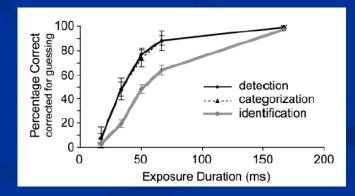
Rich representations for learning visual recognition

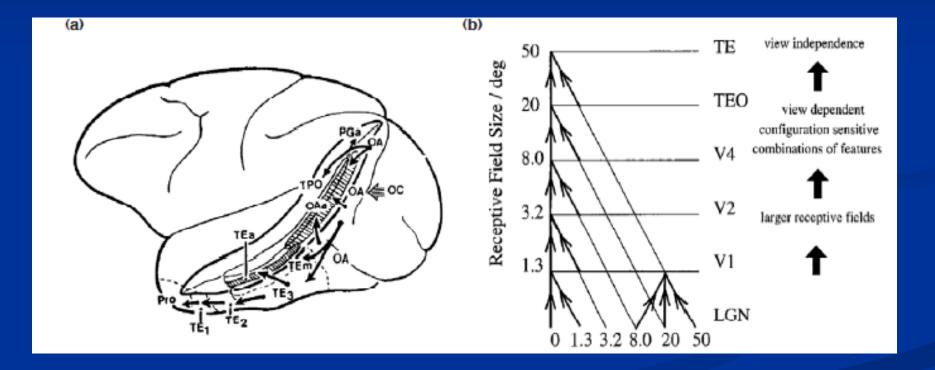
Jitendra Malik University of California at Berkeley

Detection can be very fast

- On a task of judging animal vs no animal, humans can make mostly correct saccades in 150 ms (Kirchner & Thorpe, 2006)
 - Comparable to synaptic delay in the retina, LGN, V1, V2, V4, IT pathway.
 - Doesn't rule out feed back but shows feed forward only is very powerful
- Detection and categorization are practically simultaneous (Grill-Spector & Kanwisher, 2005)



Rolls et al (2000)



Some opinions...

A hierarchical, mostly feedforward network is the right model, the question is how to train it
Unsupervised, sparsity encouraging techniques are promising for lower layers
But so far the success of this approach at the higher stages has not yet been demonstrated

Insights from child development

Trying to learn object recognition from bounding boxes is like trying to learn language from a list of sentences.
The development of visual recognition, like language acquisition, benefits from supportive "scaffolding"

 Grouping and tracking can play an important role by helping solve the correspondence problem. In a machine vision system, we can "cheat" by supplying keypoint correspondences

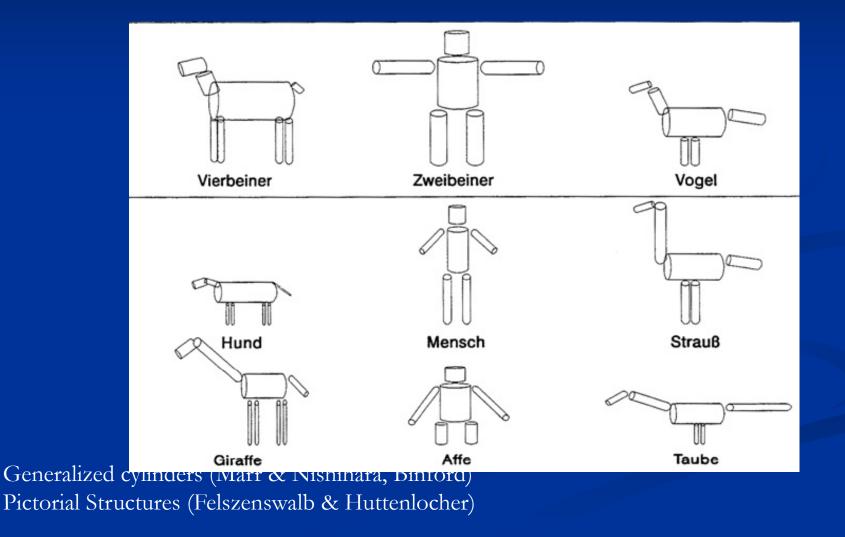
Detecting and Segmenting People

Where are they? What are they wearing? What are they doing?

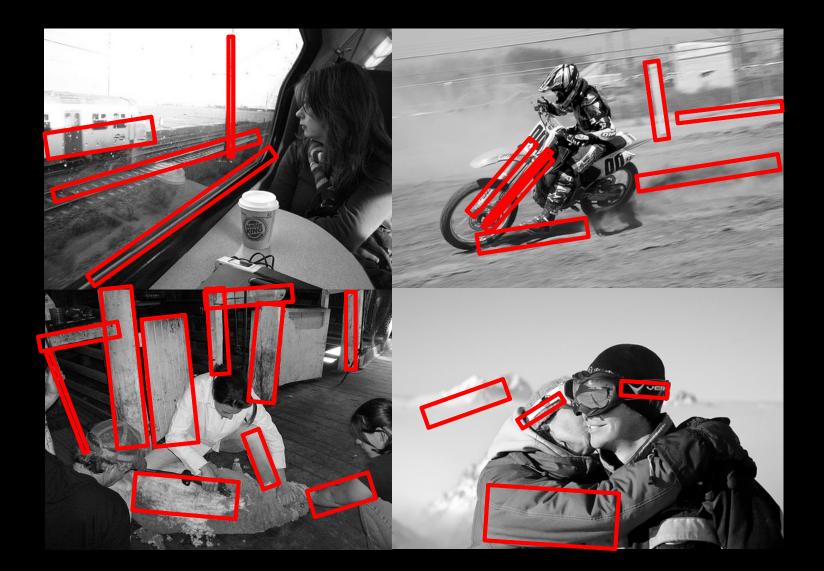
Jitendra Malik UC Berkeley

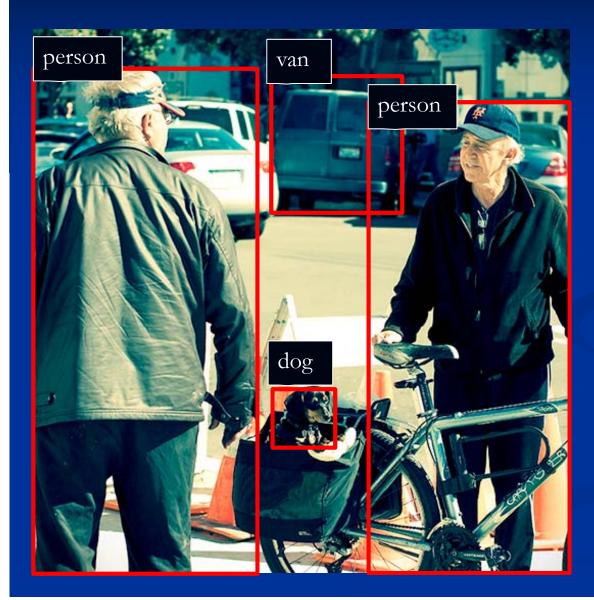
This is joint work with L. Bourdev, S. Maji and T. Brox.

Trying to extract stick figures is hard (and unnecessary!)

