

ENS/INRIA Visual Recognition and Machine Learning Summer School, 25-29 July, Paris, France

Human Action Recognition

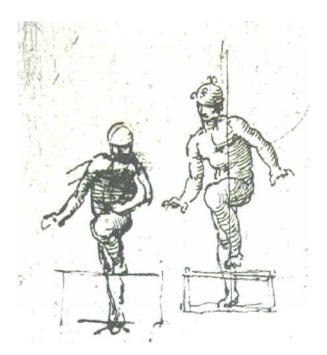
Ivan Laptev

ivan.laptev@inria.fr

INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d'Informatique, Ecole Normale Supérieure, Paris

Includes slides from: Alyosha Efros, Mark Everingham and Andrew Zisserman

Lecture overview



Motivation

Historic review Applications and challenges

Human Pose Estimation

Pictorial structures Recent advances

Appearance-based methods

Motion history images Active shape models & Motion priors

Motion-based methods

Generic and parametric Optical Flow Motion templates

Space-time methods

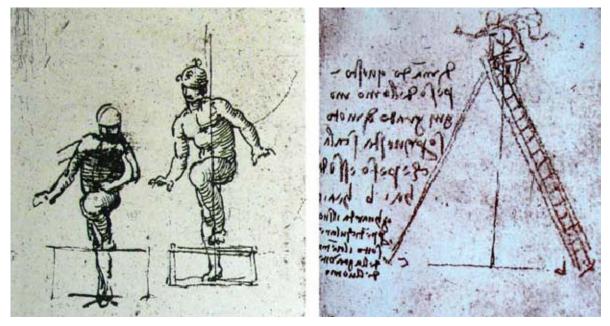
Space-time features Training with weak supervision

Motivation I: Artistic Representation

Early studies were motivated by human representations in Arts

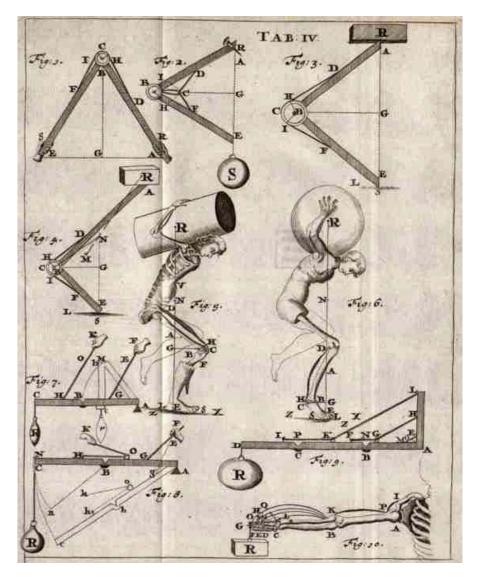
Da Vinci: "it is indispensable for a painter, to become totally familiar with the anatomy of nerves, bones, muscles, and sinews, such that he understands for their various motions and stresses, which sinews or which muscle causes a particular motion"

"I ask for the weight [pressure] of this man for every segment of motion when climbing those stairs, and for the weight he places on *b* and on *c*. Note the vertical line below the center of mass of this man."



Leonardo da Vinci (1452–1519): A man going upstairs, or up a ladder.

Motivation II: Biomechanics



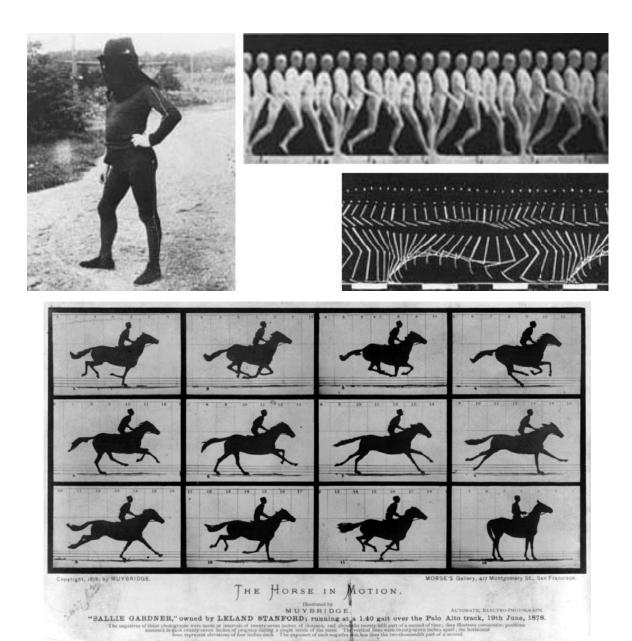
Giovanni Alfonso Borelli (1608–1679)

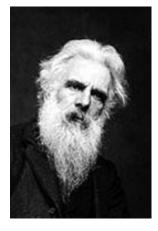
- The emergence of *biomechanics*
- Borelli applied to biology the analytical and geometrical methods, developed by Galileo Galilei
- He was the first to understand that bones serve as levers and muscles function according to mathematical principles
- His physiological studies included muscle analysis and a mathematical discussion of movements, such as running or jumping

Motivation III: Motion perception

Etienne-Jules Marey:

(1830–1904) made Chronophotographic experiments influential for the emerging field of *cinematography*





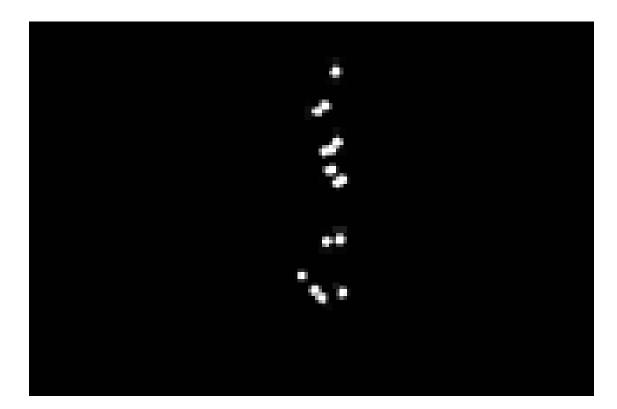
Eadweard Muybridge

(1830–1904) invented a machine for displaying the recorded series of images. He pioneered motion pictures and applied his technique to movement studies

Motivation III: Motion perception

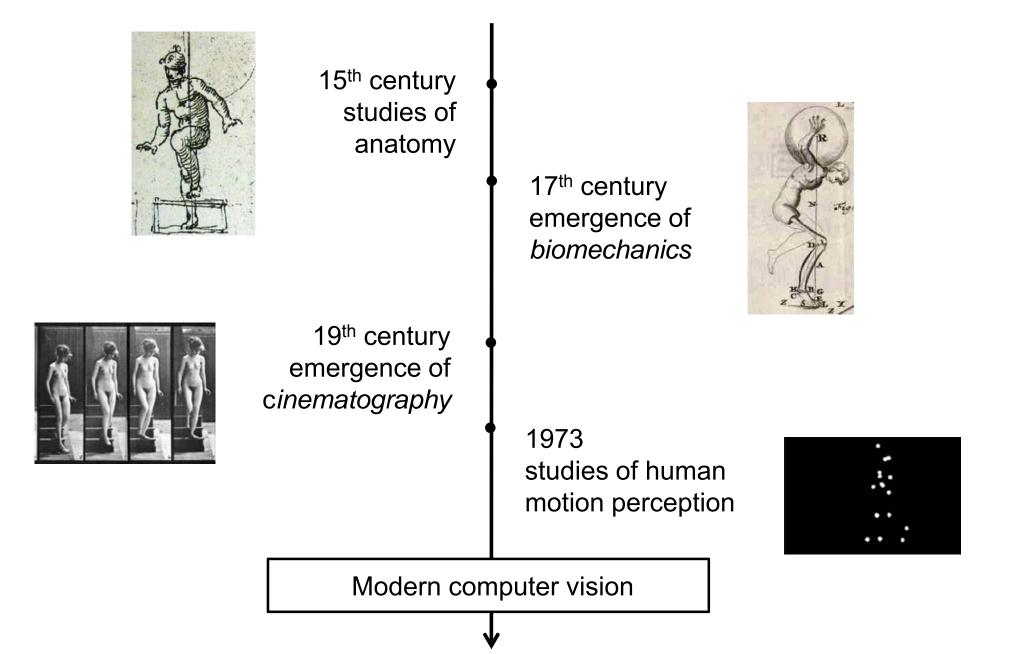
Gunnar Johansson [1973] pioneered studies on the use of image

- sequences for a programmed human motion analysis
 - "Moving Light Displays" (LED) enable identification of familiar people
- and the gender and inspired many works in computer vision.



Gunnar Johansson, Perception and Psychophysics, 1973

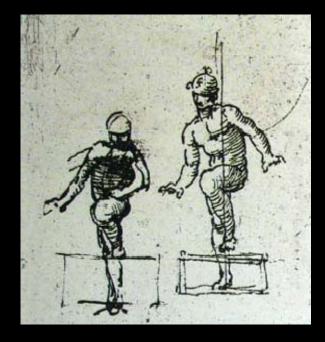
Human actions: Historic overview



Modern applications: Motion capture and animation

Avatar (2009)

Modern applications: Motion capture and animation



Leonardo da Vinci (1452–1519)

Avatar (2009)

Modern applications: Video editing

Space-Time Video Completion Y. Wexler, E. Shechtman and M. Irani, **CVPR** 2004

Modern applications: Video editing

Recognizing Action at a Distance Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, **ICCV** 2003

Modern applications: Video editing

Recognizing Action at a Distance Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, **ICCV** 2003

Why Action Recognition?

• Video indexing and search is useful in TV production, entertainment, education, social studies, security,...

TV & Web: e.g. *"Fight in a parlament"*

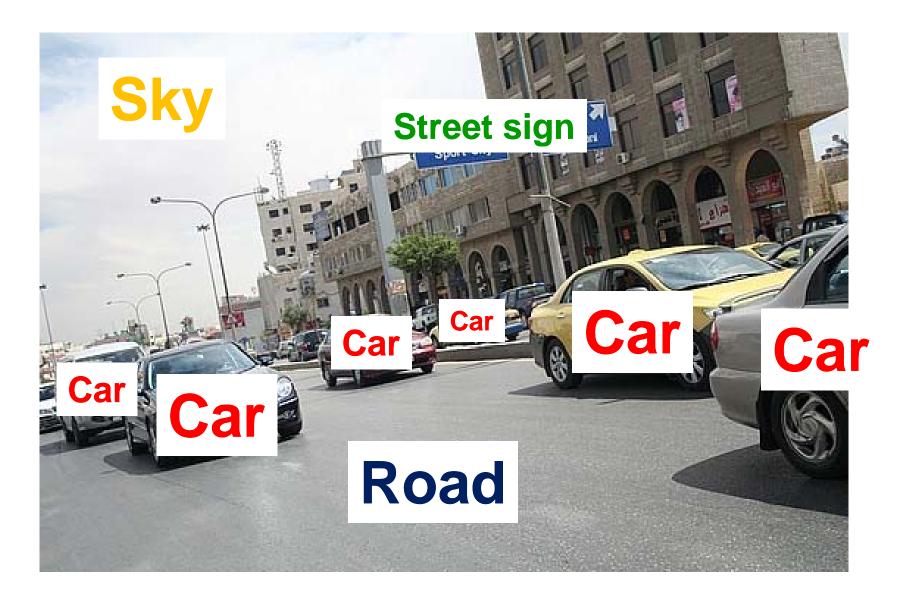
Home videos: e.g. *"My* daughter climbing"

Sociology research:

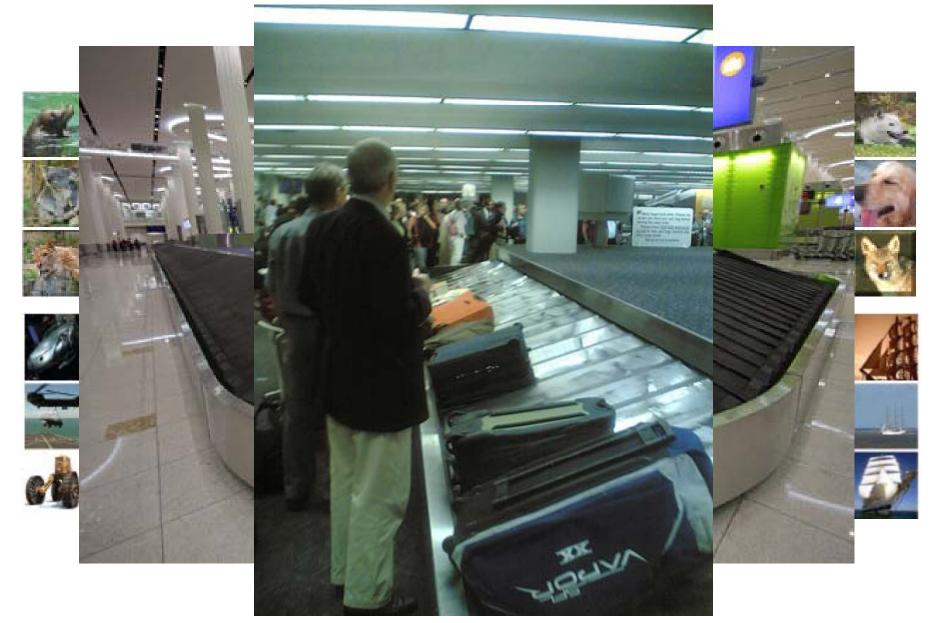
Manually analyzed smoking actions in 900 movies

Surveillance: 260K views in 7 days on YouTube

How action recognition is related to computer vision?



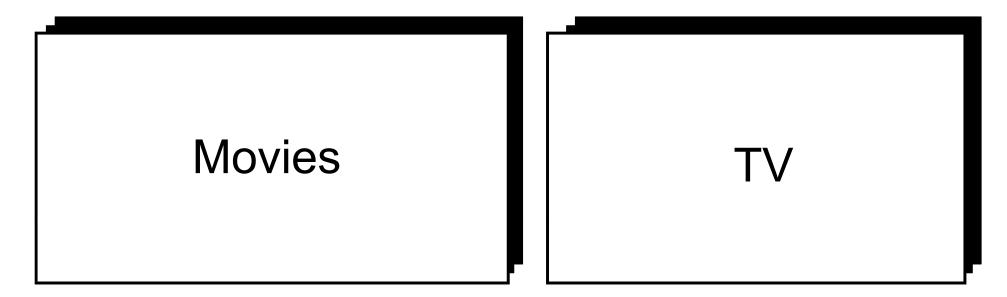
We can recognize cars and roads, What's next?

