

ENS/INRIA CVML Summer School 45 rue d'Ulm, Paris July 26, 2013

Modeling and visual recognition of human actions

Ivan Laptev ivan.laptev@inria.fr WILLOW, INRIA/ENS/CNRS, Paris

Computer vision grand challenge: Dynamic scene understanding

Human Actions: Why do we care?

Why video analysis?

Data:

TV-channels recorded since 60's

>34K hours of video uploads every day

~30M surveillance cameras in US => ~700K video hours/day

GL/SS

Why video analysis?

Applications:

First appearance of N. Sarkozy on TV

Sociology research: Influence of character smoking in movies

Education: How do I make a pizza?

Where is my cat?

Predicting crowd behavior Counting people

Motion capture and animation

Why human actions?

How many person-pixels are in the video?

Movies

TV

YouTube

Why human actions?

How many person-pixels are in the video?

Movies

YouTube

How many person pixels in our daily life?

• Wearable camera data: Microsoft SenseCam dataset

How many person pixels in our daily life?

• Wearable camera data: Microsoft SenseCam dataset

Why do we prefer to watch other people?

- Why do we watch TV, Movies, ... at all?
- Why do we read books?

"... books teach us new patterns of behavior..."

Olga Slavnikova Russian journalist and writer

Why action recognition is difficult?

Challenges

 Large variations in appearance: occlusions, non-rigid motion, viewpoint changes, clothing...

Action Hugging:

 Manual collection of training samples is prohibitive: many action classes, rare occurrence

 Action vocabulary is not well-defined

How to recognize actions?

A HOUGHTON MIFFLIN PRODUCTION

Copyright © 1971 by Houghton Milifilm Company A Teaching Resource At the Frontiers of Psychological Inquiry

Activities characterized by a pose

Slide credit: A. Zisserman

Activities characterized by a pose

Examples from VOC action recognition challenge

Human pose estimation (1990-2000)

Finding People by Sampling loffe & Forsyth, ICCV 1999

Pictorial Structure Models for Object Recognition Felzenszwalb & Huttenlocher, 2000

Learning to Parse Pictures of People Ronfard, Schmid & Triggs, ECCV 2002

Human pose estimation

Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In Proc. **CVPR 2011** Extension of LSVM model of Felzenszwalb et al.

frame t+1

frame t

t+1

t+1

Y. Wang, D. Tran and Z. Liao. Learning Hierarchical Poselets for Human Parsing. In Proc. **CVPR 2011**.

Builds on Poslets idea of Bourdev et al.

S. Johnson and M. Everingham. Learning Effective Human Pose Estimation from Inaccurate Annotation. In Proc. **CVPR 2011**.

Learns from lots of noisy annotations

B. Sapp, D.Weiss and B. Taskar. Parsing Human Motion with Stretchable Models. In Proc. **CVPR 2011**.

Explores temporal continuity

Human pose estimation

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman and A. Blake. Real-Time Human Pose Recognition in Parts from Single Depth Images. (Best paper award at CVPR 2011)

Pose estimation is still a hard problem

Issues: • occlusions

clothing and pose variations

Appearance methods: Shape

[A.F. Bobick and J.W. Davis, PAMI 2001] Idea: summarize motion in video in a *Motion History Image (MHI)*:

L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. Actions as spacetime shapes. 2007

Appearance methods: Shape

Pros:

- + Simple and fast
- + Works in controlled settings

Cons:

- Prone to errors of background subtraction

Variations in light, shadows, clothing...

What is the background here?

- Does not capture *interior* Structure and motion

Silhouette tells little about actions

Appearance methods: Motion

Learning Parameterized Models of Image Motion M.J. Black, Y. Yacoob, A.D. Jepson and D.J. Fleet, 1997

Recognizing action at a distance A.A. Efros, A.C. Berg, G. Mori, and J. Malik., 2003.

Action recognition with local features

Local space-time features

- + No segmentation needed
- + No object detection/tracking needed
- Loss of global structure

[Laptev 2005]

Local approach: Bag of Visual Words

Airplanes	
Motorbikes	
Faces	
Wild Cats	
Leaves	
People	
Bikes	

Space-Time Interest Points: Detection

What neighborhoods to consider?

