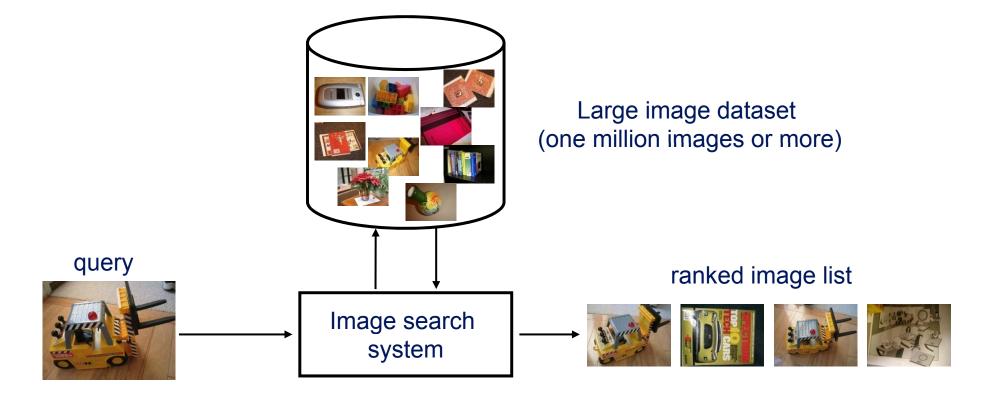
Overview

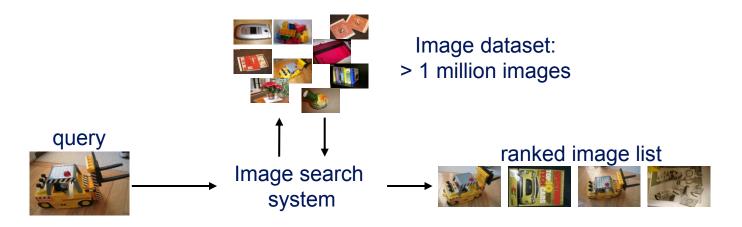
- Local invariant features (C. Schmid)
- Matching and recognition with local features (J. Sivic)
- Efficient visual search (J. Sivic)
- Very large scale search (C. Schmid)
- Practical session

Image search system for large datasets



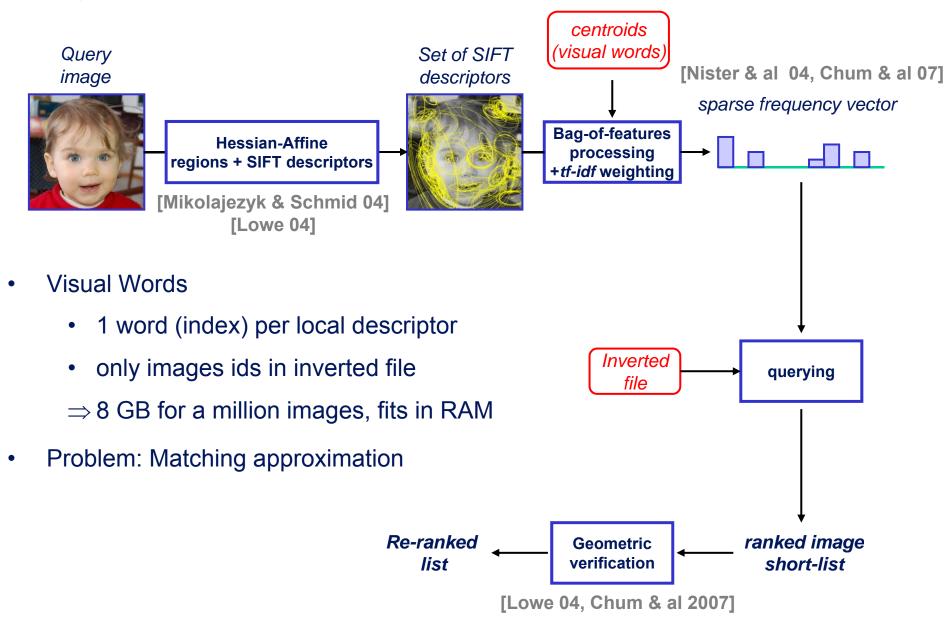
- **Issues** for very large databases
 - to reduce the query time
 - to reduce the storage requirements
 - with minimal loss in retrieval accuracy

Large scale object/scene recognition

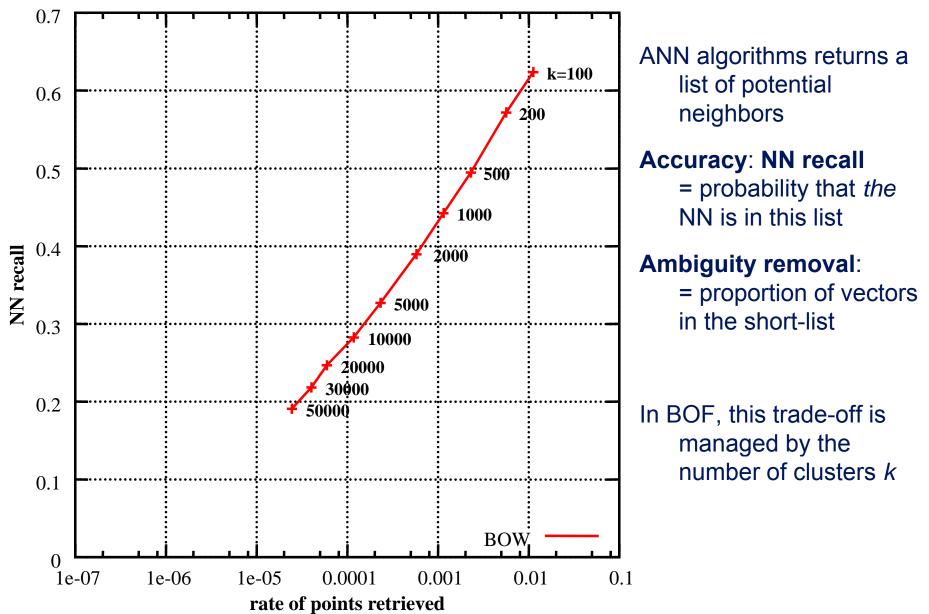


- Each image described by approximately 2000 descriptors
 - -2×10^9 descriptors to index for one million images!
- Database representation in RAM:
 - Size of descriptors : 1 TB, search+memory intractable

