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Large-scale image datasets

From “The Promise and Perils of Benchmark Datasets and Challenges”, D. Forsyth, A.
Efros, F.-F. Li, A. Torralba and A. Zisserman, Talk at “Frontiers of Computer Vision”
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Large-scale supervised learning

Large-scale image classification
Let (x1, y1), . . . , (xn, yn) ∈ Rd × {1, . . . , k} be labelled training images

Minimize
W∈Rd×k

λΩ(W) +
1

n

n∑
i=1

L
(
yi,W

Txi
)

Problem : minimizing such objectives in the large-scale setting

n� 1, d� 1, k � 1
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Machine learning cuboid
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Working example : ImageNet dataset

ImageNet dataset

Large number of examples : n = 17 millions
Large feature size : d = 4.103, . . . , 2.105

Large number of categories : k = 10, 000
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General strategy for large-scale problems

Strategy
Most approaches boil down to a general "divide-and-conquer" strategy

Break the large learning problem into small and easy pieces
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Machine learning cuboid
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Decomposition principle

Decomposition principle

Decomposition over examples : stochastic/incremental gradient
descent
Decomposition over features : (primal) regular coordinate descent
Decomposition over categories : one-versus-rest strategy
Decomposition over latent structure : atomic decomposition
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Decomposition over examples

Decomposition over examples

Stochastic/incremental gradient descent

Bru, 1890 : algorithm to adjust a slant θ of cannon in order to obtain
a specified range r by trial and error, firing one shell after another

θt = θt−1 −
γ0

t
(r − rt)

Perceptron, Rosenblatt, 1957

wt = wt−1 − γt(ytφ(xt)) if ytφ(xt) ≤ 0

= wt−1 otherwise
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Decomposition over examples

Decomposition over examples

Stochastic/incremental gradient descent

Bru, 1890 : algorithm to adjust a slant θ of cannon in order to obtain
a specified range r by trial and error
Perceptron, Rosenblatt, 1957
60s-70s : extensions in learning, optimal control, and adaptive signal
processing
80s-90s : extensions to non-convex learning problems
see "Efficient backprop" in Neural networks : Tricks of the trade,
LeCun et al., 1998, for wise advice and overview on sgd algorithms
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Decomposition over examples

Decomposition over examples

Stochastic/incremental gradient descent

Initialize : W = 0

Iterate : pick an example (xt, yt)

Wt+1 = Wt − γt∇WQ(W;xt, yt)︸ ︷︷ ︸
one example at a time

Why ?

Where does these update rules come from ?
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Decomposition over examples

Plain gradient descent

Plain gradient descent versus stochastic/incremental gradient descent
Grouping the regularization penalty and the empirical risk

∇WJ(W) =
1

n

n∑
i=1

{
nλΩ(W) + L

(
yi,W

Txi
)}

Zaid Harchaoui (INRIA) LL July 25th 2013 14 / 75



Decomposition over examples

Plain gradient descent

Plain gradient descent versus stochastic/incremental gradient descent
Grouping the regularization penalty and the empirical risk, and expanding
the sum onto the examples

∇WJ(W) =
1

n

n∑
i=1

{
nλΩ(W) + L

(
yi,W

Txi
)}

= ∇W

{
1

n

n∑
i=1

Q(W;xi, yi)

}
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Decomposition over examples

Plain gradient descent

Plain gradient descent

Initialize : W = 0

Iterate :

Wt+1 = Wt − γt∇J(W)

= Wt − γt∇W

{
1

n

n∑
i=1

Q(W;xi, yi)

}
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Decomposition over examples

Plain gradient descent

Plain gradient descent

Initialize : W = 0

Iterate :

Wt+1 = Wt − γt∇WJ(W)

= Wt − γt∇W

{
1

n

n∑
i=1

Q(W;xi, yi)

}
︸ ︷︷ ︸

sum over all examples !

