

Intro to Supervised Learning

Christoph Lampert IST Austria (Institute of Science and Technology Austria) Vienna, Austria

> ENS/INRIA Summer School Visual Recognition and Machine Learning Paris 2013

Slides available on my home page

http://www.ist.ac.at/~chl

More details on Max-Margin / Kernel Methods

Foundations and Trends in Computer Graphics and Vision,

www.nowpublishers.com/

Also as PDFs on my homepage

Automatic systems that analyzes and interprets visual data

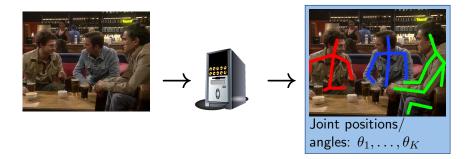
Image Understanding

Scene Classification

$$\rightarrow$$
 \rightarrow \rightarrow \rightarrow drinking

Action Classification

Object Recognition



Pose Estimation

Classification/ Regression today

Structured Prediction

today/Wednesday

- Scene Classification
- Action ClassificationObject Recognition

 - Face Detection
 - Sign Language Recognition
 - Pose Estimation
- Stereo Reconstruction
 Image Denoising

 - Semantic Image Segmentation
- - Clustering { Image Duplicate Detection

A Machine Learning View on Computer Vision Problems

- Classification Optical Character Recognition

It's difficult to program a solution to this. if (I[0,5]<128) & (I[0,6] > 192) & (I[0,7] < 128): return 'A' elif (I[7,7]<50) & (I[6,3]) != 0: return 'Q' else: print "I don't know this letter."

A Machine Learning View on Computer Vision Problems

- Classification Optical Character Recognition

It's difficult to program a solution to this. if (I[0,5]<128) & (I[0,6] > 192) & (I[0,7] < 128): return 'A' elif (I[7,7]<50) & (I[6,3]) != 0: return 'Q' else: print "I don't know this letter."

With Machine Learning, we can avoid this:

- We don't program a solution to the specific problem.
- ▶ We program a generic *classification* program.
- We solve the problem by *training* the classifier with examples.
- When a new font occurs: re-train, don't re-program

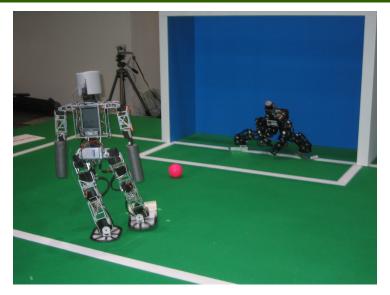
Classification Classification • Object Category Recognition

It's difficult impossible to program a solution to this. if ???

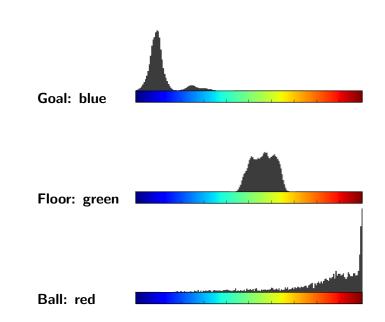
- With Machine Learning, we can avoid this:
 - We don't program a solution to the specific problem.
 - We re-use our previous classifier.
 - We solve the problem by training the classifier with examples.

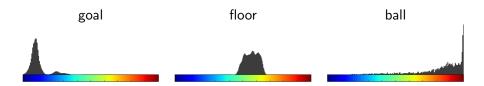
Classification

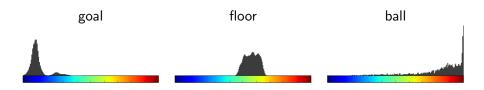
Example – RoboCup



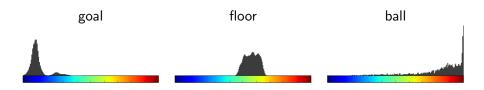
Goal: blue Floor: green/white Ball: red

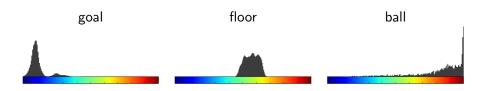


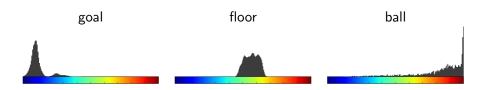


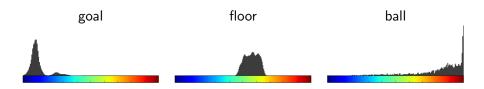


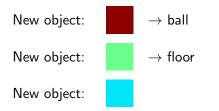
New object:

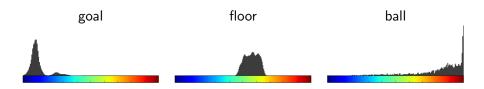


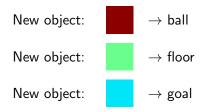


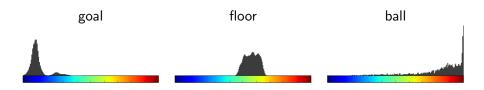




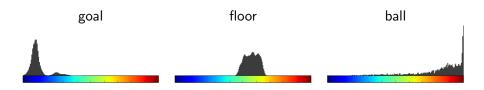












Notation...

▶ data:
$$x \in \mathcal{X} = \mathbb{R}^d$$
,

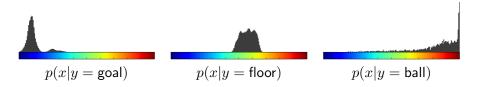
• labels:
$$y \in \mathcal{Y} = \{ \text{goal, floor, ball} \},$$

• goal: classification rule
$$g: \mathcal{X} \to \mathcal{Y}$$
.

(here: colors, d = 3) (here: object classes)

Histograms: class-conditional probability densities p(x|y). For any $y \in \mathcal{Y}$

$$\forall x \in \mathcal{X} : p(x|y) \ge 0$$
 $\sum_{x \in \mathcal{X}} p(x|y) = 1$



Assume: fourth class: sun, but occurs only outdoors

$$p(x|y = \text{goal})$$
 $p(x|y = \text{floor})$ $p(x|y = \text{ball})$ $p(x|y = \text{sun})$

Assume: fourth class: sun, but occurs only outdoors

$$p(x|y = \text{goal})$$
 $p(x|y = \text{floor})$ $p(x|y = \text{ball})$ $p(x|y = \text{sun})$

Maximum Likehood (ML) Rule: $g(x) = \operatorname{argmax}_{y \in \mathcal{Y}} p(x|y)$

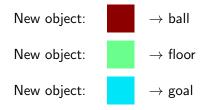
New object: \rightarrow ball

Assume: fourth class: sun, but occurs only outdoors

$$p(x|y = \text{goal})$$
 $p(x|y = \text{floor})$ $p(x|y = \text{ball})$ $p(x|y = \text{sun})$

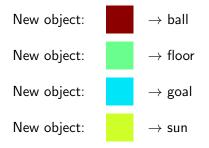
Assume: fourth class: sun, but occurs only outdoors

$$p(x|y = \text{goal})$$
 $p(x|y = \text{floor})$ $p(x|y = \text{ball})$ $p(x|y = \text{sun})$



Assume: fourth class: sun, but occurs only outdoors

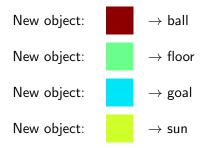
$$p(x|y = \text{goal})$$
 $p(x|y = \text{floor})$ $p(x|y = \text{ball})$ $p(x|y = \text{sun})$



Assume: fourth class: sun, but occurs only outdoors

$$p(x|y = \text{goal})$$
 $p(x|y = \text{floor})$ $p(x|y = \text{ball})$ $p(x|y = \text{sun})$

Maximum Likehood (ML) Rule: $g(x) = \operatorname{argmax}_{y \in \mathcal{Y}} p(x|y)$



We must take into account how likely it is to see a class at all!