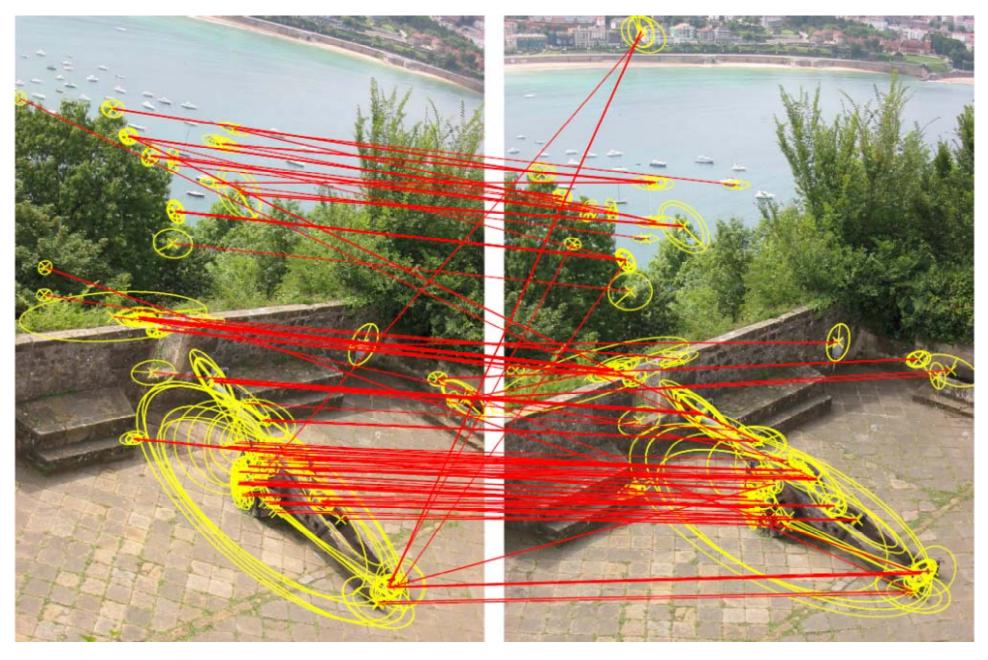
Bag-of-words [Sivic & Zisserman'03]



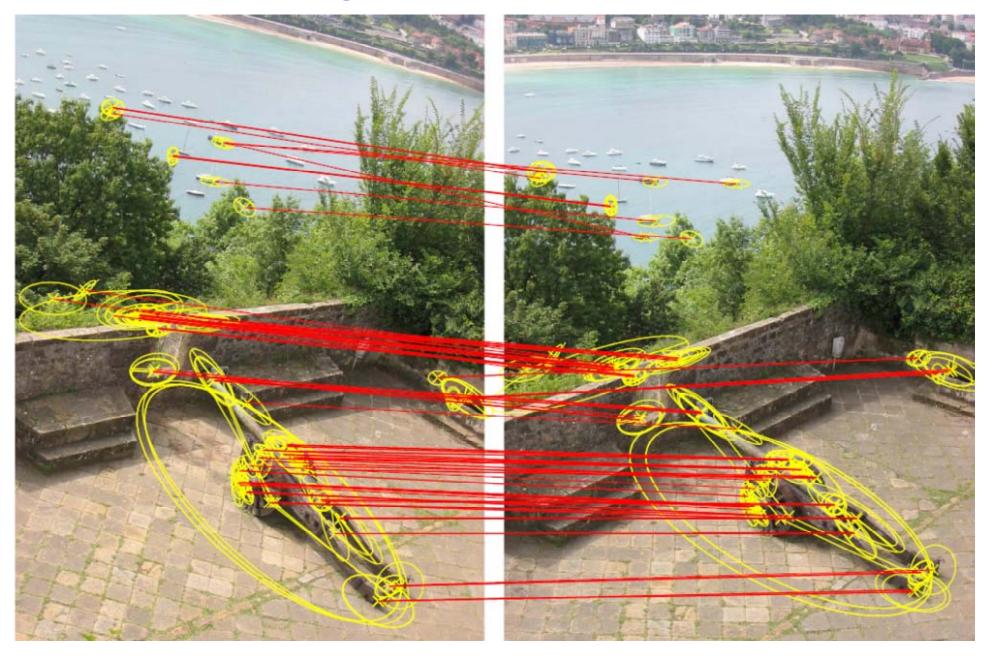
Approximate nearest neighbour (ANN) evaluation of bag-offeatures



20K visual word: false matches



200K visual word: good matches missed



Problem with bag-of-features

- The intrinsic matching scheme performed by BOF is weak
 - for a "small" visual dictionary: too many false matches
 - for a "large" visual dictionary: many true matches are missed
- No good trade-off between "small" and "large" !
 - either the Voronoi cells are too big
 - or these cells can't absorb the descriptor noise
 - → intrinsic approximate nearest neighbor search of BOF is not sufficient
 - Possible solutions
 - Soft assignment [Philbin et al. CVPR'08]
 - > Additional short codes [Jegou et al. ECCV'08]

Hamming Embedding

- Representation of a descriptor *x*
 - Vector-quantized to q(x) as in standard BOF
 - + short binary vector b(x) for an additional localization in the Voronoi cell
- Two descriptors x and y match iif

$$q(x) = q(y)$$
 and $h(b(x), b(y)) \le h_t$

01

11

00

10

where h(*a*,*b*) is the Hamming distance

- Nearest neighbors for Hamming distance \approx the ones for Euclidean distance
- Efficiency
 - Hamming distance = very few operations
 - Fewer random memory accesses: 3×faster that BOF with same dictionary size!

