Instance-level recognition

Cordelia Schmid & Josef Sivic INRIA

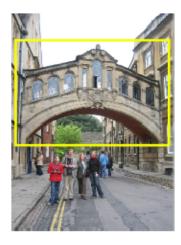
Instance-level recognition

Particular objects and scenes, large databases

In the second formation

Application

Search photos on the web for particular places



Find these landmarks

... in these images and 1M more

Applications

- Take a picture of a product or advertisement
 - \rightarrow find relevant information on the web

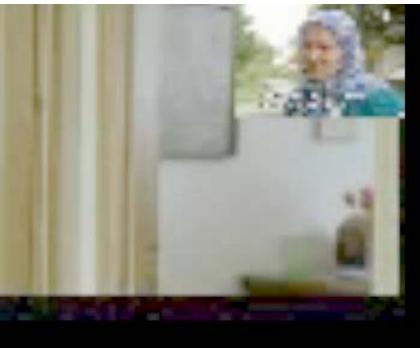
PRENEZ EN PHOTO L'AFFICHE !

[Google Goggles, Milpix Pixee]

Applications

Copy detection for images and videos

Query video

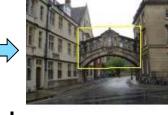


Search in 200h of video

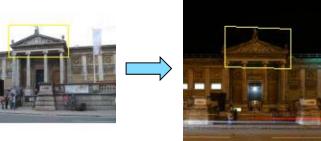
Difficulties

Find the object despite

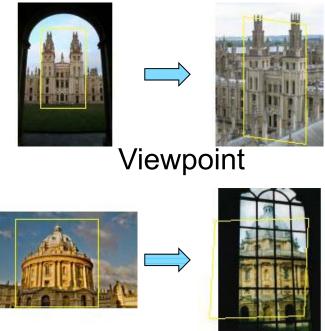
- large changes in scale, viewpoint, lighting
- crop and occlusion
- not much texture/structure
- requires local invariant descriptors



Scale



Lighting

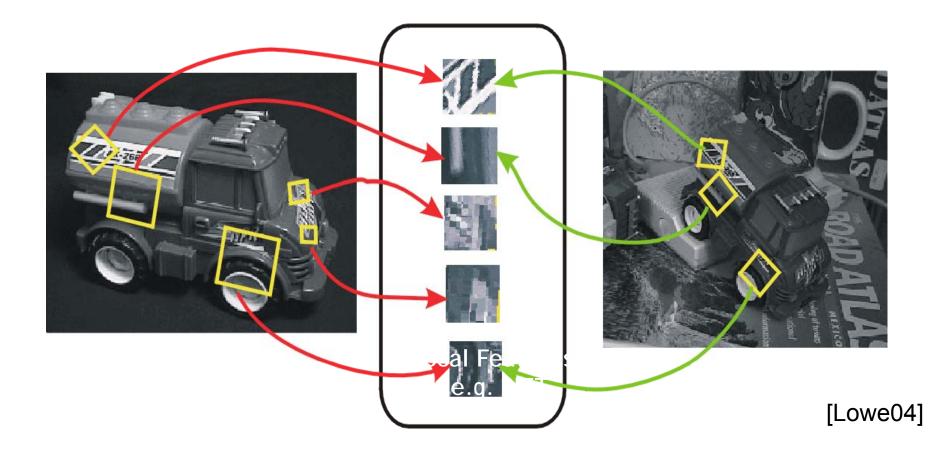


Difficulties

- Very large images collection \rightarrow need for efficient indexing
 - Flickr has 2 billions photographs, more than 1 million added daily
 - Facebook has 15 billions images (~27 million added daily)
 - Large personal collections
 - Video collections with a large number of videos, i.e., YouTube

Approach: matching local invariant descriptors

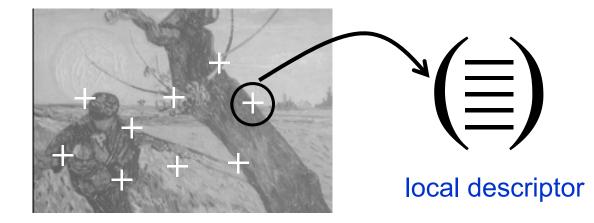
Image content is transformed into local features that are invariant to geometric and photometric transformations



Overview

- Local invariant features (C. Schmid)
- Matching and recognition with local features (J. Sivic)
- Efficient visual search (J. Sivic)
- Very large scale search (C. Schmid)
- Practical session