Notation:

p

- \blacktriangleright class conditional densities: p(x|y) for all $y \in \mathcal{Y}$
- class priors: p(y) for all $y \in \mathcal{Y}$
- ▶ goal: decision rule $g : X \to Y$ that results in fewest mistakes

For any input $x \in \mathcal{X}$:

$$\begin{split} p(\textit{mistake}|x) &= \sum_{y \in \mathcal{Y}} p(y|x) \llbracket g(x) \neq y \rrbracket \qquad \qquad \llbracket P \rrbracket = \begin{cases} 1 & \text{if } P = \texttt{true} \\ 0 & \textit{otherwise} \end{cases} \\ (\textit{no mistake}|x) &= \sum_{y \in \mathcal{Y}} p(y|x) \llbracket g(x) = y \rrbracket = p(g(x)|x) \end{split}$$

Notation:

- \blacktriangleright class conditional densities: p(x|y) for all $y \in \mathcal{Y}$
- class priors: p(y) for all $y \in \mathcal{Y}$
- ▶ goal: decision rule $g : X \to Y$ that results in fewest mistakes

For any input $x \in \mathcal{X}$:

$$p(\textit{mistake}|x) = \sum_{y \in \mathcal{Y}} p(y|x) \llbracket g(x) \neq y \rrbracket \qquad \qquad \llbracket P \rrbracket = \begin{cases} 1 & \text{if } P = \texttt{true} \\ 0 & \textit{otherwise} \end{cases}$$

1

$$p(\textit{no mistake}|x) = \sum_{y \in \mathcal{Y}} p(y|x) \llbracket g(x) = y \rrbracket = p(g(x)|x)$$

Optimal decision rule: $g(x) = \operatorname{argmax}_{y \in \mathcal{Y}} p(y|x)$ "Bayes classifier"

How to get "class posterior" p(y|x)?

$$p(y|x) = rac{p(x|y)p(y)}{p(x)}$$
 (Bayes' rule)

- p(x|y): class conditional density (here: histograms)
- ▶ p(y): class priors, e.g. for indoor RoboCup p(floor) = 0.6, p(goal) = 0.3, p(ball) = 0.1, p(sun) = 0
- p(x): probability of seeing data x

Equivalent rules:

$$g(x) = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(y|x) = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \frac{p(x|y)p(y)}{p(x)}$$
$$= \underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(x|y)p(y)$$
$$= \underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(x,y)$$

Special case: binary classification, $\mathcal{Y} = \{-1,+1\}$

$$\underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(y|x) = \begin{cases} +1 & \text{if } p(+1|x) > p(-1|x), \\ -1 & \text{if } p(+1|x) \le p(-1|x). \end{cases}$$

Equivalent rules:

$$g(x) = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(y|x)$$

= sign $(p(+1|x) - p(-1|x))$
= sign $\log \frac{p(+1|x)}{p(-1|x)}$

With
$$\operatorname{sign}(t) := \begin{cases} +1 & \text{ if } t > 0, \\ -1 & \text{ otherwise.} \end{cases}$$

Loss Functions

Not all mistakes are equally bad:

- mistake opponent goal as your goal: You don't shoot, missed opportunity to score: bad
- mistake your goal as opponent goal: You shoot, score own-goal: much worse!

Formally:

- loss function, $\Delta : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
- $\Delta(y, \bar{y}) = \text{cost of predicting } \bar{y} \text{ if } y \text{ is correct.}$

Δ_{goals} :	$y \ \setminus \ ar{y}$	opponent	own
	opponent	0	2
	own	10	0

▶ Convention: $\Delta(y, y) = 0$ for all $y \in \mathcal{Y}$ (correct decision has 0 loss)

Loss Functions

Reminder: $\Delta(y, \bar{y}) = \text{cost of predicting } \bar{y} \text{ if } y \text{ is correct.}$

Optimal decision: choose $g:\mathcal{X} \to \mathcal{Y}$ to minimize the expected loss

$$\begin{split} L_{\Delta}(y;x) &= \sum_{\bar{y} \neq y} p(\bar{y}|x) \Delta(\bar{y},y) &= \sum_{\bar{y} \in \mathcal{Y}} p(\bar{y}|x) \Delta(\bar{y},y) \qquad (\Delta(y,y) = 0) \\ g(x) &= \operatorname*{argmin}_{y \in \mathcal{Y}} L_{\Delta}(y;x) & \text{pick label of smallest expected loss} \end{split}$$

Loss Functions

Reminder: $\Delta(y, \bar{y}) = \text{cost of predicting } \bar{y} \text{ if } y \text{ is correct.}$

Optimal decision: choose $g:\mathcal{X} \rightarrow \mathcal{Y}$ to minimize the expected loss

$$\begin{split} L_{\Delta}(y;x) &= \sum_{\bar{y} \neq y} p(\bar{y}|x) \Delta(\bar{y},y) &= \sum_{\bar{y} \in \mathcal{Y}} p(\bar{y}|x) \Delta(\bar{y},y) \qquad (\Delta(y,y) = 0) \\ g(x) &= \operatorname*{argmin}_{y \in \mathcal{Y}} L_{\Delta}(y;x) & \text{ pick label of smallest expected loss} \end{split}$$

Special case:
$$\Delta(y, \bar{y}) = \llbracket y \neq y \rrbracket$$
. E.g. $\frac{\begin{array}{c|c} 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 0 \end{array}$ (for 3 labels)
 $g_{\Delta}(x) = \operatorname*{argmin}_{y \in \mathcal{Y}} L_{\Delta}(y) = \operatorname*{argmin}_{y \in \mathcal{Y}} \sum_{\bar{y} \neq y} p(y|x) \llbracket y \neq y \rrbracket$
 $= \operatorname*{argmax}_{y \in \mathcal{Y}} p(y|x)$

 $(\rightarrow$ Bayes classifier)

Learning Paradigms

Given: training data
$$\{(x_1, y_1), \ldots, (x_n, y_n)\} \subset \mathcal{X} \times \mathcal{Y}$$

Approach 1) Generative Probabilistic Models

- 1) Use training data to obtain an estimate p(x|y) for any $y\in\mathcal{Y}$
- 2) Compute $p(y|x) \propto p(x|y)p(y)$
- 3) Predict using $g(x) = \operatorname{argmin}_y \sum_{\bar{y}} p(\bar{y}|x) \Delta(\bar{y}, y)$.

Approach 2) Discriminative Probabilistic Models

- 1) Use training data to estimate p(y|x) directly.
- 2) Predict using $g(x) = \operatorname{argmin}_y \sum_{\bar{y}} p(\bar{y}|x) \Delta(\bar{y}, y)$.

Approach 3) Loss-minimizing Parameter Estimation

1) Use training data to search for best $g: \mathcal{X} \to \mathcal{Y}$ directly.

Generative Probabilistic Models

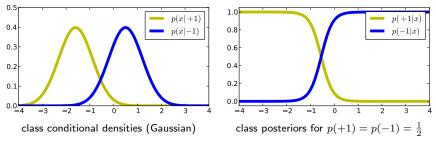
This is what we did in the RoboCup example!

- ▶ Training data $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, x_n\}$. $X \times Y \subset \mathcal{X} \times \mathcal{Y}$
- For each $y \in \mathcal{Y}$, build model for p(x|y) of $X_y := \{x_i \in X : y_i = y\}$
 - **Histogram:** if x can have only few discrete values.
 - ► Kernel Density Estimator: $p(x|y) \propto \sum_{x_i \in X_y} k(x_i, x)$
 - ► Gaussian: $p(x|y) = \mathcal{G}(x; \mu_y, \Sigma_y) \propto \exp(-\frac{1}{2}(x \mu_y)^\top \Sigma_y^{-1}(x \mu_y))$
 - Mixture of Gaussians: $p(x|y) = \sum_{k=1}^{K} \pi_y^k \mathcal{G}(x; \mu_y^k, \Sigma_y^k)$

Generative Probabilistic Models

This is what we did in the RoboCup example!

- ▶ Training data $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, x_n\}$. $X \times Y \subset \mathcal{X} \times \mathcal{Y}$
- ▶ For each $y \in \mathcal{Y}$, build model for p(x|y) of $X_y := \{x_i \in X : y_i = y\}$
 - **Histogram:** if x can have only few discrete values.
 - ► Kernel Density Estimator: $p(x|y) \propto \sum_{x_i \in X_n} k(x_i, x)$
 - ► Gaussian: $p(x|y) = \mathcal{G}(x; \mu_y, \Sigma_y) \propto \exp(-\frac{1}{2}(x \mu_y)^\top \Sigma_y^{-1}(x \mu_y))$
 - Mixture of Gaussians: $p(x|y) = \sum_{k=1}^{K} \pi_y^k \mathcal{G}(x; \mu_y^k, \Sigma_y^k)$



Generative Probabilistic Models

This is what we did in the RoboCup example!