Hamming Embedding

- Off-line (given a quantizer)
 - draw an orthogonal projection matrix P of size $d_b \times d$
 - \rightarrow this defines d_b random projection directions
 - for each Voronoi cell and projection direction, compute the median value from a learning set

01

11

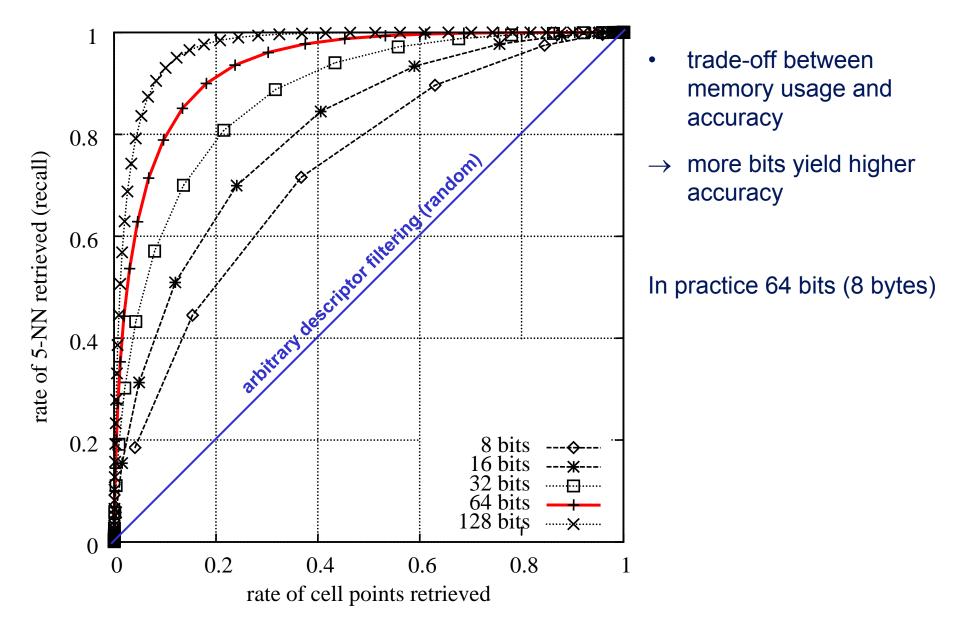
00

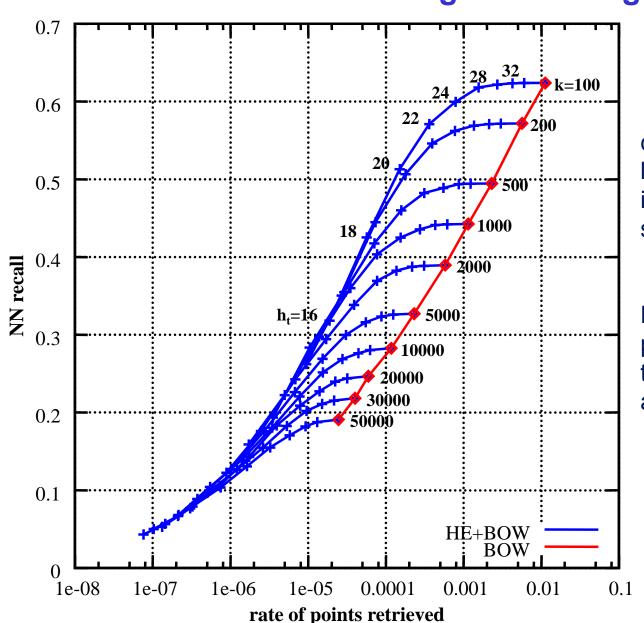
10

- **On-line**: compute the binary signature b(x) of a given descriptor
 - project x onto the projection directions as $z(x) = (z_1, ..., z_{db})$
 - $b_i(x) = 1$ if $z_i(x)$ is above the learned median value, otherwise 0

[H. Jegou et al., Improving bag of features for large scale image search, ICJV'10]

Hamming and Euclidean neighborhood





ANN evaluation of Hamming Embedding

compared to BOW: at least 10 times less points in the short-list for the same level of accuracy

Hamming Embedding provides a much better trade-off between recall and ambiguity removal Matching points - 20k word vocabulary

201 matches

240 matches

Many matches with the non-corresponding image!

Matching points - 200k word vocabulary

69 matches

35 matches

Still many matches with the non-corresponding one

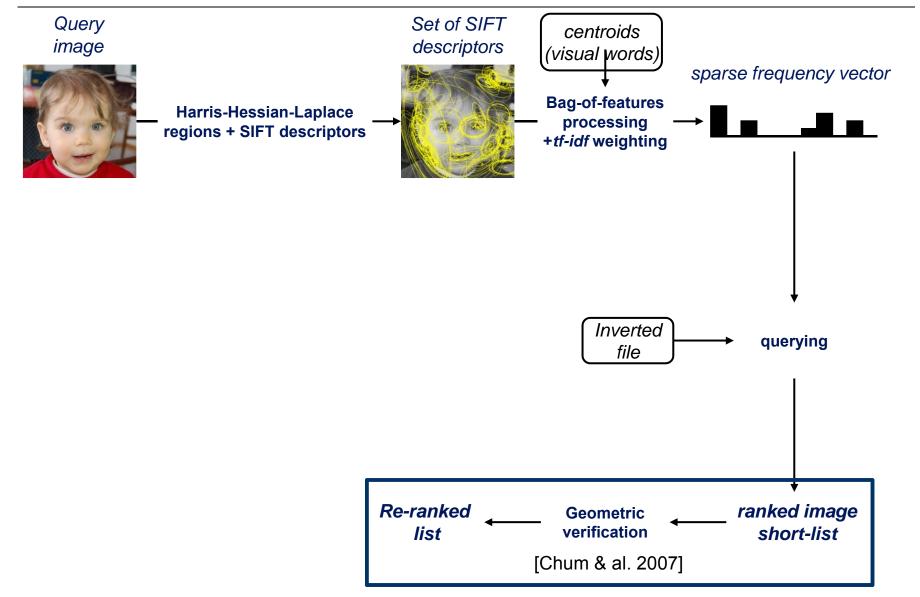
Matching points - 20k word vocabulary + HE

83 matches

8 matches

10x more matches with the corresponding image!