Local features

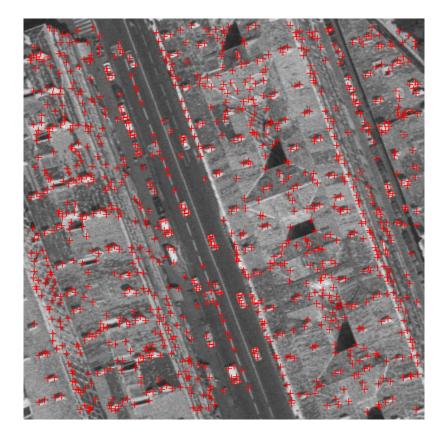


Several / many local descriptors per image Robust to occlusion/clutter, no object segmentation required

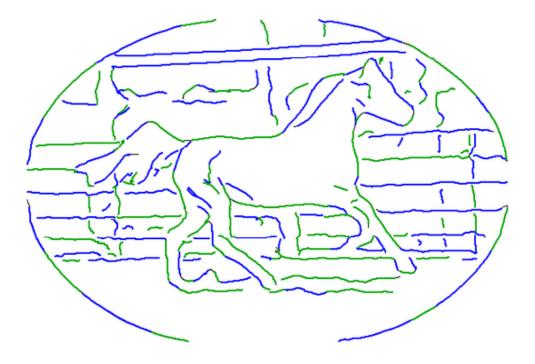
Photometric : distinctive

Invariant : to image transformations + illumination changes

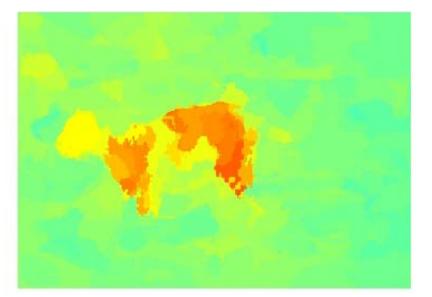
Local features: interest points



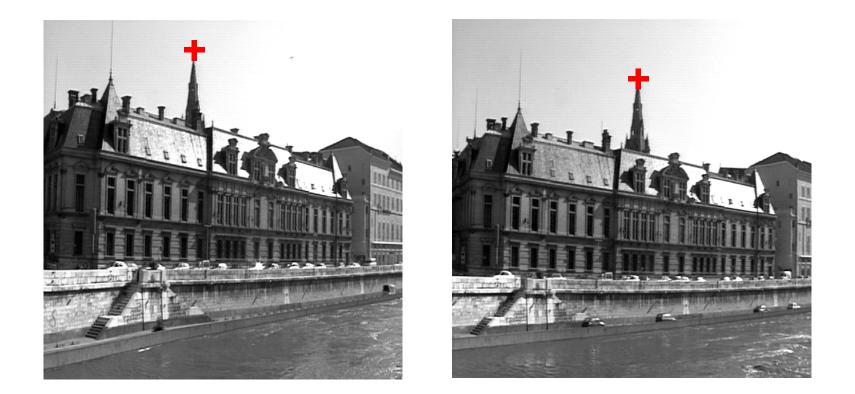
Local features: Contours/lines



Local features: regions

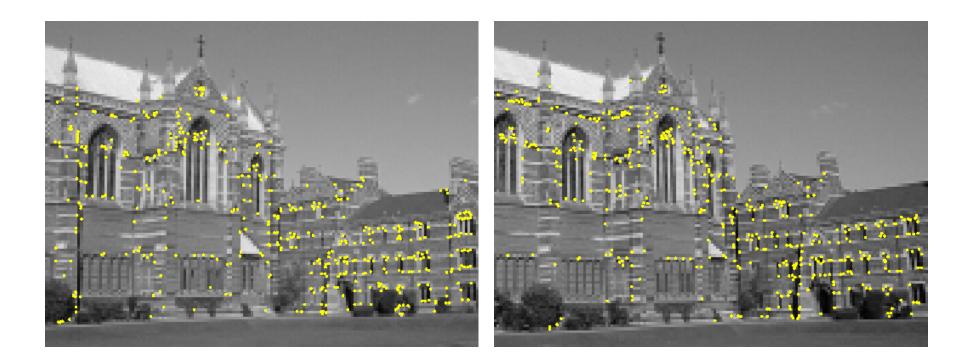


Matching & instance-level recognition \rightarrow Interest points



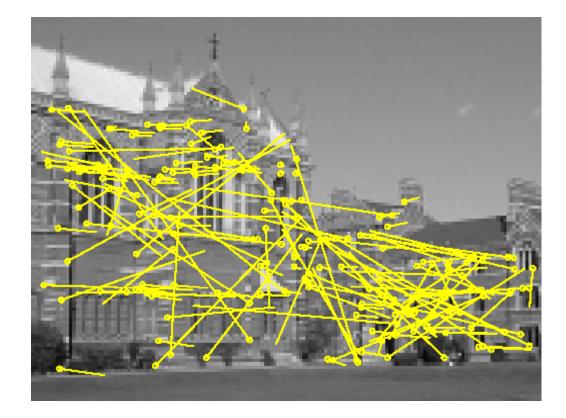
Find corresponding locations in two images