High image Look at the Distinctive \Rightarrow variation in space \Rightarrow distribution of the neighborhoods and time gradient Definitions: $f: \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$ Original image sequence $q(x, y, t; \Sigma)$ Space-time Gaussian with covariance $\Sigma \in SPSD(3)$ $L_{\xi}(\cdot; \Sigma) = f(\cdot) * g_{\xi}(\cdot; \Sigma)$ Gaussian derivative of f $\nabla L = (L_x, L_y, L_t)^T$ Space-time gradient $\nabla L = (L_x, L_y, L_t) \quad \text{opage fine grant}$ $\mu(\cdot; \Sigma) = \nabla L(\cdot; \Sigma) (\nabla L(\cdot; \Sigma))^T * g(\cdot; s\Sigma) = \begin{pmatrix} \mu_{xx} & \mu_{xy} & \mu_{xt} \\ \mu_{xy} & \mu_{yy} & \mu_{yt} \\ \mu_{xt} & \mu_{yt} & \mu_{tt} \end{pmatrix}$ Second-moment matrix

[Laptev 2005]

Local features: Proof of concept

Finds similar events in pairs of video sequences

Bag-of-Features action recogntion

[Laptev, Marszałek, Schmid, Rozenfeld 2008]

Action classification results

KTH dataset

Hollywood-2 dataset

	N	no :	n ^e	in ⁸	\$0 :	n ⁶	.no
	NSIL	_ >088	Run	80th	NSI	, 03b	X
Walking	.99	.01	.00	.00	.00	.00	
Jogging	.04	.89	.07	.00	.00	.00	
Running	.01	.19	.80	.00	.00	.00	
Boxing	.00	.00	.00	.97	.00	.03	
Waving	.00	.00	.00	.00	.91	.09	
Clapping	.00	.00	.00	.05	.00	.95	

		hoghof		Chance
	Channel	bof	flat	
	mAP	47.9	50.3	9.2
GetOutCar AnswerPhone	AnswerPhone	15.7	20.9	7.2
	DriveCar	86.6	84.6	11.5
	Eat	59.5	67.0	3.7
	FightPerson	71.1	69.8	7.9
	GetOutCar	29.3	45.7	6.4
Stard Shake	HandShake	21.2	27.8	5.1
	HugPerson	35.8	43.2	7.5
	Kiss	51.5	52.5	11.7
	Run	69.1	67.8	16.0
	SitDown	58.2	57.6	12.2
	SitUp	17.5	17.2	4.2
Kiss DriveCar	StandUp	51.7	54.3	16.5

[Laptev, Marszałek, Schmid, Rozenfeld 2008]

Action classification

Test episodes from movies "The Graduate", "It's a Wonderful Life", "Indiana Jones and the Last Crusade"

Evaluation of local feature detectors and descriptors

Four types of detectors:

- Harris3D [Laptev 2003]
- Cuboids [Dollar et al. 2005]
- Hessian [Willems et al. 2008]
- Regular dense sampling

Four types of descriptors:

- HoG/HoF [Laptev et al. 2008]
- Cuboids [Dollar et al. 2005]
- HoG3D [Kläser et al. 2008]
- Extended SURF [Willems'et al. 2008]

Three human actions datasets:

- KTH actions [Schuldt et al. 2004]
- UCF Sports [Rodriguez et al. 2008]
- Hollywood 2 [Marszałek et al. 2009]

Space-time feature detectors

Harris3D

Cuboids

Results on KTH Actions

Descriptors

6 action classes, 4 scenarios, staged

Detectors				
	Harris3D	Cuboids	Hessian	Dense
HOG3D	89.0%	90.0%	84.6%	85.3%
HOG/HOF	91.8%	88.7%	88.7%	86.1%
HOG	80.9%	82.3%	77.7%	79.0%
HOF	92.1%	88.2%	88.6%	88.0%
Cuboids	-	89.1%	-	-
E-SURF	-	-	81.4%	-

(Average accuracy scores)

- Best results for **sparse** Harris3D + HOF
- Dense features perform relatively poor compared to sparse features
 [Wang, Ullah, Kläser, Laptev, Schmid, 2009]
Results on UCF Sports

Descriptors

10 action classes, videos from TV broadcasts

Detectors						
	Harris3D	Cuboids	Hessian	Dense		
HOG3D	79.7%	82.9%	79.0%	85.6%		
HOG/HOF	78.1%	77.7%	79.3%	81.6%		
HOG	71.4%	72.7%	66.0%	77.4%		
HOF	75.4%	76.7%	75.3%	82.6%		
Cuboids	-	76.6%	-	-		
E-SURF	-	-	77.3%	-		

(Average precision scores)

• Best results for **dense** + HOG3D

[Wang, Ullah, Kläser, Laptev, Schmid, 2009]

