
OverviewOverview

• Local invariant features (C. Schmid)

• Matching and recognition with local features (J. Sivic)

• Efficient visual search (J. Sivic)

• Very large scale search (C. Schmid)

• Practical session

Image search system for large datasetsImage search system for large datasets

Large image dataset
(one million images or more)(one million images or more)

Image search

ranked image listquery

Image search
system

• Issues for very large databases
• to reduce the query timeq y
• to reduce the storage requirements
• with minimal loss in retrieval accuracy

Large scale object/scene recognitionLarge scale object/scene recognition
Image dataset:

k d i li t

> 1 million images

query

Image search
system

ranked image list
q y

• Each image described by approximately 2000 descriptors
2 * 109 descriptors to index for one million images!– 2 109 descriptors to index for one million images!

• Database representation in RAM:Database representation in RAM:
– Size of descriptors : 1 TB, search+memory intractable

Bag-of-words [Sivic & Zisserman’03]g
centroids

(visual words)Set of SIFT
descriptors

Query
image [Nister & al 04, Chum & al 07]

Hessian-Affine
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

sparse frequency vector

g g

[Mikolajezyk & Schmid 04]
[Lowe 04]

Inverted

• Visual Words

• 1 word (index) per local descriptor

l i id i i d fil queryingInverted
file

• only images ids in inverted file

 8 GB for a million images, fits in RAM

ranked imageG t iRe ranked

• Problem: Matching approximation

ranked image
short-list

Geometric
verification

Re-ranked
list

[Lowe 04, Chum & al 2007]

Approximate nearest neighbour (ANN) evaluation of bag-of-
features

ANN algorithms returns a
list of potential 0 6

0.7

k=100 p
neighbors

Accuracy: NN recall
= probability that the

0.5

0.6
200

500
= probability that the
NN is in this list

Ambiguity removal: 0.4

ec
al

l

1000

2000 g y
= proportion of vectors
in the short-list0.3N

N
 r

e

5000

10000
20000

In BOF, this trade-off is
managed by the

0.2

20000
30000

50000

g y
number of clusters k0.1

BOW
0
1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

rate of points retrieved

BOW

20K visual word: false matches

200K visual word: good matches missed

Problem with bag-of-features

• The intrinsic matching scheme performed by BOF is weak

f “ ll” i l di ti t f l t h• for a “small” visual dictionary: too many false matches

• for a “large” visual dictionary: many true matches are missed

• No good trade-off between “small” and “large” !

• either the Voronoi cells are too big

• or these cells can’t absorb the descriptor noise

 intrinsic approximate nearest neighbor search of BOF is not
sufficient

• Possible solutions

 Soft assignment [Philbin et al. CVPR’08]

 Additional short codes [Jegou et al. ECCV’08]

Hamming Embedding

• Representation of a descriptor x
• Vector-quantized to q(x) as in standard BOFVector quantized to q(x) as in standard BOF
+ short binary vector b(x) for an additional localization in the Voronoi cell

• Two descriptors x and y match iif
where h(a,b) is the Hamming distance

• Nearest neighbors for Hamming distance the ones for Euclidean distance

• Efficiency
• Hamming distance = very few operations
• Fewer random memory accesses: 3faster that BOF with same dictionary size!

Hamming Embedding

• Off-line (given a quantizer)

d th l j ti t i P f i d × d• draw an orthogonal projection matrix P of size db × d

 this defines db random projection directions

• for each Voronoi cell and projection direction compute the median value• for each Voronoi cell and projection direction, compute the median value
from a learning set

• On-line: compute the binary signature b(x) of a given descriptor

• project x onto the projection directions as z(x) = (z1,…zdb)

• bi(x) = 1 if zi(x) is above the learned median value, otherwise 0

[H. Jegou et al., Improving bag of features for large scale image search, ICJV’10]

Hamming and Euclidean neighborhood

• trade-off between
memory usage and

1

y g
accuracy

 more bits yield higher
accuracy

0.8

ca
ll)

accuracy

I ti 64 bit (8 b t)

0.6

tri
ev

ed
 (r

ec

In practice 64 bits (8 bytes)

0.4

f 5
-N

N
 re

t

0.2

ra
te

 o
f

8 bits
16 bit

0

16 bits
32 bits
64 bits

128 bits
0

0 0.2 0.4 0.6 0.8 1
rate of cell points retrieved

ANN evaluation of Hamming Embedding

0 6

0.7

k=100
32 28

24

0.5

0.6
200

500
20

22
compared to BOW: at
least 10 times less points
in the short list for the

0.4

ec
al

l

1000

2000

18

in the short-list for the
same level of accuracy

0.3N
N

 r
e

5000

10000
20000

ht=16 Hamming Embedding
provides a much better
trade-off between recall

0.2

20000
30000

50000

trade off between recall
and ambiguity removal

0.1

HE+BOW
BOW

0
1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

rate of points retrieved

BOW

Matching points - 20k word vocabulary

201 matches 240 matches

Many matches with the non-corresponding image!