Illustration – Matching



Interest points extracted with Harris detector (~ 500 points)

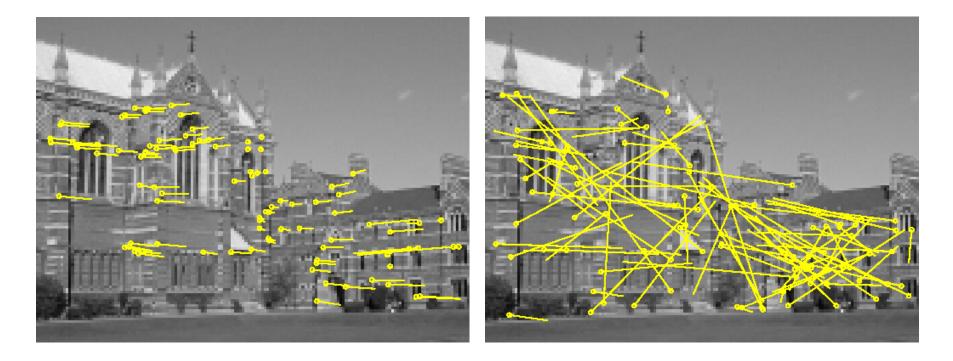
Illustration – Matching



Interest points matched based on cross-correlation (188 pairs)

Illustration – Matching

Global constraint - Robust estimation of the fundamental matrix



99 inliers

89 outliers

Harris detector [Harris & Stephens'88]

Based on auto-correlation



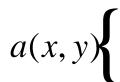
Important difference in all directions => interest point

Auto-correlation function for a point (x, y) and a shift $(\Delta x, \Delta y)$

$$a(x, y) = \sum_{\substack{(x_k, y_k) \in W(x, y) \\ (\Delta x, \Delta y)}} (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2$$

Auto-correlation function for a point (x, y) and a shift $(\Delta x, \Delta y)$

$$a(x, y) = \sum_{\substack{(x_k, y_k) \in W(x, y) \\ (\Delta x, \Delta y)}} (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2$$



 $a(x, y) \begin{cases} \text{small in all directions} \rightarrow \text{uniform region} \\ \text{large in one directions} \rightarrow \text{contour} \\ \text{large in all directions} \rightarrow \text{interest point} \end{cases}$

Discret shifts are avoided based on the auto-correlation matrix

with first order approximation

$$I(x_k + \Delta x, y_k + \Delta y) = I(x_k, y_k) + (I_x(x_k, y_k) - I_y(x_k, y_k)) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

$$a(x, y) = \sum_{(x_k, y_k) \in W(x, y)} (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2$$
$$= \sum_{(x_k, y_k) \in W} \left((I_x(x_k, y_k) - I_y(x_k, y_k)) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} \right)^2$$

$$= (\Delta x \quad \Delta y) \begin{bmatrix} \sum_{\substack{(x_k, y_k) \in W \\ (x_k, y_k) \in W}} (I_x(x_k, y_k))^2 & \sum_{\substack{(x_k, y_k) \in W \\ (x_k, y_k) \in W}} I_x(x_k, y_k) I_y(x_k, y_k) & \sum_{\substack{(x_k, y_k) \in W \\ (x_k, y_k) \in W}} (I_y(x_k, y_k))^2 \end{bmatrix} (\Delta x) \Delta y$$

Auto-correlation matrix

the sum can be smoothed with a Gaussian

$$= (\Delta x \quad \Delta y)G \otimes \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

• Auto-correlation matrix

$$G \otimes \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- captures the structure of the local neighborhood
- measure based on eigenvalues of this matrix
 - 2 strong eigenvalues => interest point
 - 1 strong eigenvalue => contour
 - 0 eigenvalue => uniform region

Cornerness function

$$f = \det(a) - k(trace(a))^{2} = \lambda_{1}\lambda_{2} - k(\lambda_{1} + \lambda_{2})^{2}$$