Results on Hollywood-2

Descriptors

12 action classes collected from 69 movies

Detectors						
	Harris3D	Cuboids	Hessian	Dense		
HOG3D	43.7%	45.7%	41.3%	45.3%		
HOG/HOF	45.2%	46.2%	46.0%	47.4%		
HOG	32.8%	39.4%	36.2%	39.4%		
HOF	43.3%	42.9%	43.0%	45.5%		
Cuboids	-	45.0%	-	-		
E-SURF	-	-	38.2%	-		

(Average precision scores)

• Best results for **dense** + HOG/HOF

[Wang, Ullah, Kläser, Laptev, Schmid, 2009]

Other recent local representations

- Y. and L. Wolf, "Local Trinary Patterns for Human Action Recognition ", ICCV 2009
- P. Matikainen, R. Sukthankar and M. Hebert "Trajectons: Action Recognition Through the Motion Analysis of Tracked Features" ICCV VOEC Workshop 2009,
- H. Wang, A. Klaser, C. Schmid, C.-L. Liu, "Action Recognition by Dense Trajectories", CVPR 2011
- Recognizing Human Actions by Attributes
 J. Liu, B. Kuipers, S. Savarese, CVPR 2011

Naming: Golf-Swinging

Dense trajectory descriptors

[Wang et al. CVPR'11]

Dense trajectory descriptors

[Wang et al. CVPR'11]

	KTH		YouTube		Hollywood2		UCF sports	
	KLT	Dense trajectories	KLT	Dense trajectories	KLT	Dense trajectories	KLT	Dense trajectories
Trajectory	88.4%	90.2%	58.2%	67.2%	46.2%	47.7%	72.8%	75.2%
HOG	84.0%	86.5%	71.0%	74.5%	41.0%	41.5%	80.2%	83.8%
HOF	92.4%	93.2%	64.1%	72.8%	48.4%	50.8%	72.7%	77.6%
MBH	93.4%	95.0%	72.9%	83.9%	48.6%	54.2%	78.4%	84.8%
Combined	93.4%	94.2%	79.9%	84.2%	54.6%	58.3%	82.1%	88.2%

KTH		YouTube		Hollywood	2	UCF sports	
Laptev et al. [14]	91.8%	Liu et al. [16]	71.2%	Wang et al. [32]	47.7%	Wang et al. [32]	85.6%
Yuan et al. [35]	93.3%	Ikizler-Cinbis et al. [9]	75.21%	Gilbert et al. [8]	50.9%	Kovashka et al. [12]	87.27%
Gilbert et al. [8]	94.5%			Ullah <i>et al</i> . [31]	53.2%	Kläser et al. [10]	86.7%
Kovashka et al. [12]	94.53%			Taylor <i>et al.</i> [29]	46.6%		
[Wang et al.]	94.2%	[Wang et al.]	84.2%	[Wang et al.]	58.3%	[Wang et al.]	88.2%

Dense trajectory descriptors

[Wang et al. CVPR'11]

Computational cost:

Highly-efficient video descriptors

Optical flow from MPEG video compression

Highly-efficient video descriptors

Evaluation on Hollywood2

		Feat.	Quant.	Total
	Acc.	(fps)	(fps)	(fps)
CD FLANN(4-32)	55.8%		52.4	40.0
CD VLAD(4)	56.7%	168.4	167.5	84.0
CD FV(32)	58.2%		40.9	32.9
DT [Wang et al.'11]	59.9%	1.2	5.1	1.0

Evaluation on UCF50

		Feat.	Quant.	Total
	Acc.	(fps)	(fps)	(fps)
CD FLANN(4-32)	81.6%		52.4	48.1
CD VLAD(4)	80.6%	591.8	671.4	314.6
CD FV(32)	82.2%		171.3	132.8
DT [Wang et al.'11]	85.6%	2.8	5.1	1.8

[Kantorov & Laptev, 2013]

Beyond BOF: Temporal structure

 Modeling Temporal Structure of Decomposable Motion Segments for Activity Classication, J.C. Niebles, C.-W. Chen and L. Fei-Fei, ECCV 2010

 Learning Latent Temporal Structure for Complex Event Detection. Kevin Tang, Li Fei-Fei and Daphne Koller, CVPR 2012

Beyond BOF: Social roles

- T. Yu, S.-N. Lim, K. Patwardhan, and N. Krahnstoever. Monitoring, recognizing and discovering social networks. In CVPR, 2009.
- L. Ding and A. Yilmaz. Learning relations among movie characters: A social network perspective. In ECCV, 2010

 V. Ramanathan, B. Yao, and L. Fei-Fei. Social Role Discovery in Human Events. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2013.