- ▶ Training data $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, x_n\}$. $X \times Y \subset \mathcal{X} \times \mathcal{Y}$
- ▶ For each $y \in \mathcal{Y}$, build model for p(x|y) of $X_y := \{x_i \in X : y_i = y\}$
 - **Histogram:** if x can have only few discrete values.
 - ► Kernel Density Estimator: $p(x|y) \propto \sum_{x_i \in X_y} k(x_i, x)$
 - ► Gaussian: $p(x|y) = \mathcal{G}(x; \mu_y, \Sigma_y) \propto \exp(-\frac{1}{2}(x \mu_y)^\top \Sigma_y^{-1}(x \mu_y))$
 - Mixture of Gaussians: $p(x|y) = \sum_{k=1}^{K} \pi_y^k \mathcal{G}(x; \mu_y^k, \Sigma_y^k)$

Typically: $\mathcal Y$ small, i.e. few possible labels,

 ${\mathcal X}$ low-dimensional, e.g. RGB colors, ${\mathcal X}={\mathbb R}^3$

But: large $\mathcal Y$ is possible with right tools \to "Intro to graphical models"

Discriminative Probabilistic Models

Most popular: Logistic Regression

- ▶ Training data $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, y_n\}$. $X \times Y \subset \mathcal{X} \times \mathcal{Y}$
- To simplify notation: assume $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{\pm 1\}$
- Parametric model:

$$p(y|x) = \frac{1}{1 + \exp(-y \, w^{\mathsf{T}} x)}$$

with free parameter $w \in \mathbb{R}^d$

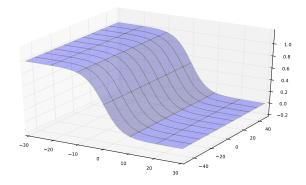
Discriminative Probabilistic Models

Most popular: Logistic Regression

- ▶ Training data $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, y_n\}$. $X \times Y \subset \mathcal{X} \times \mathcal{Y}$
- To simplify notation: assume $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{\pm 1\}$
- Parametric model:

$$p(y|x) = \frac{1}{1 + \exp(-y \, w^{\mathsf{T}} x)}$$

with free parameter $w \in \mathbb{R}^d$



Discriminative Probabilistic Models

Most popular: Logistic Regression

- ► Training data $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, y_n\}$. $X \times Y \subset \mathcal{X} \times \mathcal{Y}$
- To simplify notation: assume $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{\pm 1\}$
- Parametric model:

$$p(y|x) = \frac{1}{1 + \exp(-y \, w^\top x)} \qquad \text{with free parameter } w \in \mathbb{R}^d$$

Find w by maximizing the conditional data likelihood

$$w = \underset{w \in \mathbb{R}^d}{\operatorname{argmax}} \prod_{i=1}^n p(y_i | x_i)$$
$$= \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n \log \left(1 + \exp(-y_i \, w^\top x_i) \right)$$

Extensions to very large $\mathcal{Y} \longrightarrow$ "Structured Outputs (Wednesday)"

Loss-minimizing Parameter Estimation

- ► Training data $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, x_n\}$. $X \times Y \subset \mathcal{X} \times \mathcal{Y}$ ► Simplify: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{\pm 1\}$, $\Delta(y, \bar{y}) = [y \neq \bar{y}]$
- Choose hypothesis class: (which classifiers do we consider?)

 $\mathcal{H} = \{g : \mathcal{X} \to \mathcal{Y}\}$ (e.g. all linear classifiers)

• Expected loss of a classifier $h : \mathcal{X} \to \mathcal{Y}$ on a sample x

$$L(g, x) = \sum_{y \in \mathcal{Y}} p(y|x) \Delta(y, g(x))$$

Expected overall loss of a classifier:

$$L(g) = \sum_{x \in \mathcal{X}} p(x)L(g, x)$$

=
$$\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y)\Delta(y, g(x)) = \mathbb{E}_{x, y}\Delta(y, g(x))$$

▶ Task: find "best" g in \mathcal{H} , i.e. $g := \operatorname{argmin}_{g \in \mathcal{H}} L(g)$

Part II: $\mathcal{H} = \{ \text{linear classifiers} \}$

 $\label{eq:Part III:} \mathcal{H} = \{ \textbf{nonlinear classifiers} \}$

Part IV (if there's time): Multi-class Classification

Notation...

- ▶ data points $X = \{x_1, \ldots, x_n\}$, $x_i \in \mathbb{R}^d$, (think: feature vectors)
- ▶ class labels $Y = \{y_1, \ldots, y_n\}$, $y_i \in \{+1, -1\}$, (think: cat or no cat)
- goal: classification rule $g : \mathbb{R}^d \to \{-1, +1\}$.

Notation...

- ▶ data points $X = \{x_1, \ldots, x_n\}$, $x_i \in \mathbb{R}^d$, (think: feature vectors)
- ▶ class labels $Y = \{y_1, \dots, y_n\}$, $y_i \in \{+1, -1\}$, (think: cat or no cat)
- ▶ goal: classification rule $g : \mathbb{R}^d \to \{-1, +1\}.$
- ▶ parameterize $g(x) = \operatorname{sign} f(x)$ with $f : \mathbb{R}^d \to \mathbb{R}$:

$$f(x) = a^{1}x^{1} + a^{2}x^{2} + \dots + a^{n}x^{n} + a^{0}$$

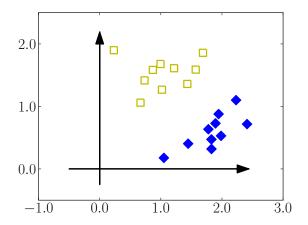
simplify notation: $\hat{x} = (1, x)$, $\hat{w} = (a^0, \dots, a^n)$:

$$f(x) = \langle \hat{w}, \hat{x} \rangle \qquad (\text{inner/scalar product in } \mathbb{R}^{d+1})$$
$$(\text{also: } \hat{w} \cdot \hat{x} \text{ or } \hat{w}^{\top} \hat{x})$$

▶ out of lazyness, we just write $f(x) = \langle w, x \rangle$ with $x, w \in \mathbb{R}^d$.

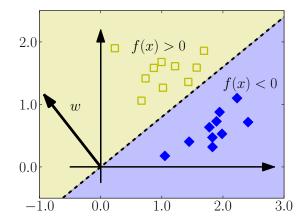
Linear Classification - the classical view

Given $X = \{x_1, \dots, x_n\}$, $Y = \{y_1, \dots, y_n\}$.



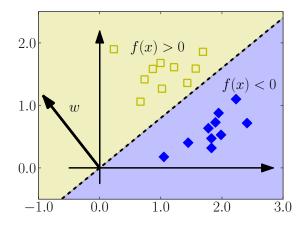
Linear Classification – the classical view

Given $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, y_n\}$. Any w partitions the data space into two half-spaces by means of $f(x) = \langle w, x \rangle$.



Linear Classification – the classical view

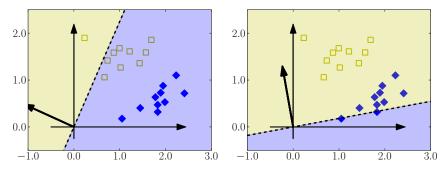
Given $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, y_n\}$. Any w partitions the data space into two half-spaces by means of $f(x) = \langle w, x \rangle$.



"What's the **best** w?"

What properties should an optimal w have?

Given
$$X = \{x_1, \dots, x_n\}$$
, $Y = \{y_1, \dots, y_n\}$.

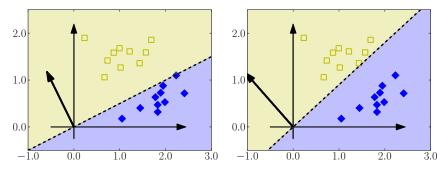


Are these the best? No, they misclassify many examples.

Criterion 1: Enforce sign $\langle w, x_i \rangle = y_i$ for i = 1, ..., n.

What properties should an optimal w have?

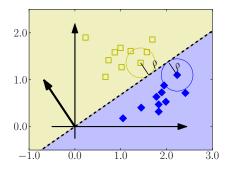
Given $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, y_n\}$. What's the best w?



Are these the best? No, they would be "risky" for future samples.

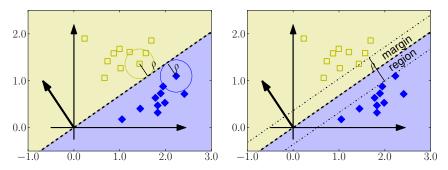
Criterion 2: Ensure sign $\langle w, x \rangle = y$ for future (x, y) as well.

Given $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, y_n\}$. Assume that future samples are *similar* to current ones. What's the best w?



Maximize "robustness": use w such that we can maximally perturb the input samples without introducing misclassifications.

Given $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, y_n\}$. Assume that future samples are *similar* to current ones. What's the best w?



Maximize "robustness": use w such that we can maximally perturb the input samples without introducing misclassifications.