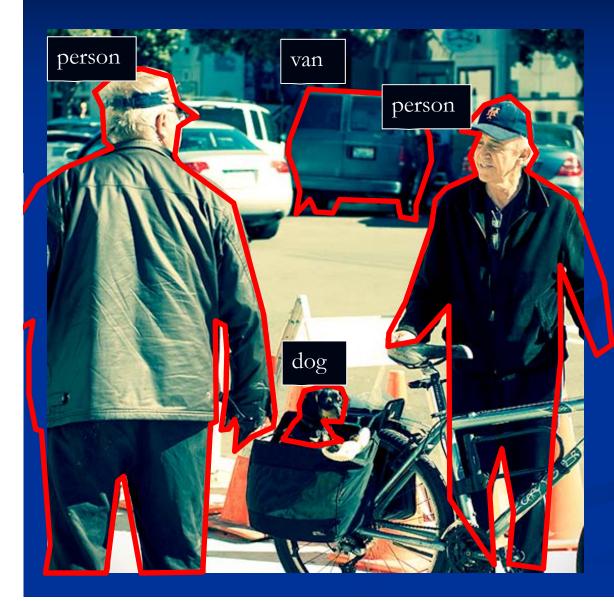


All the wrong limbs...





Object Recognition



Object Recognition Semantic Segmentation

Object Recognition Semantic Segmentation Pose Estimation

Object Recognition Semantic Segmentation Pose Estimation Action Recognition

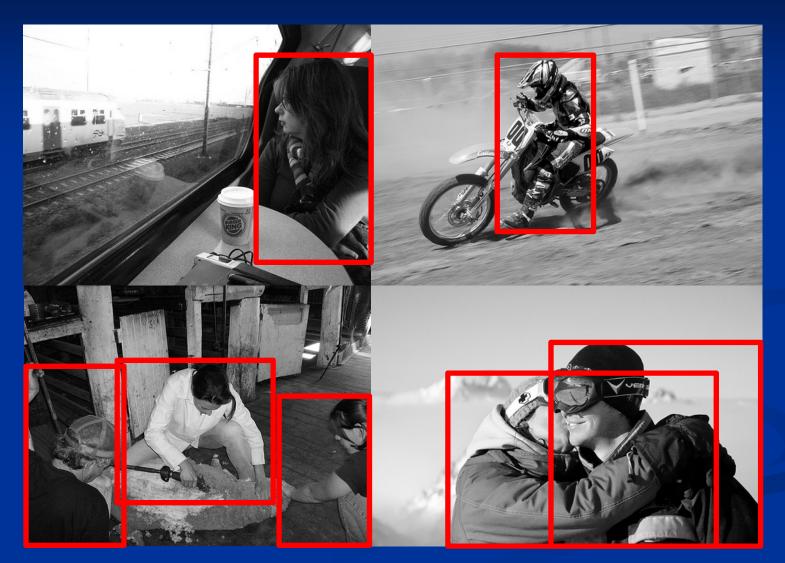
Object Recognition Semantic Segmentation Pose Estimation Action Recognition Attribute Classification

"An elderly man with a hat and glasses, facing the camera and talking"

"A man with glasses and a coat, facing back, walking away"

Object Recognition Semantic Segmentation Pose Estimation Action Recognition Attribute Classification

How can we make the problem harder?



Solution: Severely limit the supervision

The best approach in such setup?

Part 2 fires on left torso

Part 5 fires on one leg...

...but sometimes on $\frac{1}{2}$ of the

Learned part location penalty

Divide-and-conquer: One global template + five parts

Positions and appearance of parts trained jointly (Latent SVM)

... or both

- Mixture of models for various poses (standing, sitting, etc)
 - Parts are not well localized and have large appearance pariatio2010]

Radical idea: What if, instead, we try to make the problem easier?

[Bourdev and Malik, ICCV 2009]

Can we build upon the success of faces and pedestrians?

- Both do template matching
- Capture salient and common patterns
- Are these the only two salient & common patterns?

But how are we going to create the training set?

Poselets

Training a poselet
Selecting a good set of poselets
Improving poselets with context
Detection with poselets
Segmentation
Attributes
Action Recognition

Poselets

Training a poselet
Selecting a good set of poselets
Improving poselets with context
Detection with poselets
Segmentation
Attributes
Action Recognition

Examples of poselets

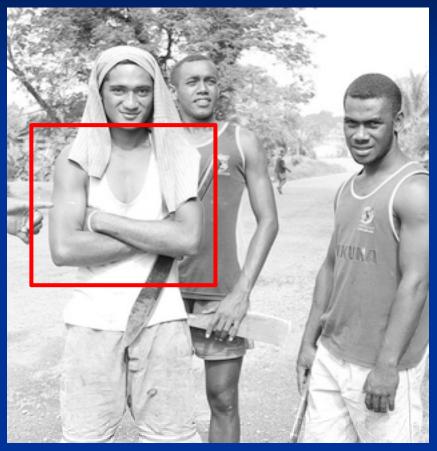
Patches are often far visually, but they are close semantically

Poselets

Training a poselet
Selecting a good set of poselets
Improving poselets with context
Detection with poselets
Segmentation
Attributes
Action Recognition

How do we train a poselet for a given pose configuration?

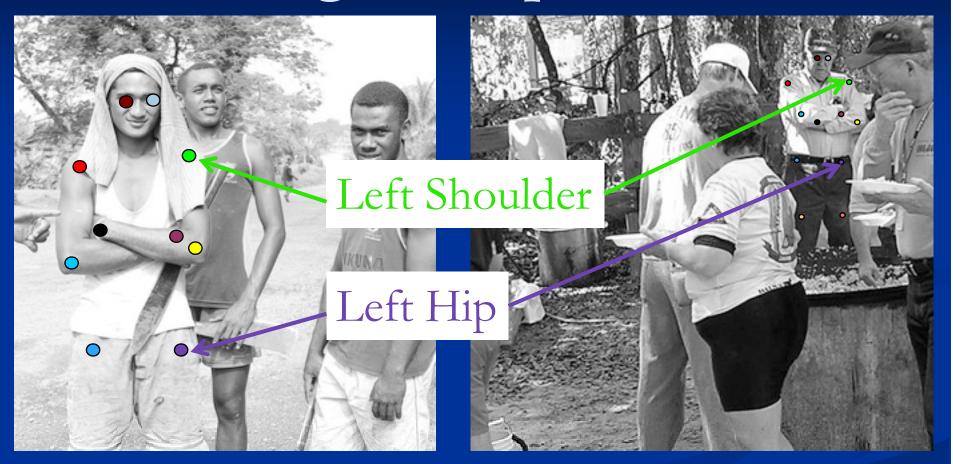
Finding Correspondences



Given part of a human pose

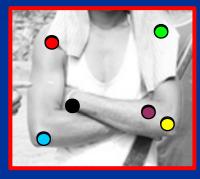
How do we find a similar pose configuration in the training set?