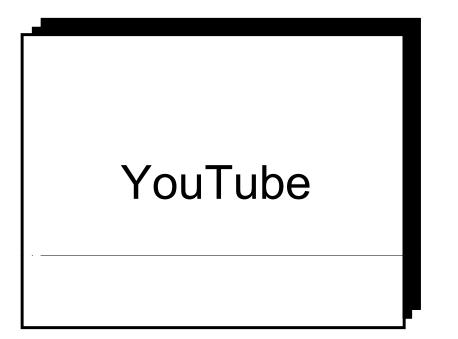


 Vision is person-centric: We mostly care about things which are important to us, people

- Actions of people reveal the function of objects
- Future challenges:
 - Function: What can I do with this and how?
 - Prediction: What can happen if someone does that?
 - Recognizing goals: What this person is trying to do?

How many person-pixels are there?





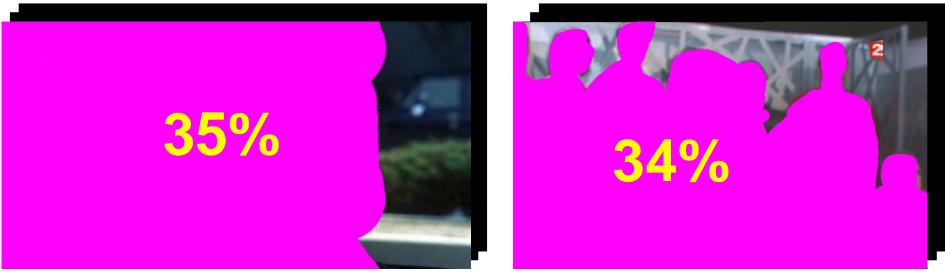
How many person-pixels are there?

Movies

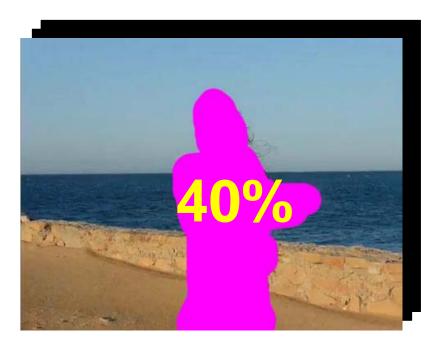
ΤV

YouTube

How many person-pixels are there?



Movies

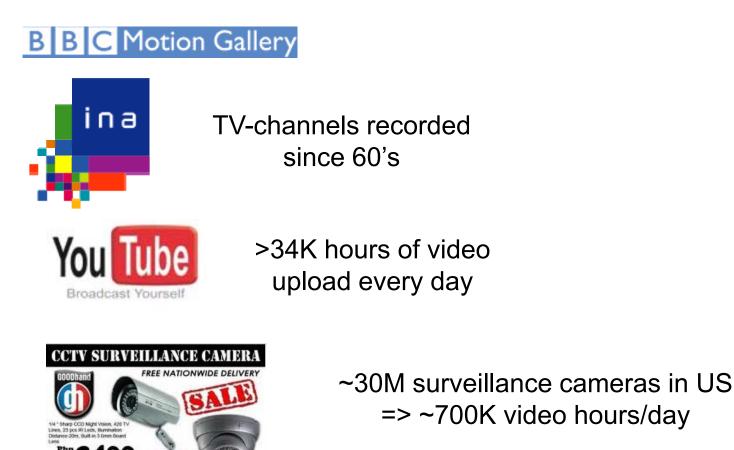


ΤV

YouTube

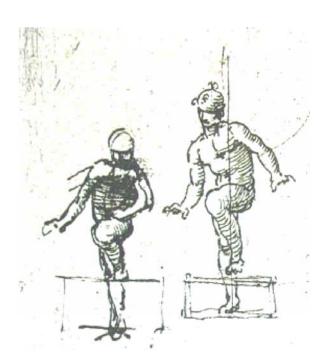
How much data do we have?

• Huge amount of video is available and growing



If we want to interpret this data, we should better understand what person-pixels are telling us!

Lecture overview



Motivation

Historic review Applications and challenges

Human Pose Estimation

Pictorial structures Recent advances

Appearance-based methods

Motion history images Active shape models & Motion priors

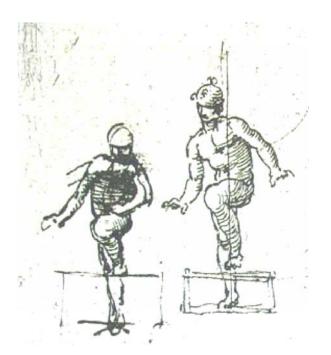
Motion-based methods

Generic and parametric Optical Flow Motion templates

Space-time methods

Space-time features Training with weak supervision

Lecture overview



Motivation

Historic review Applications and challenges

Human Pose Estimation

Pictorial structures Recent advances

Appearance-based methods

Motion history images Active shape models & Motion priors

Motion-based methods

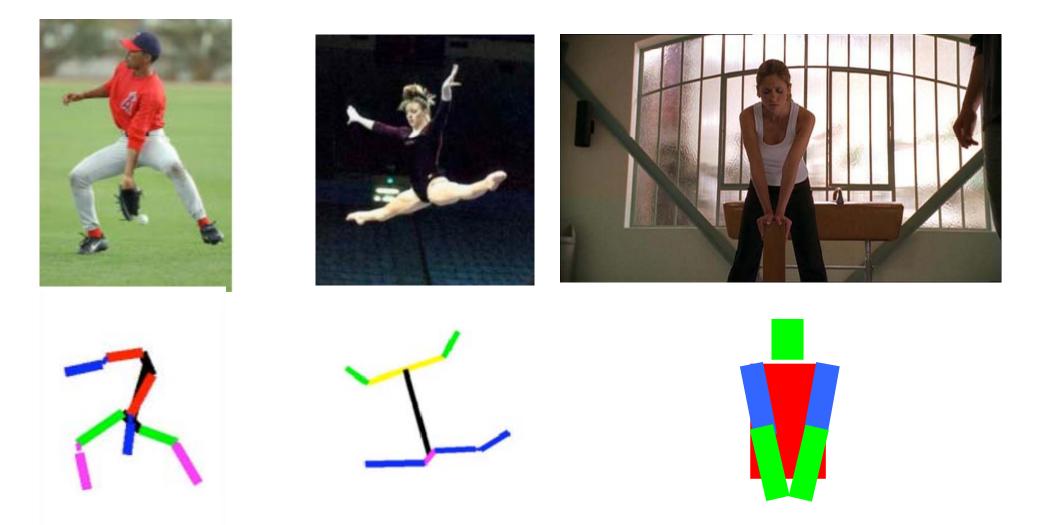
Generic and parametric Optical Flow Motion templates

Space-time methods

Space-time features Training with weak supervision

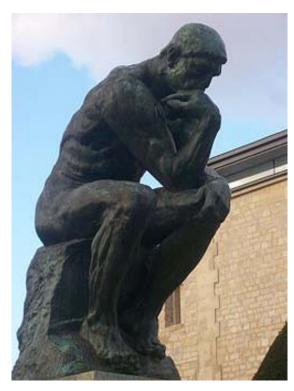
Objective and motivation

Determine human body pose (layout)



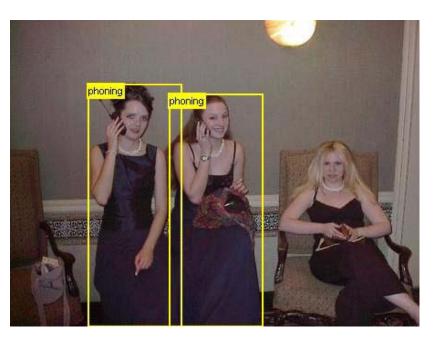
Why? To recognize poses, gestures, actions

Activities characterized by a pose



Activities characterized by a pose

Activities characterized by a pose



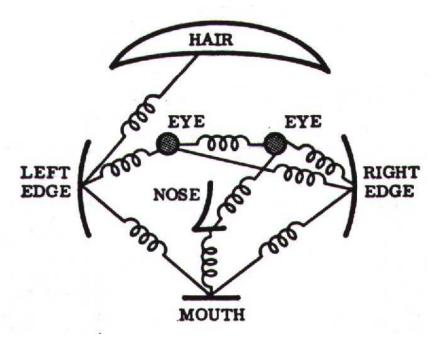
Challenges: articulations and deformations

Challenges: of (almost) unconstrained images

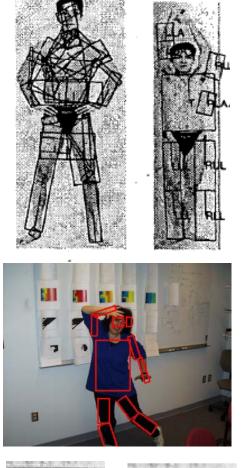
varying illumination and low contrast; moving camera and background; multiple people; scale changes; extensive clutter; any clothing

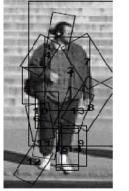
Pictorial Structures

- Intuitive model of an object
- Model has two components
 - 1. parts (2D image fragments)
 - 2. structure (configuration of parts)
- Dates back to Fischler & Elschlager 1973



Long tradition of using pictorial structures for humans



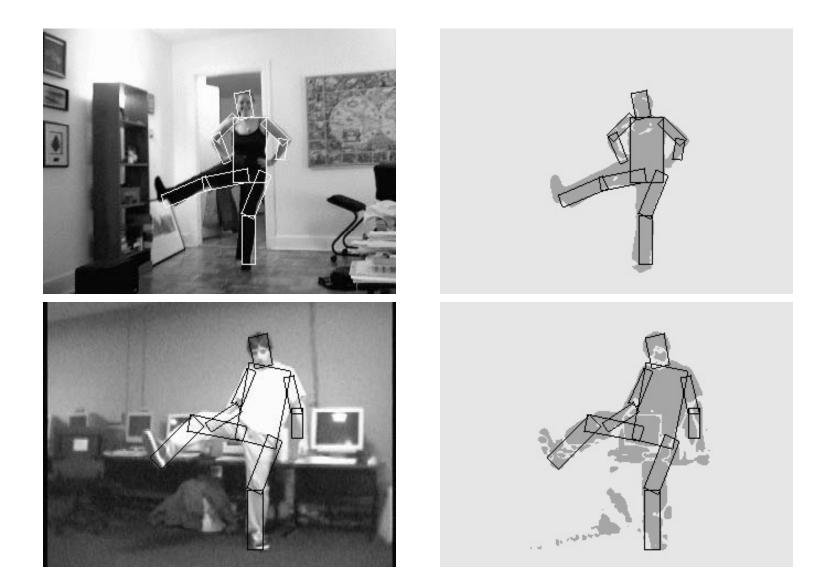


Finding People by Sampling loffe & Forsyth, ICCV 1999

Pictorial Structure Models for Object Recognition Felzenszwalb & Huttenlocher, 2000

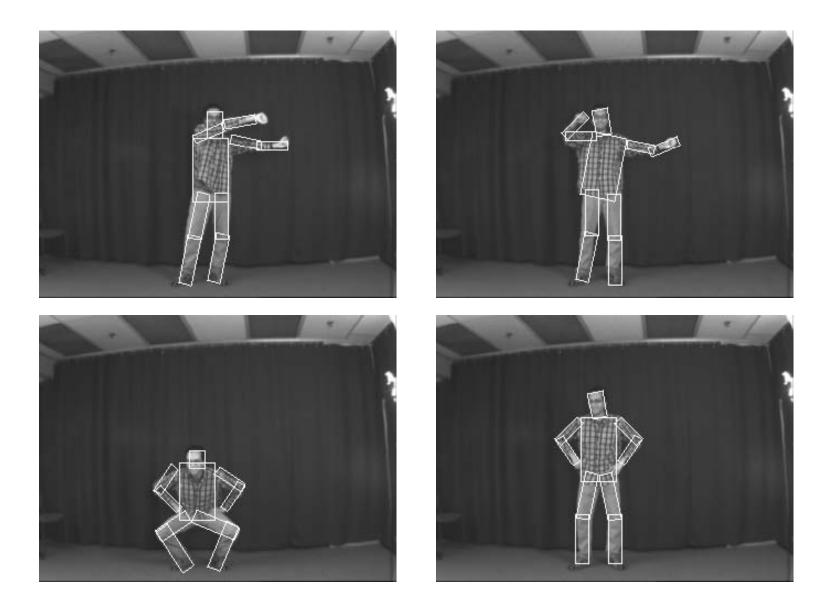
Learning to Parse Pictures of People Ronfard, Schmid & Triggs, ECCV 2002

Felzenszwalb & Huttenlocher

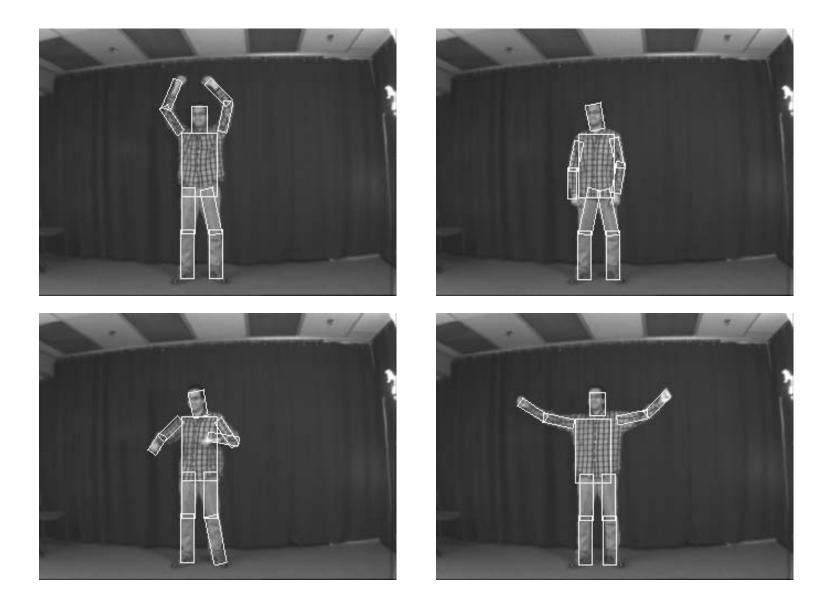


NB: requires background subtraction

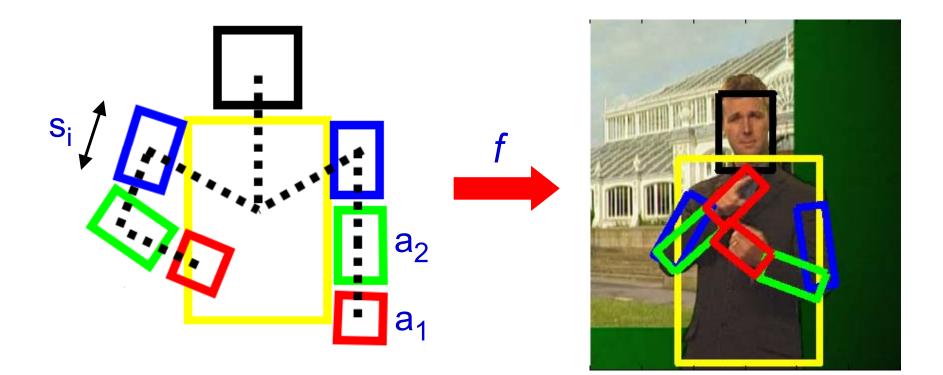
Variety of Poses



Variety of Poses



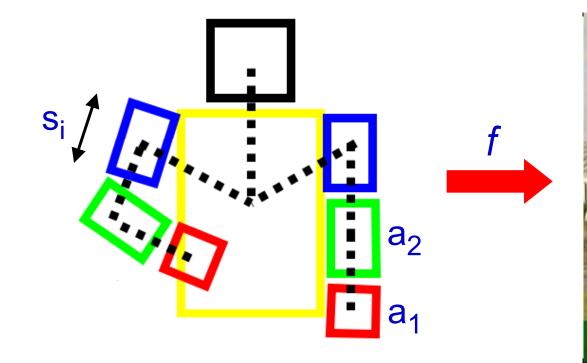
Objective: detect human and determine upper body pose (layout)



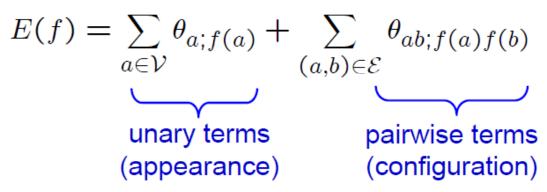
Model as a graph labelling problem

- Vertices \mathcal{V} are parts, $a_i, i = 1, \cdots, n$
- Edges \mathcal{E} are pairwise linkages between parts
- For each part there are h possible poses $\mathbf{p}_j = (x_j, y_j, \phi_j, s_j)$
- Label each part by its pose: $f: \mathcal{V} \longrightarrow \{1, \dots, h\}$, i.e. part a takes pose $\mathbf{p}_{f(a)}$.