Bag-of-features [Sivic&Zisserman'03]



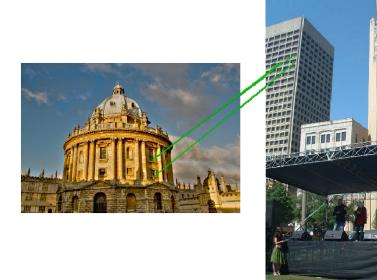
Geometric verification

Use the **position** and **shape** of the underlying features to improve retrieval quality

Both images have many matches – which is correct?

Geometric verification

We can measure **spatial consistency** between the query and each result to improve retrieval quality

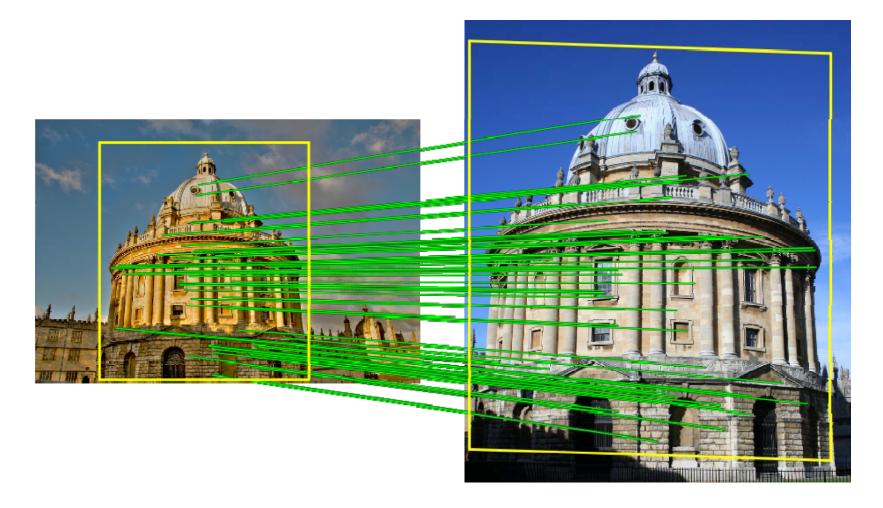


Many spatially consistent matches – **correct result**

Few spatially consistent matches – **incorrect result**

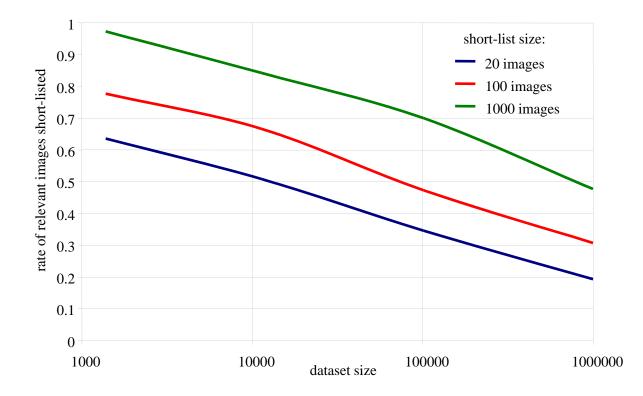
Geometric verification

Gives localization of the object



Re-ranking based on geometric verification

- works very well
- but performed on a short-list only (100 1000 images)
 - \rightarrow for very large datasets, the number of distracting images is so high that relevant images are not even short-listed!
 - \rightarrow weak geometry



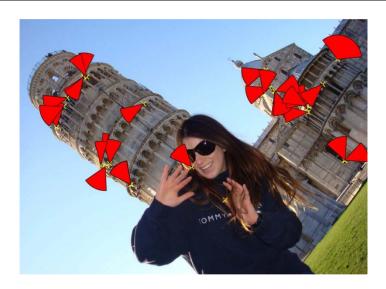
Weak geometry consistency

- Weak geometric information used for **all** images (not only the short-list)
- Each invariant interest region detection has a scale and rotation angle associated, here characteristic scale and dominant gradient orientation

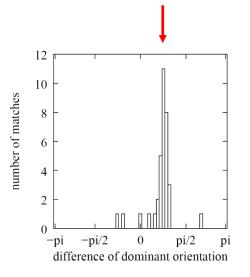
Scale change 2 Rotation angle ca. 20 degrees

- Each matching pair results in a scale and angle difference
- For the global image scale and rotation changes are roughly consistent

