speech
Sample  spectral band  sound  …  phone  phoneme  word→ → → → → →
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Learning Representations: a challenge for
ML, CV, AI, Neuroscience, Cognitive Science...

How do we learn representations of the perceptual 
world?

How can a perceptual system build itself by 
looking at the world?
How much prior structure is necessary

ML/AI: how do we learn features or feature hierarchies?
What is the fundamental principle? What is the 
learning algorithm? What is the architecture?

Neuroscience: how does the cortex learn perception?
Does the cortex “run” a single, general 
learning algorithm? (or a small number of 
them)

CogSci: how does the mind learn abstract concepts on 
top of less abstract ones?

Deep Learning addresses the problem of learning 
hierarchical representations with a single algorithm

or perhaps with a few algorithms

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform
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The Mammalian Visual Cortex is Hierarchical

[picture from Simon Thorpe]

[Gallant & Van Essen] 

The ventral (recognition) pathway in the visual cortex has multiple stages
Retina - LGN - V1 - V2 - V4 - PIT - AIT ....
Lots of intermediate representations
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Let's be inspired by nature, but not too much

It's nice imitate Nature,
But we also need to understand

How do we know which 
details are important?

Which details are merely the 
result of evolution, and the 
constraints of biochemistry?

For airplanes, we developed 
aerodynamics and compressible 
fluid dynamics.

We figured that feathers and 
wing flapping weren't crucial

QUESTION: What is the 
equivalent of aerodynamics for 
understanding intelligence?

L'Avion III de Clément Ader, 1897
(Musée du CNAM, Paris)

His “Eole” took off from the ground in 1890,

13 years before the Wright Brothers, but you 

probably never heard of it (unless you are french).
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Trainable Feature Hierarchies: End-to-end learning

A hierarchy of trainable feature transforms
Each module transforms its input representation into a higher-level 
one.

High-level features are more global and more invariant

Low-level features are shared among categories

Trainable
Feature

Transform

Trainable
Feature

Transform

Trainable
Classifier/
Predictor

Learned Internal Representations

How can we make all the modules trainable and get them to learn 
appropriate representations?
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Three Types of Deep Architectures

Feed-Forward: multilayer neural nets, convolutional nets

Feed-Back: Stacked Sparse Coding, Deconvolutional Nets [Zeiler et al.]

Bi-Drectional: Deep Boltzmann Machines, Stacked Auto-Encoders
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Three Types of Training Protocols

Purely Supervised
Initialize parameters randomly
Train in supervised mode

typically with SGD, using backprop to compute gradients 

Used in most practical systems for speech and image 
recognition

Unsupervised, layerwise + supervised classifier on top 
Train each layer unsupervised, one after the other
Train a supervised classifier on top, keeping the other layers 
fixed
Good when very few labeled samples are available

Unsupervised, layerwise + global supervised fine-tuning
Train each layer unsupervised, one after the other
Add a classifier layer, and retrain the whole thing supervised
Good when label set is poor (e.g. pedestrian detection)

Unsupervised pre-training often uses regularized auto-encoders
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Do we really need deep architectures?

Theoretician's dilemma: “We can approximate any function as close as we 
want with shallow architecture. Why would we need deep ones?”

kernel machines (and 2-layer neural nets) are “universal”.

Deep learning machines

Deep machines are more efficient for representing certain classes of 
functions, particularly those involved in visual recognition

they can represent more complex functions with less “hardware” 

We need an efficient parameterization of the class of functions that are 
useful for “AI” tasks (vision, audition, NLP...)
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Why would deep architectures be more efficient?

A deep architecture trades space for time (or breadth for depth)
more layers (more sequential computation), 
but less hardware (less parallel computation).

Example1: N-bit parity
requires N-1 XOR gates in a tree of depth log(N).
Even easier if we use threshold gates
requires an exponential number of gates of we restrict ourselves 
to 2 layers (DNF formula with exponential number of minterms).

Example2:  circuit for addition of 2 N-bit binary numbers
Requires O(N) gates, and O(N) layers using N one-bit adders with 
ripple carry propagation.
Requires lots of gates (some polynomial in N) if we restrict 
ourselves to two layers (e.g. Disjunctive Normal Form).
Bad news: almost all boolean functions have a DNF formula with 
an exponential number of minterms O(2^N).....

[Bengio & LeCun 2007 “Scaling Learning Algorithms Towards AI”]
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Shallow vs Deep == lookup table vs multi-step algorithm

“shallow & wide” vs “deep and narrow”  ==  “more memory” vs “more time”
Look-up table vs algorithm
Few functions can be computed in two steps without an 
exponentially large lookup table
Using more than 2 steps can reduce the “memory” by an 
exponential factor.

Step 1

Step 2

Step 3

Step 4

Step 1 (look up table/templates)

Step 2
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Which Models are Deep?

2-layer models are not deep (even if you 
train the first layer) 

Because there is no feature 
hierarchy

Neural nets with 1 hidden layer are not deep

SVMs and Kernel methods are not deep
Layer1: kernels; layer2: linear
The first layer is “trained” in with 
the simplest unsupervised method 
ever devised: using the samples as 
templates for the kernel functions.
“glorified template matching”

Classification trees are not deep
No hierarchy of features. All 
decisions are made in the input 
space
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Are Graphical Models Deep?