Pictorial structure model – CRF



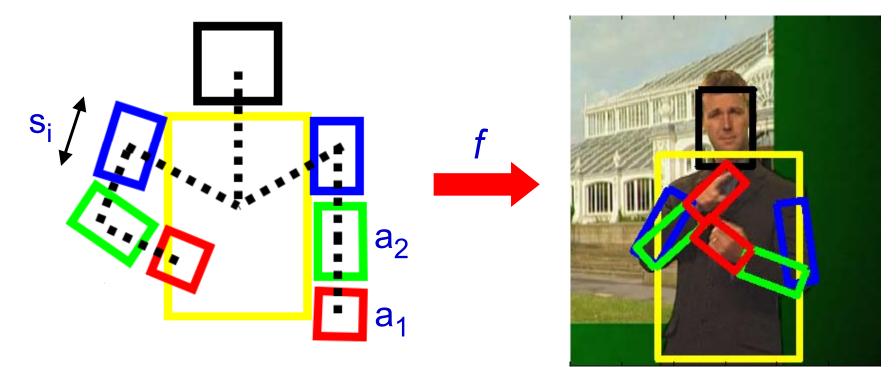
• Each labelling has an energy (cost):



• HOG

- for limbs/torso
- Fit model (inference) as labelling with lowest energy

Complexity

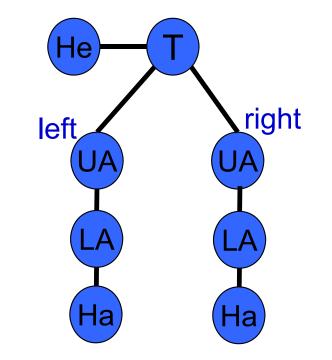


- n parts
- For each part there are h possible poses $\mathbf{p}_j = (x_j, y_j, \phi_j, s_j)$
- There are h^n possible labellings

Problem: any reasonable discretization (e.g. 12 scales and 36 angles for upper and lower arm, etc) gives a number of configurations 10^12 – 10^14

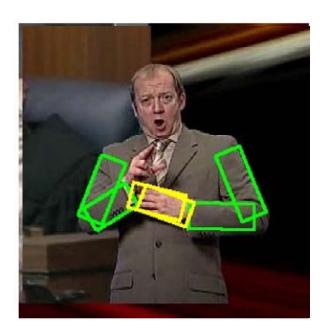
→ Brute force search not feasible

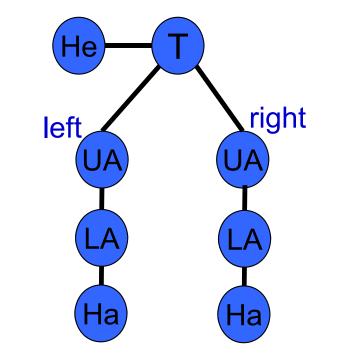
Are trees the answer?



- With n parts and h possible discrete locations per part, O(hⁿ)
- For a tree, using dynamic programming this reduces to O(nh²)
- If model is a tree and has certain edge costs, then complexity reduces to O(nh) using a distance transform [Felzenszwalb & Huttenlocher, 2000, 2005]

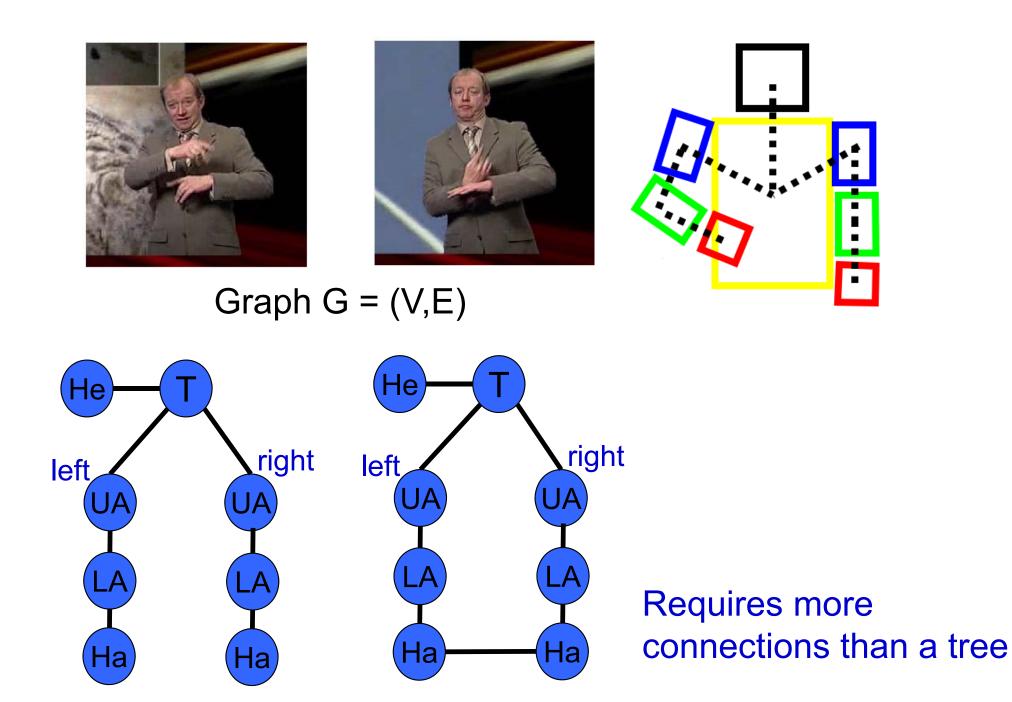
Are trees the answer?



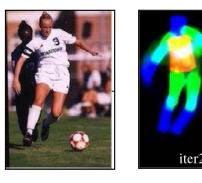


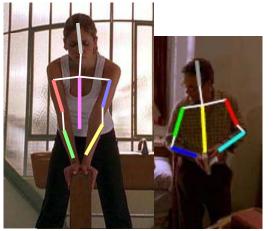
- With n parts and h possible discrete locations per part, O(hⁿ)
- For a tree, using dynamic programming this reduces to O(nh²)
- If model is a tree and has certain edge costs, then complexity reduces to O(nh) using a distance transform [Felzenszwalb & Huttenlocher, 2000, 2005]

Kinematic structure vs graphical (independence) structure



More recent work on human pose estimation





D. Ramanan. Learning to parse images of articulated bodies. NIPS, 2007

Learn image and person-specific unary terms

- initial iteration \rightarrow edges
- following iterations → edges & colour

V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search space reduction for human pose estimation. In Proc. CVPR, 2008/2009

(Almost) unconstrained images

Person detector & foreground highlighting

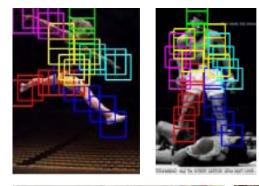
VP. Buehler, M. Everingham and A. Zisserman. Learning sign language by watching TV. In Proc. CVPR 2009

Learns with weak textual annotation

Multiple instance learning

I like the physical side of it, I like trees. It's a great place to work

Pose estimation is a very active research area



Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In Proc. **CVPR 2011** Extension of LSVM model of Felzenszwalb et al.

Y. Wang, D. Tran and Z. Liao. Learning Hierarchical Poselets for Human Parsing. In Proc. **CVPR 2011**.

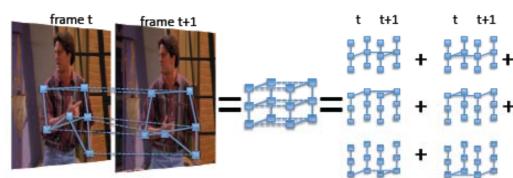
Builds on Poslets idea of Bourdev et al.

S. Johnson and M. Everingham. Learning Effective Human Pose Estimation from Inaccurate Annotation. In Proc. **CVPR 2011**.

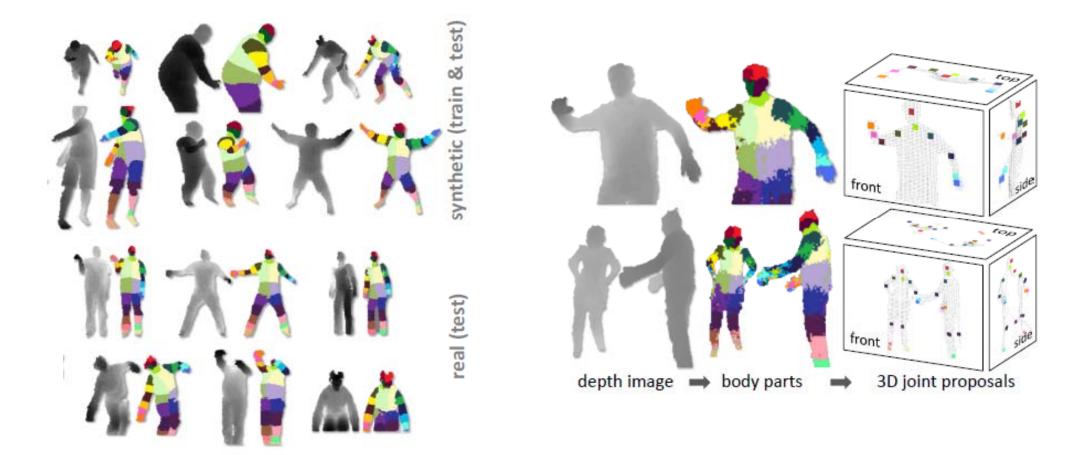
Learns from lots of noisy annotations

B. Sapp, D.Weiss and B. Taskar. Parsing Human Motion with Stretchable Models. In Proc. **CVPR 2011**.

Explores temporal continuity



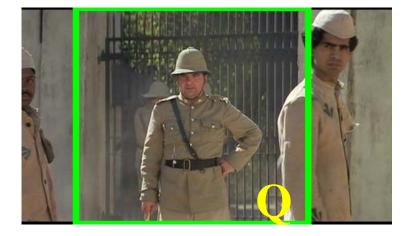
Pose estimation is a very active research area

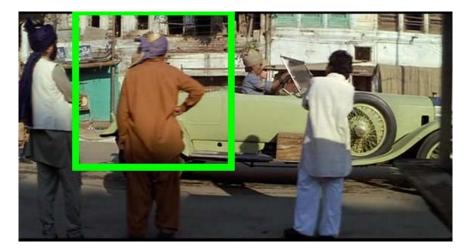


J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman and A. Blake. Real-Time Human Pose Recognition in Parts from Single Depth Images. **Best paper award at CVPR 2011**

Exploits lots of synthesized depth images for training

Pose Search

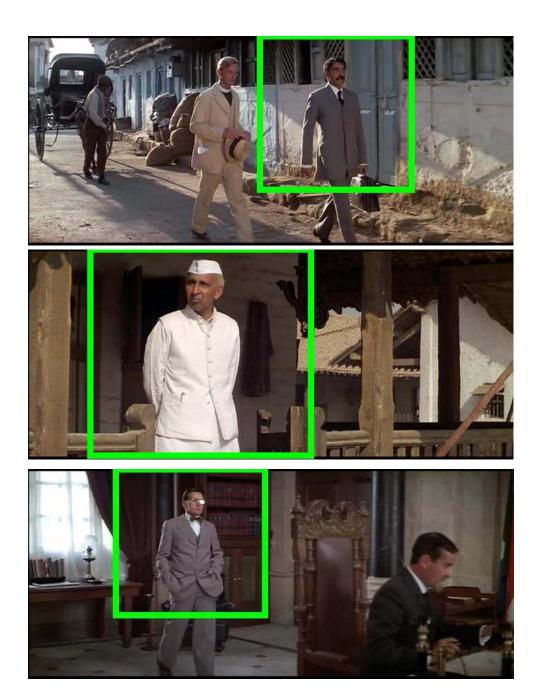




V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search space reduction for human pose estimation. In Proc. CVPR2009

Pose Search

V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search space reduction for human pose estimation. In Proc. CVPR2009



Application

Learning sign language by watching TV (using weakly aligned subtitles)

Patrick Buehler

Mark Everingham

Andrew Zisserman

CVPR 2009

Objective

Learn signs in British Sign Language (BSL) corresponding to text words:

- Training data from TV broadcasts with simultaneous signing
- Supervision solely from sub-titles

Input: video + subtitle

Output: automatically learned signs (4x slow motion)

Office

Government

Use subtitles to find video sequences containing word. These are the positive training sequences. Use other sequences as negative training sequences.