Finding Correspondences



We use keypoints to annotate the joints, eyes, nose, etc. of people

Finding Correspondences



Residual Error

Training poselet classifiers

Residual Error:

0.15 0.20

0.10

0.85

0.15

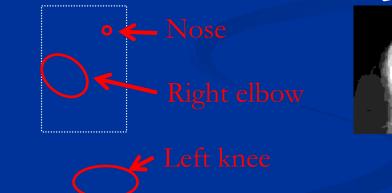
0.35

- 1. Given a seed patch
- 2. Find the closest patch for every other person
- 3. Sort them by residual error
- 4. Threshold them

Training poselet classifiers

- 1. Given a seed patch
- 2. Find the closest patch for every other person
- 3. Sort them by residual error
- 4. Threshold them
- 5. Use them as positive training examples for a classifier (HOG features, linear SVM)

For a trained poselet we fit:



Expected person bounds

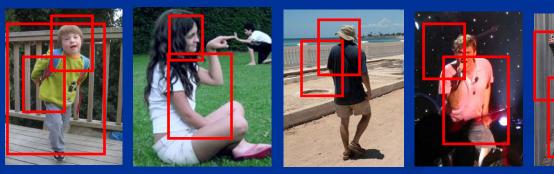
Keypoint predictions

Foreground probability mask

Poselets ■ Training a poselet Selecting a good set of poselets Improving poselets with context Detection with poselets Segmentation Attributes Action Recognition

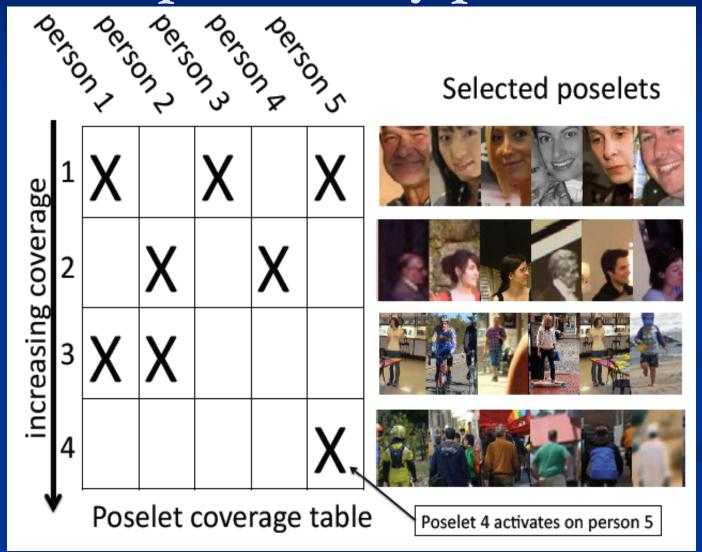
How do we find poselets?

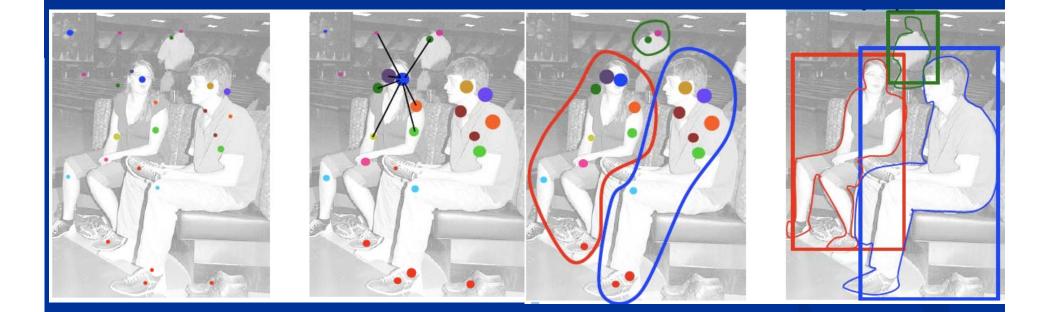
Choose thousands of random windows, generate poselet candidates, train linear SVMs

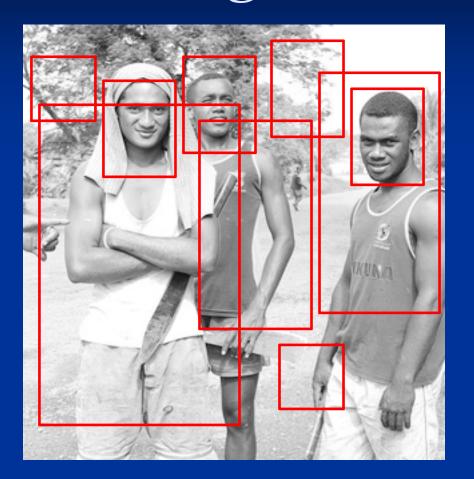


Select a small set of poselets that are:
Individually effective
Complementary

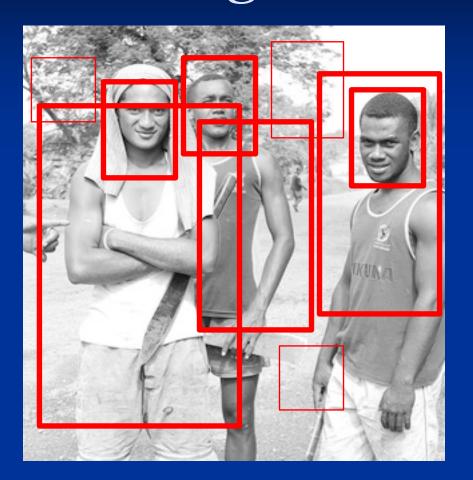
Selecting a small set of complementary poselets



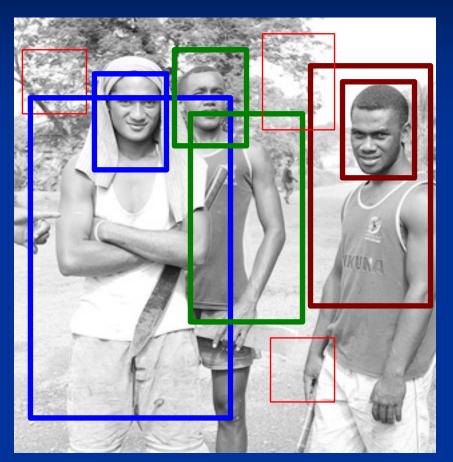




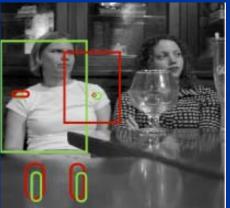
Step 1: Detect poselets in the image



Step 2: Enhance their scores using context



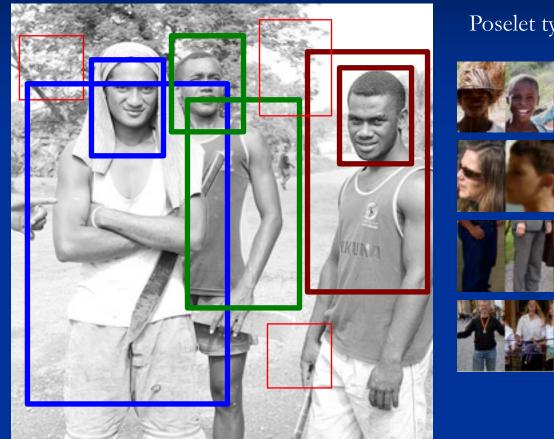
Two poselets refer to the same person if their keypoint predictions are consistent:



Consistent

Not consistent

Step 3: Cluster poselets of the same person together



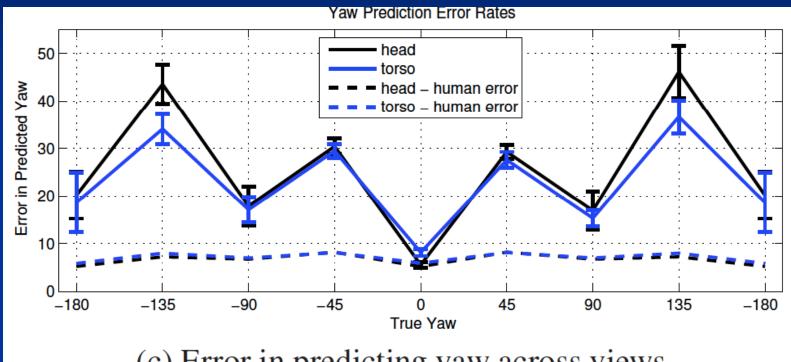
elet type	Cluster1	Cluster2	Cluster3	
22	0.32	0.11	0.95	
	0.77	0	0.08	
	0	0	0.72	
	0.41	0	0	

Poselet activation vector

Step 4: Collect the scores of all poselets in a cluster into a poselet activation vector

Poselet Activation Vector

PAV provides a distributed representation of the pose and is the basis for poselet-based tasks



(c) Error in predicting yaw across views

Poselets

Training a poselet
Selecting a good set of poselets
Improving poselets with context
Detection with poselets
Segmentation
Attributes
Action Recognition

Problem: The patch may have weak signal

Front and back look similar

Face false positive

Left or right leg?