Central quantity:

 $margin(x) = distance \ of \ x \ to \ decision \ hyperplane = \langle \frac{w}{\|w\|}, x \rangle$

Maximum-margin solution is determined by a maximization problem:

$$\max_{w\in\mathbb{R}^d,\gamma\in\mathbb{R}^+}\gamma$$

subject to

$$\operatorname{sign}\langle w, x_i \rangle = y_i \quad \text{for } i = 1, \dots n.$$

 $\left| \langle \frac{w}{\|w\|}, x_i \rangle \right| \ge \gamma \quad \text{for } i = 1, \dots n.$

Classify new samples using $f(x) = \langle w, x \rangle$.

Maximum-margin solution is determined by a maximization problem:

$$\max_{\substack{w \in \mathbb{R}^d, \|w\| = 1\\\gamma \in \mathbb{R}}} \gamma$$

subject to

$$y_i \langle w, x_i \rangle \ge \gamma$$
 for $i = 1, \dots n$.

Classify new samples using $f(x) = \langle w, x \rangle$.

We can rewrite this as a *minimization problem*:

$$\min_{w \in \mathbb{R}^d} \|w\|^2$$

subject to

$$y_i \langle w, x_i \rangle \ge 1$$
 for $i = 1, \dots n$.

Classify new samples using $f(x) = \langle w, x \rangle$.

Maximum Margin Classifier (MMC)

From the view of optimization theory

 $\min_{w \in \mathbb{R}^d} \quad \|w\|^2$

subject to

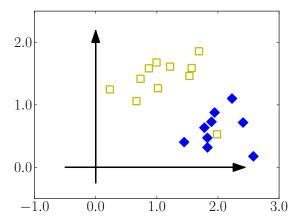
$$y_i \langle w, x_i \rangle \ge 1$$
 for $i = 1, \dots n$

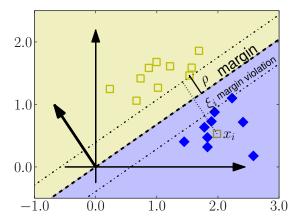
is rather easy:

- The objective function is differentiable and *convex*.
- The constraints are all linear.

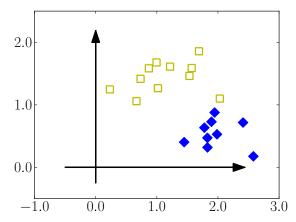
We can find the globally optimal w in $O(d^3)$ (usually much faster).

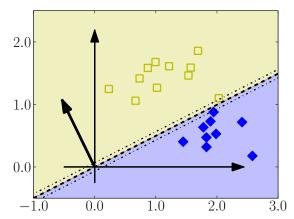
- There are no local minima.
- We have a definite stopping criterion.



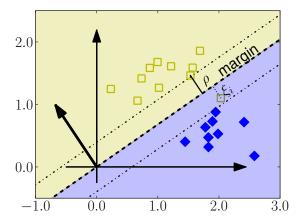


Possibly this one, even though one sample is misclassified.





Maybe not this one, even though all points are classified correctly.



Trade-off: large margin vs. few mistakes on training set

Soft-Margin Classification

Mathematically, we formulate the trade-off by *slack*-variables ξ_i :

$$\min_{w \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} \|w\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$

subject to

$$y_i \langle w, x_i \rangle \ge 1 - \xi_i$$
 for $i = 1, \dots n$,
 $\xi_i \ge 0$ for $i = 1, \dots, n$.

Linear Support Vector Machine (linear SVM)

Soft-Margin Classification

Mathematically, we formulate the trade-off by *slack*-variables ξ_i :

$$\min_{w \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} \|w\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$

subject to

$$y_i \langle w, x_i \rangle \ge 1 - \xi_i$$
 for $i = 1, \dots n$,
 $\xi_i \ge 0$ for $i = 1, \dots, n$.

Linear Support Vector Machine (linear SVM)

- We can fulfill *every* constraint by choosing ξ_i large enough.
- The larger ξ_i , the larger the objective (that we try to minimize).
- ► *C* is a *regularization*/trade-off parameter:
 - small $C \rightarrow$ constraints are easily ignored
 - \blacktriangleright large $C \rightarrow$ constraints are hard to ignore
 - ▶ $C = \infty \rightarrow$ hard margin case \rightarrow no errors on training set
- ▶ Note: The problem is still convex and efficiently solvable.

Solving for Soft-Margin Solution

Reformulate:

subject to

$$\begin{split}
\min_{w \in \mathbb{R}^{d}, \xi_{i} \in \mathbb{R}^{+}} \|w\|^{2} + \frac{C}{n} \sum_{i=1}^{n} \xi_{i} \\
y_{i} \langle w, x_{i} \rangle \geq 1 - \xi_{i} \quad \text{for } i = 1, \dots, n, \\
\xi_{i} \geq 0 \quad \text{for } i = 1, \dots, n.
\end{split}$$

We can read off the optimal values $\xi_i = \max\{0, 1 - y_i \langle w, x_i \rangle\}.$

Equivalent optimization problem (with $\lambda = 1/C$):

$$\min_{w \in \mathbb{R}^d} \lambda \|w\|^2 + \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y_i \langle w, x_i \rangle \}$$

- Now unconstrained optimization, but non-differentiable
- Solve efficiently, e.g., by subgradient method

 \rightarrow "Large-scale visual recognition" (Thursday)

Linear SVMs in Practice

Efficient software packages:

- b liblinear: http://www.csie.ntu.edu.tw/~cjlin/liblinear/
- SVMperf: http://www.cs.cornell.edu/People/tj/svm_light/svm_perf.html
- see also: Pegasos:, http://www.cs.huji.ac.il/~shais/code/
- See also: sgd:, http://leon.bottou.org/projects/sgd

Training time:

- approximately linear in data dimensionality
- approximately linear in number of training examples,

Evaluation time (per test example):

- linear in data dimensionality
- independent of number of training examples

Linear SVMs are currently the most frequently used classifiers in Computer Vision.

Geometric intuition is nice, but are there any guarantees?

 \blacktriangleright SVM solution is $~g(x)={\rm sign}\,f(x)~~{\rm for}~~f(x)=\langle w,x\rangle~~{\rm with}~~$

$$w = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \ \lambda \|w\|^2 + \ \frac{1}{n} \sum_{i=1}^n \max\{0, \ 1 - y_i \langle w, x_i \rangle \}$$

What we really wanted to minimized is expected loss:

$$g = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \ \mathbb{E}_{x,y} \ \Delta(y, g(x))$$

with $\mathcal{H} = \{ g(x) = \operatorname{sign} f(x) \mid f(x) = \langle w, x \rangle \text{ for } w \in \mathbb{R}^d \}.$

Geometric intuition is nice, but are there any guarantees?

▶ SVM solution is $g(x) = \operatorname{sign} f(x)$ for $f(x) = \langle w, x \rangle$ with

$$w = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \ \lambda \|w\|^2 + \ \frac{1}{n} \sum_{i=1}^n \max\{0, \ 1 - y_i \langle w, x_i \rangle \}$$

▶ What we really wanted to minimized is *expected loss*:

$$g = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \ \mathbb{E}_{x,y} \ \Delta(y, g(x))$$

with $\mathcal{H} = \{ g(x) = \operatorname{sign} f(x) \mid f(x) = \langle w, x \rangle \text{ for } w \in \mathbb{R}^d \}.$

Geometric intuition is nice, but are there any guarantees?

 \blacktriangleright SVM solution is $g(x) = \mathrm{sign}\, f(x)$ for $f(x) = \langle w, x \rangle$ with

$$w = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \ \lambda \|w\|^2 + \ \frac{1}{n} \sum_{i=1}^n \max\{0, \ 1 - y_i \langle w, x_i \rangle \}$$

▶ What we really wanted to minimized is *expected loss*:

$$g = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \ \mathbb{E}_{x,y} \ \Delta(y, g(x))$$

with
$$\mathcal{H} = \{ g(x) = \operatorname{sign} f(x) \mid f(x) = \langle w, x \rangle \text{ for } w \in \mathbb{R}^d \}.$$

Geometric intuition is nice, but are there any guarantees?

 \blacktriangleright SVM solution is $~g(x)={\rm sign}\,f(x)~~{\rm for}~~f(x)=\langle w,x\rangle~~{\rm with}~~$

$$w = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \ \lambda \|w\|^2 + \ \frac{1}{n} \sum_{i=1}^n \max\{0, \ 1 - y_i \langle w, x_i \rangle \}$$

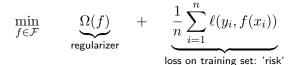
▶ What we really wanted to minimized is *expected loss*:

$$g = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \ \mathbb{E}_{x,y} \ \Delta(y, g(x))$$

with $\mathcal{H} = \{ g(x) = \operatorname{sign} f(x) \mid f(x) = \langle w, x \rangle \text{ for } w \in \mathbb{R}^d \}.$

SVM training is an example of **Regularized Risk Minimization**.