Given an English word e.g. "tree" what is the corresponding British Sign Language sign?

and maybe take out a **tree** from somewhere and letting in a bit more light or something like that

His Royal Highness from Saugi Arabic wanted to know about the history of the trees

positive , sequences

I like the physical side of it, I like *trees*. It's a great place to work

One thing that always strikes me about the roundabout, is it's got this huge urn in the middle of it

Use sliding window to choose subsequence of poses in one positive sequence and determine if

same sub-sequence of poses occurs in other positive sequences somewhere, but

does not occur in the negative set

positive

sequences

1st sliding window

His Royal Highness from Saudi Arabia wanted to know about the history of the trees

I like the physical side of it, I like *trees*. It's a great place to work

One thing that always strikes me about the roundabout, is it's got this huge urn in the middle of it

Use sliding window to choose subsequence of poses in one positive sequence and determine if

same sub-sequence of poses occurs in other positive sequences somewhere, but

does not occur in the negative set

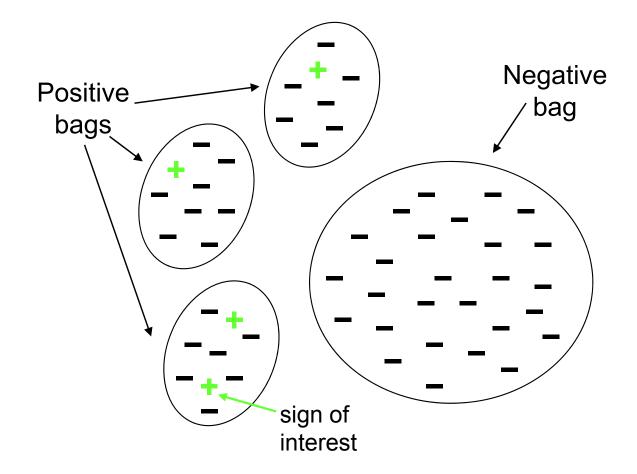
positive

5th sliding window

I like the physical side of it, I like *trees*. It's a great place to work

One thing that always strikes me about the roundabout, is it's got this huge urn in the middle of it

Multiple instance learning



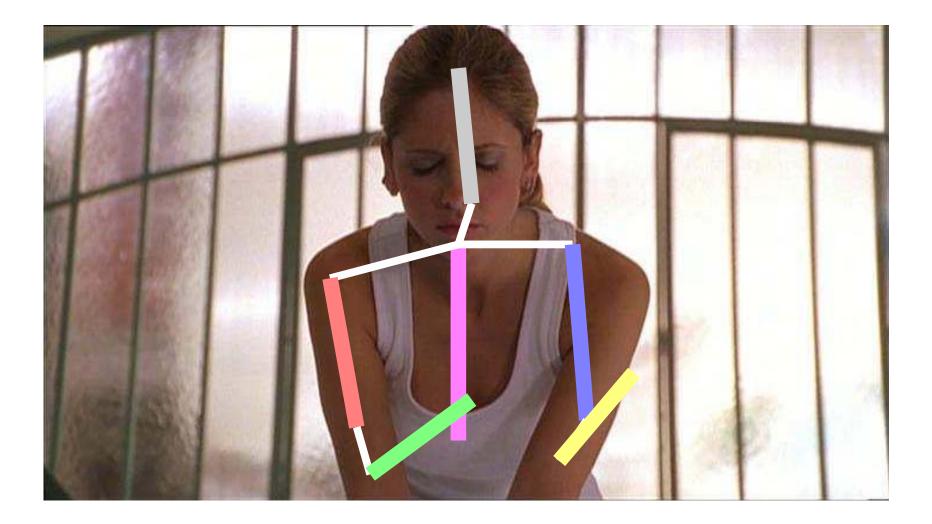
Example

Learn signs in British Sign Language (BSL) corresponding to text words.

Evaluation

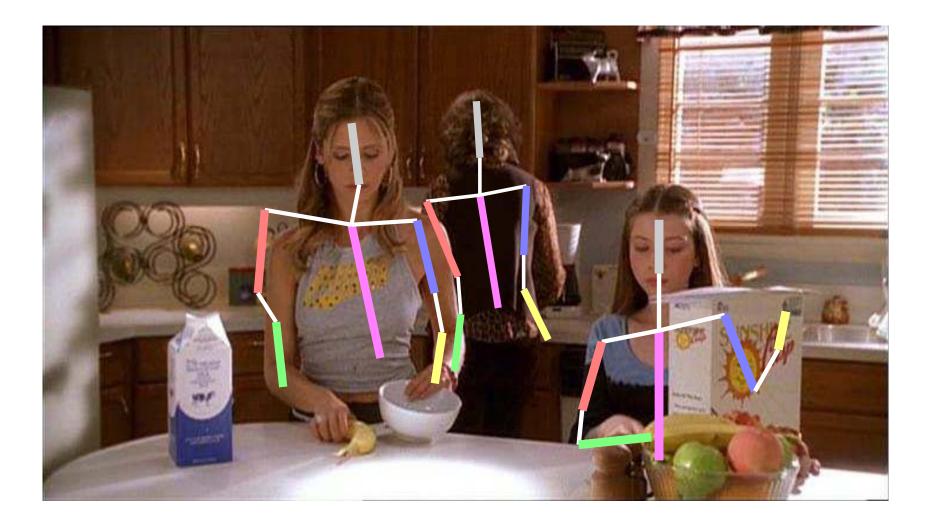
Good results for a variety of signs:

What is missed?



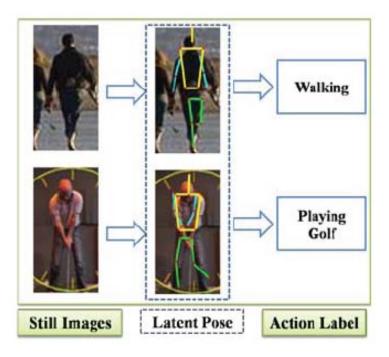
truncation is not modelled

What is missed?



occlusion is not modelled

Modelling person-object-pose interactions



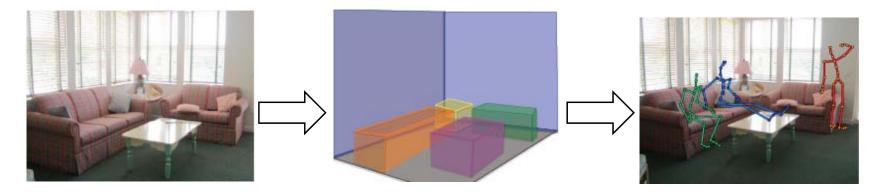
W. Yang, Y. Wang and Greg Mori. Recognizing Human Actions from Still Images with Latent Poses. In Proc. CVPR 2010.

Some limbs may not be important for recognizing a particular action (e.g. sitting)

B. Yao and L. Fei-Fei. Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities. In Proc. CVPR 2010.

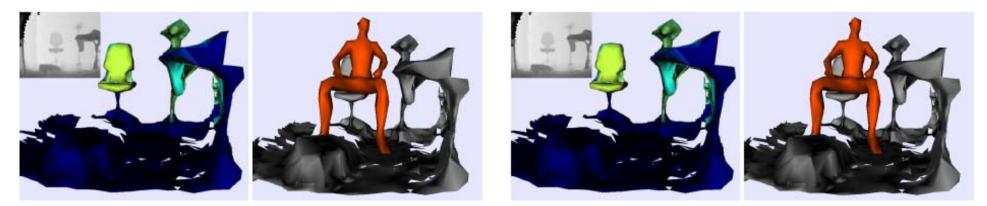
Pose estimation helps object detection and vice versa

Towards functional object understanding



A. Gupta, S. Satkin, A.A. Efros and M. Hebert, From 3D Scene Geometry to HumanWorkspace. In Proc. CVPR 2011

Predicts the "workspace" of a human

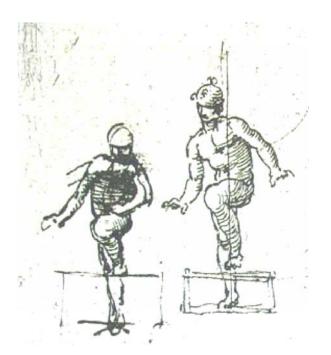


H. Grabner, J. Gall and L. Van Gool. What Makes a Chair a Chair? In Proc. CVPR 2011

Conclusions: Human poses

- Exciting progress in pose estimation in realistic still images and video.
- Industry-strength pose estimation from depth sensors
- Pose estimation from RGB is still very challenging
- Human Poses ≠ Human Actions!

Lecture overview



Motivation

Historic review Applications and challenges

Human Pose Estimation

Pictorial structures Recent advances

Appearance-based methods

Motion history images Active shape models & Motion priors

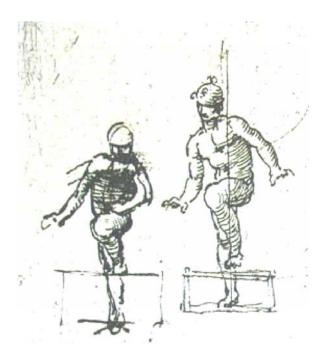
Motion-based methods

Generic and parametric Optical Flow Motion templates

Space-time methods

Space-time features Training with weak supervision

Lecture overview



Motivation

Historic review Applications and challenges

Human Pose Estimation

Pictorial structures Recent advances

Appearance-based methods

Motion history images Active shape models & Motion priors

Motion-based methods

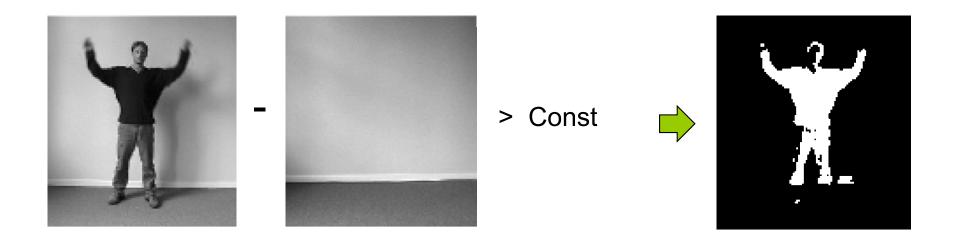
Generic and parametric Optical Flow Motion templates

Space-time methods

Space-time features Training with weak supervision

Foreground segmentation

Image differencing: a simple way to measure motion/change



Better Background / Foreground separation methods exist:

- Modeling of color variation at each pixel with Gaussian Mixture
- Dominant motion compensation for sequences with moving camera
- Motion layer separation for scenes with non-static backgrounds

Temporal Templates

$$D(x, y, t) \quad t = 1, ..., T$$

Idea: summarize motion in video in a *Motion History Image (MHI)*:

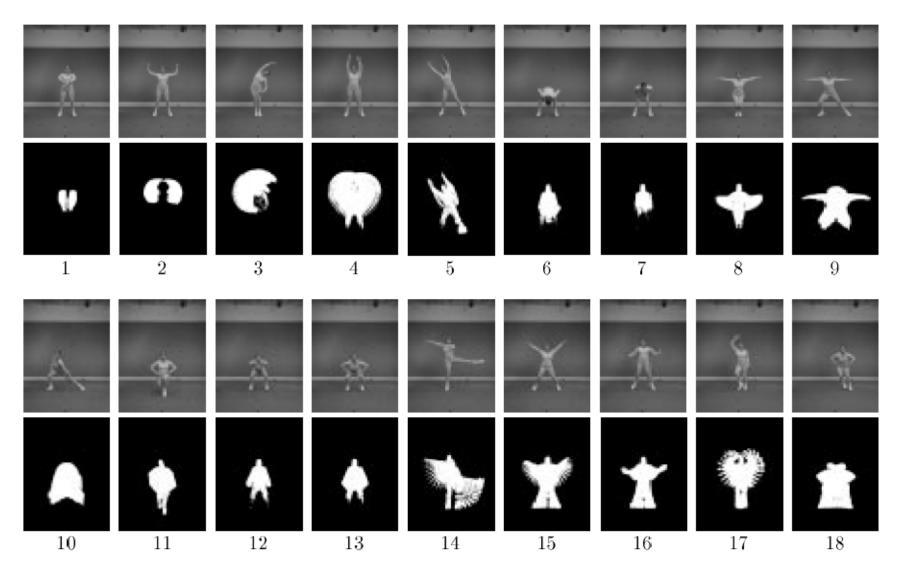
$$H_{\tau}(x, y, t) = \begin{cases} \tau & \text{if } D(x, y, t) = 1\\ \max & (0, H_{\tau}(x, y, t - 1) - 1)\\ \text{otherwise} \end{cases}$$

Descriptor: Hu moments of different orders

$$m_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^p y^q \rho(x, y) dx dy$$

[A.F. Bobick and J.W. Davis, PAMI 2001]

Aerobics dataset



Nearest Neighbor classifier: 66% accuracy

Temporal Templates: Summary

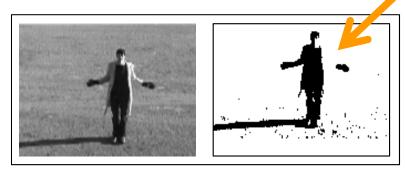
Pros:

- + Simple and fast
- + Works in controlled settings

Not all shapes are valid Restrict the space of admissible silhouettes

Cons:

- Prone to errors of background subtraction



Variations in light, shadows, clothing...

What is the background here?

 Does not capture *interior* motion and shape

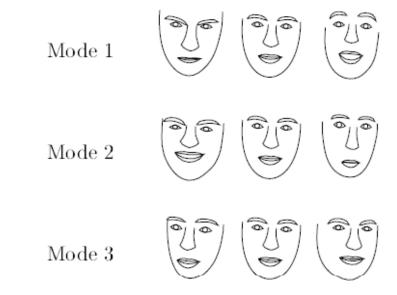
Silhouette tells little about actions

Active Shape Models [Cootes et al.]