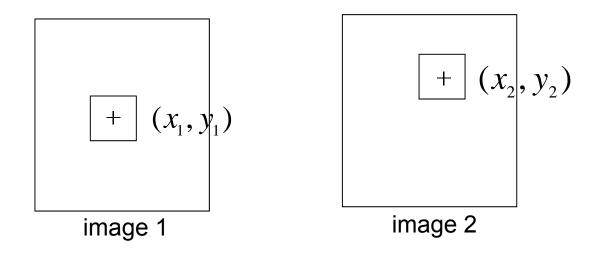
Reduces the effect of a strong contour

- Interest point detection
 - Treshold (absolut, relatif, number of corners)
 - Local maxima

 $f > thresh \land \forall x, y \in 8 - neighbourhood f(x, y) \ge f(x', y')$

Comparison of patches - SSD

Comparison of the intensities in the neighborhood of two interest points



SSD : sum of square difference

$$\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} (I_1(x_1+i, y_1+j) - I_2(x_2+i, y_2+j))^2$$

Small difference values \rightarrow similar patches

Comparison of patches

SSD:
$$\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} (I_1(x_1+i, y_1+j) - I_2(x_2+i, y_2+j))^2$$

Invariance to photometric transformations?

Intensity changes $(I \rightarrow I + b)$

=> Normalizing with the mean of each patch

$$\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} ((I_1(x_1+i, y_1+j) - m_1) - (I_2(x_2+i, y_2+j) - m_2))^2$$

Intensity changes $(I \rightarrow aI + b)$

=> Normalizing with the mean and standard deviation of each patch

$$\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} \left(\frac{I_1(x_1+i, y_1+j) - m_1}{\sigma_1} - \frac{I_2(x_2+i, y_2+j) - m_2}{\sigma_2} \right)^2$$

Cross-correlation ZNCC

zero normalized SSD

$$\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} \left(\frac{I_1(x_1+i, y_1+j) - m_1}{\sigma_1} - \frac{I_2(x_2+i, y_2+j) - m_2}{\sigma_2} \right)^2$$

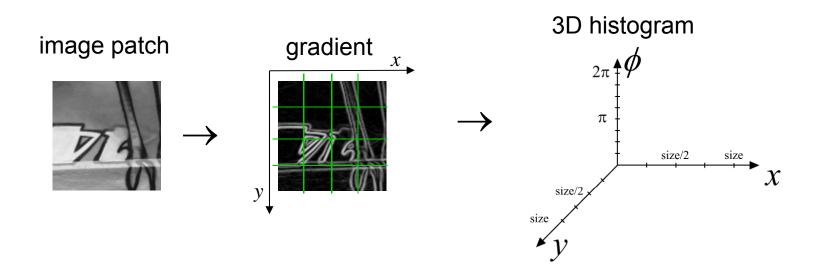
ZNCC: zero normalized cross correlation

$$\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} \left(\frac{I_1(x_1+i, y_1+j) - m_1}{\sigma_1} \right) \cdot \left(\frac{I_2(x_2+i, y_2+j) - m_2}{\sigma_2} \right)$$

ZNCC values between -1 and 1, 1 when identical patches in practice threshold around 0.5

SIFT descriptor [Lowe'99]

- Approach
 - 8 orientations of the gradient
 - 4x4 spatial grid
 - dimension 128
 - soft-assignment to spatial bins
 - normalization of the descriptor to norm one
 - comparison with Euclidean distance



SIFT - rotation invariance

- Estimation of the dominant orientation
 - extract gradient orientation
 - histogram over gradient orientations
 - peak in this histogram
- Rotate patch in dominant direction

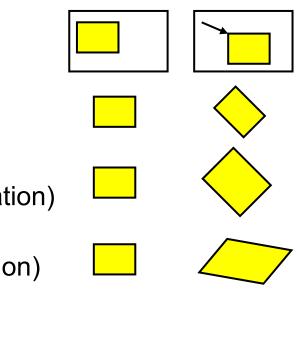
Other local descriptors

- Greyvalue derivatives, differential invariants [Koenderink'87]
- Shape context [Belongie et al.'02]
- SURF descriptor [Bay et al.'08]
- DAISY descriptor [Tola et al.'08, Windler et al'09]
- LIOP descriptor [Wang et al.'11]

- Robust region descriptors better than point-wise descriptors [Mikolajczyk & Schmid'05]
- Significant difference between SIFT and low dimensional descriptors as well as cross-correlation
- Performance of the descriptor is relatively independent of the detector
- Recently, faster descriptors