General form:



Support Vector Machine:

$$\min_{w \in \mathbb{R}^d} \qquad \lambda \|w\|^2 \quad + \quad \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y_i \langle w, x_i \rangle\}$$

$$\begin{array}{l} \blacktriangleright \ \mathcal{F} = \{f(x) = \langle w, x \rangle | w \in \mathbb{R}^d\} \\ \blacktriangleright \ \Omega(f) = \|w\|^2 \ \text{ for any } f(x) = \langle w, x \rangle \\ \blacktriangleright \ \ell(y, f(x)) = \max\{0, 1 - yf(x)\} \ (\textit{Hinge loss}) \end{array}$$

Observation 1: The empirical loss approximates the expected loss. For *i.i.d.* training examples $(x_1, y_1), \ldots, (x_n, y_n)$:

$$\mathbb{E}_{x,y}(\Delta(y,g(x))) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \Delta(y,g(x)) \approx \frac{1}{n} \sum_{i=1}^{n} \Delta(y_i,g(x_i))$$

Observation 1: The empirical loss approximates the expected loss. For *i.i.d.* training examples $(x_1, y_1), \ldots, (x_n, y_n)$:

$$\mathbb{E}_{x,y}(\Delta(y,g(x))) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \Delta(y,g(x)) \approx \frac{1}{n} \sum_{i=1}^{n} \Delta(y_i,g(x_i))$$

Observation 2: The Hinge loss upper bounds the 0/1-loss. For $\Delta(y, \bar{y}) = [\![y \neq \bar{y}]\!]$ and $g(x) = \operatorname{sign} \langle w, x \rangle$ one has

$$\Delta(\,y,g(x)\,) = [\![y\langle w,x\rangle < 0]\!] \ \le \ \max\{0,1-y\langle w,x\rangle\}$$

Linear Classification - the modern view: the loss term

Observation 1: The empirical loss approximates the expected loss. For *i.i.d.* training examples $(x_1, y_1), \ldots, (x_n, y_n)$:

$$\mathbb{E}_{x,y}(\Delta(y,g(x))) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \Delta(y,g(x)) \approx \frac{1}{n} \sum_{i=1}^{n} \Delta(y_i,g(x_i))$$

Observation 2: The Hinge loss upper bounds the 0/1-loss. For $\Delta(y, \bar{y}) = [\![y \neq \bar{y}]\!]$ and $g(x) = \operatorname{sign}\langle w, x \rangle$ one has

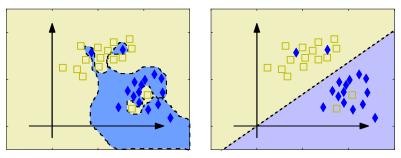
$$\Delta(\,y,g(x)\,) = [\![y\langle w,x\rangle < 0]\!] \ \le \ \max\{0,1-y\langle w,x\rangle\}$$

Combination:

$$\mathbb{E}_{x,y}ig(\Delta(y,g(x))ig) \quad \lesssim \quad rac{1}{n}\sum_i \max\{0,1-y_i\langle w,x_i
angle\}$$

Intuition: small "risk" term in SVM \rightarrow few mistakes in the future

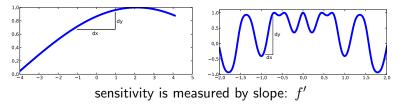
Observation 3: Only minimizing the loss term can lead to overfitting.



We want classifiers that have small loss, but are **simple** enough to generalize.

Linear Classification - the modern view: the regularizer

Ad-hoc definition: a function $f : \mathbb{R}^d \to \mathbb{R}$ is *simple*, if it not very sensitive to the exact input



For linear $f(x) = \langle w, x \rangle$, slope is $\|\nabla_x f\| = \|w\|$:

Minimizing $||w||^2$ encourages "simple" functions

Formal results, including proper bounds on the generalization error: e.g. [Shawe-Taylor, Cristianini: "Kernel Methods for Pattern Analysis", Cambridge U Press, 2004]

Other classifiers based on Regularized Risk Minimization

There are many other RRM-based classifiers, including variants of SVM:

L1-regularized Linear SVM

$$\min_{w \in \mathbb{R}^d} \qquad \lambda \|w\|_{L^1} \quad + \quad \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y_i \langle w, x_i \rangle\}$$

 $\|w\|_{L^1} = \sum_{j=1}^d |w_j|$ encourages sparsity

- \blacktriangleright learned weight vector w will have many zero entries
- acts as feature selector
- \blacktriangleright evaluation $f(x) = \langle w, x \rangle$ becomes more efficient

Use if you have prior knowledge that optimal classifier should be sparse.

SVM with squared slacks / squared Hinge loss

$$\begin{split} \min_{w\in\mathbb{R}^d} \quad \lambda \|w\|^2 \quad + \quad \frac{1}{n}\sum_{i=1}^n \xi_i^2 \\ \text{subject to} \qquad y_i \langle w, x_i \rangle \geq 1-\xi_i \quad \text{and} \quad \xi_i \geq 0. \end{split}$$

Equivalently:

$$\min_{w \in \mathbb{R}^d} \qquad \lambda \|w\|_{L^1} + \frac{1}{n} \sum_{i=1}^n (\max\{0, 1 - y_i \langle w, x_i \rangle\})^2$$

Also has a max-margin interpretation, but objective is once differentiable.

Least-Squares SVM aka Ridge Regression

$$\min_{w \in \mathbb{R}^d} \qquad \lambda \|w\|^2 \quad + \quad \frac{1}{n} \sum_{i=1}^n (1 - y_i \langle w, x_i \rangle)^2$$

Loss function: $\ell(y, f(x)) = (y - f(x))^2$ "squared loss"

 \blacktriangleright Easier to optimize than regular SVM: closed-form solution for w

$$w = y^{\top} (\lambda \mathsf{Id} + XX^{\top})^{-1} X^{\top}$$

▶ But: loss does not really reflect *classification*: $\ell(y, f(x))$ can be big, even if sign f(x) = y

Regularized Logistic Regression

$$\min_{w \in \mathbb{R}^d} \qquad \lambda \|w\|^2 \quad + \quad \frac{1}{n} \sum_{i=1}^n \log(1 + \exp(-y_i \langle w, x_i \rangle))$$

Loss function: $\ell(y, f(x)) = \log(1 + \exp(-y_i \langle w, x_i \rangle))$ "logistic loss"

- Smooth (C^{∞} -differentiable) objective
- Often similar results to SVM

Summary – Linear Classifiers

(Linear) Support Vector Machines

- geometric intuition: maximum margin classifier
- well understood theory: regularized risk minimization

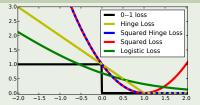
Summary – Linear Classifiers

(Linear) Support Vector Machines

- geometric intuition: maximum margin classifier
- well understood theory: regularized risk minimization

Many variants of losses and regularizers

- first: try $\Omega(\cdot) = \|\cdot\|^2$
- encourage sparsity: $\Omega(\cdot) = \| \cdot \|_{L^1}$
- differentiable losses: easier numeric optimization



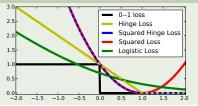
Summary – Linear Classifiers

(Linear) Support Vector Machines

- geometric intuition: maximum margin classifier
- well understood theory: regularized risk minimization

Many variants of losses and regularizers

- first: try $\Omega(\cdot) = \|\cdot\|^2$
- encourage sparsity: $\Omega(\cdot) = \| \cdot \|_{L^1}$
- differentiable losses: easier numeric optimization

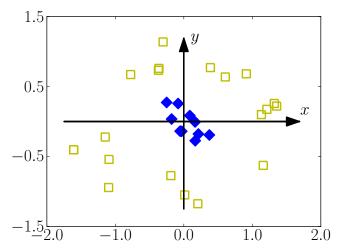


Fun fact: different losses often have similar empirical performance

don't blindly believe claims "My classifier is the best."

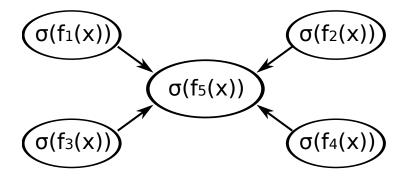
Nonlinear Classification

What is the best linear classifier for this dataset?



None. We need something nonlinear!