• Constrains shape deformation in PCA-projected space

Example: face alignment

Illustration of face shape space



Active Shape Models: Their Training and Application T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham, **CVIU** 1995

Person Tracking



Learning flexible models from image sequences A. Baumberg and D. Hogg, **ECCV** 1994

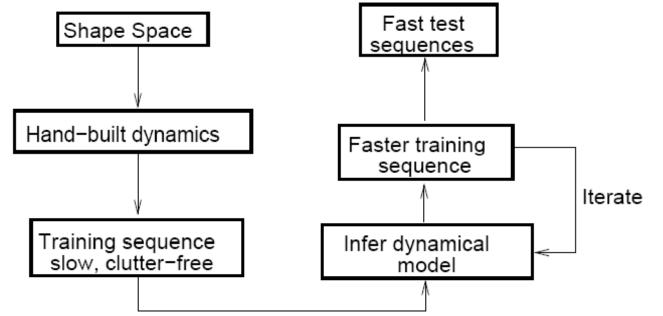
Learning dynamic prior

• Dynamic model: 2nd order Auto-Regressive Process

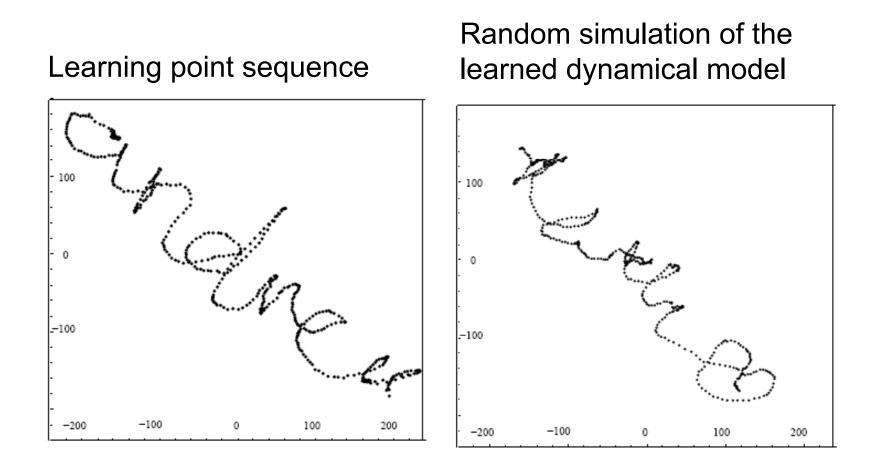
State
$$\mathcal{X}_{k} = \begin{pmatrix} \mathbf{X}_{k-1} \\ \mathbf{X}_{k} \end{pmatrix}$$

Update rule: $\mathcal{X}_{k} - \overline{\mathcal{X}} = A(\mathcal{X}_{k-1} - \overline{\mathcal{X}}) + B\mathbf{w}_{k}$
Model parameters: $A = \begin{pmatrix} 0 & I \\ A_{2} & A_{1} \end{pmatrix}, \quad \overline{\mathcal{X}} = \begin{pmatrix} \overline{\mathbf{X}} \\ \overline{\mathbf{X}} \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 \\ B_{0} \end{pmatrix}$

Learning scheme:



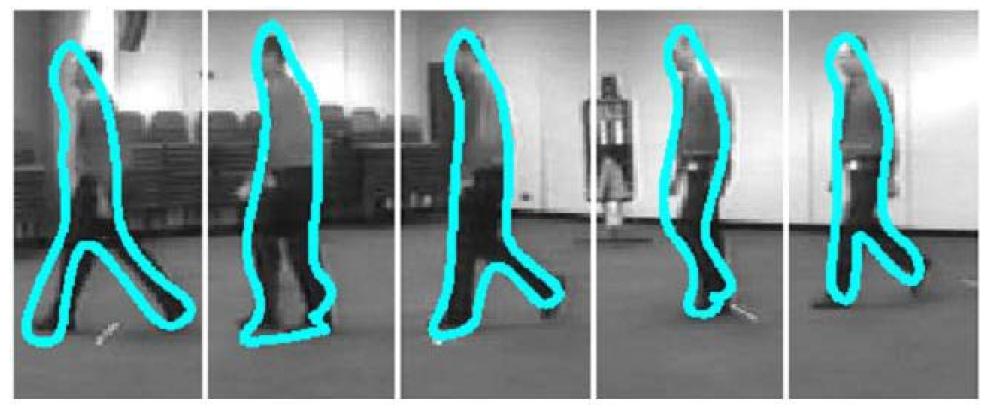
Learning dynamic prior



Statistical models of visual shape and motion A. Blake, B. Bascle, M. Isard and J. MacCormick, **Phil.Trans.R.Soc. 1998**

Learning dynamic prior

Random simulation of the learned gate dynamics



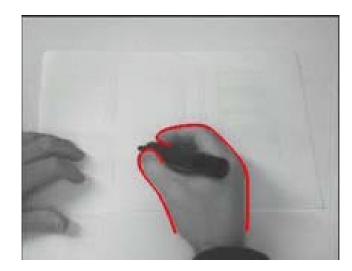
Motion priors

- Constrain temporal evolution of shape
 - ✤ Help accurate tracking
 - Recognize actions
- Goal: formulate motion models for different types of actions and use such models for action recognition

Example:

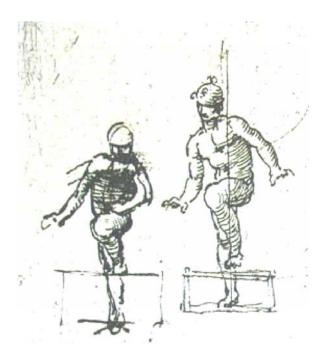
Drawing with 3 action modes

line drawingscribblingidle



[M. Isard and A. Blake, ICCV 1998]

Lecture overview



Motivation

Historic review Applications and challenges

Human Pose Estimation

Pictorial structures Recent advances

Appearance-based methods

Motion history images Active shape models & Motion priors

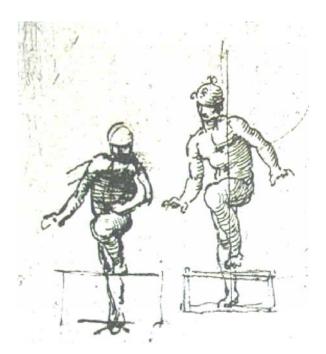
Motion-based methods

Generic and parametric Optical Flow Motion templates

Space-time methods

Space-time features Training with weak supervision

Lecture overview



Motivation

Historic review Applications and challenges

Human Pose Estimation

Pictorial structures Recent advances

Appearance-based methods

Motion history images Active shape models & Motion priors

Motion-based methods

Generic and parametric Optical Flow Motion templates

Space-time methods

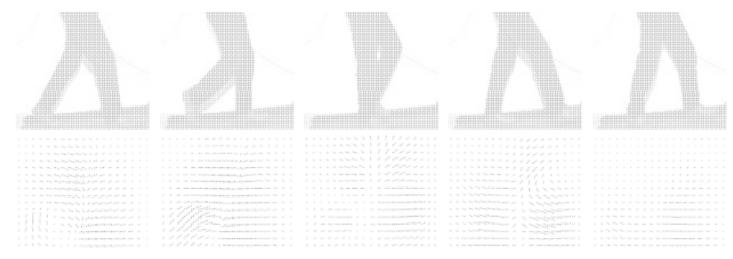
Space-time features Training with weak supervision

Shape and Appearance vs. Motion

• Shape and appearance in images depends on many factors: clothing, illumination contrast, image resolution, etc...

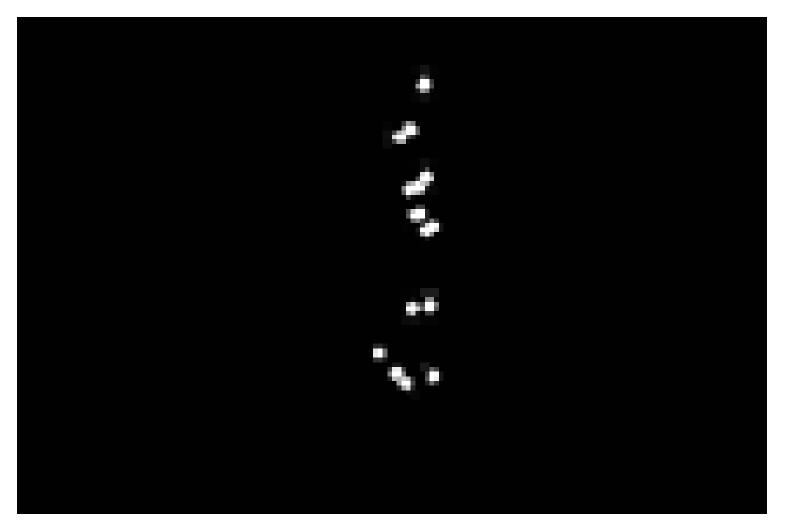
[Efros et al. 2003]

 Motion field (in theory) is invariant to shape and can be used directly to describe human actions



Shape and Appearance vs. Motion

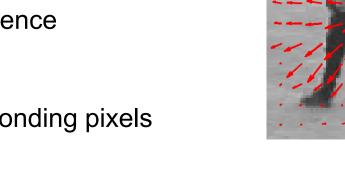
Moving Light Displays



Gunnar Johansson, Perception and Psychophysics, 1973

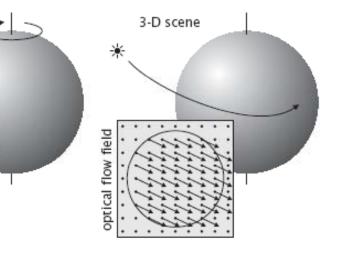
Motion estimation: Optical Flow

- Classic problem of computer vision [Gibson 1955]
- Goal: estimate motion field
 - How? We only have access to image pixels Estimate pixel-wise correspondence between frames = Optical Flow
- Brightness Change assumption: corresponding pixels preserve their intensity (color)
 - Useful assumption in many cases
 - Breaks at occlusions and illumination changes
 - Physical and visual motion may be different



3-D scene

field



Generic Optical Flow

• Brightness Change Constraint Equation (BCCE)

$$(\nabla I)^{\top} \mathbf{v} + I_t = 0$$
 $\mathbf{v} = (v_x, v_y)^{\top}$ Optical flow
 $\nabla I = (I_x, I_y)^{\top}$ Image gradient

One equation, two unknowns => cannot be solved directly

Integrate several measurements in the local neighborhood and obtain a *Least Squares Solution* [Lucas & Kanade 1981] $< \nabla I (\nabla I)^{\top} > \mathbf{v} = - < \nabla I I_t >$

$$\langle I_x^2 \rangle \langle I_x I_y \rangle \\ \langle I_x I_y \rangle \langle I_y^2 \rangle \end{pmatrix} \mathbf{v} = - \begin{pmatrix} \langle I_x I_t \rangle \\ \langle I_y I_t \rangle \end{pmatrix}$$

Second-moment matrix, the same one used to compute Harris interest points!

 $<\cdot>$ Denotes integration over a spatial (or spatio-temporal) neighborhood of a point

Parameterized Optical Flow

 Another extension of the constant motion model is to compute PCA basis flow fields from training examples

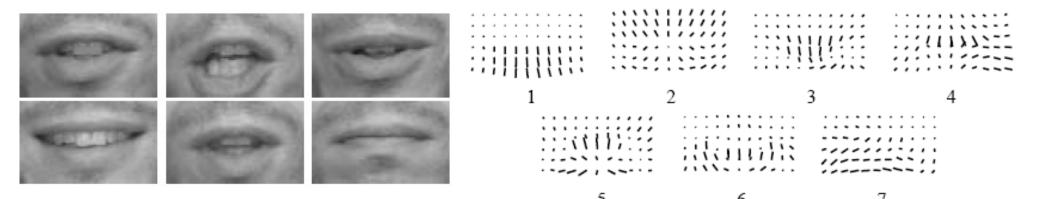
Compute standard Optical Flow for many examples
 Put velocity components into one vector

$$\mathbf{w} = (v_x^1, v_y^1, v_x^2, v_y^2, ..., v_x^n, v_y^n)^\top$$

3. Do PCA on ${\bf w}$ and obtain most informative PCA flow basis vectors

Training samples

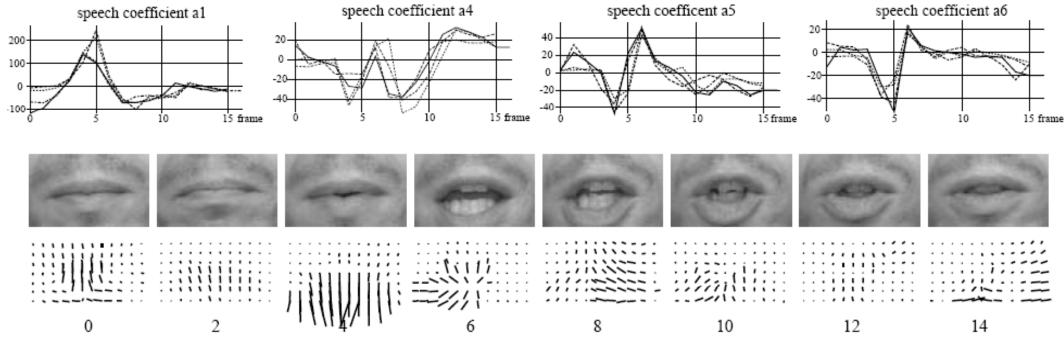
PCA flow bases



Learning Parameterized Models of Image Motion M.J. Black, Y. Yacoob, A.D. Jepson and D.J. Fleet, **CVPR 1997**

Parameterized Optical Flow

• Estimated coefficients of PCA flow bases can be used as action descriptors



Frame numbers

Optical flow seems to be an interesting descriptor for motion/action recognition

Spatial Motion Descriptor

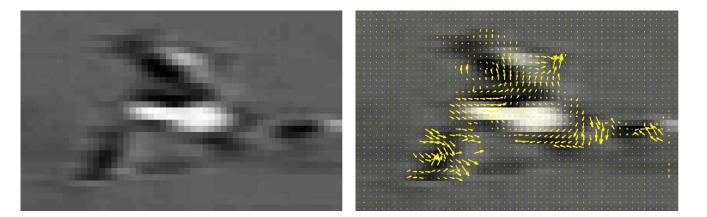
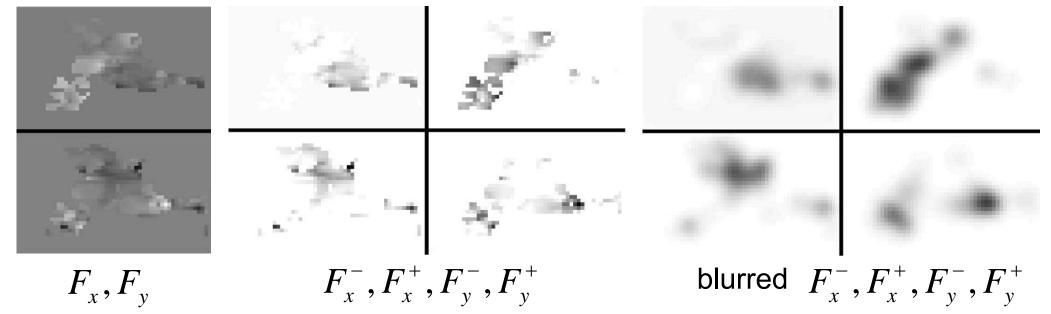