Strengths and weaknesses

Strength : robust to setting of step-size sequence (line-search)
Weakness : demanding disk/memory requirements
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Decomposition over examples

Stochastic/incremental gradient descent

Stochastic/incremental gradient descent
Leveraging the decomposable structure over examples

∇WJ(W) =
1

n

n∑
i=1

∇WQ(W;xi, yi)

=
1

n

{
∇WQ(W;x1, y1) + · · ·+ 1

n
(∇WQ(W;xn, yn)

}
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Decomposition over examples

Decomposition over examples

Stochastic/incremental gradient descent

Leveraging the decomposable structure over examples

∇WJ(W) =
1

n

∇WQ(W;x1, y1)︸ ︷︷ ︸
cheap to compute

+ · · ·+∇WQ(W;xn, yn)︸ ︷︷ ︸
cheap to compute


Make incremental gradient steps along Q(W;xt, yt) at each iteration
t, instead of full gradient steps along ∇J(W) at each iteration
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Decomposition over examples

Stochastic/incremental gradient descent

Stochastic/incremental gradient descent

Initialize : W = 0

Iterate : pick an example (xt, yt)

Wt+1 = Wt − γt∇WQ(W;xt, yt)
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Decomposition over examples

Stochastic/incremental gradient descent

Stochastic/incremental gradient descent

Initialize : W = 0

Iterate : pick an example (xt, yt)

Wt+1 = Wt − γt∇WQ(W;xt, yt)︸ ︷︷ ︸
one example at a time

Strengths and weaknesses

Strength : little disk requirements
Weakness : may be sensitive to setting of step-size sequence
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Decomposition over examples

Stochastic/incremental gradient descent

What’s "stochastic" in this algorithm ?
Looking at the objective as a stochastic approximation of the expected
training error

∇WJ(W) =
1

n

n∑
i=1

∇WQ(W;xi, yi)

=
1

n

{
∇WQ(W;x1, y1) + · · ·+ 1

n
(∇WQ(W;xn, yn)

}
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Decomposition over examples

Stochastic/incremental gradient descent

What’s "stochastic" in this algorithm ?

∇WJ(W) =
1

n

n∑
i=1

∇WQ(W;xi, yi)

≈ Ex,y[∇WQ(W;x, y)]

Practical consequences

Shuffle the examples before launching the algorithm, in case they form
a correlated sequence
Perform several passes/epochs over the training data, shuffling the
examples before each pass/epoch
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Decomposition over examples

Mini-batch extensions

Mini-batch extensions

Regular stochastic gradient descent : extreme decomposition strategy
picking one example at a time
Mini-batch extensions : decomposition onto mini-batches of size Bt at
iteration t

When to choose one or the other ?

Regular stochastic gradient descent converges for simple objectives
with ”moderate non-smoothness”
For more sophisticated objectives, SGD does not converge, and
mini-batch SGD is a must
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Decomposition over examples

Theory digest

Theory digest

Fixed stepsize γt ≡ γ −→ stable convergence
Decreasing stepsize γt = γ0

t+t0
−→ faster local convergence, with γ0

and t0 properly set
Note : stochastic gradient descent is an extreme decomposition
strategy picking one example at a time

In practice

Pick a random batch of reasonable size, and find best pair (γ0, t0)
through cross-validation
Run stochastic gradient descent with sequence of decreasing stepsize
γt = γ0

t+t0
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Decomposition over examples

Tricks of the trade : life is simpler in large-scale settings

Life is simpler in large-scale settings

Shuffle the examples before launching the algorithm, and process the
examples in a balanced manner w.r.t the categories
Regularization through early stopping : perform only a few several
passes/epochs over the training data, and stop when the accuracy on
a held-out validation set does not increase anymore
Fixed step-size works fine : find best γ through cross-validation on a
small batch
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Decomposition over examples

Stochastic/incremental gradient descent

Put the shoulder to the wheel

Let’s try it out !
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Decomposition over examples

Ridge regression

Ridge regression
Training data : (x1, y1), . . . , (xn, yn) ∈ Rd × R

Minimize
w∈Rd

λ

2
‖w‖22 +

1

n

n∑
i=1

L
(
yi,w

Txi
)

Key calculations

Q(w;xi, yi) =
nλ

2
‖w‖22 + (yi −wTxi)

2

∇Q(w;xi, yi) = nλw + (yi −wTxi)x
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Decomposition over examples