Idea 1) Combine multiple linear classifiers into nonlinear classifier



Boosting

Situation:

we have many simple classifiers (typically linear),

$$h_1,\ldots,h_k:\mathcal{X}\to\{\pm 1\}$$

none of them is particularly good

Method:

construct stronger nonlinear classifier:

$$g(x) = \operatorname{sign} \sum_{j} \alpha_j h_j(x) \quad \text{with } \alpha_j \in \mathbb{R}$$

▶ typically: iterative construction for finding $\alpha_1, \alpha_2, \ldots$

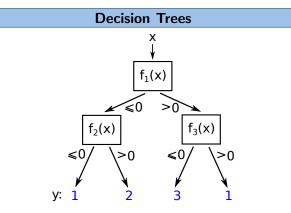
Advantage:

very easy to implement

Disadvantage:

- computationally expensive to train
- finding base classifiers can be hard

Nonlinear Classification: Decision Tree



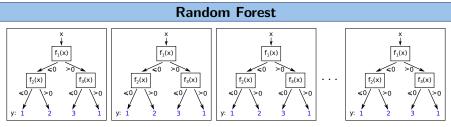
Advantage:

- easy to interpret
- handles multi-class situation

Disadvantage:

by themselves typically worse results than other modern methods

Nonlinear Classification: Random Forest



Method:

- construct many decision trees randomly (under some constraints)
- classify using majority vote

Advantage:

- conceptually easy
- works surprisingly well

Disadvantage:

- computationally expensive to train
- expensive at test time if forest has many trees

Artificial Neural Network / Multilayer Perceptron / Deep Learning

Multi-layer architecture:

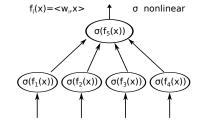
- ▶ first layer: inputs x
- ► each layer k evaluates f^k₁,..., f^k_m feeds output to next layer
- ► last layer: output y

Advantage:

- biologically inspired \rightarrow easy to explain to non-experts
- efficient at evaluation time

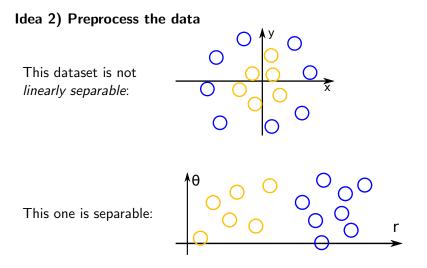
Disadvantage:

- non-convex optimization problem
- many design parameters, few theoretic results



 $[\]rightarrow$ "Deep Learning" (Tuesday)

Nonlinearity: Data Preprocessing



But: both are the same dataset!

Top: Cartesian coordinates. Bottom: polar coordinates

Nonlinearity: Data Preprocessing

Idea 2) Preprocess the data Nonlinear separation: Linear Separation

Linear classifier in polar space acts nonlinearly in Cartesian space.

Generalized Linear Classifier

Given

•
$$X = \{x_1, \dots, x_n\}, Y = \{y_1, \dots, y_n\}.$$

• Given any (nonlinear) feature map $\phi : \mathbb{R}^k \to \mathbb{R}^m$.

Solve the minimization for $\phi(x_1), \ldots, \phi(x_n)$ instead of x_1, \ldots, x_n :

$$\min_{w \in \mathbb{R}^m, \xi_i \in \mathbb{R}^+} \|w\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$

subject to

$$y_i \langle w, \phi(x_i) \rangle \ge 1 - \xi_i$$
 for $i = 1, \dots n$.

• The weight vector w now comes from the target space \mathbb{R}^m .

• Distances/angles are measure by the inner product $\langle ., . \rangle$ in \mathbb{R}^m .

• Classifier $f(x) = \langle w, \phi(x) \rangle$ is *linear* in w, but *nonlinear* in x.

Example Feature Mappings

Polar coordinates:

$$\phi: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \sqrt{x^2 + y^2} \\ \angle(x, y) \end{pmatrix}$$

d-th degree polynomials:

$$\phi: (x_1, \dots, x_n) \mapsto (1, x_1, \dots, x_n, x_1^2, \dots, x_n^2, \dots, x_1^d, \dots, x_n^d)$$

► Distance map:

$$\phi: \vec{x} \mapsto \left(\|\vec{x} - \vec{p}_i\|, \dots, \|\vec{x} - \vec{p}_N\| \right)$$

for a set of N prototype vectors $\vec{p_i}$, $i = 1, \ldots, N$.

Representer Theorem

Solve the soft-margin minimization for $\phi(x_1), \ldots, \phi(x_n) \in \mathbb{R}^m$:

$$\min_{w \in \mathbb{R}^{m}, \xi_{i} \in \mathbb{R}^{+}} \|w\|^{2} + \frac{C}{n} \sum_{i=1}^{n} \xi_{i}$$
(1)

subject to

$$y_i \langle w, \phi(x_i) \rangle \ge 1 - \xi_i$$
 for $i = 1, \dots n$.

For large m, won't solving for $w \in \mathbb{R}^m$ become impossible?

Representer Theorem

Solve the soft-margin minimization for $\phi(x_1), \ldots, \phi(x_n) \in \mathbb{R}^m$:

$$\min_{w \in \mathbb{R}^{m}, \xi_{i} \in \mathbb{R}^{+}} \|w\|^{2} + \frac{C}{n} \sum_{i=1}^{n} \xi_{i}$$
(1)

subject to

$$y_i \langle w, \phi(x_i) \rangle \ge 1 - \xi_i$$
 for $i = 1, \dots n$.

For large m, won't solving for $w \in \mathbb{R}^m$ become impossible? No!

Theorem (Representer Theorem)

The minimizing solution w to problem (1) can always be written as

$$w = \sum_{j=1}^{n} \alpha_j \phi(x_j)$$
 for coefficients $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$.

[Schölkopf, Smola, "Learning with Kernels", 2001]

Rewrite the optimization using the representer theorem:

- insert $w = \sum_{j=1}^{n} \alpha_j \phi(x_j)$ everywhere,
- minimize over α_i instead of w.

$$\min_{w \in \mathbb{R}^{m}, \xi_{i} \in \mathbb{R}^{+}} \|w\|^{2} + \frac{C}{n} \sum_{i=1}^{n} \xi_{i}$$

subject to

$$y_i \langle w, \phi(x_i) \rangle \ge 1 - \xi_i$$
 for $i = 1, \dots n$.

Rewrite the optimization using the representer theorem:

- insert $w = \sum_{j=1}^{n} \alpha_j \phi(x_j)$ everywhere,
- minimize over α_i instead of w.

$$\min_{\alpha_i \in \mathbb{R}, \xi_i \in \mathbb{R}^+} \|\sum_{j=1}^n \alpha_j \phi(x_j)\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$

subject to

$$y_i \langle \sum_{j=1}^n \alpha_j \phi(x_j), \phi(x_i) \rangle \ge 1 - \xi_i \qquad \text{for } i = 1, \dots n.$$

The former m-dimensional optimization is now n-dimensional.

Rewrite the optimization using the representer theorem:

- insert $w = \sum_{j=1}^{n} \alpha_j \phi(x_j)$ everywhere,
- minimize over α_i instead of w.

$$\min_{\alpha_i \in \mathbb{R}, \xi_i \in \mathbb{R}^+} \sum_{j,k=1}^n \alpha_j \alpha_k \langle \phi(x_j), \phi(x_k) \rangle + \frac{C}{n} \sum_{i=1}^n \xi_i$$

subject to

$$y_i \sum_{j=1}^n \alpha_j \langle \phi(x_j), \phi(x_i) \rangle \ge 1 - \xi_i$$
 for $i = 1, \dots n$.

Rewrite the optimization using the representer theorem:

- insert $w = \sum_{j=1}^{n} \alpha_j \phi(x_j)$ everywhere,
- minimize over α_i instead of w.

$$\min_{\alpha_i \in \mathbb{R}, \xi_i \in \mathbb{R}^+} \sum_{j,k=1}^n \alpha_j \alpha_k \langle \phi(x_j), \phi(x_k) \rangle + \frac{C}{n} \sum_{i=1}^n \xi_i$$

subject to

$$y_i \sum_{j=1}^n \alpha_j \langle \phi(x_j), \phi(x_i) \rangle \ge 1 - \xi_i$$
 for $i = 1, \dots n$.

Note: ϕ only occurs in $\langle \phi(.), \phi(.) \rangle$ pairs.

Set $\langle \phi(x), \phi(x') \rangle =: k(x, x')$, called kernel function.

$$\min_{\alpha_i \in \mathbb{R}, \xi_i \in \mathbb{R}^+} \sum_{j,k=1}^n \alpha_j \alpha_k k(x_j, x_k) + \frac{C}{n} \sum_{i=1}^n \xi_i$$

subject to

$$y_i \sum_{j=1}^n \alpha_j k(x_j, x_i) \ge 1 - \xi_i$$
 for $i = 1, \dots n$.