There is no opposition between graphical models and deep learning. 
Many deep learning models are formulated as factor graphs
Some graphical models use deep architectures inside their factors

Graphical models can be deep (but most are not).

Factor Graph: sum of energy functions
Over inputs X, outputs Y and latent variables Z. Trainable parameters: W

Each energy function can contain a deep network

The whole factor graph can be seen as a deep network

−log P (X ,Y , Z /W )∝E (X ,Y , Z ,W )=∑i
E i(X ,Y ,Z ,W i)

E1(X1,Y1)

E2(X2,Z1,Z2)

E3(Z2,Y1) E4(Y3,Y4)

X1 Z3 Y2Y1Z2
Z1 X2
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Deep Learning: A Theoretician's Nightmare? 

Deep Learning involves non-convex loss functions
With non-convex losses, all bets are off
Then again, every speech recognition system ever deployed 
has used non-convex optimization (GMMs are non convex).

But to some of us all “interesting” learning is non convex
Convex learning is invariant to the order in which sample are 
presented (only depends on asymptotic sample frequencies).
Human learning isn't like that: we learn simple concepts 
before complex ones. The order in which we learn things 
matter.
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Deep Learning: A Theoretician's Nightmare? 

No generalization bounds?
Actually, the usual VC bounds apply: most deep learning 
systems have a finite VC dimension
We don't have tighter bounds than that. 
But then again, how many bounds are tight enough to be 
useful for model selection?

It's hard to prove anything about deep learning systems
Then again, if we only study models for which we can prove 
things, we wouldn't have speech, handwriting, and visual 
object recognition systems today.
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Deep Learning: A Theoretician's Paradise? 

Deep Learning is about representing high-dimensional data
There has to be interesting theoretical questions there
What is the geometry of natural signals?
Is there an equivalent of statistical learning theory for 
unsupervised learning?
What are good criteria on which to base unsupervised 
learning?

Deep Learning Systems are a form of latent variable factor graph
Internal representations can be viewed as latent variables to 
be inferred, and deep belief networks are a particular type of 
latent variable models.
The most interesting deep belief nets have intractable loss 
functions: how do we get around that problem?

Lots of theory at the 2012 IPAM summer school on deep learning
Wright's parallel SGD methods, Mallat's “scattering transform”, 
Osher's “split Bregman” methods for sparse modeling, 
Morton's “algebraic geometry of DBN”,....
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Deep Learning and Feature Learning Today

Deep Learning has been the hottest topic in speech recognition in the last 2 years
A few long-standing performance records were broken with deep 
learning methods
Microsoft and Google have both deployed DL-based speech 
recognition system in their products
Microsoft, Google, IBM, Nuance, AT&T, and all the major academic 
and industrial players in speech recognition have projects on deep 
learning

Deep Learning is the hottest topic in Computer Vision
Feature engineering is the bread-and-butter of a large portion of the 
CV community, which creates some resistance to feature learning
But the record holders on ImageNet and Semantic Segmentation are 
convolutional nets

Deep Learning is becoming hot in Natural Language Processing

Deep Learning/Feature Learning in Applied Mathematics
The connection with Applied Math is through sparse coding, 
non-convex optimization, stochastic gradient algorithms, etc... 
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In Many Fields, Feature Learning Has Caused a Revolution
(methods used in commercially deployed systems)

Speech Recognition I (late 1980s)
Trained mid-level features with Gaussian mixtures (2-layer classifier)

Handwriting Recognition and OCR (late 1980s to mid 1990s)
Supervised convolutional nets operating on pixels

Face & People Detection (early 1990s to mid 2000s)
Supervised convolutional nets operating on pixels (YLC 1994, 2004, 
Garcia 2004) 
Haar features generation/selection (Viola-Jones 2001)

Object Recognition I (mid-to-late 2000s: Ponce, Schmid, Yu, YLC....)
Trainable mid-level features (K-means or sparse coding)

Low-Res Object Recognition: road signs, house numbers (early 2010's)
Supervised convolutional net operating on pixels

Speech Recognition II (circa 2011)
Deep neural nets for acoustic modeling

Object Recognition III, Semantic Labeling (2012, Hinton, YLC,...)
Supervised convolutional nets operating on pixels
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In Several Fields, Feature Learning Has Caused Revolutions:

Speech Recognition, Handwriting Recogntiion

U= unsupervised, S=supervised, X=unsupervised+supervised
          Low-level feat. → mid-level feat. → classifier → contextual post-proc

Speech Recognition
Early 1980s: Dyn. time Warping

Late 1980s: Gaussian Mix. Model

1990s: discriminative GMM

2010: deep neural nets

Handwriting Recognition and OCR
Early 80's: features+classifier

Late 80's: supervised convnet

Mid 90's: convnet+CRF

U X S

S

S S S

S S S

S S S S

U S

X X S

SS
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In Several Fields, Feature Learning Has Caused Revolutions:

Object Detection, Object Recognition, Scene Labeling

Face & People Detection (1993-now)
Supervised ConvNet on pixels (93, 94, 05, 07)

Selected Haar features + Adaboost (2001)

Unsup+Sup ConvNet on raw pixels (2011)

Object Recognition
SIFT/HoG+sparse code+pool+SVM (06)

unsup+sup convnet (07,10)

supervised convnet (2012)

Semantic Segmentation / scene labeling
unsup mid-lvl, CRF (2009, 10, 11, 12)

supervised convnet (2008, 12, 13)

S S S

S S S

X X S

S S S

U S S

U S

X X S

S S S

S S
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What Are
Good Feature?
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Discovering the Hidden Structure in High-Dimensional Data
The manifold hypothesis

Learning Representations of Data:

Discovering & disentangling the independent 
explanatory factors

The Manifold Hypothesis:
Natural data lives in a low-dimensional (non-linear) manifold

Because variables in natural data are mutually dependent
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Discovering the Hidden Structure in High-Dimensional Data

Example: all face images of a person
1000x1000 pixels = 1,000,000 dimensions

But the face has 3 cartesian coordinates and 3 Euler angles

And humans have less than about 50 muscles in the face

Hence the manifold of face images for a person has <56 dimensions

The perfect representations of a face image:
Its coordinates on the face manifold

Its coordinates away from the manifold

We do not have good and general methods to learn functions that turns an 
image into this kind of representation

Ideal
Feature

Extractor [
1 . 2
−3
0 . 2

−2 .. .
]

Face/not face
Pose
Lighting
Expression
-----
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Data Manifold & Invariance: 
Some variations must be eliminated

Azimuth-Elevation manifold. Ignores lighting. [Hadsell et al. CVPR 2006]
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Basic Idea for Invariant Feature Learning

Embed the input non-linearly into a high(er) dimensional space
In the new space, things that were non separable may become 
separable

Pool regions of the new space together
Bringing together things that are semantically similar. Like 
pooling.

Non-Linear
Function

Pooling
Or

Aggregation

Input
high-dim

Unstable/non-smooth 
 features

Stable/invariant
features
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Non-Linear Expansion → Pooling

Entangled data manifolds

Non-Linear Dim
Expansion,

Disentangling

Pooling.
Aggregation
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Sparse Non-Linear Expansion → Pooling

Use clustering to break things apart, pool together similar things

Clustering,
Quantization,
Sparse Coding

Pooling.
Aggregation



Y LeCun

Overall Architecture: 
Normalization → Filter Bank → Non-Linearity → Pooling

Stacking multiple stages of  
[Normalization  Filter Bank  Non-Linearity  Pooling].→ → →

Normalization: variations on whitening
Subtractive: average removal, high pass filtering

Divisive: local contrast normalization, variance normalization

Filter Bank: dimension expansion, projection on overcomplete basis
Non-Linearity: sparsification, saturation, lateral inhibition....

Rectification (ReLU), Component-wise shrinkage, tanh, 
winner-takes-all

Pooling: aggregation over space or feature type
 X i ; L p :

p√ X i
p ; PROB :

1
b

log (∑i e
bX i)

Classifier
feature

Pooling 

Non-

Linear

Filter

Bank 
Norm

feature

Pooling 

Non-

Linear

Filter

Bank 
Norm
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Deep Supervised Learning
(modular approach)
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Multimodule Systems: Cascade

Complex learning machines can be 
built by assembling modules into 
networks

 Simple example: sequential/layered 
feed-forward architecture (cascade)

Forward Propagation:
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Multimodule Systems: Implementation

Each module is an object
Contains trainable 
parameters
Inputs are arguments
Output is returned, but also 
stored internally
Example: 2 modules m1, m2

Torch7 (by hand)
hid = m1:forward(in)
out = m2:forward(hid)

Torch7 (using the nn.Sequential class)
model = nn.Sequential()
model:add(m1)
model:add(m2)
out = model:forward(in) 
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Computing the Gradient in Multi-Layer Systems
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Computing the Gradient in Multi-Layer Systems
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Computing the Gradient in Multi-Layer Systems
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Jacobians and Dimensions
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Back Propgation
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Multimodule Systems: Implementation

Backpropagation through a module
Contains trainable parameters
Inputs are arguments
Gradient with respect to input is 
returned. 
Arguments are input and 
gradient with respect to output

Torch7 (by hand)
hidg = 
m2:backward(hid,outg)
ing = m1:backward(in,hidg)

Torch7 (using the nn.Sequential class)
ing = 
model:backward(in,outg) 
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Linear Module
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Tanh module (or any other pointwise function)
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Euclidean Distance Module
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Any Architecture works

Any connection is permissible
Networks with loops must be 
“unfolded in time”.