Logistic regression

Logistic regression
Training data : (x1, y1), . . . , (xn, yn) ∈ Rd × R

Minimize
w∈Rd

λ

2
‖w‖22 +

1

n

n∑
i=1

L
(
yi,w

Txi
)

Key calculations

Q(w;xi, yi) =
nλ

2
‖w‖22 + log

(
1 + exp(−yiwTxi))

)
∇Q(w;xi, yi) = nλw +− 1

1 + exp(yiwTxi)
yixi
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Decomposition over examples

Linear SVM with linear hinge loss

Linear SVM with linear hinge loss
Training data : (x1, y1), . . . , (xn, yn) ∈ Rd × R

Minimize
w∈Rd

λ

2
‖w‖22 +

1

n

n∑
i=1

L
(
yi,w

Txi
)

Key calculations

Q(w;xi, yi) =
nλ

2
‖w‖22 + max

(
0, 1− yiwTxi

)
∇Q(w;xi, yi) =

{
nλw − yixi if 1− yixi > 0

0 otherwise
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Decomposition over examples

Linear SVM with linear hinge loss

Linear SVM with linear hinge loss
Training data : (x1, y1), . . . , (xn, yn) ∈ Rd × R

Minimize
w∈Rd

λ

2
‖w‖22 +

1

n

n∑
i=1

L
(
yi,w

Txi
)

Non-differentiable loss

Rule : if Q(w;x, y) has a finite number of a non-differentiable points,
then just make no update, and pick another example.
Theoretical justification : the set of a non-differentiable points will
have measure zero, and convergence guarantee is still valid

∇Ex,y[Q(W;x, y)] = Ex,y[∇Q(W;x, y)] .
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Decomposition over examples

A quick overview

Convergence guarantees

Least-square loss : smooth → fast and stable convergence
Logistic loss : smooth → fast and stable convergence
Linear hinge loss : non-smooth → slower convergence

Convergence guarantees

Take-home message : smooth loss is nicer
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Decomposition over examples

Machine learning cuboid

n

d

k
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Decomposition over examples

Decomposition principle

Decomposition principle

Decomposition over examples : stochastic/incremental gradient
descent
Decomposition over categories : one-versus-rest strategy
Decomposition over latent structure : atomic decomposition
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Decomposition over categories : one-versus-rest strategy

Multi-class linear SVM with regular linear hinge loss

Multi-class linear SVM with regular linear hinge loss
Training data : (x1, y1), . . . , (xn, yn) ∈ Rd × {0, 1}k

min
W∈Rd×k

λ ‖w‖22 +
1

n

n∑
i=1

BinaryHingeLossi

One-versus-rest reduction

Turn original label yi ∈ {0, 1}k into binary label ỹi ∈ {−1,+1}

BinaryHingeLossi = max(0, 1− ỹiwTxi)

Note : any loss could do, i.e. also the logistic loss
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Decomposition over categories : one-versus-rest strategy

Multi-class linear SVM with regular linear hinge loss

Multi-class linear SVM with regular linear hinge loss
Training data : (x1, y1), . . . , (xn, yn) ∈ Rd × {0, 1}k

min
w∈Rd×k

k∑
`=1

λ` ‖w`‖22 +
1

n

k∑
`=1

n∑
i=1

yi≡class `

BinaryHingeLossi

Decomposition over categories

Leverage decomposable structure over categories
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Decomposition over categories : one-versus-rest strategy

Multi-class linear SVM with regular linear hinge loss

Multi-class linear SVM with regular linear hinge loss
Training data : (x1, y1), . . . , (xn, yn) ∈ Rd × {0, 1}k

min
w1∈Rd

λ1 ‖w1‖22 +
1

n

n∑
i=1

yi≡class 1

BinaryHingeLossi

. . .

min
w`∈Rd

λ` ‖w`‖22 +
1

n

n∑
i=1

yi≡class `

BinaryHingeLossi

. . .

min
wk∈Rd

λk ‖wk‖22 +
1

n

n∑
i=1

yi≡class k

BinaryHingeLossi
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Decomposition over categories : one-versus-rest strategy