A front face poselet can disambiguate them Lack of head-and-shoulders poselet suggests a false positive Location of pedestrian poselet can disambiguate

Solution: Enhance the poselet score using other consistent poselets

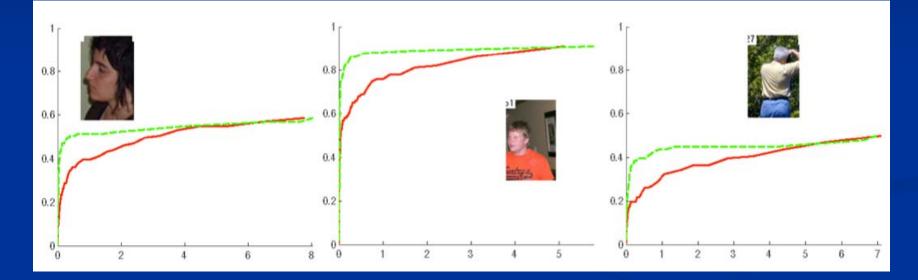
Using context

1. For each poselet activation on the training set:

- A. Find its label: True positive, False positive, Unknown
- B. Construct a feature vector from activations of other consistent poselets
- 2. Train a linear classifier for each poselet
- 3. Convert score to probability via logistic regression

The effect of using context

ROC curves for three random poselets



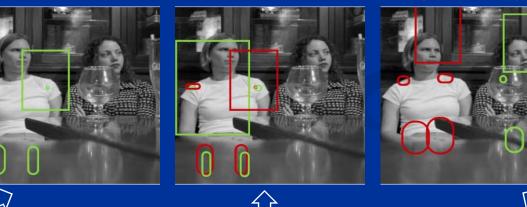
Green: Context Red: No context

Poselets

Training a poselet
Selecting a good set of poselets
Improving poselets with context
Detection with poselets
Segmentation
Attributes
Action Recognition

Object Detection with Poselets

- 1. Detect poselets in the image
- 2. Enhance their scores via context
- 3. Cluster consistent ones into object hypotheses



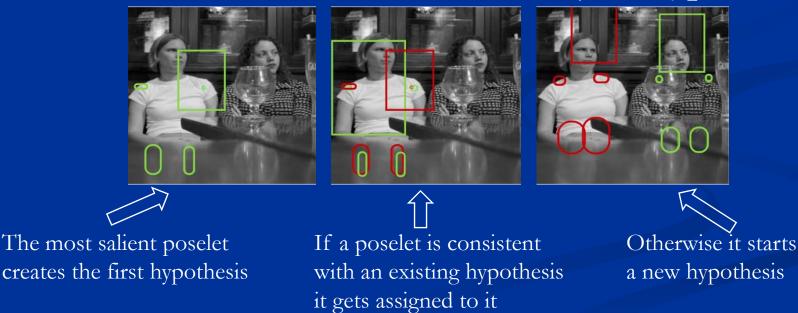
The most salient poselet creates the first hypothesis

If a poselet is consistent with an existing hypothesis it gets assigned to it Otherwise it starts a new hypothesis

4. Predict bounding box and score of the cluster

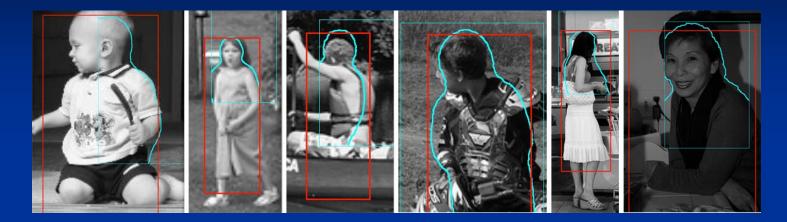
Object Detection with Poselets

- 1. Detect poselets in the image
- 2. Enhance their scores via context
- 3. Cluster consistent ones into object hypotheses



4. Predict bounding box and score of the cluster

Results



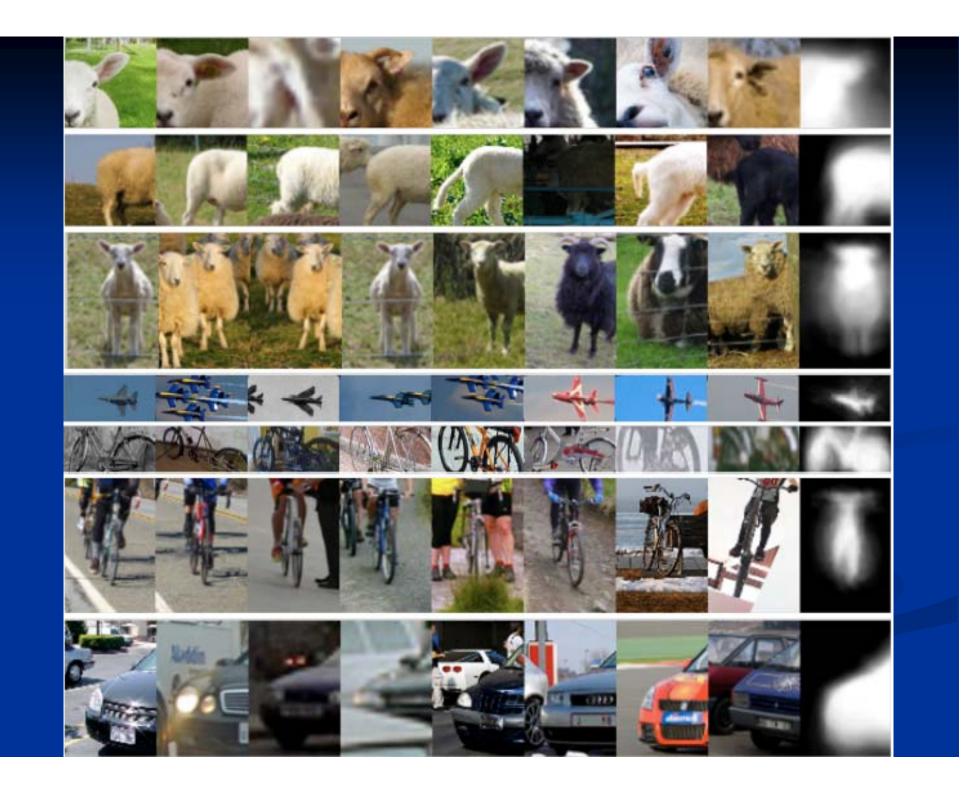
Best results on all PASCAL person detection competitions