Any module is permissible
As long as it is continuous and 
differentiable almost everywhere 
with respect to the parameters, and 
with respect to non-terminal inputs.
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Module-Based Deep Learning with Torch7

Torch7 is based on the Lua language
Simple and lightweight scripting language, dominant in the game industry
Has a native just-in-time compiler (fast!)
Has a simple foreign function interface to call C/C++ functions from Lua

Torch7 is an extension of Lua with
A multidimensional array engine with CUDA and OpenMP backends
A machine learning library that implements multilayer nets, convolutional 
nets, unsupervised pre-training, etc
Various libraries for data/image manipulation and computer vision
A quickly growing community of users

Single-line installation on Ubuntu and Mac OSX:
curl -s https://raw.github.com/clementfarabet/torchinstall/master/install-all | bash

Torch7 Machine Learning Tutorial (neural net, convnet, sparse auto-encoder):
http://code.cogbits.com/wiki/doku.php
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Example: building a Neural Net in Torch7

Net for SVHN digit recognition

10 categories

Input is 32x32 RGB (3 channels)

1500 hidden units

Creating a 2-layer net

Make a cascade module

Reshape input to vector

Add Linear module

Add tanh module

Add Linear Module

Add log softmax layer

Create loss function module

Noutputs = 10; 
nfeats = 3; Width = 32; height = 32
ninputs = nfeats*width*height
nhiddens = 1500

 Simple 2layer neural network
model = nn.Sequential()
model:add(nn.Reshape(ninputs))
model:add(nn.Linear(ninputs,nhiddens))
model:add(nn.Tanh())
model:add(nn.Linear(nhiddens,noutputs))
model:add(nn.LogSoftMax())

criterion = nn.ClassNLLCriterion()

 See Torch7 example at http://bit.ly/16tyLAx
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Example: Training a Neural Net in Torch7

one epoch over training set

Get next batch of samples

Create a “closure” feval(x) that takes the 
parameter vector as argument and returns 
the loss and its gradient on the batch.

Run model on batch

backprop

Normalize by size of batch

Return loss and gradient

call the stochastic gradient optimizer

for t = 1,trainData:size(),batchSize do
  inputs,outputs = getNextBatch()
  local feval = function(x)
    parameters:copy(x)
    gradParameters:zero()
    local f = 0
    for i = 1,#inputs do
      local output = model:forward(inputs[i])
      local err = criterion:forward(output,targets[i])
      f = f + err
      local df_do = criterion:backward(output,targets[i])
      model:backward(inputs[i], df_do)
    end
    gradParameters:div(#inputs)
    f = f/#inputs
    return f,gradParameters
  end   – of feval
  optim.sgd(feval,parameters,optimState)
end
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Deep Supervised Learning is Non-Convex

Example: what is the loss function for the simplest 2-layer neural net ever
Function: 1-1-1 neural net. Map 0.5 to 0.5 and -0.5 to -0.5 
(identity function) with quadratic cost: 
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Backprop in Practice

Use ReLU non-linearities (tanh and logistic are falling out of favor)

Use cross-entropy loss for classification

Use Stochastic Gradient Descent on minibatches

Shuffle the training samples

Normalize the input variables (zero mean, unit variance)

Schedule to decrease the learning rate

Use a bit of L1 or L2 regularization on the weights (or a combination)
But it's best to turn it on after a couple of epochs

Use “dropout” for regularization
Hinton et al 2012 http://arxiv.org/abs/1207.0580

Lots more in [LeCun et al. “Efficient Backprop” 1998]

Lots, lots more in “Neural Networks, Tricks of the Trade” (2012 edition) 
edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)
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Convolutional
Networks

http://code.cogbits.com/wiki/doku.php
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Convolutional Nets

Are deployed in many practical applications
Image reco, speech reco, Google's and Baidu's photo taggers

Have won several competitions
ImageNet, Kaggle Facial Expression, Kaggle Multimodal 
Learning, German Traffic Signs, Connectomics, Handwriting....

Are applicable to array data where nearby values are correlated
Images, sound, time-frequency representations, video, 
volumetric images, RGB-Depth images,.....

One of the few models that can be trained purely supervised

input

83x83

Layer 1

64x75x7
5

Layer 2

64@14x14

Layer 3

256@6x6 Layer 4

256@1x1
Output

101

9x9

convolution

(64 kernels)

9x9

convolution

(4096 kernels)

10x10 pooling,

5x5 subsampling
6x6 pooling

4x4 subsamp

http://bit.ly/16tyLAx
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Fully-connected neural net in high dimension

Example: 200x200 image
Fully-connected, 400,000 hidden units = 16 billion parameters
Locally-connected, 400,000 hidden units 10x10 fields = 40 
million params
Local connections capture local dependencies
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Shared Weights & Convolutions: 
Exploiting Stationarity

Features that are useful on one part of 
the image and probably useful 
elsewhere.

All units share the same set of weights

Shift equivariant processing: 
When the input shifts, the output 
also shifts but stays otherwise 
unchanged.

Convolution 
with a learned kernel (or filter)
Non-linearity: ReLU (rectified 
linear)

The filtered “image” Z is called a feature 
map 

Aij=∑kl
W kl X i+ j. k+ l

Z ij=max(0, Aij)

Example: 200x200 image
400,000 hidden units with 
10x10 fields = 1000 
params
10 feature maps of size 
200x200, 10 filters of size 
10x10
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Multiple Convolutions with Different Kernels

Detects multiple motifs at each 
location

The collection of units looking at 
the same patch is akin to a 
feature vector for that patch.