Multi-class through one-vs-rest

Multi-class through one-vs-rest

Overall : simplest multi-class classification algorithm
Computational strength : easy to optimize by decomposition over
classes
Statistical weakness : no universally consistent loss can be
decomposable over classes (do we really care ? we’ll see)
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Decomposition over categories : one-versus-rest strategy

Multi-class through one-vs-rest

In practice
State-of-the-art performance using a balanced version of the binary loss,
and learning the optimal imbalance β through cross-validation

Empirical risk =
β

n+

∑
i∈positive examples

BinaryHingeLossi

+
1− β
n−

∑
i∈negative examples

BinaryHingeLossi
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Decomposition over categories : one-versus-rest strategy

Multi-class with non-decomposable loss functions

Other multi-class loss functions

Multinomial logistic loss
Crammer & Singer multi-class loss

RMUL =
1

n

n∑
i=1

{
max
y

(∆(yi, y) + wT
y xi)−wT

yi
xi

}
The multi-class binary hinge loss is the only decomposable loss
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Decomposition over categories : one-versus-rest strategy

Multi-class with non-decomposable loss functions

More sophisticated losses
Loss functions tailored to optimize a convex surrogate of top-k accuracy

Accuracytop−k =
# images whose correct label lies in top-k scores

Total number of images

Ranking losses

RRNK =
1

n

n∑
i=1

k∑
y=1

max
y

(
0,∆(yi, y)− (wT

yi
−wy)

Txi
)

Weighted ranking losses, and other variations

Yet to prove themselves compared to one-vs-rest with binary loss on
real-world datasets
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Decomposition over categories : one-versus-rest strategy

Multi-class with non-decomposable loss functions

Sampling Update
ROVR Draw (xi, yi) from S δi = 1 if LOVR(xi, yi;w) > 0, 0 otherwise.

w(t) = (1− ηt)w(t−1) + ηtδixiyi

RMUL Draw (xi, yi) from S ȳ = arg maxy D(yi, y) + w′yxi and δi =

{
1 if ȳ 6= yi
0 otherwise.

w
(t)
y =


w

(t−1)
y (1− ηt) + δiηtxi if y = yi

w
(t−1)
y (1− ηt)− δiηtxi if y = ȳ

w
(t−1)
y (1− ηt) otherwise.

RRNK Draw (xi, yi) from S δi = 1 if Ltri(xi, yi, ȳ;w) > 0, 0 otherwise.

Draw ȳ 6= yi from Y w
(t)
y =


w

(t−1)
y (1− ηt) + δiηtxi if y = yi

w
(t−1)
y (1− ηt)− δiηtxi if y = ȳ

w
(t−1)
y (1− ηt) otherwise.
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Decomposition over categories : one-versus-rest strategy

Experimental results

Datasets

Total # of Partition
images classes train val test

Fungus 88K 134 44K 5K 39K
Ungulate 183K 183 91.5K 5K 86.5K

Vehicle 226K 262 113K 5K 108K
ILSVRC10 1.4M 1,000 1.2M 50K 150K

ImageNet10K 9M 10,184 4.5M 50K 4.45M

Table : Datasets considered
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Decomposition over categories : one-versus-rest strategy

Stochastic gradient descent is competitive with batch solvers

Stochastic gradient descent is competitive with batch solvers
Average training time (in CPU seconds) on 3 fine-grained datasets

(a) w-OVR SVM : LibSVM vs SGD

LibSVM (batch) / SGD (online)
Fungus Ungulate Vehicle

10 12 / 7 31 / 18 107 / 39
25 95 / 16 175 / 36 835 / 119
50 441 / 38 909 / 67 3,223 / 271

100 1,346 / 71 3,677 / 133 11,679 / 314

(b) MUL SVM : SVM-light vs SGD

SVM-light (batch) / SGD (online)
Fungus Ungulate Vehicle

10 45 / 36 324 / 81 557 / 209
25 99 / 72 441 / 198 723 / 369
50 198 / 261 855 / 420 1,265 / 747

100 972 / 522 1,674 / 765 3,752 / 1,503
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Decomposition over categories : one-versus-rest strategy