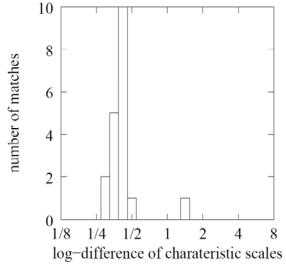
WGC: orientation consistency



Max = rotation angle between images



WGC: scale consistency



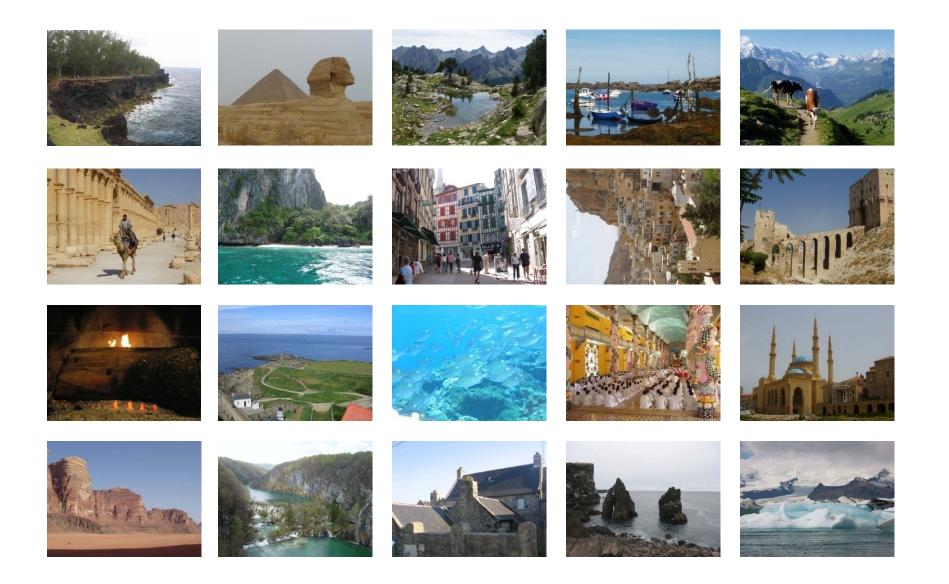
Weak geometry consistency

- Integration of the geometric verification into the BOF
 - votes for an image in two quantized subspaces, i.e. for angle & scale
 - these subspace are show to be roughly independent
 - final score: filtering for each parameter (angle and scale)
- Only matches that do agree with the main difference of orientation and scale will be taken into account in the final score
- Re-ranking using full geometric transformation still adds information in a final stage

Experimental results

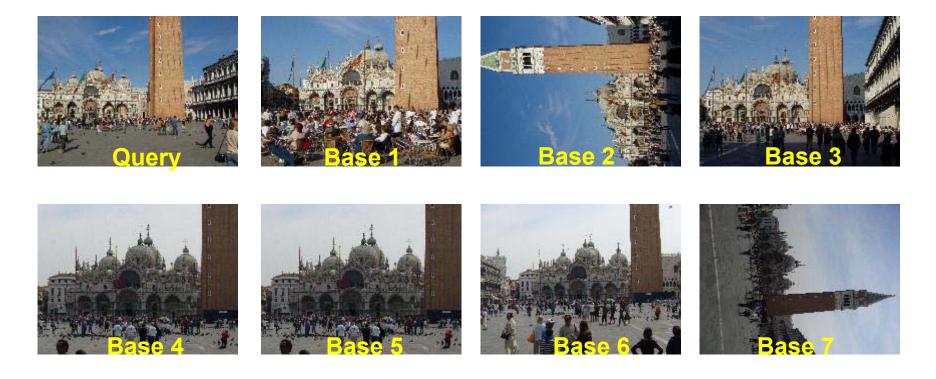
- Evaluation for the INRIA holidays dataset, 1491 images
 - 500 query images + 991 annotated true positives
 - Most images are holiday photos of friends and family
- 1 million & 10 million distractor images from Flickr
- Vocabulary construction on a different Flickr set
- Almost real-time search speed
- Evaluation metric: mean average precision (in [0,1], bigger = better)
 - Average over precision/recall curve

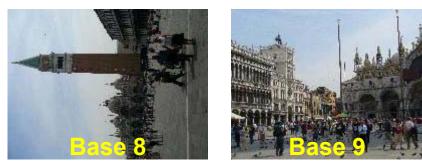
Holiday dataset – example queries



Dataset : Venice Channel

Dataset : San Marco square

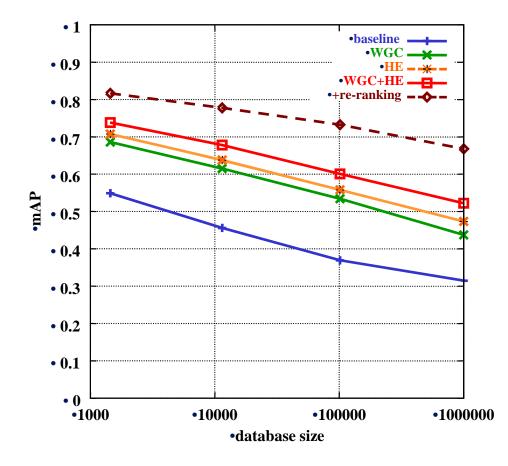




Example distractors - Flickr

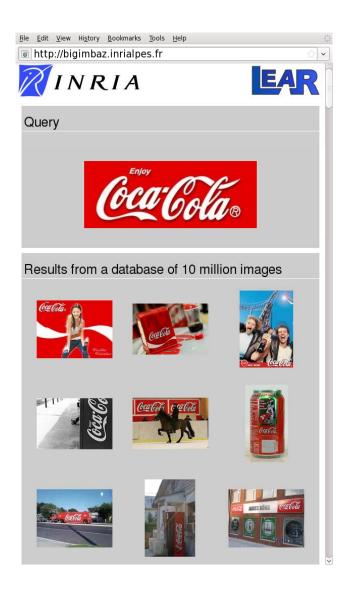
Experimental evaluation

- Evaluation on our holidays dataset, 500 query images, 1 million distracter images
- Metric: mean average precision (in [0,1], bigger = better)



Average query time (4 CPU cores)	
Compute descriptors	880 ms
Quantization	600 ms
Search – baseline	620 ms
Search – WGC	2110 ms
Search – HE	200 ms
Search – HE+WGC	650 ms