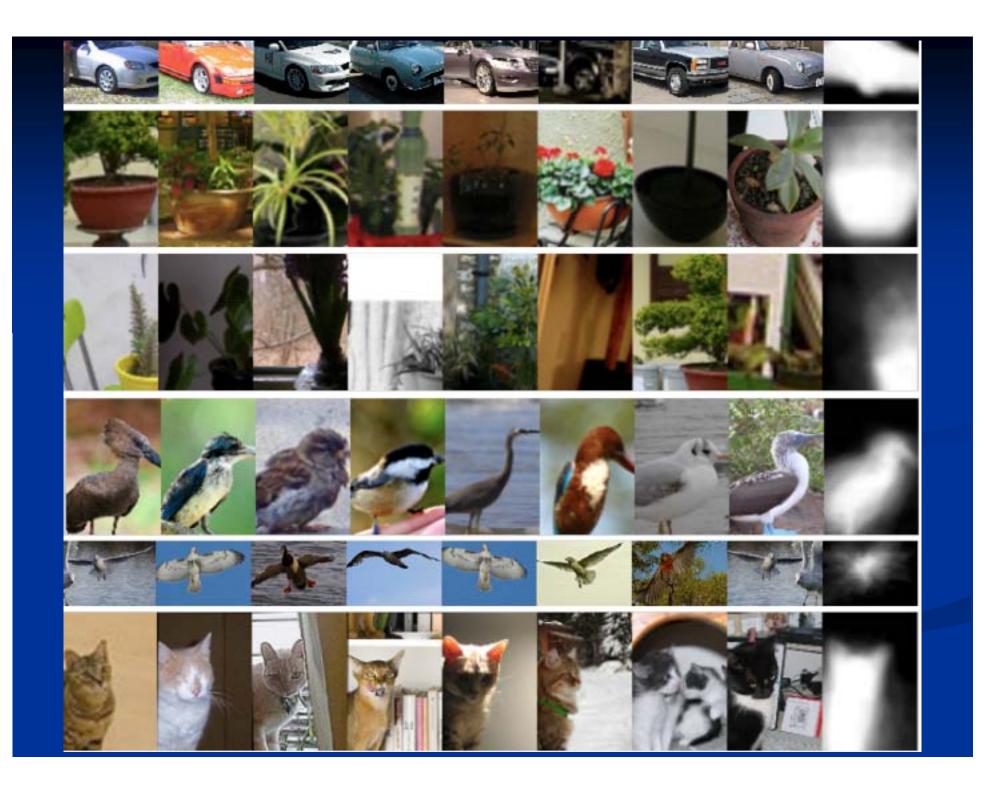
	POSELETS	Felzenszwalb et al.		
2010	48.5%	47.5%		
2009	48.3%	47.4%		
2008	54.1%	43.1%		

Poselets

Training a poselet
Selecting a good set of poselets
Improving poselets with context
Detection with poselets
Segmentation
Attributes
Action Recognition

Segmenting people





Align poselet activations (1 of 3) Threshold the mask of each poselet Make boundary map of the image (Arbelaez et al.)

Align the poselet activations using this non-rigid deformation:

$$E(u,v) = \int_{\mathbb{R}^2} |f(x,y) - g(x+u,y+v)| + \alpha \left(|\nabla u|^2 + |\nabla v|^2\right) dxdy.$$

Variational smoothing (2 of 3)
 The initial object mask *m* is smoothed by taking into account the predicted object boundary :

$$E(M) = \int (M - \tilde{M})^2 |\tilde{M}| + \frac{2}{C+1} |\nabla M| \, dx \, dy$$

Smoothed object mask

Refine via self-similarity (3 of 3)

Before refinement

After refinement

Multi-object segmentation

Person and horse

Multi-object segmentation

Person and bicycle

Some segmentation results...

		ours	Barce-	Bonn	Chicago/	Oxford	
			lona		Irvine	Brookes	
	background	82.2	81.1	84.2	80.0	70.1	
	aeroplane	43.8	58.3	52.5	36.7	31.0	
	bicycle	23.7	23.1	27.4	23.9	18.8	
	bird	30.4	39.0	32.3	20.9	19.5	
	boat	22.2	37.8	34.5	18.8	23.9	
	bottle	45.7	36.4	47.4	41.0	31.3	
Categories	bus	56.0	63.2	60.6	62.7	53.5	
we are best in	car	51.9	62.4	54.8	49.0	45.3	
\longrightarrow	cat	30.4	31.9	42.6	21.5	24.4	
	chair	9.2	9.1	9.0	8.3	8.2	
	cow	27.7	36.8	32.9	21.1	31.0	
	diningtable	6.9	24.6	25.2	7.0	16.4	
	dog	29.6	29.4	27.1	16.4	16.4	
\longrightarrow	horse	42.8	37.5	32.4	28.2	27.3	
	motorbike	37.0	60.6	47.1	42.5	48.1	
\longrightarrow	person	47.1	44.9	38.3	40.5	31.1	
	pottedplant	15.1	30.1	36.8	19.6	31.0	
\longrightarrow	sheep	35.1	36.8	50.3	33.6	27.5	
	sofa	23.0	19.4	21.9	13.3	19.8	
	train	37.7	44.1	35.2	34.1	34.8	
	tvmonitor	36.5	35.9	40.9	48.5	26.4	
	average	34.9	40.1	39.7	31.8	30.3	

Poselets

Training a poselet
Selecting a good set of poselets
Improving poselets with context
Detection with poselets
Segmentation
Attributes
Action Recognition

Male or female?

How do we train attribute classifiers "in the wild"? Effective prediction requires inferring the pose and camera view Pose reconstruction is itself a hard problem, but we don't need perfect solution. • We train attribute classifiers for each poselet Poselets implicitly decompose the pose

Gender classifier per poselet is much easier to train

Poselets: general-purpose pose decomposition engine. Can be used any time separating pose from appearance is important

Appearance is key for:

Pose is key for:

Attribute classification

Pose reconstructionAction recognition

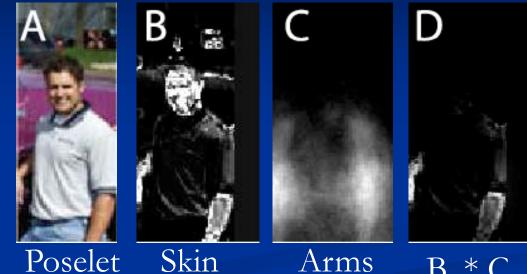
Attribute Classification Overview

Given a test image

...