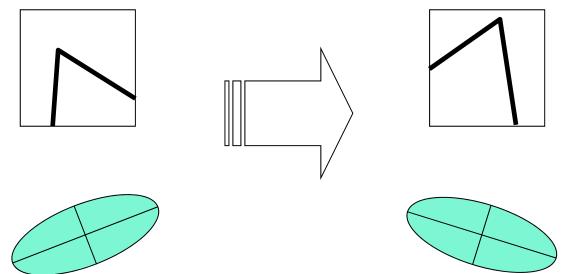
Invariance to transformations – Harris

- Geometric transformations
 - translation
 - rotation
 - similarity (rotation + scale change + translation)
 - affine (2x2 transformation matrix + translation)
- Photometric transformations
 - Affine intensity changes $(I \rightarrow a I + b)$



Harris Detector: Invariance Properties

Rotation

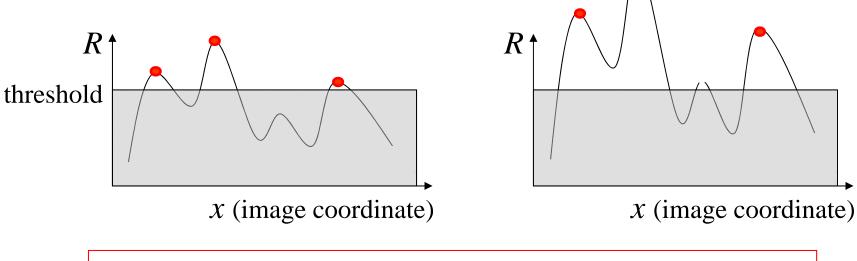


Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation

Harris Detector: Invariance Properties

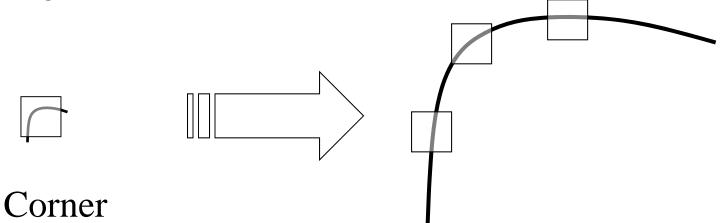
- Affine intensity change
 - ✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
 - ✓ Intensity scale: $I \rightarrow a I$



Partially invariant to affine intensity change, dependent on type of threshold

Harris Detector: Invariance Properties

Scaling

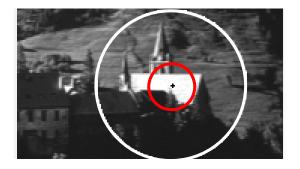


All points will be classified as edges

Not invariant to scaling

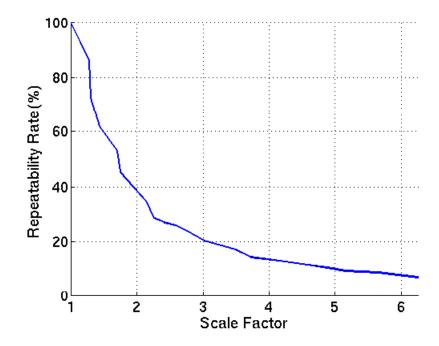
Scale invariance - motivation

• Description regions have to be adapted to scale changes



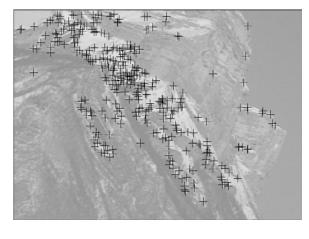
• Interest points have to be repeatable for scale changes

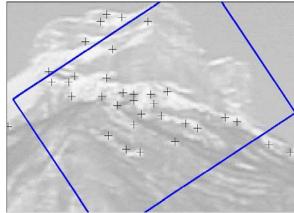
Harris detector + scale changes



Repeatability rate

$$R(\varepsilon) = \frac{|\{(\mathbf{a}_i, \mathbf{b}_i) | dist(H(\mathbf{a}_i), \mathbf{b}_i) < \varepsilon\}|}{\max(|\mathbf{a}_i|, |\mathbf{b}_i|)}$$