Superiority of one-vs-rest with weighted binary loss

Superiority of one-vs-rest with weighted binary loss over unweighted one

1 2 4 8 16 32 64

6

8

10

12

14

16

18

20

22
Influence of weights on w−OVR (SGD) FUNGUS

Weight β

T
op

−
1 

A
cc

ur
ac

y 
(in

 %
)

 

 

BOV: N=1,024 + SP (D=4,096)
FV: N=8 + SP (D=4,096)
FV: N=16 + SP (D=8,192)
FV: N=64 + SP (D=32,768)
FV: N=256 + SP (D=131,072)

Figure : Influence of data rebalancing in weighted one-vs-rest (w-OVR) vs unweighted
one-vs-rest (u-OVR) on Fungus (134 classes).
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Decomposition over categories : one-versus-rest strategy

One-vs-rest with binary hinge-loss works fine for expressive
features

One-vs-rest with binary hinge-loss works fine for expressive features
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(b) Ungulate
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(c) Vehicle

Figure : Comparison of Top-1 Accuracy between the w-OVR, MUL, RNK and
WAR SVMs as a function of the number of Gaussians used to compute the FV
(i.e. as a function of the FV dimensionality). No spatial pyramids were used to
speed-up these experiments.
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Decomposition over categories : one-versus-rest strategy

Beyond one-vs-rest strategies

Large-scale learning
Training data : (x1, y1), . . . , (xn, yn)Rd × Y = {0, 1}k

Minimize
W∈Rd×k

λΩ(W) +
1

n

n∑
i=1

Lossi

Discover latent structure of the classes
And keep scalability and efficiency of one-versus-rest strategies
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Decomposition over categories : one-versus-rest strategy

Machine learning cuboid

n

d

k
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Decomposition over categories : one-versus-rest strategy

Decomposition principle

Decomposition principle

Decomposition over examples : stochastic/incremental gradient
descent
Decomposition over latent structure : atomic decomposition
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Decomposition over latent structure

Learning with atom. penalty

Learning with low-rank regularization penalty
Training data : (x1, y1), . . . , (xn, yn)Rd × Y = {0, 1}k

Minimize
W∈Rd×k

λRank(W) +
1

n

n∑
i=1

Lossi ?

Embedding motivation : classes may embedded in a low-dimensional
subspace of the feature space
Computational motivation : algorithm scales with the number of latent
classes r, assuming that r � k

Extension of Reduced-Rank Regression (see e.g. Velu, Reinsel, 1998)
→ non-smooth, non-convex optimization problem
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Decomposition over latent structure

Learning with atom. penalty

Learning with low-rank regularization penalty
Training data : (x1, y1), . . . , (xn, yn)Rd × Y = {0, 1}k

Minimize
W∈Rd×k

λ‖σ(W)‖1 +
1

n

n∑
i=1

Lossi︸ ︷︷ ︸
convex

Embedding motivation : classes may embedded in a low-dimensional
subspace of the feature space
Computational motivation : algorithm scales with the number of latent
classes r, assuming that r � k

Extension of Reduced-Rank Regression (see e.g. Velu, Reinsel, 1998)
→ non-smooth, non-convex optimization problem
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Decomposition over latent structure

Learning with atom. penalty

Learning with low-rank regularization penalty
Let (x1, y1), . . . , (xn, yn) ∈ Rd × {1, . . . , k} be labelled training images

Minimize
W∈Rd×k

λ‖σ(W)‖1 +
1

n

n∑
i=1

Lossi︸ ︷︷ ︸
convex

Tight convex relaxation (Amit et al., 2007 ; Argyriou et al., 2007)
Enforces a low-rank structure of W (sparsity of spectrum σ(W))
Convex, but non-differentiable
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Decomposition over latent structure

Learning with atom. penalty

Learning with low-rank regularization penalty
Let (x1, y1), . . . , (xn, yn) ∈ Rd × {1, . . . , k} be labelled training images

Minimize
W∈Rd×k

λ ‖σ(W)‖1︸ ︷︷ ︸
non-smooth

+Rn(W)︸ ︷︷ ︸
smooth

where Rn(W) is the empirical risk with the multinomial logistic loss

Rn(W) =
1

n

n∑
i=1

log

1 +
∑

`∈Y\{yi}

exp
{
wT
` xi −wT

yixi
}
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Decomposition over latent structure

Learning with atom. penalty

Learning with low-rank regularization penalty
Let (x1, y1), . . . , (xn, yn) ∈ Rd × {1, . . . , k} be labelled training images

Minimize
W∈Rd×k

λ ‖σ(W)‖1︸ ︷︷ ︸
decomposable?