Results – Venice Channel

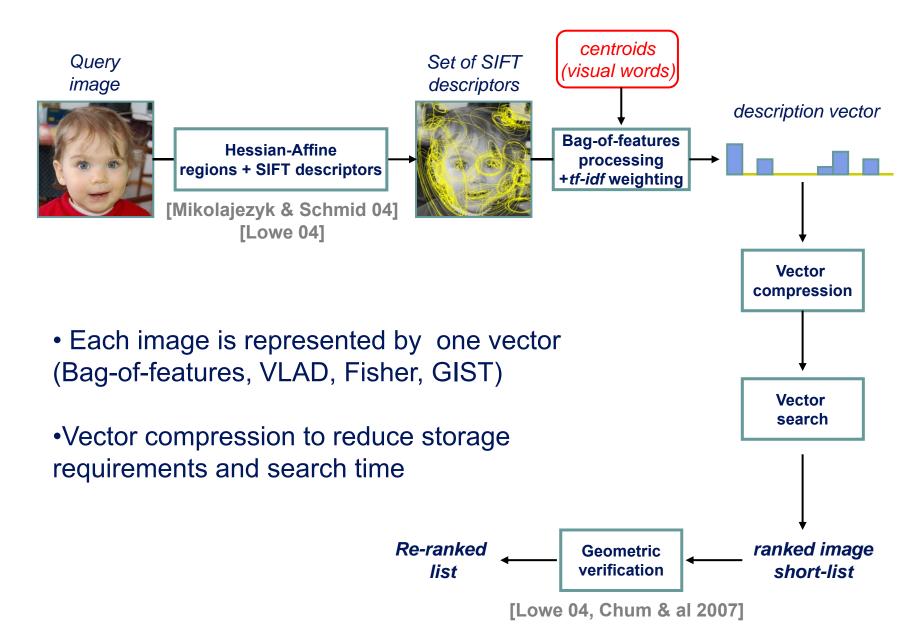


Demo at http://bigimbaz.inrialpes.fr

Towards large-scale image search

- BOF+inverted file can handle up to ~10 millions images
 - with a limited number of descriptors per image \rightarrow RAM: 40GB
 - search: 2 seconds
- Web-scale = billions of images
 - − with 100 M per machine \rightarrow search: 20 seconds, RAM: 400 GB
 - not tractable
- Solution: represent each image by one compressed vector

Very large scale image search

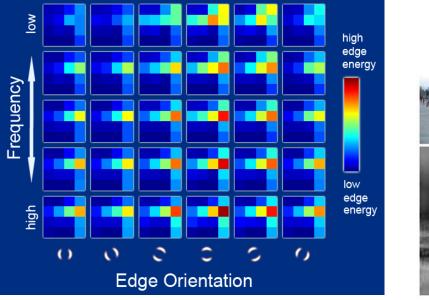


Related work on very large scale image search

- Min-hash and geometrical min-hash [Chum et al. 07-09]
- Compressing the BoF representation (miniBof) [Jegou et al. 09]
 → require hundreds of bytes to obtain a "reasonable quality"
- GIST descriptors with Spectral Hashing [Weiss et al.'08]
 → very limited invariance to scale/rotation/crop

Global scene context – GIST descriptor + spectral hashing

• The "GIST" of a scene: Oliva & Torralba (2001)



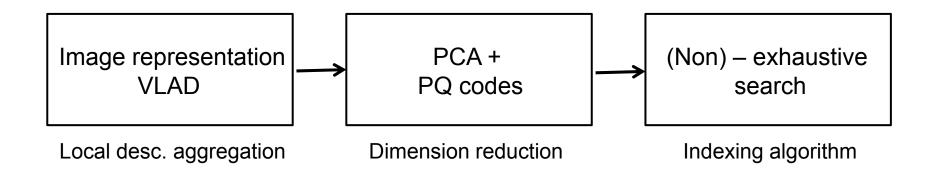
- 5 frequency bands and 6 orientations for each image location
- Tiling of the image (windowing)
- ~ 900 dimensions
- Spectral hashing produces binary codes, similar to spectral clustering

Related work on very large scale image search

- Min-hash and geometrical min-hash [Chum et al. 07-09]
- Compressing the BoF representation (miniBof) [Jegou et al. 09]
 → require hundreds of bytes to obtain a "reasonable quality"
- GIST descriptors with Spectral Hashing [Weiss et al.'08]
 → very limited invariance to scale/rotation/crop
- Efficient object category recognition using classemes [Torresani et al.'10]
- Aggregating local descriptors into a compact image representation [Jegou&al.'10,'12]

Aggregating local descriptors into a compact image representation

- Aim: improving the tradeoff between
 - search speed
 - memory usage
 - search quality
- Approach: joint optimization of three stages
 - local descriptor aggregation
 - dimension reduction
 - indexing algorithm



Aggregation of local descriptors

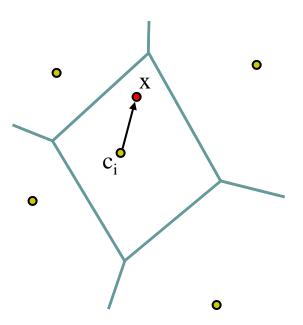
• Problem: represent an image by a single fixed-size vector:

set of *n* local descriptors \rightarrow 1 vector

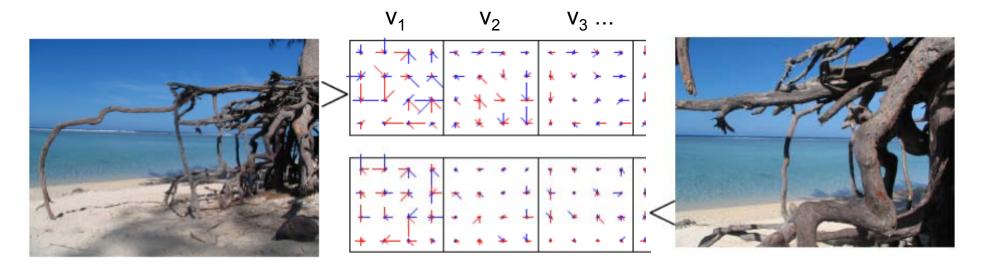
- Most popular idea: BoF representation [Sivic & Zisserman 03]
 - sparse vector
 - highly dimensional
- \rightarrow significant dimensionality reduction introduces loss
- Alternative: VLAD descriptor [VLAD = vector of locally aggregated descriptors]
 - non sparse vectors
 - excellent results with low dimensional vectors