The result is a 3D array, where 
each slice is a feature map.

Multiple 
convolutions
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Early Hierarchical Feature Models for Vision

[Hubel & Wiesel 1962]: 
simple cells detect local features

complex cells “pool” the outputs of simple 
cells within a retinotopic neighborhood. 

Cognitron & Neocognitron [Fukushima 1974-1982]

pooling 
subsampling

“Simple cells”
“Complex 
cells”

Multiple 
convolutions

http://arxiv.org/abs/1207.0580
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The Convolutional Net Model 
(Multistage Hubel-Wiesel system)

pooling 
subsampling

“Simple cells”
“Complex cells”

Multiple 
convolutions

Retinotopic Feature Maps

[LeCun et al. 89]
[LeCun et al. 98]

Training is supervised
With stochastic gradient 
descent
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Feature Transform: 
Normalization → Filter Bank → Non-Linearity → Pooling

Stacking multiple stages of  
[Normalization  Filter Bank  Non-Linearity  Pooling].→ → →

Normalization: variations on whitening
Subtractive: average removal, high pass filtering

Divisive: local contrast normalization, variance normalization

Filter Bank: dimension expansion, projection on overcomplete basis
Non-Linearity: sparsification, saturation, lateral inhibition....

Rectification, Component-wise shrinkage, tanh, winner-takes-all

Pooling: aggregation over space or feature type, subsampling
 X i ; L p :

p√ X i
p ; PROB :

1
b

log (∑i e
bX i)

Classifier
feature

Pooling 

Non-

Linear

Filter

Bank 
Norm

feature

Pooling 

Non-

Linear

Filter

Bank 
Norm
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Feature Transform: 
Normalization → Filter Bank → Non-Linearity → Pooling

Filter Bank → Non-Linearity = Non-linear embedding in high dimension
Feature Pooling = contraction, dimensionality reduction, smoothing
Learning the filter banks at every stage
Creating a hierarchy of features
Basic elements are inspired by models of the visual (and auditory) cortex

Simple Cell + Complex Cell model of [Hubel and Wiesel 1962]

Many “traditional” feature extraction methods are based on this

SIFT, GIST, HoG, SURF...

 [Fukushima 1974-1982], [LeCun 1988-now], 
since the mid 2000: Hinton, Seung, Poggio, Ng,....

Classifier
feature

Pooling 

Non-

Linear

Filter

Bank 
Norm

feature

Pooling 

Non-

Linear

Filter

Bank 
Norm
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Convolutional Network (ConvNet)

Non-Linearity: half-wave rectification, shrinkage function, sigmoid
Pooling: average, L1, L2, max
Training: Supervised (1988-2006), Unsupervised+Supervised (2006-now)

input

83x83

Layer 1

64x75x75 Layer 2

64@14x14

Layer 3

256@6x6 Layer 4

256@1x1 Output

101

9x9

convolution

(64 kernels)

9x9

convolution

(4096 kernels)

10x10 pooling,

5x5 subsampling
6x6 pooling

4x4 subsamp
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Convolutional Network Architecture
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Convolutional Network (vintage 1990) 

filters → tanh → average-tanh → filters → tanh → average-tanh → filters → tanh

Curved
manifold

Flatter
manifold
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“Mainstream” object recognition pipeline 2006-2012:
 somewhat similar to ConvNets

Fixed Features + unsupervised mid-level features + simple classifier 
SIFT + Vector Quantization + Pyramid pooling + SVM

[Lazebnik et al. CVPR 2006]

SIFT + Local Sparse Coding Macrofeatures + Pyramid pooling + SVM

[Boureau et al. ICCV 2011]

SIFT + Fisher Vectors + Deformable Parts Pooling + SVM

[Perronin et al. 2012]

Oriented

 Edges

Winner

Takes All
Histogram

(sum)

Filter

Bank 

feature

Pooling 

Non-

Linearity

Filter

Bank 

feature

Pooling 

Non-

Linearity
Classifier

Fixed (SIFT/HoG/...)

K-means 

Sparse Coding
Spatial Max

Or average
Any simple

classifier

Unsupervised Supervised
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Tasks for Which Deep Convolutional Nets are the Best

Handwriting recognition MNIST (many), Arabic HWX (IDSIA)
OCR in the Wild [2011]: StreetView House Numbers (NYU and others)
Traffic sign recognition [2011] GTSRB competition (IDSIA, NYU)
Pedestrian Detection [2013]: INRIA datasets and others (NYU)
Volumetric brain image segmentation [2009] connectomics (IDSIA, MIT)
Human Action Recognition [2011] Hollywood II dataset (Stanford)
Object Recognition [2012] ImageNet competition
Scene Parsing [2012] Stanford bgd, SiftFlow, Barcelona (NYU) 
Scene parsing from depth images [2013] NYU RGB-D dataset (NYU)
Speech Recognition [2012] Acoustic modeling (IBM and Google)
Breast cancer cell mitosis detection [2011] MITOS (IDSIA)

The list of perceptual tasks for which ConvNets hold the record is growing.
Most of these tasks (but not all) use purely supervised convnets. 
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Ideas from Neuroscience and Psychophysics

The whole architecture: simple cells and complex cells
Local receptive fields
Self-similar receptive fields over the visual field (convolutions)
Pooling (complex cells)
Non-Linearity: Rectified Linear Units (ReLU)
LGN-like band-pass filtering and contrast normalization in the input
Divisive contrast normalization (from Heeger, Simoncelli....)