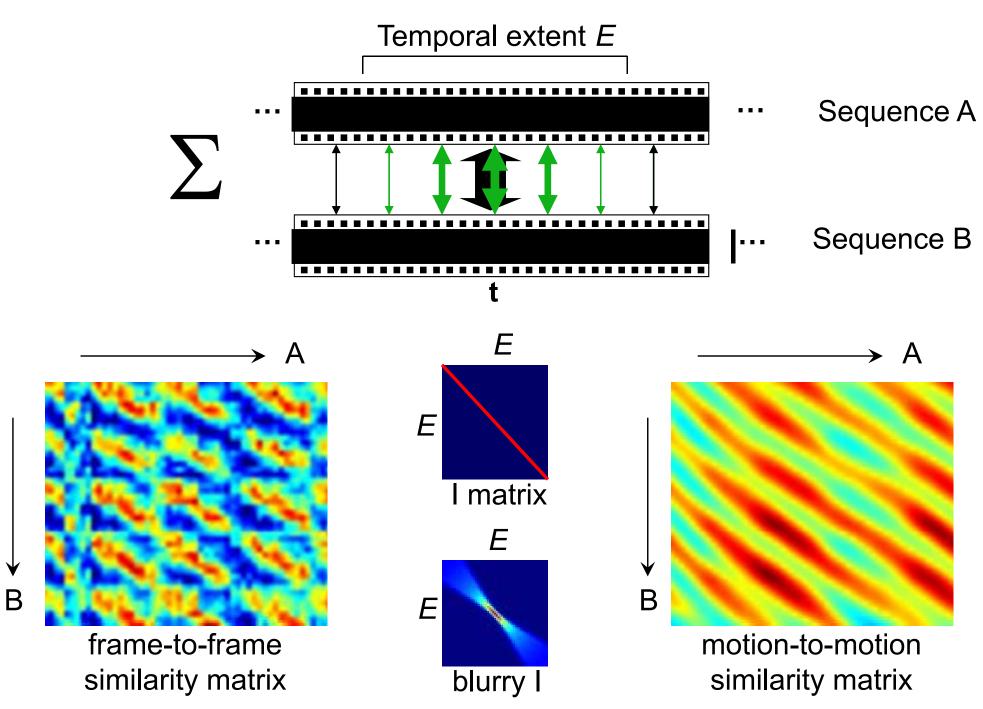
Image frame

Optical flow $F_{x,y}$



A. A. Efros, A.C. Berg, G. Mori and J. Malik. Recognizing Action at a Distance. In Proc. ICCV 2003

Spatio-Temporal Motion Descriptor



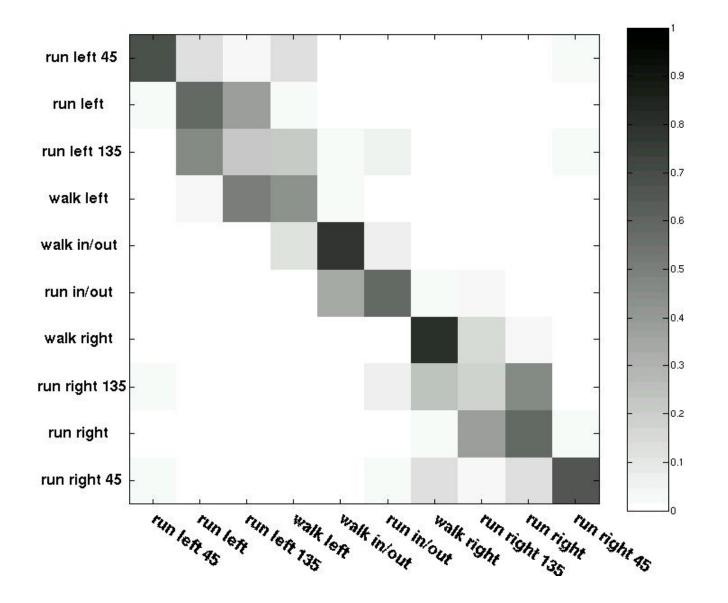
Football Actions: matching

Input Sequence

Matched Frames

input matched

Football Actions: classification



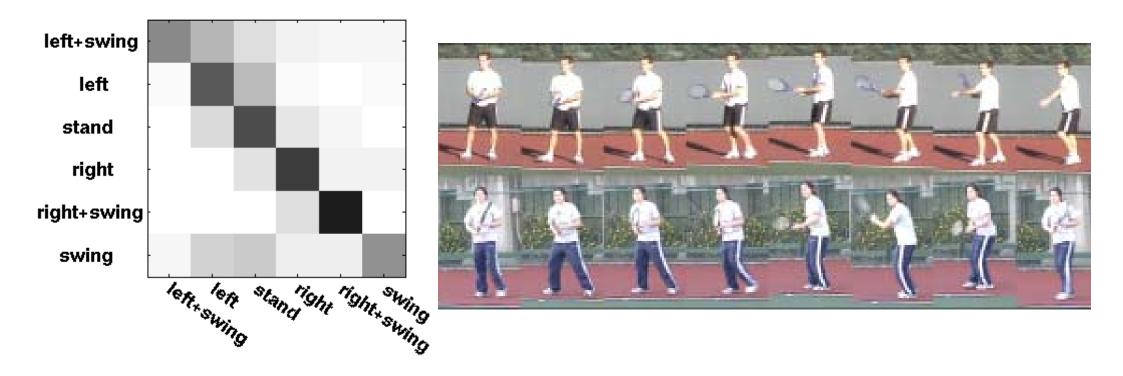
10 actions; 4500 total frames; 13-frame motion descriptor

Classifying Ballet Actions

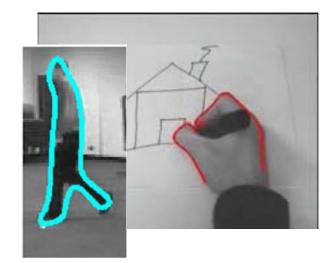
16 Actions; 24800 total frames; 51-frame motion descriptor. Men used to classify women and vice versa.

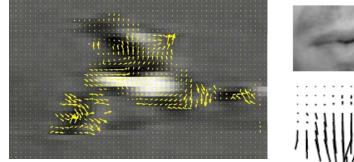
Classifying Tennis Actions

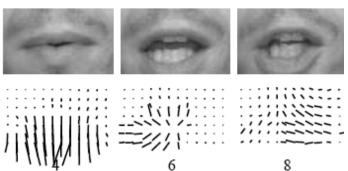
6 actions; 4600 frames; 7-frame motion descriptor Woman player used as training, man as testing.



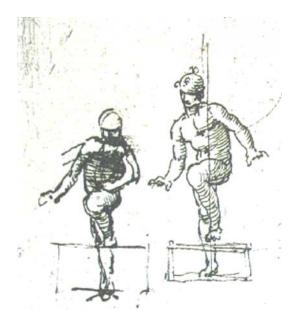
Where are we so far?







Lecture overview



Motivation

Historic review Modern applications

Human Pose Estimation

Pictorial structures Recent advances

Appearance-based methods

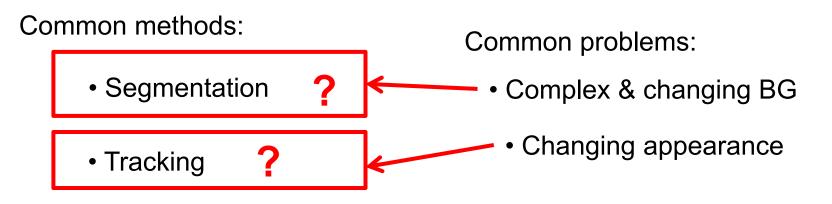
Motion history images Active shape models & Motion priors

Motion-based methods

Generic and parametric Optical Flow Motion templates

Space-time methods

Space-time features Training with weak supervision Goal: Interpret complex dynamic scenes



 \Rightarrow No global assumptions about the scene

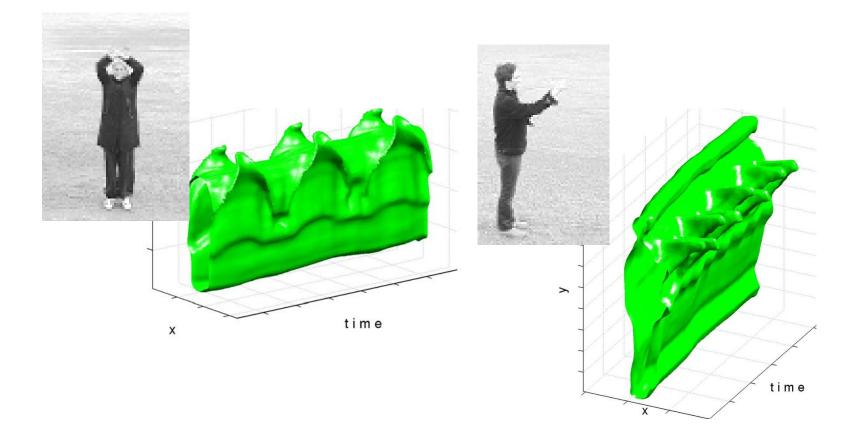
No global assumptions \Rightarrow

Consider local spatio-temporal neighborhoods

hand waving

boxing

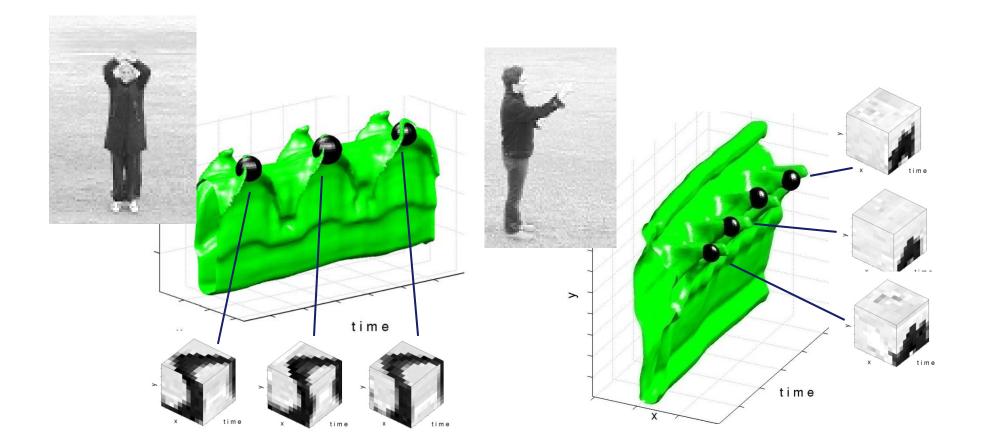
Actions == Space-time objects?



Local approach: Bag of Visual Words

Airplanes	
Motorbikes	
Faces	
Wild Cats	
Leaves	
People	
Bikes	

Space-time local features



Space-Time Interest Points: Detection

What neighborhoods to consider?

Distinctive neighborhoods	High image ⇒ variation in space = and time	Look at the ⇒ distribution of the gradient		
Definitions:				
$f \colon \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$	Original image sequence			
$g(x,y,t; \Sigma)$ Space-time Gaussian with covariance $\Sigma \in SPSD(3)$				
$L_{\xi}(\cdot; \Sigma) = f(\cdot) * g_{\xi}(\cdot; \Sigma)$ Gaussian derivative of f				
$\nabla L = (L_x, L_y, L_t)^T$ Space-time gradient				
$\mu(\cdot; \Sigma) = \nabla L(\cdot;$	$(\nabla L(\cdot; \Sigma))^T * g(\cdot; s\Sigma)$	$= \left(\begin{array}{cc} \mu_{xx} & \mu_{xy} & \mu_{xt} \\ \mu_{xy} & \mu_{yy} & \mu_{yt} \end{array} \right)$		
Second-moment matrix $\langle \mu_{xt} \ \mu_{yt} \ \mu_{tt} \rangle$				

Space-Time Interest Points: Detection

Properties of $\mu(\cdot; \Sigma)$

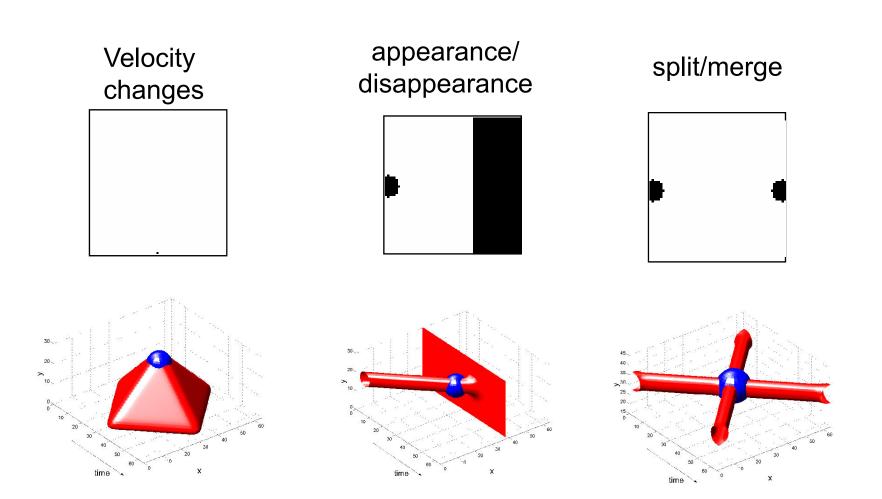
 $\mu(\cdot; \Sigma)$ defines second order approximation for the local distribution of ∇L within neighborhood Σ rank(μ) = 1 \Rightarrow 1D space-time variation of f e.g. moving bar rank(μ) = 2 \Rightarrow 2D space-time variation of f e.g. moving ball rank(μ) = 3 \Rightarrow 3D space-time variation of f e.g. jumping ball

Large eigenvalues of μ can be detected by the local maxima of H over (x,y,t):

$$H(p; \Sigma) = \det(\mu(p; \Sigma)) + k \operatorname{trace}^{3}(\mu(p; \Sigma))$$
$$= \lambda_{1}\lambda_{2}\lambda_{3} - k(\lambda_{1} + \lambda_{2} + \lambda_{3})^{3}$$

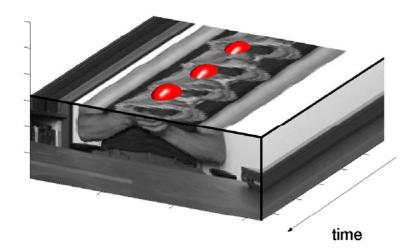
(similar to Harris operator [Harris and Stephens, 1988])