VLAD : vector of locally aggregated descriptors

- Learning: a vector quantifier (*k*-means)
 - output: *k* centroids (visual words): $c_1, ..., c_i, ..., c_k$
 - centroid c_i has dimension d
- For a given image
 - assign each descriptor to closest center c_i
 - accumulate (sum) descriptors per cell
 v_i := v_i + (x c_i)
- VLAD (dimension $D = k \times d$)
- The vector is L2-normalized



VLADs for corresponding images



SIFT-like representation per centroid (+ components: blue, - components: red)

VLAD performance and dimensionality reduction

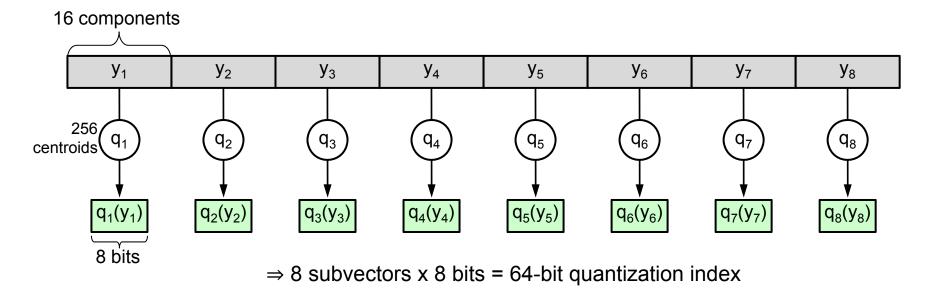
- We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%)
- Dimension is reduced to from D to D' dimensions with PCA

Aggregator	k	D	D'=D (no reduction)	D'=128	D'=64
BoF	1,000	1,000	41.4	44.4	43.4
BoF	20,000	20,000	44.6	45.2	44.5
BoF	200,000	200,000	54.9	43.2	41.6
VLAD	16	2,048	49.6	49.5	49.4
VLAD	64	8,192	52.6	51.0	47.7
VLAD	256	32,768	57.5	50.8	47.6

- Observations:
 - VLAD better than BoF for a given descriptor size
 - Choose a small D if output dimension D' is small

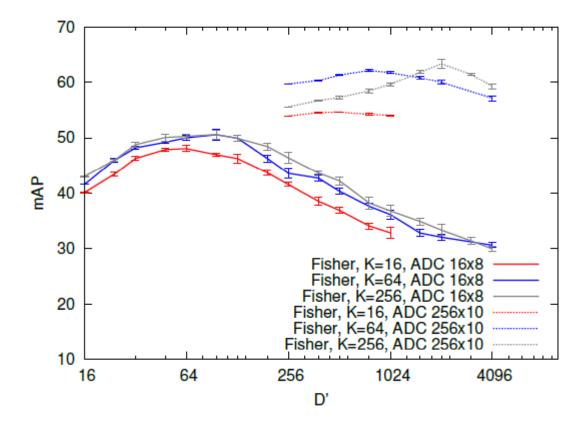
Product quantization for nearest neighbor search

- Vector split into *m* subvectors: $y \rightarrow [y_1| \dots |y_m]$
- Subvectors are quantized separately by quantizers $q(y) = [q_1(y_1)| \dots |q_m(y_m)]$ where each q_i is learned by *k*-means with a limited number of centroids
- Example: y = 128-dim vector split in 8 subvectors of dimension 16
 - each subvector is quantized with 256 centroids -> 8 bit
 - very large codebook 256^8 ~ 1.8x10^19



Optimizing the dimension reduction and quantization together

- VLAD vectors undergoes two approximations
 - mean square error from PCA projection
 - mean square error from quantization
- Given k and bytes/image, choose D' minimizing their sum



Results on Holidays dataset:

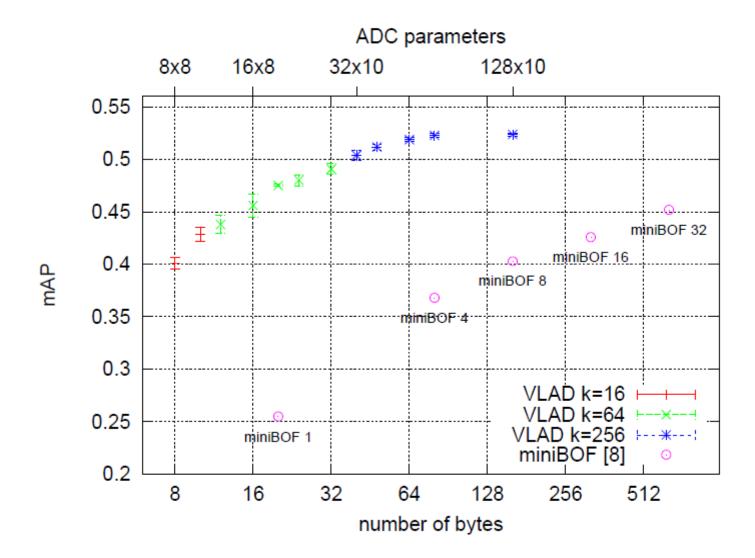
- there exists an optimal D'
- 16 byte best results for k=64
- 320 byte best results for k=256

ADC = asymmetric distance computation

Joint optimization of VLAD and dimension reduction-indexing

- For VLAD
 - ► The larger *k*, the better the raw search performance
 - ▶ But large *k* produce large vectors, that are harder to index
- Optimization of the vocabulary size
 - Fixed output size (in bytes)
 - D' computed from k via the joint optimization of reduction/indexing
 - ➔ end-to-end parameter optimization