Set $\langle \phi(x), \phi(x') \rangle =: k(x, x')$, called kernel function.

$$\min_{\alpha_i \in \mathbb{R}, \xi_i \in \mathbb{R}^+} \sum_{j,k=1}^n \alpha_j \alpha_k k(x_j, x_k) + \frac{C}{n} \sum_{i=1}^n \xi_i$$

subject to

$$y_i \sum_{j=1}^n \alpha_j k(x_j, x_i) \ge 1 - \xi_i \qquad \text{for } i = 1, \dots n.$$

To train, we only need to know the **kernel matrix** $K \in \mathbb{R}^{n \times n}$

$$K_{ij} := k(x_i, x_j)$$

To evaluate on new data x, we need values $k(x_1, x), \ldots, k(x_n, x)$:

$$f(x) = \langle w, \phi(x) \rangle = \sum_{i=1}^{n} \alpha_i k(x_i, x)$$

More elegant: dualize using Lagrangian multipliers

$$\max_{y_i \in \mathbb{R}^+} \quad -\frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j k(x_i, x_j) + \sum_{i=1}^n \alpha_i$$

subject to

0

$$0 \le \alpha_i \le \frac{C}{n}$$
 for $i = 1, \dots, n$

Support-Vector Machine (SVM)

Optimization be solved numerically by any **quadratic program (QP)** solver but specialized software packages are more efficient.

Why use k(x,x') instead of $\langle \phi(x), \phi(x') angle?$

1) Memory usage:

- ▶ Storing $\phi(x_1), \ldots, \phi(x_n)$ requires O(nm) memory.
- ▶ Storing $k(x_1, x_1), \ldots, k(x_n, x_n)$ requires $O(n^2)$ memory.

Why use k(x,x') instead of $\langle \phi(x),\phi(x') angle?$

1) Memory usage:

- ▶ Storing $\phi(x_1), \ldots, \phi(x_n)$ requires O(nm) memory.
- ▶ Storing $k(x_1, x_1), \ldots, k(x_n, x_n)$ requires $O(n^2)$ memory.

2) Speed:

▶ We might find an expression for $k(x_i, x_j)$ that is faster to calculate than forming $\phi(x_i)$ and then $\langle \phi(x_i), \phi(x_j) \rangle$.

Example: comparing angles $(x \in [0, 2\pi])$

$$\phi: x \mapsto (\cos(x), \sin(x)) \in \mathbb{R}^2$$

$$\langle \phi(x_i), \phi(x_j) \rangle = \langle (\cos(x_i), \sin(x_i)), (\cos(x_j), \sin(x_j)) \rangle = \cos(x_i) \cos(x_j) + \sin(x_i) \sin(x_j)$$

Why use k(x,x') instead of $\langle \phi(x),\phi(x') angle?$

1) Memory usage:

- Storing $\phi(x_1), \ldots, \phi(x_n)$ requires O(nm) memory.
- ▶ Storing $k(x_1, x_1), \ldots, k(x_n, x_n)$ requires $O(n^2)$ memory.

2) Speed:

▶ We might find an expression for $k(x_i, x_j)$ that is faster to calculate than forming $\phi(x_i)$ and then $\langle \phi(x_i), \phi(x_j) \rangle$.

Example: comparing angles $(x \in [0, 2\pi])$

$$\phi: x \mapsto (\cos(x), \sin(x)) \in \mathbb{R}^2$$

$$\langle \phi(x_i), \phi(x_j) \rangle = \langle (\cos(x_i), \sin(x_i)), (\cos(x_j), \sin(x_j)) \rangle = \cos(x_i) \cos(x_j) + \sin(x_i) \sin(x_j) = \cos(x_i - x_j)$$

Equivalently, but faster, without ϕ :

$$k(x_i, x_j) := \cos(x_i - x_j)$$

3) Flexibility:

- One can think of kernels as measures of similarity.
- Any similarity measure $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ can be used, as long as it is
 - ▶ symmetric: k(x', x) = k(x, x') for all $x, x' \in \mathcal{X}$
 - positive definite: for any set of points $x_1, \ldots, x_n \in \mathcal{X}$

$$K_{ij} = (k(x_i, x_j))_{i,j=1,\dots,n}$$

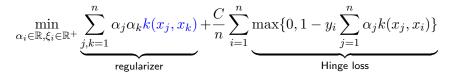
is a positive (semi-)definite matrix, i.e. for all vectors $t \in \mathbb{R}^n$:

$$\sum_{i,j=1}^{n} t_i K_{ij} t_j \ge 0.$$

▶ Using functional analysis one can show that for these k(x, x'), a feature map $\phi : \mathcal{X} \to \mathcal{F}$ exists, such that $k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{F}}$

Regularized Risk Minimization View

We can interpret the kernelized SVM as loss and regularizer:



for

$$f(x) = \sum_{i=1}^{n} \alpha_i k(x_i, x)$$

Data dependent hypothesis class

$$\mathcal{H} = \{\sum_{i=1}^{n} \alpha_i k(x_i, x) : \alpha \in \mathbb{R}^n\} \quad \text{for training set } x_1, \dots, x_n.$$

Nonlinear functions, spanned by basis functions centered at training points.

Popular kernel functions in Computer Vision

"Linear kernel": identical solution as linear SVM

$$k(x, x') = x^{\top} x' = \sum_{i=1}^{d} x_i x'_i$$

- ▶ "Hellinger kernel": less sensitive to extreme value in feature vector $k(x, x') = \sum_{i=1}^{d} \sqrt{x_i x'_i} \qquad \text{for } x = (x_1, \dots, x_d) \in \mathbb{R}^d_+$
- "Histogram intersection kernel": very robust

$$k(x, x') = \sum_{i=1}^{d} \min(x_i, x'_i) \quad \text{for } x \in \mathbb{R}^d_+$$

• " χ^2 -distance kernel": good empirical results

$$k(x,x') = -\chi^2(x,x') = -\sum_{i=1}^d \frac{(x_i - x'_i)^2}{x_i + x'_i}$$
 for $x \in \mathbb{R}^d_+$

Popular kernel functions in Computer Vision

• "Gaussian kernel": overall most popular kernel in Machine Learning

$$k(x, x') = \exp(-\lambda ||x - x'||^2)$$

• "(Exponentiated) χ^2 -kernel": best results in many benchmarks

$$k(x,x') = \exp(-\lambda \chi^2(x,x'))$$
 for $x \in \mathbb{R}^d_+$

"Fisher kernel": good results and allows for efficient training

$$k(x, x') = [\nabla p(x; \Theta)]^\top F^{-1} [\nabla p(x'; \Theta)]$$

- ▶ $p(x; \Theta)$ is generative model of the data, i.e. Gaussian Mixture Model
- ∇p is gradient of the density function w.r.t. the parameter Θ
- ► F is the Fisher Information Matrix

SVMs with nonlinear kernel are commonly used for small to medium sized Computer Vision problems.

- Software packages:
 - libSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
 - SVMlight: http://svmlight.joachims.org/
- Training time is
 - typically cubic in number of training examples.
- Evaluation time:
 - typically linear in number of training examples.
- Classification accuracy is typically higher than with linear SVMs.

Observation 1: Linear SVMs are **very fast** in training and evaluation.

Observation 2: Nonlinear kernel SVMs give **better results**, but do not scale well (with respect to number of training examples)

Can we combine the strengths of both approaches?

Observation 1: Linear SVMs are **very fast** in training and evaluation.

Observation 2: Nonlinear kernel SVMs give **better results**, but do not scale well (with respect to number of training examples)

Can we combine the strengths of both approaches?

Yes! By (approximately) going back to explicit feature maps.

[Maji, Berg, Malik, "Classification using intersection kernel support vector machines is efficient", CVPR 2008] [Rahimi, "Random Features for Large-Scale Kernel Machines", NIPS, 2008]

Core Facts

▶ For every positive definite kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, there exists (implicit) $\phi : \mathcal{X} \to \mathcal{F}$ such that

$$k(x, x') = \langle \phi(x), \phi(x') \rangle.$$

- ▶ In case that $\phi : \mathcal{X} \to \mathbb{R}^D$, training a kernelized SVMs yields the same prediction function as
 - preprocessing the data: make every x into a $\phi(x)$,
 - training a linear SVM on the new data.