Matching points - 200k word vocabulary

69 matches 35 matches

Still many matches with the non-corresponding one

Matching points - 20k word vocabulary + HE

83 matches 8 matches

10x more matches with the corresponding image!

Bag-of-features [Sivic&Zisserman’03]Bag of features [Sivic&Zisserman 03]

sparse freq enc ector

centroids
(visual words)

Set of SIFT
descriptors

Query
image

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

sparse frequency vector

queryingInverted queryingfile

ranked imageGeometricRe-ranked g
short-listverificationlist

[Chum & al. 2007]

Geometric verification

Use the position and shape of the underlying features
t i t i l litto improve retrieval quality

Both images have many matches – which is correct?g y

Geometric verification

We can measure spatial consistency between the query
d h l i i l liand each result to improve retrieval quality

Many spatially consistent
matches – correct result

Few spatially consistent
matches – incorrectmatches – correct result matches – incorrect

result

Geometric verification

Gives localization of the object

Re-ranking based on geometric verificationRe ranking based on geometric verification
• works very well
• but performed on a short-list only (100 - 1000 images)

 for very large datasets, the number of distracting images is so high
that relevant images are not even short-listed!that relevant images are not even short-listed!

 weak geometry
1

0 7

0.8

0.9

or
t-l

is
te

d 20 images
100 images
1000 images

short-list size:

0 4

0.5

0.6

0.7

ev
an

t i
m

ag
es

 sh
o

0.2

0.3

0.4

ra
te

 o
f r

el
e

0

0.1

1000 10000 100000 1000000dataset size

Weak geometry consistencyWeak geometry consistency

• Weak geometric information used for all images (not only the short list)• Weak geometric information used for all images (not only the short-list)

• Each invariant interest region detection has a scale and rotation angle g g
associated, here characteristic scale and dominant gradient orientation

Scale change 2
Rotation angle ca. 20 degrees

• Each matching pair results in a scale and angle difference

• For the global image scale and rotation changes are roughly consistent

WGC: orientation consistencyGC o e tat o co s ste cy

Max = rotation angle between images

WGC: scale consistency

Weak geometry consistencyWeak geometry consistency

Integration of the geometric verification into the BOF• Integration of the geometric verification into the BOF
– votes for an image in two quantized subspaces, i.e. for angle & scale
– these subspace are show to be roughly independentthese subspace are show to be roughly independent
– final score: filtering for each parameter (angle and scale)

• Only matches that do agree with the main difference of
orientation and scale will be taken into account in the final
score

Re ranking sing f ll geometric transformation still adds• Re-ranking using full geometric transformation still adds
information in a final stage

Experimental results

• Evaluation for the INRIA holidays dataset, 1491 images

• 500 query images + 991 annotated true positives• 500 query images + 991 annotated true positives

• Most images are holiday photos of friends and family

• 1 million & 10 million distractor images from Flickr• 1 million & 10 million distractor images from Flickr

• Vocabulary construction on a different Flickr set

Al t l ti h d• Almost real-time search speed

E l ti t i i i (i [0 1] bi b tt)• Evaluation metric: mean average precision (in [0,1], bigger = better)

• Average over precision/recall curve

Holiday dataset – example queries

Dataset : Venice Channel

Query Base 2Base 1

Base 4Base 3

Dataset : San Marco square

Query Base 1 Base 3Base 2Query Base 1 Base 3Base 2

Base 4 Base 5 Base 7Base 6

Base 9Base 8

Example distractors - Flickr

Experimental evaluationp

• Evaluation on our holidays dataset, 500 query images, 1 million distracter
imagesg

• Metric: mean average precision (in [0,1], bigger = better)