Features

Pyramid HOG LAB histogram Skin features Hands-skin Legs-skin

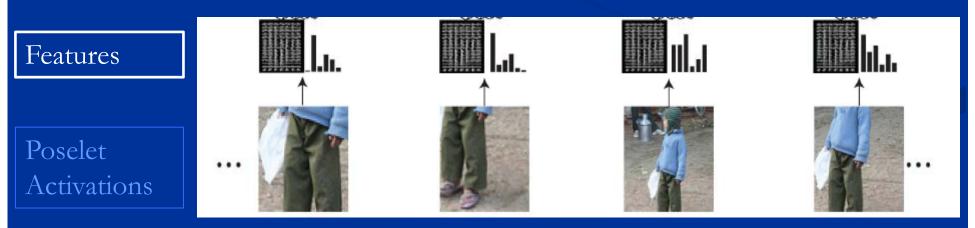


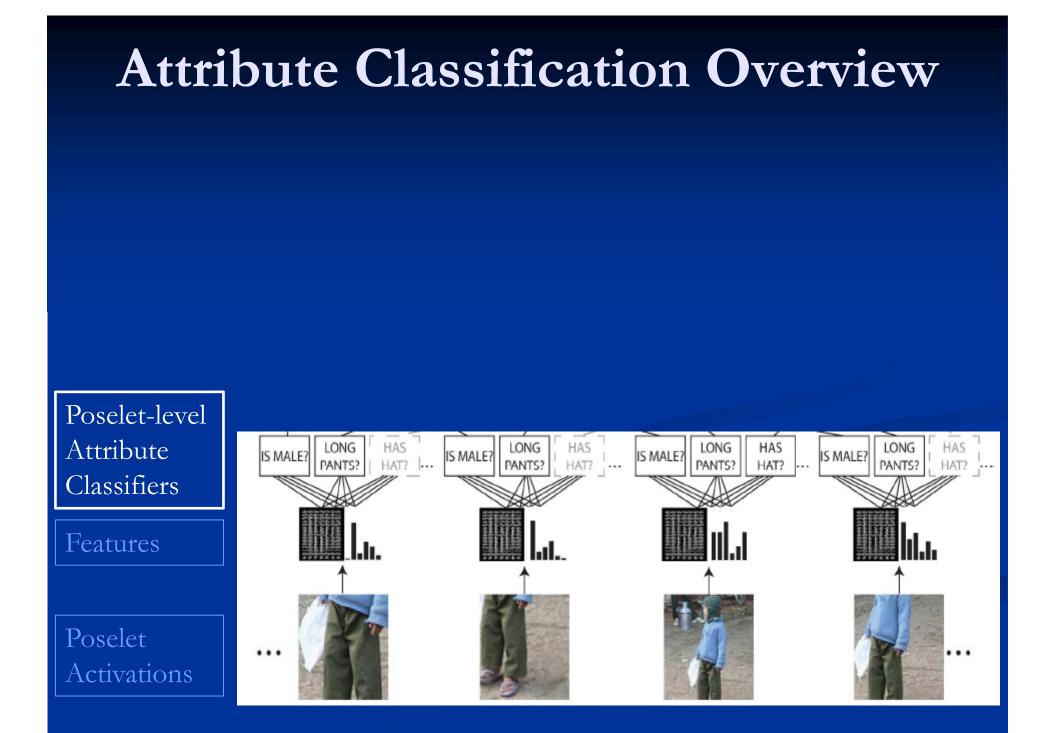
Poselet patch

mask

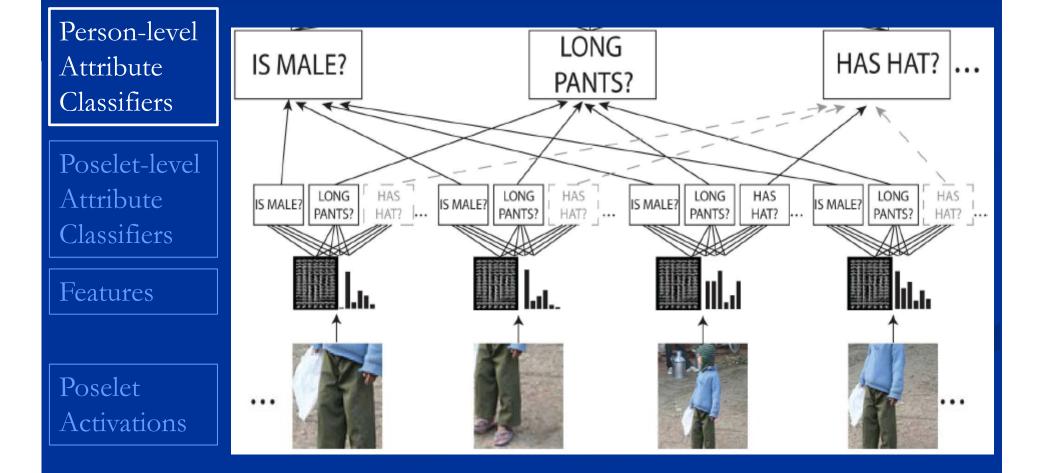
mask

B .* C

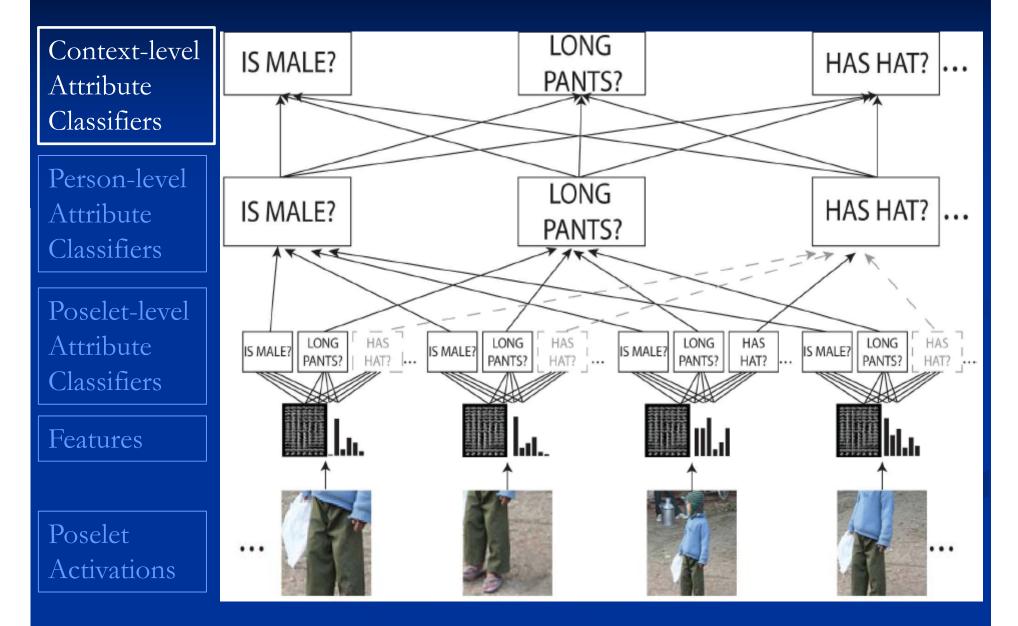




Attribute Classification Overview



Attribute Classification Overview



Is male

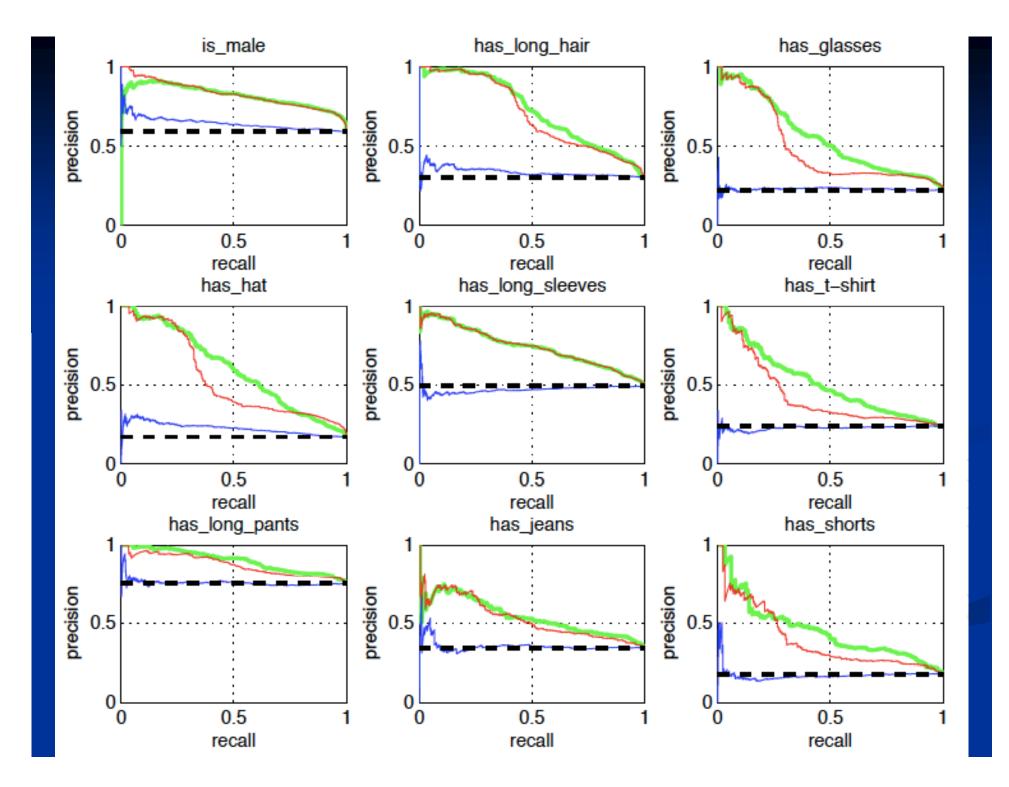
Has long hair

Wears a hat

Wears glasses

Wears long pants

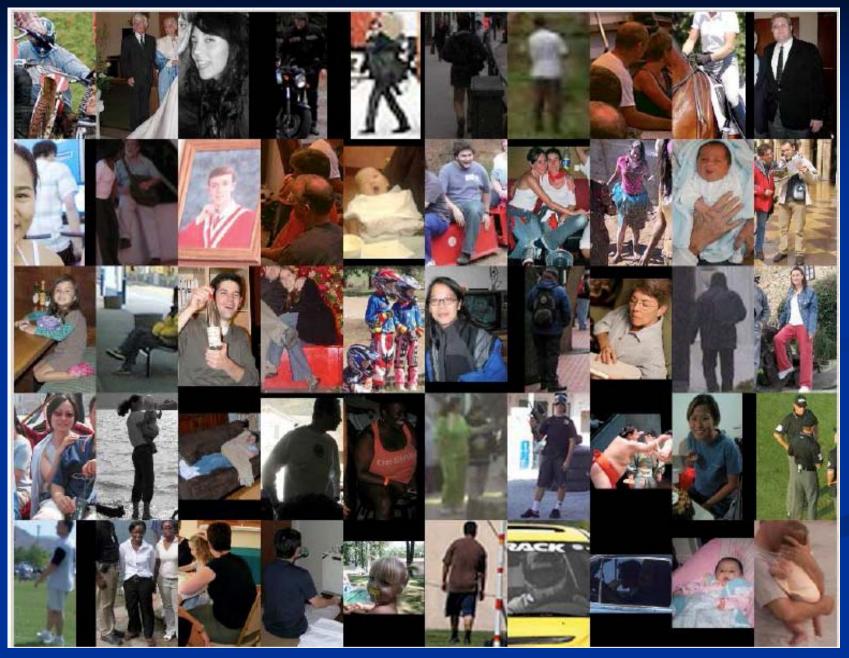
Wears long sleeves



Results – Average Precision

Attribute	Freq	SPM	No cntxt	Cntxt
is male	59.3	64.8	82.9	82.4
has long hair	30.0	34.2	70.0	72.5
has glasses	22.0	23.6	48.9	55.6
has hat	16.6	22.6	53.7	60.1
has long sleeves	49.0	49.4	74.3	74.2
has t-shirt	23.5	23.9	43.0	51.2
has long pants	74.7	76.3	87.8	90.3
has jeans	33.8	36.4	53.3	54.7
has shorts	17.9	19.0	39.2	45.5
Mean AP	36.31	38.90	61.46	65.18

Random 2% of the test set



Poselets

Training a poselet
Selecting a good set of poselets
Improving poselets with context
Detection with poselets
Segmentation
Attributes
Action Recognition

Actions in still images ...

have characteristic :

pose and appearanceinteraction with objects and agents

PASCAL VOC 2010 Action Classification
 Action Classification: Predicting the action(s) being performed by a person in a still image. Bounding boxes are given

9 action classes

Relatively small training data/classes

	train		val		trainval	
	Images	Objects	Images	Objects	Images	Objects
Phoning	25	25	25	26	50	51
layinginstrument	27	38	27	38	54	76
Reading	25	26	26	27	51	53
Ridingbike	25	33	25	33	50	66
Ridinghorse	27	35	26	36	53	71
Running	26	47	25	47	51	94
Takingphoto	25	27	26	28	51	55
Usingcomputer	26	29	26	30	52	59
Walking	25	41	26	42	51	83
Total	226	301	228	307	454	608