Lateral inhibition

Sparse/Overcomplete representations (Olshausen-Field....)
Inference of sparse representations with lateral inhibition
Sub-sampling ratios in the visual cortex

between 2 and 3 between V1-V2-V4

Crowding and visual metamers give cues on the size of the pooling areas
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Simple ConvNet Applications with State-of-the-Art Performance

Traffic Sign Recognition (GTSRB)
German Traffic Sign Reco 
Bench 

99.2% accuracy

#1: IDSIA; #2 NYU

House Number Recognition (Google) 
Street View House Numbers

94.3 % accuracy
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THIS IS ONE STAGE OF THE CONVNET

One Stage: Contrast Norm → Filter Bank → Shrinkage → L2 Pooling

subtr activ e+
d ivisiv e 

contr ast n orm
aliza tion

Con vol utio n
s

 Shri nka ge

L2
 Po olin g &

 
sub-s am

p ling
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Results on Caltech101 with sigmoid non-linearity

← like HMAX model
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Local Contrast Normalization

Performed on the state of every layer, including 
the input
Subtractive Local Contrast Normalization

Subtracts from every value in a feature a 
Gaussian-weighted average of its neighbors 
(high-pass filter)

Divisive Local Contrast Normalization
Divides every value in a layer by the standard 
deviation of its neighbors over space and over 
all feature maps

Subtractive + Divisive LCN performs a kind of 
approximate whitening.
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The Effect of Architectural Elements

Pyramid pooling on last layer: 1% improvement over regular pooling
Shrinkage non-linearity + lateral inhibition: 1.6% improvement over tanh
Discriminative term in sparse coding: 2.8% improvement 
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Results on Caltech101: purely supervised 

with soft-shrink, L2 pooling, contrast normalization

Supervised learning with soft-shrinkage non-linearity, L2 complex cells, and 
sparsity penalty on the complex cell outputs: 71%
Caltech101 is pathological, biased, too small, etc...
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What does Local Contrast Normalization Do?

Original

Reconstuction
With LCN

Reconstruction
Without LCN
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Optimal
Stimuli
for each
Complex 
Cell

Why Do Random Filters Work?

Random
Filters
For
Simple
Cells

Trained
Filters
For
Simple
Cells
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Small NORB dataset

Two-stage system: error rate versus number of labeled training samples 

No normalization

Random filters

No normalization

Unsup filters

Unsup+Sup filters

Sup filters
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Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

CONV 11x11/ReLU 96fm

LOCAL CONTRAST NORM

MAX POOL 2x2sub

FULL 4096/ReLU

FULL CONNECT

CONV 11x11/ReLU 256fm

LOCAL CONTRAST NORM

MAX POOLING 2x2sub

CONV 3x3/ReLU 384fm

CONV 3x3ReLU 384fm

CONV 3x3/ReLU 256fm

MAX POOLING

FULL 4096/ReLU

Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops
4M

16M

37M

442K

1.3M

884K

307K

35K

4Mflop

16M

37M

74M

224M

149M

223M

105M
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Object Recognition: ILSVRC 2012 results

ImageNet Large Scale Visual Recognition Challenge
1000 categories, 1.5 Million labeled training samples
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Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

Method: large convolutional net
650K neurons, 832M synapses, 60M parameters 

Trained with backprop on GPU

Trained “with all the tricks Yann came up with in 
the last 20 years, plus dropout” (Hinton, NIPS 
2012)

Rectification, contrast normalization,...

Error rate: 15% (whenever correct class isn't in top 5)
Previous state of the art: 25% error

A REVOLUTION IN COMPUTER VISION

Acquired by Google in Jan 2013
Deployed in Google+ Photo Tagging in May 2013
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Object Recognition [Krizhevsky, Sutskever, Hinton 2012]
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Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

TEST 
IMAGE RETRIEVED IMAGES



Y LeCun
ConvNet-Based Google+ Photo Tagger

Searched my personal collection for “bird”

Samy
Bengio
???
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Another ImageNet-trained ConvNet 
[Zeiler & Fergus 2013]

Convolutional Net with 8 layers, input is 224x224 pixels
conv-pool-conv-pool-conv-conv-conv-full-full-full
Rectified-Linear Units (ReLU):  y = max(0,x)
Divisive contrast normalization across features [Jarrett et al. 
ICCV 2009]

Trained on ImageNet 2012 training set
1.3M images, 1000 classes
10 different crops/flips per image

Regularization: Dropout
[Hinton 2012]
zeroing random subsets of units

Stochastic gradient descent 
for 70 epochs (7-10 days)
With learning rate annealing
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Object Recognition on-line demo [Zeiler & Fergus 2013]

http://horatio.cs.nyu.edu
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ConvNet trained on ImageNet [Zeiler & Fergus 2013]
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State of the art with 
only 6 training examples

Features are generic: Caltech 256

Network first 
trained on 
ImageNet.