Results on the Holidays dataset with various quantization parameters



Results on standard datasets

- Datasets
 - University of Kentucky benchmark
 - INRIA Holidays dataset

score: nb relevant images, max: 4 score: mAP (%)

Method	bytes	UKB	Holidays
BoF, k=20,000	10K	2.92	44.6
BoF, k=200,000	12K	3.06	54.9
miniBOF	20	2.07	25.5
miniBOF	160	2.72	40.3
VLAD k=16, ADC 16 x 8	16	2.88	46.0
VLAD k=64, ADC 32 x10	40	3.10	49.5

D'=64 for *k*=16 and *D*'=96 for *k*=64

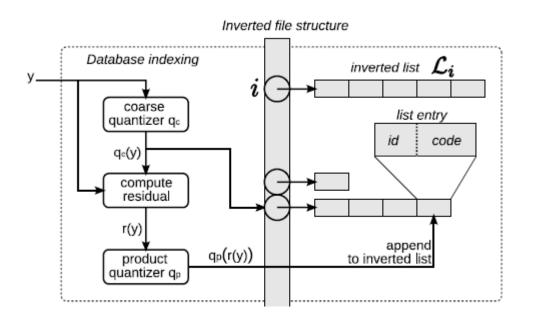
ADC (subvectors) x (bits to encode each subvector)

miniBOF: "Packing Bag-of-Features", ICCV'09

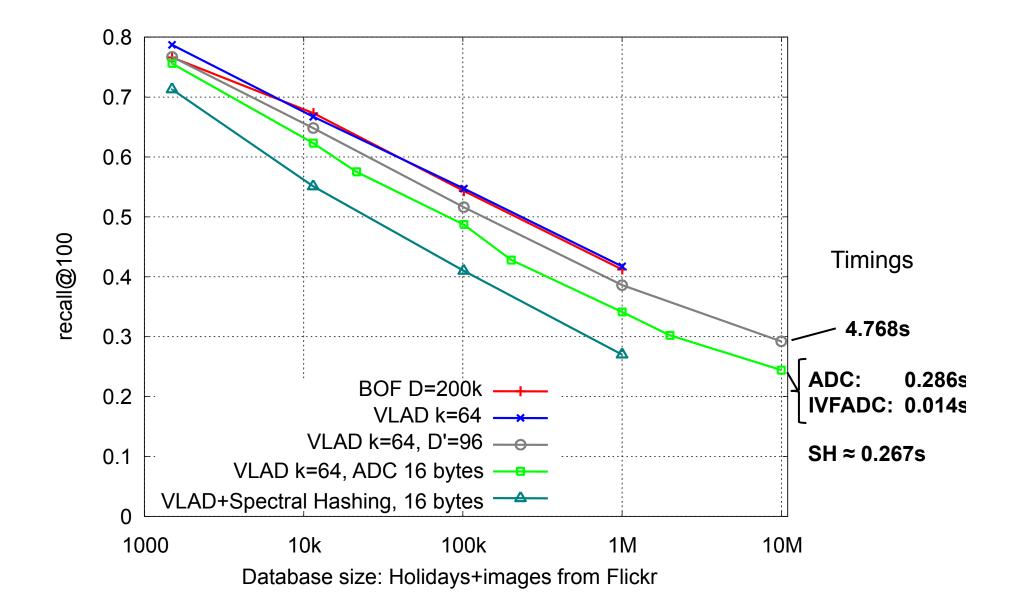
Large scale experiments (10 million images)

- Exhaustive search of VLADs, D'=64
 - ▶ 4.77s
- With the product quantizer
 - Exhaustive search with ADC: 0.29s
 - ▶ Non-exhaustive search with IVFADC: 0.014s

IVFADC -- Combination with an inverted file



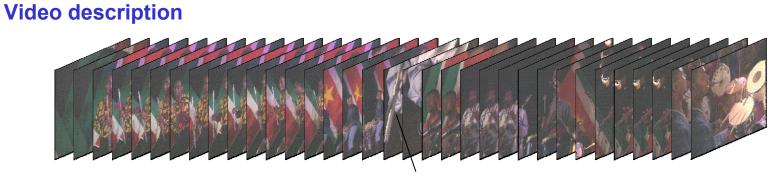
Large scale experiments (10 million images)



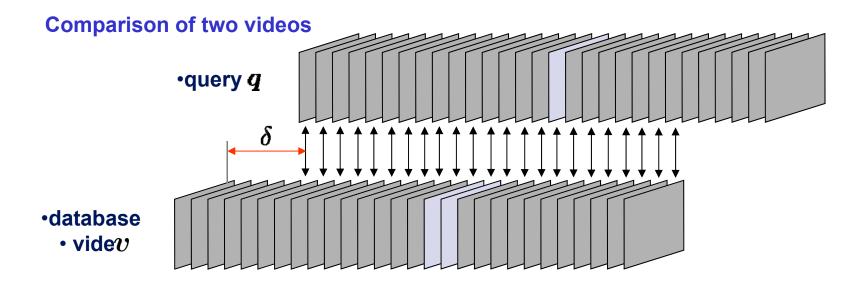
Conclusion & future work

- Excellent search accuracy and speed in 10 million of images
- Each image is represented by very few bytes (20 40 bytes)
- Tested on up to 220 million video frames
 - extrapolation for 1 billion images: 20GB RAM, query time < 1s on 8 cores</p>
- On-line available: Matlab source code for product quantizer
- Alternative: using Fisher vectors instead of VLAD descriptors [Perronnin'10]
- Extension to video & more "semantic" search

Event retrieval in large video collections [Revaud et al. 2013]



frame t \rightarrow VLAD descriptor, reduced to 512D with PCA



Fast calculation in the frequency domain + product quantization