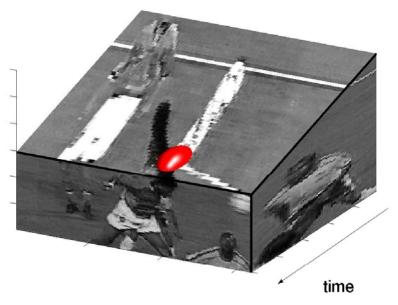
Space-Time interest points



Space-Time Interest Points: Examples

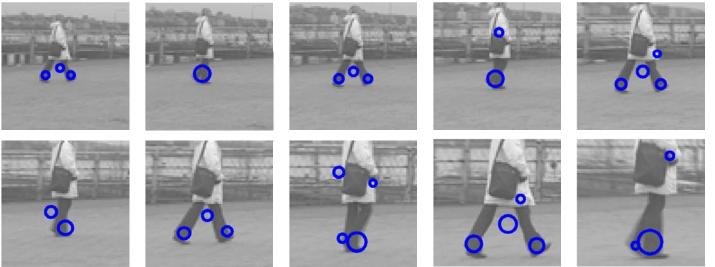
Motion event detection



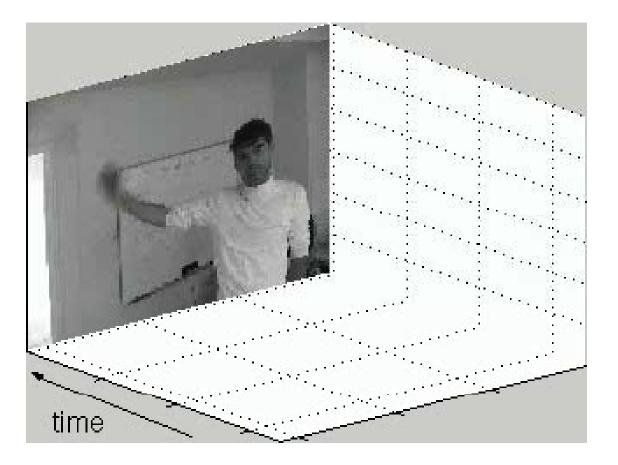


Spatio-temporal scale selection

Stability to size changes, e.g. camera zoom



Spatio-temporal scale selection

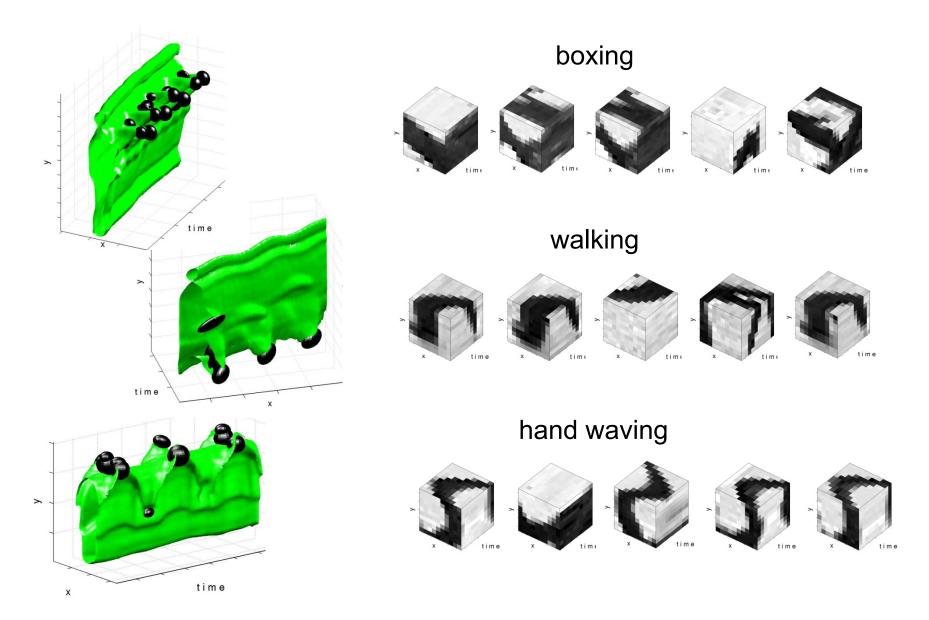


Selection of temporal scales captures the frequency of events

Local features for human actions

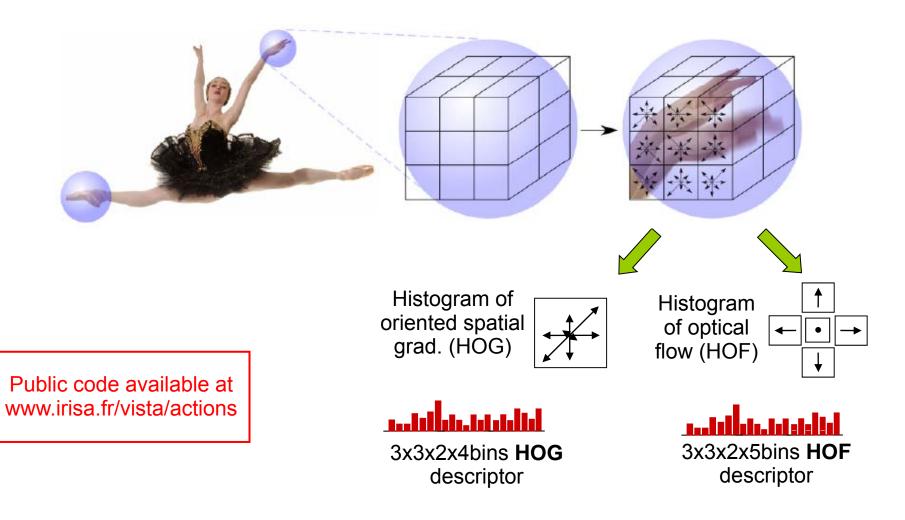


Local features for human actions



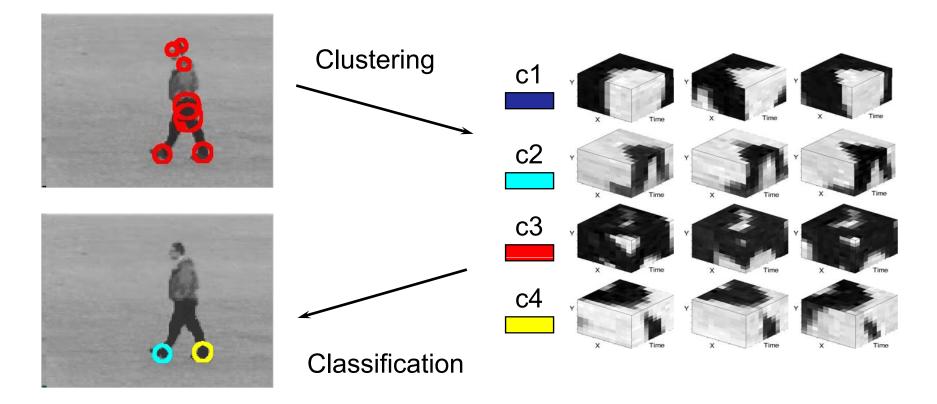
Local space-time descriptor: HOG/HOF

Multi-scale space-time patches



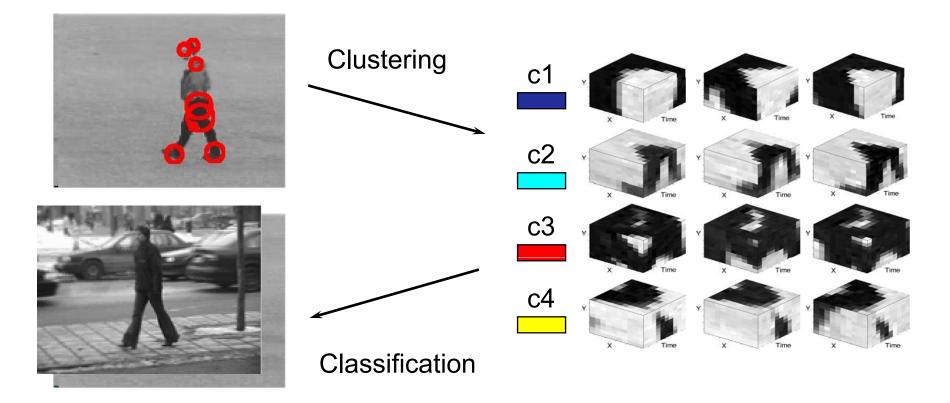
Visual Vocabulary: K-means clustering

- Group similar points in the space of image descriptors using K-means clustering
- Select significant clusters



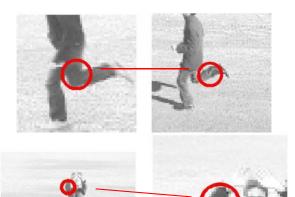
Visual Vocabulary: K-means clustering

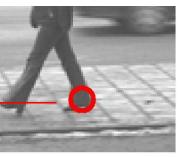
- Group similar points in the space of image descriptors using K-means clustering
- Select significant clusters

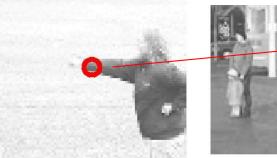


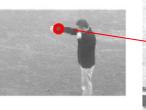
Local Space-time features: Matching

Find similar events in pairs of video sequences





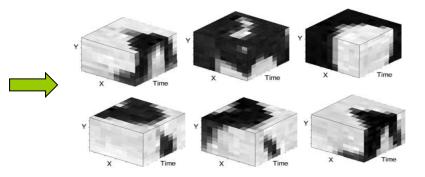


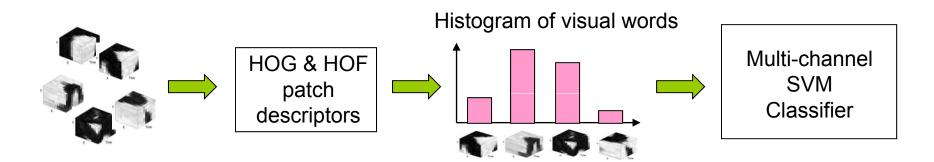


Action Classification: Overview

Bag of space-time features + multi-channel SVM [Laptev'03, Schuldt'04, Niebles'06, Zhang'07]

Collection of space-time patches

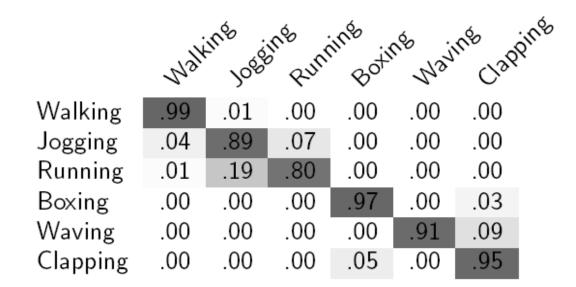




Action recognition in KTH dataset

Sample frames from the KTH actions sequences, all six classes (columns) and scenarios (rows) are presented

Classification results on KTH dataset



Confusion matrix for KTH actions

What about 3D?

Local motion and appearance features are not invariant to view changes

Multi-view action recognition

Difficult to apply standard multi-view methods:

 Do not want to search for multiview point correspondence ----Non-rigid motion, clothing changes, ... --> It's Hard!

- Do not want to identify body parts. Current methods are not reliable enough.
- Yet, want to learn actions from one view and recognize actions in very different views

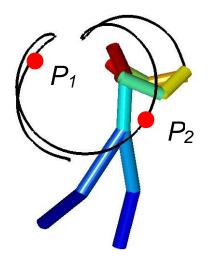
Temporal self-similarities

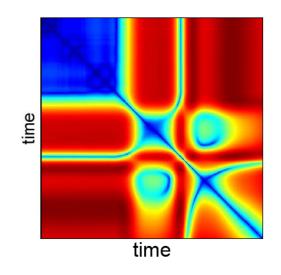
Idea:

- Cross-view matching is hard but cross-time matching (tracking) is relatively easy.
- Measure self-(dis)similarities across time: $\mathcal{D}(t_1, t_2), t_1, t_2 \in (1, ..., T)$

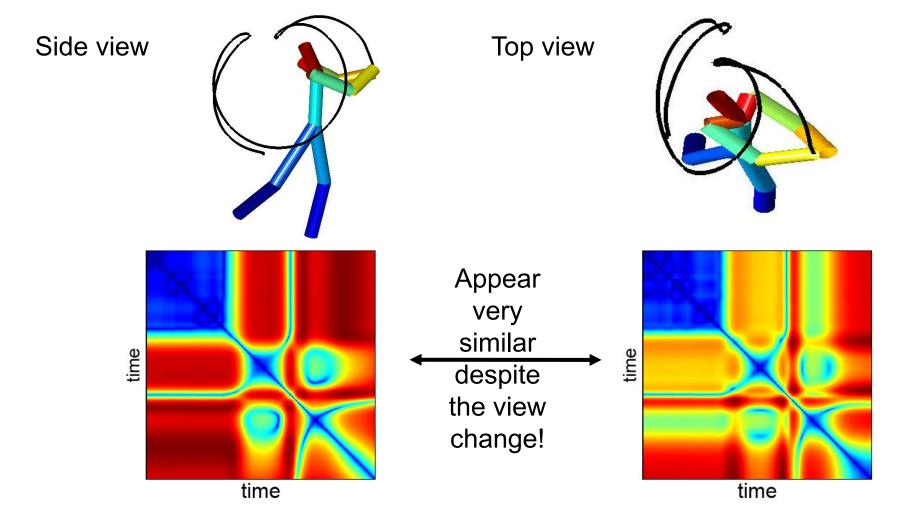
Example: $\mathcal{D}(t_1, t_2) = ||P_1 - P_2||_2$

Distance matrix / self-similarity matrix (SSM):





Temporal self-similarities: Multi-views

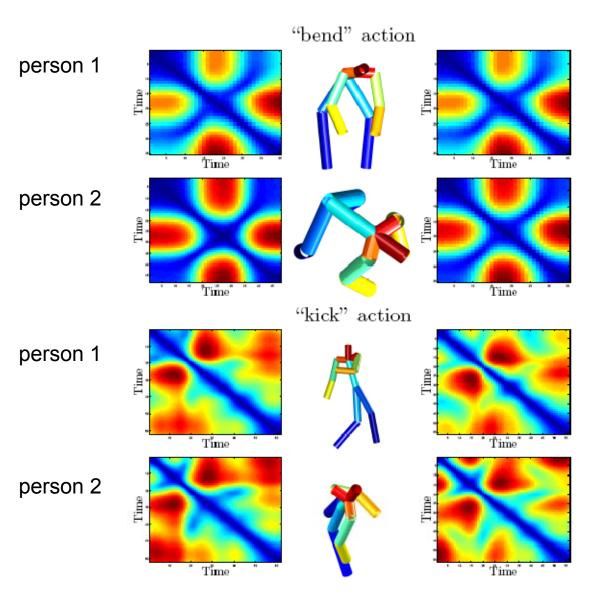


Intuition: 1. Distance between similar poses is low in any view

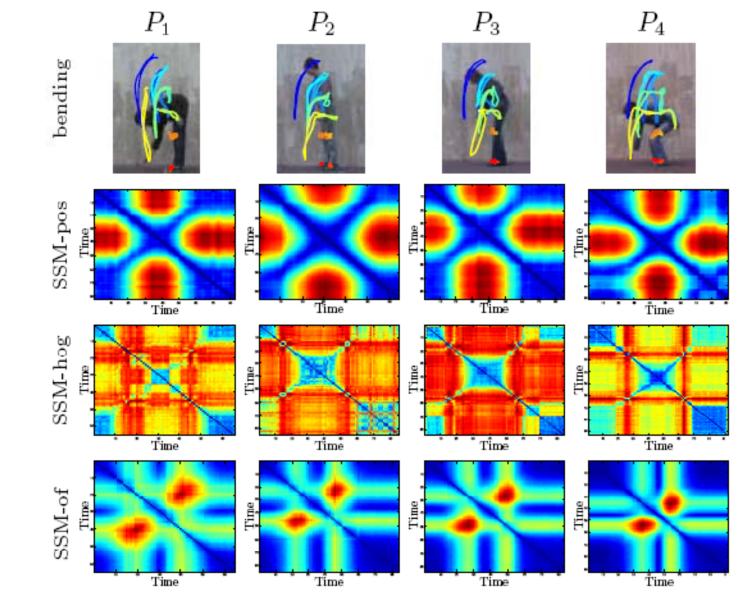
2. Distance among different poses is likely to be large in most views