Last layer 
chopped off

Last layer trained 
on Caltech 256,

first layers N-1 
kept fixed.

State of the art 
accuracy with only 
6 training 
samples/class

3: [Bo, Ren, Fox. CVPR, 2013]   16: [Sohn, Jung, Lee, Hero ICCV 2011]
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Features are generic: PASCAL VOC 2012

Network first trained on ImageNet. 

Last layer trained on Pascal VOC, keeping N-1 first layers fixed.

[15] K. Sande, J. Uijlings, C. Snoek, and A. Smeulders. Hybrid coding for selective search. In 
PASCAL VOC Classification Challenge 2012, 
[19] S. Yan, J. Dong, Q. Chen, Z. Song, Y. Pan, W. Xia, Z. Huang, Y. Hua, and S. Shen. Generalized 
hierarchical matching for sub-category aware object classification. In PASCAL VOC Classification 
Challenge 2012
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96x96

input:120x120 

output: 3x3

 Traditional Detectors/Classifiers must be applied to every location on 
a large input image, at multiple scales.
 Convolutional nets can replicated over large images very cheaply.
 The network is applied to multiple scales spaced by 1.5.

Applying a ConvNet on 
Sliding Windows is Very Cheap!
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 Computational cost for replicated convolutional net:
96x96 -> 4.6 million multiply-accumulate operations
120x120 -> 8.3 million multiply-accumulate ops
240x240 -> 47.5 million multiply-accumulate ops
480x480 -> 232 million multiply-accumulate ops

 Computational cost for a non-convolutional detector 
of the same size, applied every 12 pixels:

96x96 -> 4.6 million multiply-accumulate operations
120x120 -> 42.0 million multiply-accumulate 
operations
240x240 -> 788.0 million multiply-accumulate ops 
480x480 -> 5,083 million multiply-accumulate ops

96x96 window

12 pixel shift

84x84 overlap

Building a Detector/Recognizer: 
Replicated Convolutional Nets
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ConvNets for Image Segmentation

Biological Image Segmentation 
[Ning et al. IEEE-TIP 2005]

Pixel labeling with large context 
using a convnet
Cleanup using a CRF

Similar to a field of expert
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ConvNet in Connectomics 
[Jain, Turaga, Seung 2007-present]

3D ConvNet

Volumetric

Images

Each voxel 
labeled as 
“membrane” 
or 
“non-membra
ne” using a 
7x7x7 voxel 
neighborhood
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Input imageInput image Stereo LabelsStereo Labels

Classifier OutputClassifier Output

ConvNets for Image Segmentation

Image Labeling for Off-Road Robots [Hadsell JFR 2008]
ConvNet labels pixels as one of 3 categories

Traversible/flat (green), non traversible (red), foot of obstacle (purple)

Labels obtained from stereo vision and SLAM

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output
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[Osadchy,Miller LeCun JMLR 2007],[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. CVPR 2013]

Pedestrian Detection, Face Detection
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Feature maps from all stages are pooled/subsampled and sent to the final 
classification layers

Pooled low-level features: good for textures and local motifs
High-level features: good for “gestalt” and global shape

[Sermanet, Chintala, LeCun CVPR 2013]

7x7 filter+tanh

38 feat maps

Input

78x126xYUV

L2 Pooling

3x3

2040 9x9

filters+tanh

68 feat maps

Av Pooling

2x2 filter+tanh

ConvNet Architecture with Multi-Stage Features
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[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. ArXiv 2012]

ConvNet

Color+Skip

Supervised

ConvNet

Color+Skip

Unsup+Sup

ConvNet

B&W

Unsup+Sup

ConvNet

B&W

Supervised

Pedestrian Detection: INRIA Dataset. Miss rate vs false 
positives
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Results on “Near Scale” Images (>80 pixels tall, no occlusions)

Daimler
p=21790

ETH
p=804

TudBrussels
p=508

INRIA
p=288
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Results on “Reasonable” Images (>50 pixels tall, few occlusions)

Daimler
p=21790

ETH
p=804

TudBrussels
p=508

INRIA
p=288
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128 stage-1 filters on Y channel. 

Unsupervised training with convolutional predictive sparse decomposition

Unsupervised pre-training with convolutional PSD 
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Stage 2 filters. 