+Rn(W)︸ ︷︷ ︸
smooth

where Rn(W) is the empirical risk with the multinomial logistic loss

Rn(W) =
1

n

n∑
i=1

log

1 +
∑

`∈Y\{yi}

exp
{
wT
` xi −wT

yixi
}
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Stochastic atom descent

We want an efficient and scalable algorithm
Let’s get inspiration from `1 case...

Atom-descent algorithms

Leverage a decomposable structure of regularization : atomic
decomposition
Perform a stochastic version of coordinate descent on this
representation
Efficient and scalable algorithms

Atom-descent for trace-norm regularization

Leverage a non-flat decomposable structure, in contrast to one-vs-rest
Learn a latent embedding of the classes
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Lifting to an infinite-dimensional space

The trace-norm is the smallest `1-norm of the weight vector associated
with an atomic decomposition onto rank-one subspaces

θ1= + · · ·+ θi + · · ·

u1 ui

viv1

W

‖σ(W)‖1 = min
θ

{
‖θ‖1 , ∃N, Mi ∈M, with W =

N∑
i=1

θiMi

}
M = {uvT | u ∈ Rd, v ∈ Rk, ‖u‖2 = ‖v‖2 = 1}
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Lifted objective

Lifting

Original objective :

J(W) := λ ‖σ(W)‖1 +Rn(W)

Lifted objective :

I(θ) := λ
∑

j∈supp(θ)

θj +Rn(Wθ)
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Equivalence

Equivalence
Assume that the loss function L(y, ·) is convex and smooth.
Then the two problems are equivalent
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Stochastic atom-descent descent : high-level idea

Sketch

At each iteration, pick a random mini-batch Bt, then pick the rank-1
subspace yielding the steepest descent, and perform descent along
that direction
Periodically perform second-order minimization on current subspace

θ1= + · · ·+ θi + · · ·

u1 ui

viv1

W
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Stochastic atom descent

Algorithm

Initialize : θ = 0

Iterate : pick a random mini-batch Bt, find coordinate θi of steepest
descent

i(t) = Arg max
i

∂IBt(θ)

∂θi

= Arg max
i

〈uivTi ,−∇RBt(Wθ)〉

= Arg max
‖u‖2=‖v‖2=1

uT (−∇RBt(Wθ))v .

then perform a 1D line-search along θi(t)

(θt+1,1, · · · , θt+1,i(t), · · · )← (θt,1, · · · , θt,i(t), · · · ) + δ(0, · · · , 1, · · · )
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Stochastic atom descent

Algorithm

Initialize : θ = 0

Iterate : pick a random mini-batch Bt, find coordinate θi of steepest
descent

i(t) = Arg max
i

∂IBt(θ)

∂θi

= Arg max
i

〈uivTi ,−∇RBt(Wθ)〉

= Arg max
‖u‖2=‖v‖2=1

uT (−∇RBt(Wθ))v .

then perform a 1D line-search along θi(t)

θt+1 ← θt + δet(i)
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Stochastic atom descent

Algorithm

Initialize : θ = 0

Iterate : pick a random mini-batch Bt, find coordinate θi of steepest
descent

Finding i(t) corresponds to
finding top singular vectors u1 and v1 of −∇RBt(Wθ)
Runtime : O(dk) (few Power/Lanczos iter.)
Descend along θi(t)

θt+1 ← θt + δei(t)

Wt+1 ←Wt + δutv
T
t

Periodically minimize I(θ) over supp(θ) up to optimality.
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Stochastic atom descent