• 0 8

• 0.9

• 1
•baseline

•WGC
•HE

•WGC+HE
•+re-ranking

Average query time (4 CPU cores) • 0.6

• 0.7

0.8

P

Compute descriptors 880 ms

Quantization 600 ms
0 3

• 0.4

• 0.5

•m
A

P

Search – baseline 620 ms

Search – WGC 2110 ms

S h HE 200
• 0.1

• 0.2

• 0.3

Search – HE 200 ms

Search – HE+WGC 650 ms
• 0

•1000000•100000•10000•1000
•database size

Results – Venice Channel

Base 1 Flickr

Query

Flickr Base 4

Query

Demo at http://bigimbaz.inrialpes.fr

Towards large-scale image searchTowards large scale image search

BOF+inverted file can handle up to 10 millions images• BOF+inverted file can handle up to ~10 millions images
– with a limited number of descriptors per image RAM: 40GB
– search: 2 secondssearch: 2 seconds

• Web-scale = billions of imagesg
– with 100 M per machine search: 20 seconds, RAM: 400 GB
– not tractable

• Solution: represent each image by one compressed vector

Very large scale image search

description ector

centroids
(visual words)Set of SIFT

descriptors
Query
image

Hessian-Affine
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

description vector

[Mikolajezyk & Schmid 04]
[Lowe 04]

Vector
compressioncompression

• Each image is represented by one vector
(Bag-of-features VLAD Fisher GIST)

Vector
search

(Bag of features, VLAD, Fisher, GIST)

•Vector compression to reduce storage
requirements and search time

ranked imageGeometricRe-ranked

requirements and search time

g
short-listverificationlist

[Lowe 04, Chum & al 2007]

Related work on very large scale image search

 Min-hash and geometrical min-hash [Chum et al. 07-09]
 Compressing the BoF representation (miniBof) [Jegou et al. 09]
 require hundreds of bytes to obtain a “reasonable quality”q y q y

GIST d i t ith S t l H hi [W i t l ’08] GIST descriptors with Spectral Hashing [Weiss et al.’08]
 very limited invariance to scale/rotation/crop

Global scene context – GIST descriptor + spectral hashing

 The “GIST” of a scene: Oliva & Torralba (2001)

 5 frequency bands and 6 orientations for each image location
 Tiling of the image (windowing) Tiling of the image (windowing)
 ~ 900 dimensions

 Spectral hashing produces binary codes, similar to spectral clustering

Related work on very large scale image search

 Min-hash and geometrical min-hash [Chum et al. 07-09]
 Compressing the BoF representation (miniBof) [Jegou et al. 09]
 require hundreds of bytes to obtain a “reasonable quality”q y q y

GIST d i t ith S t l H hi [W i t l ’08] GIST descriptors with Spectral Hashing [Weiss et al.’08]
 very limited invariance to scale/rotation/crop

 Efficient object category recognition using classemes [Torresani et al.’10]

 Aggregating local descriptors into a compact image representation [Jegou&al.’10,‘12]

Aggregating local descriptors into a compact image representation

 Aim: improving the tradeoff between
► search speed
► memory usage
► search quality

 Approach: joint optimization of three stages
► local descriptor aggregation
► dimension reduction► dimension reduction
► indexing algorithm

Image representation
VLAD

PCA +
PQ codes

(Non) – exhaustive
searchVLAD PQ codes search

Local desc. aggregation Dimension reduction Indexing algorithm

Aggregation of local descriptors

 Problem: represent an image by a single fixed-size vector:

set of n local descriptors → 1 vector

 Most popular idea: BoF representation [Sivic & Zisserman 03]p p p []
► sparse vector
► highly dimensional
significant dimensionality reduction introduces loss→ significant dimensionality reduction introduces loss

 Alternative: VLAD descriptor [VLAD = vector of locally aggregated
descriptors]
► non sparse vectorsp
► excellent results with low dimensional vectors

VLAD : vector of locally aggregated descriptors

 Learning: a vector quantifier (k-means)
► output: k centroids (visual words): c1,…,ci,…ck

► centroid ci has dimension d

 For a given image
► assign each descriptor to closest center ci

► accumulate (sum) descriptors per cell► accumulate (sum) descriptors per cell
vi := vi + (x - ci)

VLAD (di i D k d)
x

 VLAD (dimension D = k x d)

 The vector is L2-normalized ci

VLADs for corresponding images

v1 v2 v3 ...