Unsupervised training with convolutional predictive sparse decomposition

Unsupervised pre-training with convolutional PSD 



Y LeCun

VIDEOS
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VIDEOS
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Semantic Labeling:
Labeling every pixel with the object it belongs to

[Farabet et al. ICML 2012, PAMI 2013]

Would help identify obstacles, targets, landing sites, dangerous areas
Would help line up depth map with edge maps
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Scene Parsing/Labeling: ConvNet Architecture

Each output sees a large input context:
46x46 window at full rez; 92x92 at ½ rez; 184x184 at ¼ rez

[7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->

Trained supervised on fully-labeled images

Laplacian

Pyramid

Level 1 

Features

Level 2

Features

Upsampled

Level 2 Features

Categories
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Method 1: majority over super-pixel regions

[Farabet et al. IEEE T. PAMI 2013]
M

ulti-sca le C
onvN

et
Super-pix el bound ary hype theses

C
onvolut ional clas sifier

Majority

Vote

Over

Superpixels

Input image

Superpixel boundaries

Features from

Convolutional net

(d=768 per pixel)

“soft” categories scores

Categories aligned

With region

boundaries
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Method 2: optimal cover of purity tree

Spanning Tree
From pixel 
Similarity graph

Distribution of
Categories within
Each Segment

2-layer
Neural
net

[Farabet et al. ICML 2012]



Y LeCun
Scene Parsing/Labeling: Performance

Stanford Background Dataset [Gould 1009]: 8 categories

[Farabet et al. IEEE T. PAMI 2013]
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Scene Parsing/Labeling: Performance

[Farabet et al. IEEE T. PAMI 2012]

SIFT Flow Dataset
[Liu 2009]: 
33 categories

Barcelona dataset
[Tighe 2010]: 
170 categories.
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Scene Parsing/Labeling: SIFT Flow dataset (33 categories)

Samples from the SIFT-Flow dataset (Liu)

[Farabet et al. ICML 2012, PAMI 2013]
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Scene Parsing/Labeling: SIFT Flow dataset (33 categories)

[Farabet et al. ICML 2012, PAMI 2013]
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Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]
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Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]



Y LeCun
Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]
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Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]
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Scene Parsing/Labeling

No post-processing
Frame-by-frame
ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware

But communicating the features over ethernet limits system 
performance
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Scene Parsing/Labeling: Temporal Consistency

Causal method for temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]
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Temporal Consistency

Spatio-Temporal Super-Pixel segmentation 
[Couprie et al ICIP 2013]

[Couprie et al JMLR under review]

Majority vote over super-pixels
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NYU RGB-Depth Indoor Scenes Dataset

407024 RGB-D images of apartments

1449 labeled frames, 894 object categories
[Silberman et al. 2012]
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NYU RGB-D Dataset

Captured with a Kinect on a steadycam



Y LeCun

Results
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Results

Depth helps a bit
Helps a lot for floor and props

Helps surprisingly little for structures, and hurts for furniture

[C. Cadena, J. Kosecka “Semantic Parsing for Priming Object Detection in RGB-D Scenes”
Semantic Perception Mapping and Exploration (SPME), Karlsruhe 2013] 
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Architecture for indoor RGB-D Semantic Segmentation

Similar to outdoors semantic segmentation method
Convnet with 4 input channels

Vote over superpixels
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Scene Parsing/Labeling on RGB+Depth Images

With temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]
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Scene Parsing/Labeling on RGB+Depth Images

With temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]
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Labeling Videos

Temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013]
[Couprie, Farabet, Najman, LeCun ICIP 2013]
[Couprie, Farabet, Najman, LeCun submitted to JMLR]
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Semantic Segmentation on RGB+D Images and Videos

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]
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Building a ConvNet Model: Example in Torch7

– http://www.torch.ch (Torch7: Lua-based dev environment for ML, CV....)
– http://code.cogbits.com/wiki/doku.php  (Torch7 tutorials/demos by C. Farabet)
- http://eblearn.sf.net (C++ Library with convnet support by P. Sermanet)

model = nn.Sequential()

 stage 1 : filter bank > squashing > L2 pooling > normalization

model:add(nn.SpatialConvolutionMM(nfeats, nstates[1], filtsiz, filtsiz))

model:add(nn.Tanh())   
model:add(nn.SpatialLPPooling(nstates[1],2,poolsiz,poolsiz,poolsiz,poolsiz))

model:add(nn.SpatialSubtractiveNormalization(nstates[1], normkernel))

 stage 2 : filter bank > squashing > L2 pooling > normalization

model:add(nn.SpatialConvolutionMM(nstates[1],nstates[2],filtsiz,filtsiz))

model:add(nn.Tanh())   
model:add(nn.SpatialLPPooling(nstates[2],2,poolsiz,poolsiz,poolsiz,poolsiz))

model:add(nn.SpatialSubtractiveNormalization(nstates[2], normkernel))

 stage 3 : 2 fullyconnected layers

model:add(nn.Reshape(nstates[2]*filtsize*filtsize))

model:add(nn.Linear(nstates[2]*filtsize*filtsize, nstates[3]))

model:add(nn.Tanh())

model:add(nn.Linear(nstates[3], noutputs))
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Backprop in Practice

Use ReLU non-linearities (tanh and logistic are falling out of favor)
Use cross-entropy loss for classification
Use Stochastic Gradient Descent on minibatches
Shuffle the training samples
Normalize the input variables (zero mean, unit variance)
Schedule to decrease the learning rate
Use a bit of L1 or L2 regularization on the weights (or a combination)

But it's best to turn it on after a couple of epochs

Use “dropout” for regularization
Hinton et al 2012 http://arxiv.org/abs/1207.0580

Lots more in [LeCun et al. “Efficient Backprop” 1998]
Lots, lots more in “Neural Networks, Tricks of the Trade” (2012 edition) 
edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)
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