Poselet selection and training

Restrict training examples to ones from the

category

takingphoto

Examples from all actions

Examples from takingphoto

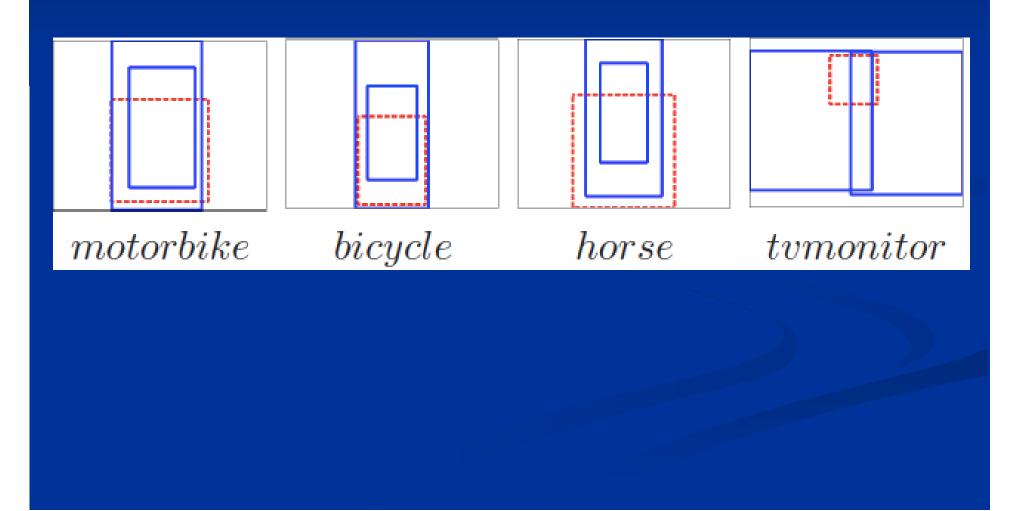
Some discriminative poselets

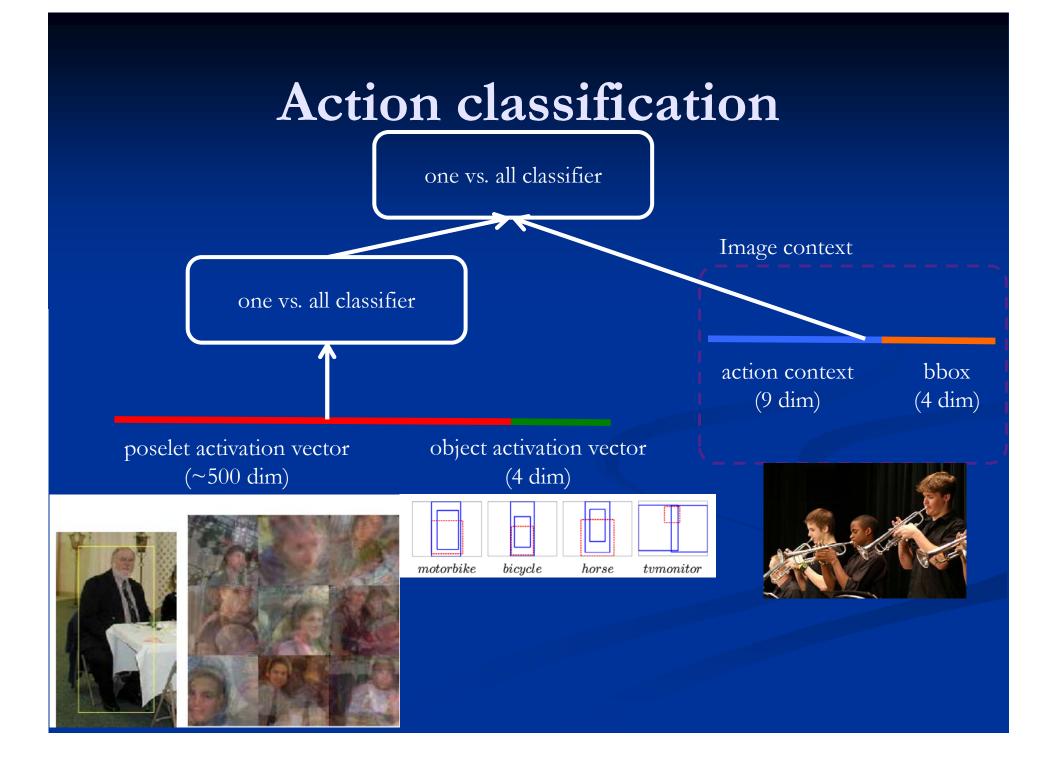
running

walking

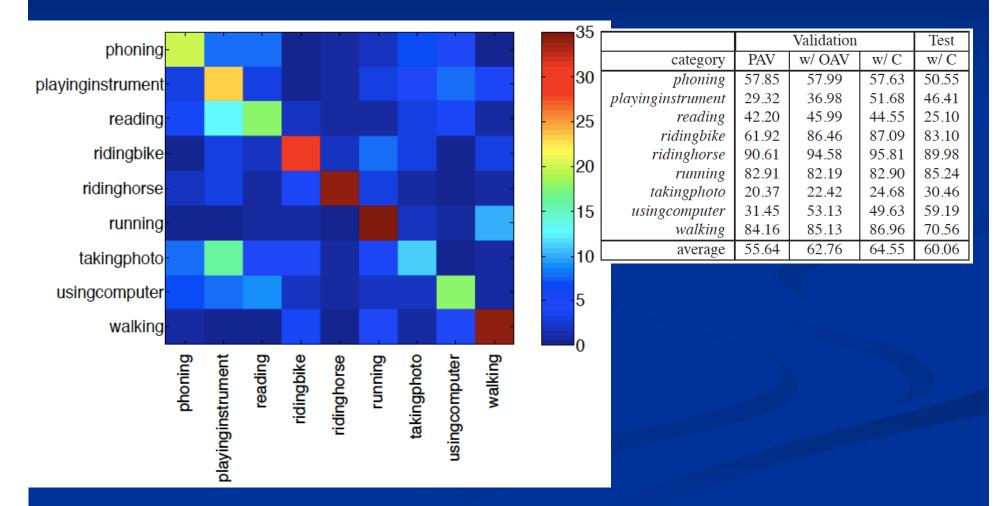
ridinghorse

Spatial model of person-object interaction

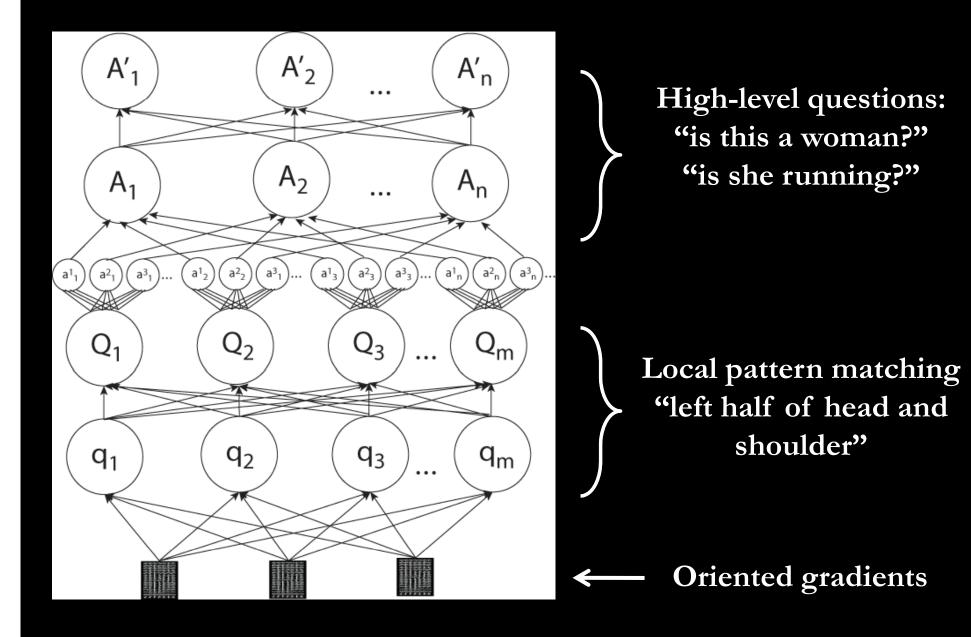




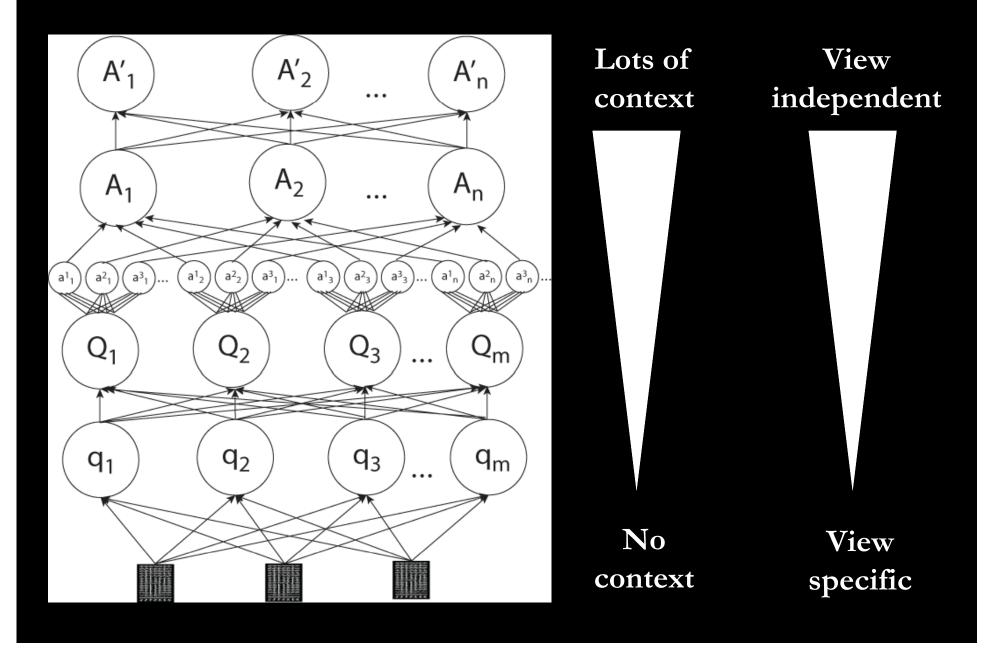
Results on static action classification



Feed-forward network



Feed-forward network



Poselets: general-purpose pose decomposition engine. Can be used any time separating pose from appearance is important

Appearance is key for:

Pose is key for:

Attribute classification

Pose reconstructionAction recognition