SIFT-like representation per centroid (+ components: blue, - components: red)

VLAD performance and dimensionality reduction

 We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%)
 Dimension is reduced to from D to D’ dimensions with PCA

Aggregator k D D’=D
(no reduction)

D’=128 D’=64

BoF 1,000 1,000 41.4 44.4 43.4

BoF 20,000 20,000 44.6 45.2 44.5

BoF 200 000 200 000 54 9 43 2 41 6BoF 200,000 200,000 54.9 43.2 41.6

VLAD 16 2,048 49.6 49.5 49.4

VLAD 64 8 192 52 6 51 0 47 7

 Observations:

VLAD 64 8,192 52.6 51.0 47.7

VLAD 256 32,768 57.5 50.8 47.6

 Observations:
► VLAD better than BoF for a given descriptor size
► Choose a small D if output dimension D’ is small

Product quantization for nearest neighbor search

 Vector split into m subvectors:

S b t ti d t l b ti Subvectors are quantized separately by quantizers
where each is learned by k-means with a limited number of centroids

 Example: y = 128-dim vector split in 8 subvectors of dimension 16
► each subvector is quantized with 256 centroids -> 8 bit
► very large codebook 256^8 ~ 1 8x10^19► very large codebook 256^8 ~ 1.8x10^19

16 components

y1 y2 y3 y4 y5 y6 y7 y8

q1 q2 q3 q4 q5 q6 q7 q8
256

centroids 1 2 3 4 5 6 7 8

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8)

centroids

8 bits
⇒ 8 subvectors x 8 bits = 64-bit quantization index

Optimizing the dimension reduction and quantization together

 VLAD vectors undergoes two approximations
► mean square error from PCA projection
► mean square error from quantization

 Given k and bytes/image, choose D’ minimizing their sum

Results on Holidays dataset:
- there exists an optimal D’
- 16 byte best results for k=6416 byte best results for k 64
- 320 byte best results for k=256

ADC t i di tADC = asymmetric distance
computation

Joint optimization of VLAD and dimension reduction-indexing

 For VLAD
► The larger k, the better the raw search performance
► But large k produce large vectors, that are harder to index

 Optimization of the vocabulary size
► Fixed output size (in bytes)
► D’ computed from k via the joint optimization of reduction/indexing

 end-to-end parameter optimization

Results on the Holidays dataset with various quantization parameters

Results on standard datasets

 Datasets
► University of Kentucky benchmark score: nb relevant images, max: 4
► INRIA Holidays dataset score: mAP (%)

M th d b t UKB H lidMethod bytes UKB Holidays
BoF, k=20,000 10K 2.92 44.6

BoF k 200 000 12K 3 06 54 9BoF, k=200,000 12K 3.06 54.9

miniBOF 20 2.07 25.5

miniBOF 160 2.72 40.3

VLAD k=16, ADC 16 x 8 16 2.88 46.0

VLAD k=64, ADC 32 x10 40 3.10 49.5

D’ =64 for k=16 and D’ =96 for k=64
ADC (subvectors) x (bits to encode each subvector)

miniBOF: “Packing Bag-of-Features”, ICCV’09

ADC (subvectors) x (bits to encode each subvector)

Large scale experiments (10 million images)

 Exhaustive search of VLADs, D’=64
► 4.77s

 With the product quantizer
► Exhaustive search with ADC: 0.29s
► Non-exhaustive search with IVFADC: 0.014s

IVFADC -- Combination with an inverted fileIVFADC Combination with an inverted file

Large scale experiments (10 million images)

0 7

0.8

0.6

0.7

0 4

0.5

@
10

0

Timings

0.3

0.4

re
ca

ll@

4.768s

g

0 1

0.2 BOF D=200k
VLAD k=64

VLAD k=64, D'=96

ADC: 0.286s
IVFADC: 0.014s

SH ≈ 0 267s

0

0.1

1000 10k 100k 1M 10M

,
VLAD k=64, ADC 16 bytes

VLAD+Spectral Hashing, 16 bytes

SH ≈ 0.267s

1000 10k 100k 1M 10M
Database size: Holidays+images from Flickr

Conclusion & future work

 Excellent search accuracy and speed in 10 million of images

 Each image is represented by very few bytes (20 – 40 bytes)

 Tested on up to 220 million video frames
► extrapolation for 1 billion images: 20GB RAM, query time < 1s on 8 cores

 On-line available: Matlab source code for product quantizer

 Alternative: using Fisher vectors instead of VLAD descriptors [Perronnin’10]

 Extension to video & more “semantic” search

Event retrieval in large video collections [Revaud et al. 2013]

Video description

frame t VLAD descriptor, reduced to 512D with PCA

Comparison of two videos

•query

Comparison of two videos

•database
• video

Fast calculation in the frequency domain + product quantization