Algorithm

Initialize : θ = 0

Iterate : pick a random mini-batch Bt, find coordinate θi of steepest
descent

Find i? corresponds to find top singular vectors u1 and v1 of
RBt(Wθ)
then descend along θi(t)
Periodically minimize I(θ) over supp(θ) up to optimality.
(quasi-)Newton method with box constraints
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Stochastic atom descent

Subspace acceleration
Let s = supp(θ) be the size of the support of θ at iteration t. Coordinates
of θ are re-ordered using indexes j = 1, . . . , s. min

θ1,...,θs
λ
∑s

j=1 θj +Remp

(∑s
j=1 θjujv

>
j

)
subject to θj ≥ 0 , j = 1, . . . , s

convex and smooth objective with simple box constraint
coordinate-descent works fine
Quasi-Newton algorithm with box constraints (L-BFGS-B) works fine
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Generalization to gauge regularization penalty

Properties

Ω(tW) = tΩ(W) for all W and t ≥ 0

Ω(W + W′) ≤ Ω(W) + Ω(W′) for all W and W′.

Additional properties
Assuming 0 ∈ intB, we also have

Ω(W) ≥ 0, with equality if and only if W = 0

{W : Ω(W) ≤ t} = tB for t ≥ 0, i.e., level sets are compact.

Polar duality

Support function : Ω◦(G) := supM∈B〈M,G〉 = supM∈M〈M,G〉.
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Beyond trace-norm

Different types of atomic decomposition

M`1-norm =
{
seje

T
` | s ∈ {−1, 1}

j ∈ {1, . . . , d}, ` ∈ {1, . . . , k}
}

M`1/`2-norm = {ejvT | j ∈ {1, . . . , d}, v ∈ Rk, ‖v‖2 = 1}
Mtrace-norm = {uvT | u ∈ Rd, v ∈ Rk, ‖u‖2 = ‖v‖2 = 1}

where (e1, · · · , ed) form the canonical basis of Rd.
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Experimental results

Benchmark

ImageNet dataset
Subset of classes “Vehicles262”, “Fungus134’, and “Ungulate183”

Fisher vector image representation (Perronnin & Dance, 2007)

1 Extracted SIFT and local color descriptors reduced to 128 D
2 Train a Gaussian mixture model of 16 centroids → Fisher vectors of

dim. 4096
3 Explicit embedding (Perronnin et al., 2010 ; Vedaldi & Zisserman,

2010)
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Experimental results

Computations on each mini-batch

1 parallelized objective evaluation and gradient evaluation
2 efficient matrix computations for high-dimensional features

Efficient strategy : training with compression and testing without
compression

1 product quantization of visual descriptors (Jegou et al., 2011)
2 during training, all matrix computations on features are performed in

the compressed domain
3 for testing, all matrix computations are performed on uncompressed

features
4 Note : compared to train/test without compression, average loss of

performance only of 0.9% on a subset of Vehicles with 10 categories.
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Experimental results

Classification accuracy comparison

Classification accuracy : top-k accuracy, i.e.

Accuracytop−k =
# images whose correct label lies in top-k scores

Total number of images

Competitors : our approach (TR-Multiclass) and k independently
trained one-vs-rest classifiers (OVR)
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Experimental results

Cheatsheet

OVR Minimize
W∈Rd×k

k∑
`=1

λ` ‖w`‖22 +
1

n

n∑
i=1

BinaryHingeLossi

L2-Multiclass Minimize
W∈Rd×k

λ‖W‖22 +
1

n

n∑
i=1

MultinomialLogisticLossi

TR-Multiclass Minimize
W∈Rd×k

λ‖σ(W)‖1 +
1

n

n∑
i=1

MultinomialLogisticLossi
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Experimental results
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A posteriori low-dimensional embedding
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Conclusion

Large-scale learning through decomposition

Stochastic gradient descent is a decomposition over examples
One-vs-rest is a decomposition over categories
Stochastic atom descent is a decomposition over latent structure
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Conclusion

Be your own cook

Mix these decompositions and come up with your own algorithms for
new problems
Implement your own codes and master the algorithm before using an
off-the-shelf implementation

Public code

Download it and start running your own large-scale experiments
Joust SGD : lear.inrialpes.fr/software
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