Beyond BOF: Egocentric activities

 A. Fathi, A. Farhadi, and J. M. Rehg. Understanding egocentric activities. In ICCV, 2011.

 H. Pirsiavash, D. Ramanan. Recognizing Activities of Daily Living in First-Person Camera Views, In CVPR, 2012.

Beyond BOF: Action localization

Manual annotation of drinking actions in movies: "Coffee and Cigarettes"; "Sea of Love"

> *"Drinking*": 159 annotated samples *"Smoking*": 149 annotated samples

> > **Temporal** annotation

Spatial annotation

torso rectangle

Action representation

Action learning

AdaBoost:

Efficient discriminative classifier [Freund&Schapire'97]

Action Detection

Test episodes from the movie "Coffee and cigarettes"

[Laptev, Perez 2007]

20 most confident detections

Where to get training data?

Weakly-supervised learning

Actions in movies

- Realistic variation of human actions
- Many classes and many examples per class

- Typically only a few class-samples per movie
- Manual annotation is <u>very</u> time consuming

Script-based video annotation

- Scripts available for >500 movies (no time synchronization) www.dailyscript.com, www.movie-page.com, www.weeklyscript.com ...
- Subtitles (with time info.) are available for the most of movies
- Can transfer time to scripts by text alignment

Text-based action retrieval

• Large variation of action expressions in text:

=> Supervised text classification approach

[Laptev, Marszałek, Schmid, Rozenfeld 2008]

Hollywood-2 actions dataset

Actions						
	Training subset (clean)	Training subset (automatic)	Test subset (clean)			
AnswerPhone	66	59	64			
DriveCar	85	90	102			
Eat	40	44	33			
FightPerson	54	33	70			
GetOutCar	51	40	57			
HandShake	32	38	45			
HugPerson	64	27	66			
Kiss	114	125	103			
Run	135	187	141			
SitDown	104	87	108			
SitUp	SitUp 24		37			
StandUp	132	133	146			
All Samples	823	810	884			

Training and test samples are obtained from 33 and 36 distinct movies respectively.

Hollywood-2 dataset is on-line: http://www.irisa.fr/vista /actions/hollywood2

[Laptev, Marszałek, Schmid, Rozenfeld 2008]

Action classification results

	Cle	Clean		Automatic		
	hoghof			hoghof		Chance
Channel	bof	flat		bof	flat	
mAP	47.9	50.3		31.9	36.0	9.2
AnswerPhone	15.7	20.9		18.2	19.1	7.2
DriveCar	86.6	84.6		78.2	80.1	11.5
Eat	59.5	67.0		13.0	22.3	3.7
FightPerson	71.1	69.8		52.9	57.6	7.9
GetOutCar	29.3	45.7		13.8	27.7	6.4
HandShake	21.2	27.8		12.8	18.9	5.1
HugPerson	35.8	43.2		15.2	20.4	7.5
Kiss	51.5	52.5		43.2	48.6	11.7
Run	69.1	67.8		54.2	49.1	16.0
SitDown	58.2	57.6		28.6	34.1	12.2
SitUp	17.5	17.2		11.8	10.8	4.2
StandUp	51.7	54.3		40.5	43.6	16.5

Average precision (AP) for Hollywood-2 dataset

Actions in the context of scenes

• Human actions are frequently correlated with particular scene classes Reasons: *physical properties* and *particular purposes* of scenes

Eating -- kitchen

Eating -- cafe

Running -- road

Running -- street

Mining scene captions

[Marszałek, Laptev, Schmid 2008]

Co-occurrence of actions and scenes in scripts

[Marszałek, Laptev, Schmid 2008]

Results: actions and scenes (jointly)

Handling temporal uncertainty

[Duchenne, Laptev, Sivic, Bach, Ponce, 2009]

Discriminative action clustering

Input:

- Action type, e.g.
 "Person opens door"
- Videos + aligned scripts

Automatic collection of video clips

... Jane jumps up and opens the door Carolyn opens the front door Jane opens her bedroom door ...