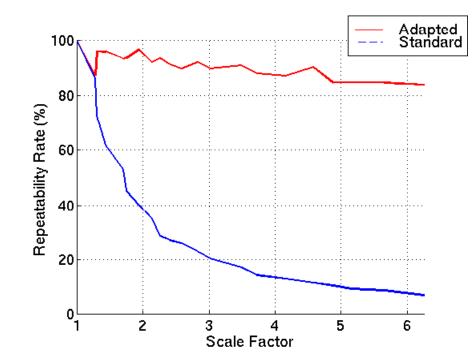
Scale adapted derivative calculation

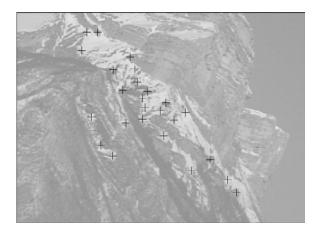
$$I_1\begin{pmatrix} x_1\\ y_1 \end{pmatrix} \otimes G_{i_1\dots i_n}(\sigma) = S^n I_2\begin{pmatrix} x_2\\ y_2 \end{pmatrix} \otimes G_{i_1\dots i_n}(S\sigma)$$

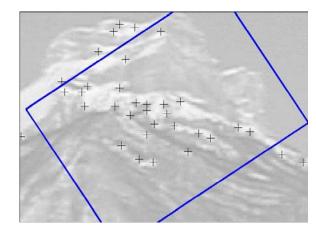
Scale adapted auto-correlation matrix

$$s^{2}G(s\widetilde{\sigma})\otimes \begin{bmatrix} I_{x}^{2}(s\sigma) & I_{x}I_{y}(s\sigma) \\ I_{x}I_{y}(s\sigma) & I_{y}^{2}(s\sigma) \end{bmatrix}$$

Harris detector – adaptation to scale

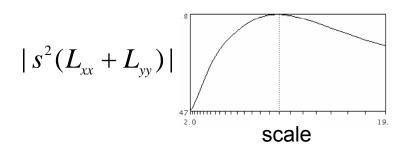






Scale selection

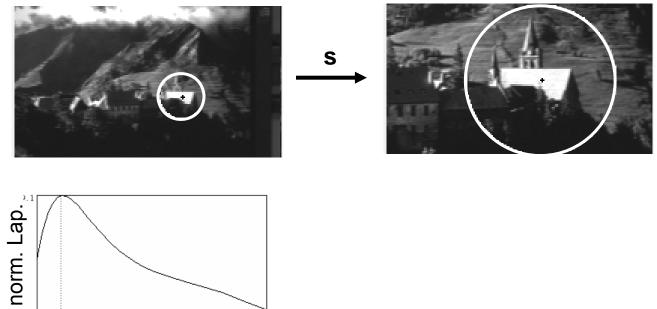
- For a point compute a value (gradient, Laplacian etc.) at several scales
- Normalization of the values with the scale factor e.g. Laplacian $|s^2(L_{xx} + L_{yy})|$
- Select scale S^* at the maximum \rightarrow characteristic scale

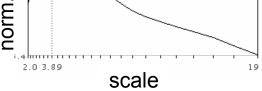


• Exp. results show that the Laplacian gives best results

Scale selection

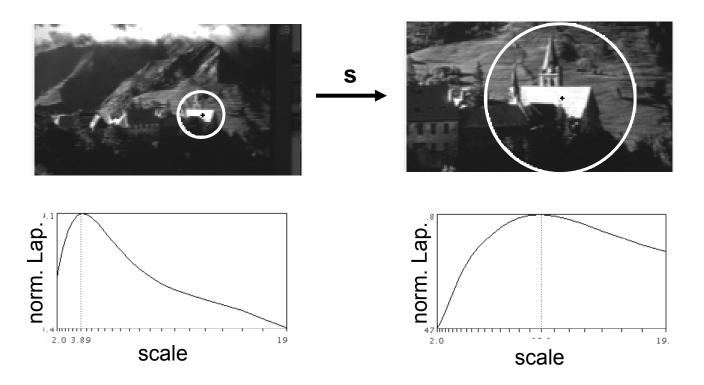
Scale invariance of the characteristic scale •





Scale selection

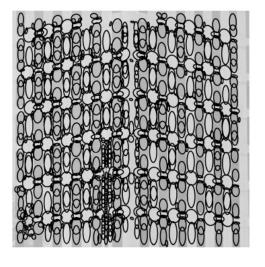
• Scale invariance of the characteristic scale



• Relation between characteristic scales $s \cdot s_1^* = s_2^*$

Scale-invariant detectors

- Laplacian detector (LOG) [Lindeberg'98]
- Difference of Gaussian, approximation of LOG [Lowe'99]
- Hessian detector & Harris-Laplace [Mikolajczyk & Schmid'04]
- SURF detector [Bay et al.'08]