Problem: ϕ is generally unknown, and $\dim \mathcal{F} = \infty$ is possible

Core Facts

▶ For every positive definite kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, there exists (implicit) $\phi : \mathcal{X} \to \mathcal{F}$ such that

$$k(x, x') = \langle \phi(x), \phi(x') \rangle.$$

- ▶ In case that $\phi : \mathcal{X} \to \mathbb{R}^D$, training a kernelized SVMs yields the same prediction function as
 - preprocessing the data: make every x into a $\phi(x)$,
 - training a linear SVM on the new data.

Problem: ϕ is generally unknown, and dim $\mathcal{F} = \infty$ is possible

Idea: Find approximate $\tilde{\phi} : \mathcal{X} \to \mathbb{R}^D$ such that

 $k(x,x') ~\approx~ \langle \tilde{\phi}(x), \tilde{\phi}(x') \rangle$

For some kernels, we can find an explicit feature map:

Example: Hellinger kernel

$$k_H(x, x') = \sum_{i=1}^d \sqrt{x_i x'_i} \quad \text{for } x \in \mathbb{R}^d_+.$$

Set $\phi_H(x) := \left(\sqrt{x_1}, \dots, \sqrt{x_d}\right)$:

$$\langle \phi_H(x), \phi_H(x') \rangle_{\mathbb{R}^d} = \sum_{i=1}^d \sqrt{x_i} \sqrt{x'_i} = k_H(x, x')$$

We can train a linear SVM on \sqrt{x} instead of a kernelized SVM with k_H .

Explicit Feature Maps

When there is no exact feature map, we can look for approximations:

Example: χ^2 -distance kernel

$$k_{\chi^2}(x, x') = \sum_{i=1}^d \frac{x_i x'_i}{x_i + x'_i}$$

set $\phi(x) := \left(\sqrt{x_i}, \sqrt{2\pi x_i} \cos(\log x_i), \sqrt{2\pi x_i} \sin(\log x_i)\right)_{i=1,\dots,d}$ $\langle \phi(x), \phi(x') \rangle_{\mathbb{R}^{3d}} \approx k_{\chi^2}(x, x')$

Current state-of-the-art in large-scale nonlinear learning.

[A. Vedaldi, A. Zisserman, "Efficient Additive Kernels via Explicit Feature Maps", TPAMI 2011]

Other Supervised Learning Methods Multiclass SVMs

What if $\mathcal{Y} = \{1, \dots, K\}$ with K > 2?

Some classifiers works naturally also for multi-class

Nearest Neigbhor, Random Forests, ...

SVMs don't. We need to modify them:

- ► Idea 1: decompose multi-class into several binary problems
 - One-versus-Rest
 - One-versus-One
- ► Idea 2: generalize SVM objective to multi-class situation
 - Crammer-Singer SVM

Reductions: Multiclass SVM to Binary SVMs

Most common: One-vs-Rest (OvR) training

- For each class y, train a separate binary SVM, $f_y : \mathcal{X} \to \mathbb{R}$.
 - Positive examples: $X_+ = \{x_i : y_i = y\}$
 - ▶ Negative examples: $X_{-} = \{x_i : y_i \neq y\}$ (aka "the rest")
- ▶ Final decision: $g(x) = \operatorname{argmax}_{y \in \mathcal{Y}} f_y(x)$

Advantage:

- easy to implement
- works well, if implemented correctly

Disadvantage:

- ▶ Training problems often unbalanced, $|X_-| \gg |X_+|$
- ranges of the f_y are no calibrated to each other.

Reductions: Multiclass SVM to Binary SVMs

Also popular: One-vs-One (OvO) training

- ▶ For each pair of classes $y \neq y'$, train a separate binary SVM, $f_{yy'} : \mathcal{X} \to \mathbb{R}$.
 - Positive examples: $X_+ = \{x_i : y_i = y\}$
 - ▶ Negative examples: $X_- = \{x_i : y_i = y'\}$ (aka "the rest")
- ► Final decision: majority vote amongst all classifiers

Advantage:

- easy to implement
- training problems approximately balanced

Disadvantage:

- number of SVMs to train grows *quadratically* in $|\mathcal{Y}|$
- less intuitive decision rule

Crammer-Singer SVM

Standard setup:

- $f_y(x) = \langle w, x \rangle$ (also works kernelized)
- decision rule: $g(x) = \operatorname{argmax}_{y \in \mathcal{Y}} f_y(x)$
- ▶ 0/1-loss: $\Delta(y, \bar{y}) = \llbracket y \neq \bar{y} \rrbracket$

What's a good multiclass loss function?

$$\begin{split} g(x^i) &= y^i \quad \Leftrightarrow \quad y^i = \operatornamewithlimits{argmax}_{y \in \mathcal{Y}} f_y(x^i) \\ &\Leftrightarrow \quad f_{y^i}(x^i) > \max_{y \neq y^i} f_y(x^i) \\ &\Leftrightarrow \quad \underbrace{f_{y^i}(x^i) - \max_{y \neq y^i} f_y(x^i)}_{\text{takes role of } y\langle w, x \rangle} > 0 \end{split}$$

$$\ell(y^{i}, f_{1}(x^{i}), \dots, f_{K}(x^{i})) = \max\{0, 1 - \left(f_{y^{i}}(x^{i}) - \max_{y \neq y^{i}} f_{y}(x^{i})\right)\}$$

Multiclass SVMs – Crammer-Singer SVM

Regularizer:
$$\Omega(f_1, \dots, f_K) = \sum_{k=1}^K ||w_k||^2$$

Together:

$$\min_{w_1,\dots,w_K \in \mathbb{R}^d} \sum_{k=1}^K \|w_k\|^2 + \frac{C}{n} \sum_{i=1}^n \max\{0, 1 - \left(f_{y^i}(x^i) - \max_{y \neq y^i} f_y(x^i)\right)\}$$

Equivalently:

$$\min_{\substack{w_1, \dots, w_K \in \mathbb{R}^d \\ \xi_1, \dots, x_i_n \in \mathbb{R}^+}} \sum_{k=1}^K \|w_k\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$

subject to, for
$$i=1,\ldots,n,$$
 $f_{y^i}(x^i)-\max_{y\neq y^i}f_y(x^i)\geq 1-\xi_i.$

Interpretation:

- ▶ One-versus-Rest: correct class has margin at least 1 to origin.
- \blacktriangleright Cramer-Singer: correct class has margin at least 1 to all other classes

- Many technique based on stacking:
 - boosting, random forests, deep learning, ...
 - powerful, but sometimes hard to train (non-convex \rightarrow local optima)
- Generalized linear classification with SVMs
 - conceptually simple, but powerful by using kernels
 - convex optimization, solvable to global optimality

- Many technique based on stacking:
 - boosting, random forests, deep learning, ...
 - powerful, but sometimes hard to train (non-convex \rightarrow local optima)
- Generalized linear classification with SVMs
 - conceptually simple, but powerful by using kernels
 - convex optimization, solvable to global optimality
- Kernelization is implicit application of a feature map
 - the method can become nonlinear in the original data
 - the method is still linear in parameter space

- Many technique based on stacking:
 - boosting, random forests, deep learning, ...
 - powerful, but sometimes hard to train (non-convex \rightarrow local optima)
- Generalized linear classification with SVMs
 - conceptually simple, but powerful by using kernels
 - convex optimization, solvable to global optimality
- Kernelization is implicit application of a feature map
 - the method can become nonlinear in the original data
 - the method is still linear in parameter space
- Kernels are at the same time
 - similarity measures between arbitrary objects
 - inner products in a (hidden) feature space

- Many technique based on stacking:
 - boosting, random forests, deep learning, ...
 - powerful, but sometimes hard to train (non-convex \rightarrow local optima)
- Generalized linear classification with SVMs
 - conceptually simple, but powerful by using kernels
 - convex optimization, solvable to global optimality
- Kernelization is implicit application of a feature map
 - the method can become nonlinear in the original data
 - the method is still linear in parameter space
- Kernels are at the same time
 - similarity measures between arbitrary objects
 - inner products in a (hidden) feature space
- ▶ For large datasets, kernelized SVMs are inefficient
 - construct explicit feature map (approximate if necessary)

What did we not see?

We have skipped a large part of theory on kernel methods:

- Optimization
 - Dualization
- Numerics
 - Algorithms to train SVMs
- Statistical Interpretations
 - What are our assumptions on the samples?
- Generalization Bounds
 - ▶ Theoretic guarantees on what accuracy the classifier will have!

This and much more in standard references, e.g.

- Schölkopf, Smola: "Learning with Kernels", MIT Press (50 EUR/60\$)
- Shawe-Taylor, Cristianini: "Kernel Methods for Pattern Analysis", Cambridge University Press (60 EUR/75\$)