[Duchenne, Laptev, Sivic, Bach, Ponce, 2009]

Discriminative action clustering

Feature space

Video space

Negative samples

Random video samples: lots of them, very low chance to be positives

[Duchenne, Laptev, Sivic, Bach, Ponce, 2009]

Action clustering

Formulation

[Xu et al. NIPS'04] [Bach & Harchaoui NIPS'07]

Action detection: Sliding time window

"Sit Down" and "Open Door" actions in ~5 hours of movies

Temporal detection of "Sit Down" and "Open Door" actions in movies: The Graduate, The Crying Game, Living in Oblivion [Duchenne et al. 09]

On-going: Joint Recognition of Actions and Actors

[Bojanowski, Bach, Laptev, Ponce, Sivic, Schmid, 2013, in submission]

On-going: Joint Recognition of Actions and Actors

[Bojanowski, Bach, Laptev, Ponce, Sivic, Schmid, 2013, in submission]

Recognition of Actions and Actors

[Bojanowski, Bach, Laptev, Ponce, Sivic, Schmid, 2013]

What we have seen so far

Actions understanding in realistic settings:

Action classification (and localization)

Is classification the final answer?

Is action classification the right problem?

• Is action vocabulary well-defined?

Examples of "Open" action:

• What granularity of action vocabulary shall we consider?

Source: http://www.youtube.com/watch?v=eYdUZdan5i8

Do we want to learn *person-throws-cat-into-trash-bin* classifier?

(Joint work with T.H. Vu, C. Olsson, A. Oliva and J. Sivic)

MTurk interface :

The movie to the left depicts one or more people doing something. Please watch the movie as many times as you would like and answer the questions below about the people in the movie. If at first you cannot see the movie, please try using a different browser (such as Chrome). If you cannot successfully watch the movie, please do NOT accept this HIT.

What is P2 doing?

What is P3 doing?

Have you ever seen this clip before? O Yes, I think so O No, I don't think so

Submit

Input video:

Five responses for each video and person:

P1 is dancing with P2. P1 dances with P2.

- P1 dances with P2.
- **P1:** P1 is dancing with P2. P1 is dancing with P2. P1 is dancing with P2.

situation 1: Similar expressions

Input video:

Action responses:

P1 greets P2 and shakes hands

- P1 shakes P2's hand and greets him.
- P1: P1 is shaking P2's hand
 - P1 is shaking hands.
 - P1 shakes hands with P2.

situation 1: Similar expressions

Input video:

Action responses:

- P2 is walking up to P1 and talking to him. P2 approaches P1.
- P2: P2 runs towards P1 and speaks to him.P2 is rushing to P1 before he leaves.P2 stops P1 before he can leave to talk to him

situation 2:

Similar meaning Different expressions

Action responses:

- P1 is leaving the room
- P1 gets up and leaves the table
- **P1:** P1 storms from the table.
 - P1 gets up and leaves to the back of the room.
 - P1 is walking away from an interaction with P2.

situation 2:

Similar meaning Different expressions

Input video:

Action responses:

- P1 is carrying his money to the casino banker.
- P1 is leading P3 and P4.
- **P1:** P1 walks in front of a group of people
 - P1 is leading P3 and P4 through the room.
 - P1 is walking up to the cage

situation 3:

Different expressions Different meanings

Input video:

Action responses:

- P1 is walking through a crowd carrying cases
- P1 is walking.
- **P1:** P1 is looking perplexed and walking away.
 - P1 scans the area.
 - P1 is looking for someone.

situation 3:

Different expressions Different meanings

What current methods cannot do?

Limitations of Current Methods

Next challenge

Shift the focus of computer vision

Object, scene and action recognition

Recognition of objects' function and people's intentions

Is this a picture of a dog? Is the person running in this video? What people do with objects? How they do it? For what purpose?

Enable new applications

Motivation

• Exploit the link between human pose, action and object function.

• Use human actors as active sensors to reason about the surrounding scene.

[Delaitre, Fouhey, Laptev, Sivic, Gupta, Efros, 2012]

Goal

Recognize objects by the way people interact with them.

Time-lapse "Party & Cleaning" videos

Lots of person-object interactions, many scenes on YouTube

Semantic object segmentation

New "Party & Cleaning" dataset

Goal

Recognize objects by the way people interact with them.

Time-lapse "Party & Cleaning" videos

Semantic object segmentation

Lots of person-object interactions, many scenes on YouTube

Pose vocabulary

Pose histogram

Some qualitative results

Background

'A+P' soft segm.

'A+L' soft segm.

'A+P' hard segm.

Bed

CoffeeTable

Cupboard

SofaArmchair

Table

Other

Using our model as pose prior

Given a bounding box and the ground truth segmentation, we fit the pose clusters in the box and score them by summing the joint's weight of the underlying objects.

Input image

Conclusions

- Bag-of-Features methods give state-of-the-art results for action recognition in realistic data. Better models are needed
- Weakly-supervised methods crucial to address largescale and large diversity of the video data.
- Video labeling by action classes is not the end of the story. New challenging problems are waiting.

Ad: We are looking for Postdocs!