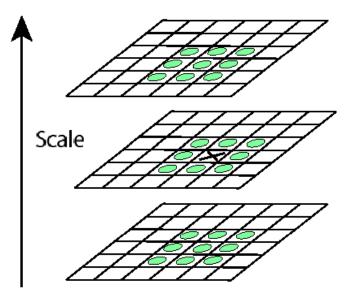


Laplacian

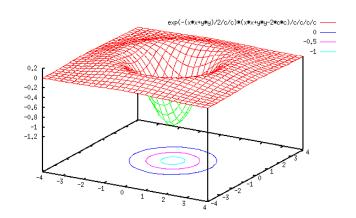
Harris-Laplace

LOG detector

Detection of maxima and minima of Laplacian in scale space



$LOG = G_{xx}(\sigma) + G_{yy}(\sigma)$



Hessian detector

Hessian matrix

$$H(x) = \begin{bmatrix} L_{xx} & L_{xy} \\ L_{xy} & L_{yy} \end{bmatrix}$$

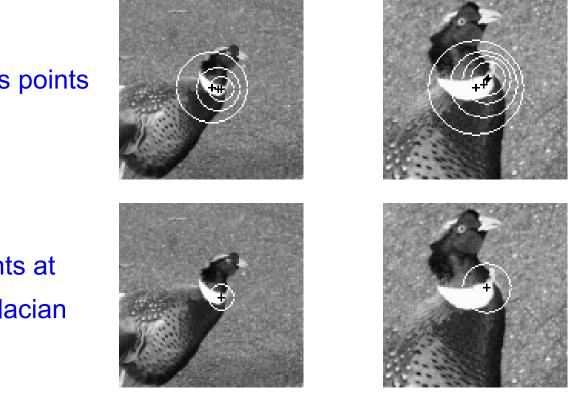
Determinant of Hessian matrix

$$DET = L_{xx}L_{yy} - L_{xy}^{2}$$

Penalizes/eliminates long structures

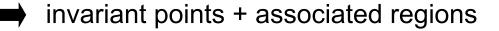
> with small derivative in a single direction

Harris-Laplace

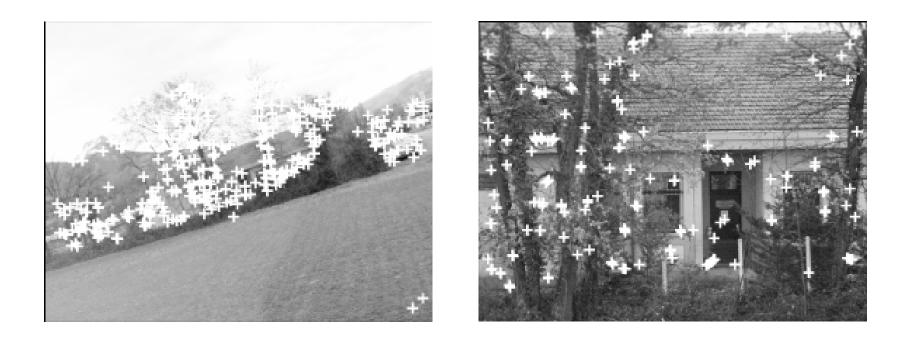


multi-scale Harris points

selection of points at maximum of Laplacian



Matching results



213 / 190 detected interest points

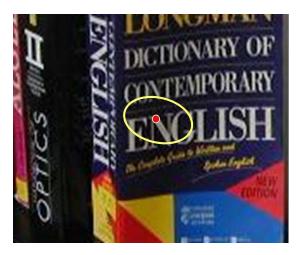
Matching results

58 points are initially matched

Matching results

32 points are matched after verification – all correct

Affine invariant regions - Motivation



Scale invariance is not sufficient for large baseline changes

Affine invariant regions - Motivation

Example for wide baseline matching (22 correct matches)

Affine invariant regions - Motivation

Example for wide baseline matching (33 correct matches)

Harris/Hessian/Laplacian-Affine

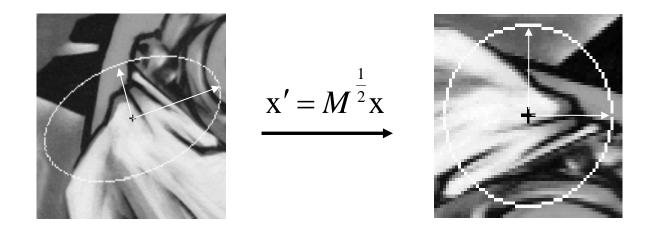
- Initialize with scale-invariant Harris/Hessian/Laplacian points
- Estimation of the affine neighbourhood with the second moment matrix [Lindeberg'94]
- Apply affine neighbourhood estimation to the scaleinvariant interest points [Mikolajczyk & Schmid'02, Schaffalitzky & Zisserman'02]
- Excellent results in a comparison [Mikolajczyk et al.'05]

Affine invariant regions

• Based on the second moment matrix (Lindeberg'94)

$$M = \mu(\mathbf{x}, \sigma_I, \sigma_D) = \sigma_D^2 G(\sigma_I) \otimes \begin{bmatrix} I_x^2(\mathbf{x}, \sigma_D) & I_x I_y(\mathbf{x}, \sigma_D) \\ I_x I_y(\mathbf{x}, \sigma_D) & I_y^2(\mathbf{x}, \sigma_D) \end{bmatrix}$$

• Normalization with eigenvalues/eigenvectors

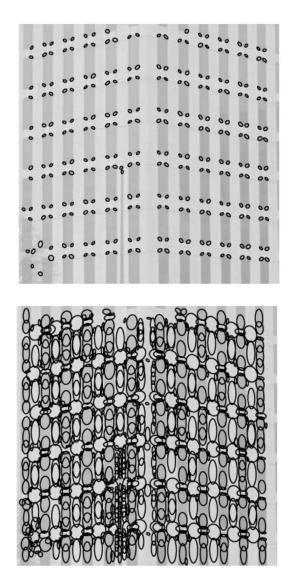


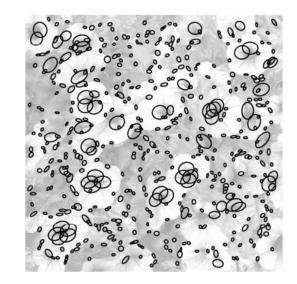
Affine invariant regions



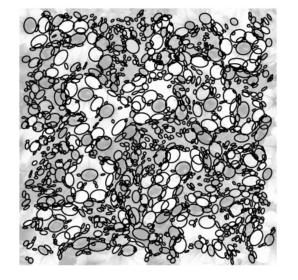
Isotropic neighborhoods related by image rotation

Harris/Hessian-Affine





Harris-Affine



Hessian-Affine

Harris-Affine

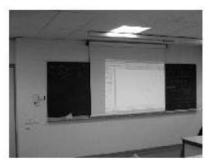
Hessian-Affine

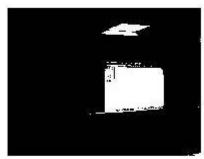
Maximally stable extremal regions (MSER) [Matas'02]

- Extremal regions: connected components in a thresholded image (all pixels above/below a threshold)
- Maximally stable: minimal change of the component (area) for a change of the threshold, i.e. region remains stable for a change of threshold
- Excellent results in a comparison [Mikolajczyk et al.'05]

Maximally stable extremal regions (MSER)

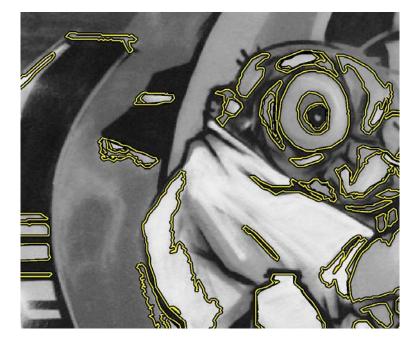
Examples of thresholded images

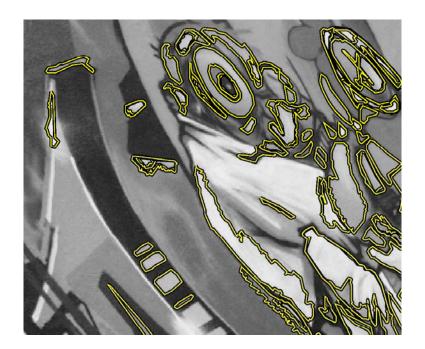




high threshold

MSER





Conclusion – detectors [Mikolajczyk & al. '05]

- Good performance for large viewpoint and scale changes
- Results depend on transformation and scene type, no one best detector
- Detectors are complementary
 - MSER adapted to structured scenes
 - Harris and Hessian adapted to textured scenes
- Performance of the different scale invariant detectors is very similar (Harris-Laplace, Hessian and LoG)
- Scale-invariant detector sufficient up to 40 degrees of viewpoint change

Conclusion

- Excellent performance for wide baseline matching
- Binaries for detectors and descriptors on-line available
 - for example at http://lear.inrialpes.fr/software
- On-line available evaluation setup
 - Dataset with transformations
 - Evaluation code in matlab
 - Benchmark for new detectors and descriptors