Temporal self-similarities: MoCap

Self-similarities can be measured from Motion Capture (MoCap) data



Temporal self-similarities: Video



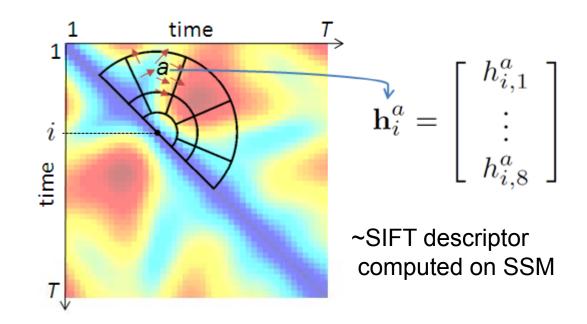
Self-similarities can be measured directly from video: HOG or Optical Flow descriptors in image frames

Self-similarity descriptor

Goal:

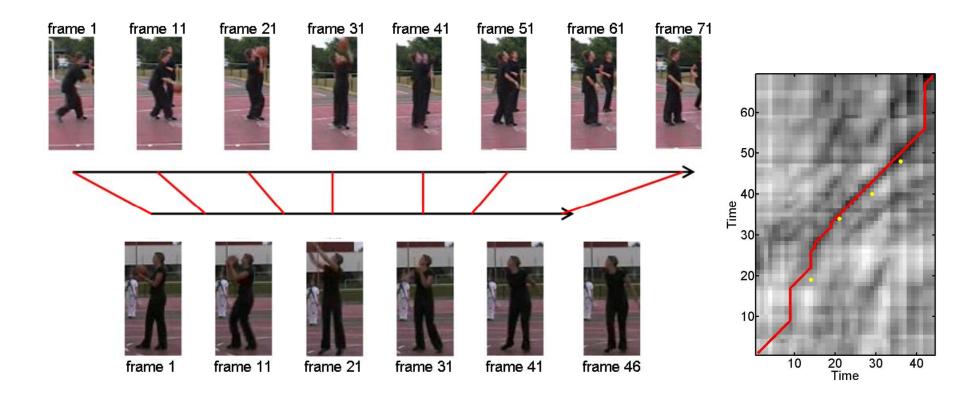
define a quantitative measure to compare selfsimilarity matrices

- Define a local histogram descriptor h_i for each point *i* on the diagonal.
- Sequence alignment: Dynamic Programming for two sequences of descriptors {*h_i*}, {*h_j*}

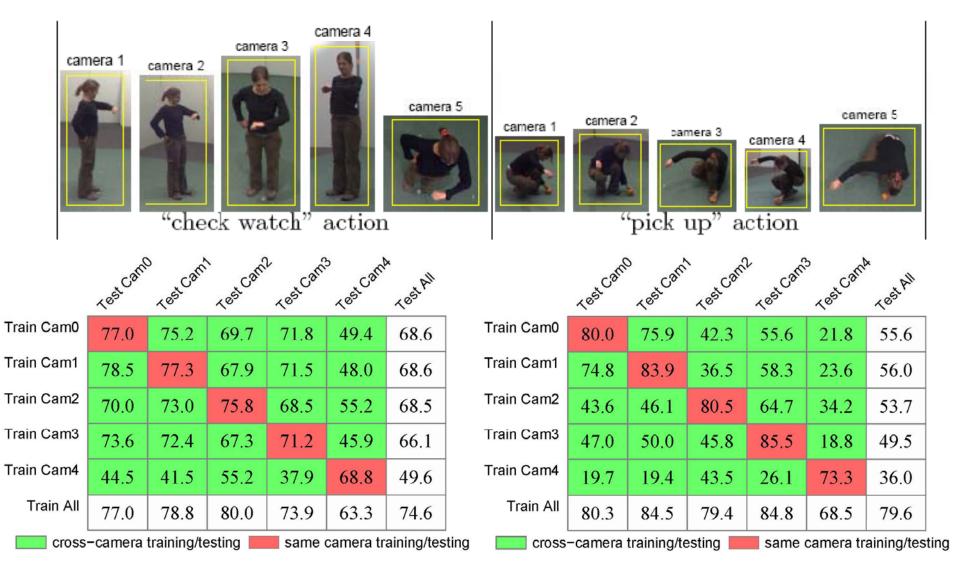


- Action recognition:
 - Visual vocabulary for *h*
 - BoF representation of {*h_i*}
 - SVM

Multi-view alignment



Multi-view action recognition: Video



SSM-based recognition

Alternative view-dependent method (STIP)

What are Human Actions?

Actions in recent datasets:

Is it just about kinematics?

Should actions be defined by the *purpose*?

Kinematics + Objects

What are Human Actions?

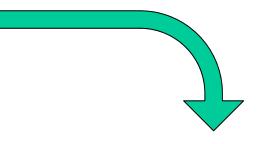
Actions in recent datasets:

Is it just about kinematics?

Should actions be defined by the *purpose*?

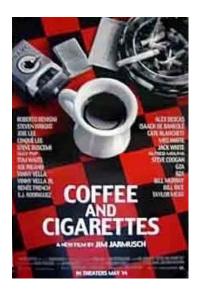
Kinematics + Objects + Scenes

Action recognition in realistic settings



Actions "In the Wild":

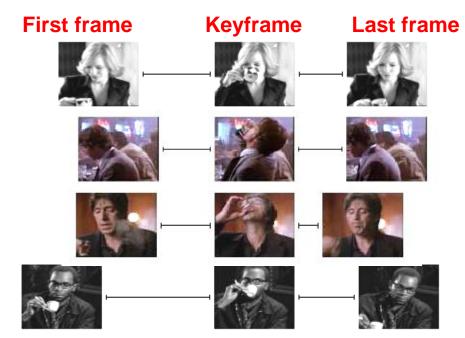
Action Dataset and Annotation



Manual annotation of drinking actions in movies: "Coffee and Cigarettes"; "Sea of Love"

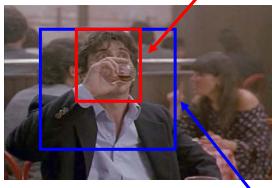
> "*Drinking*": 159 annotated samples "*Smoking*": 149 annotated samples

Temporal annotation



Spatial annotation

head rectangle



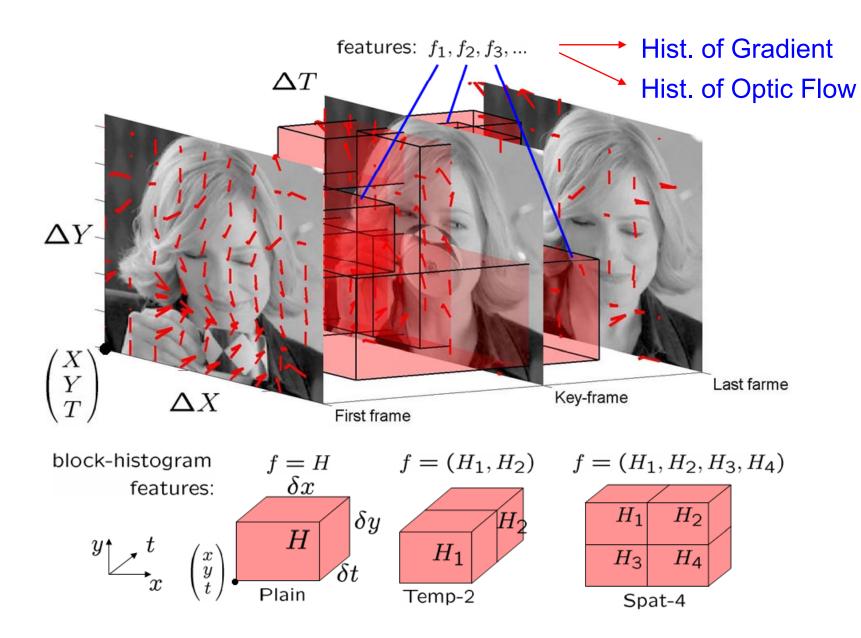
torso rectangle

"Drinking" action samples

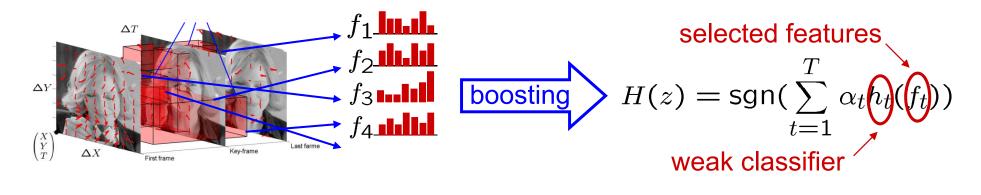
training samples

test samples

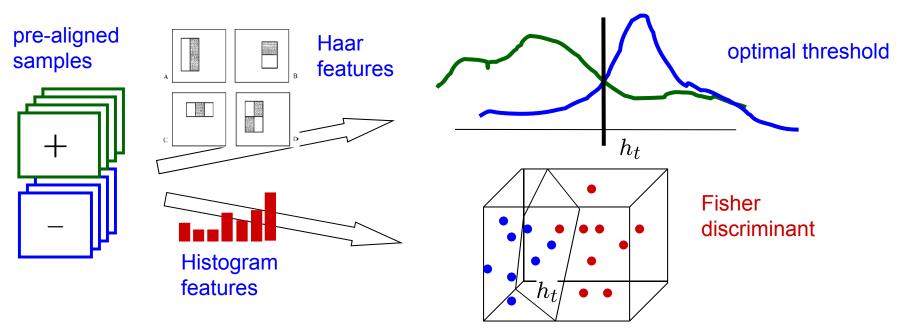
Action representation



Action learning

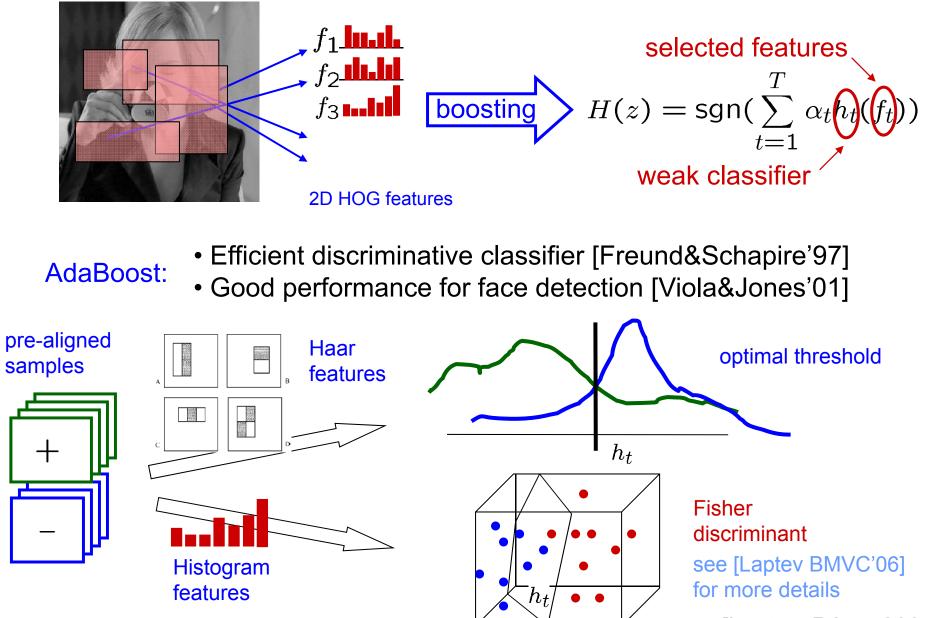


Efficient discriminative classifier [Freund&Schapire'97]
Good performance for face detection [Viola&Jones'01]



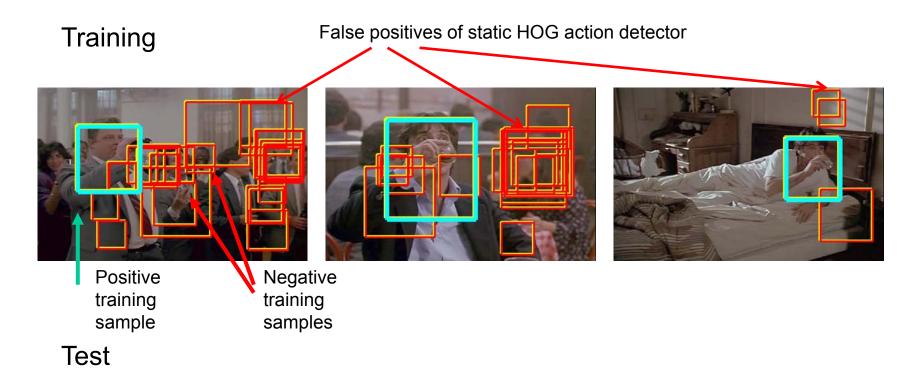
AdaBoost:

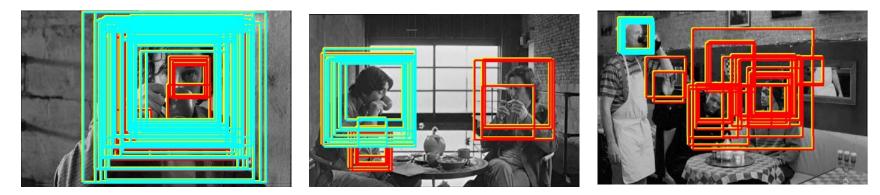
Key-frame action classifier



[Laptev, Pérez 2007]

Keyframe priming





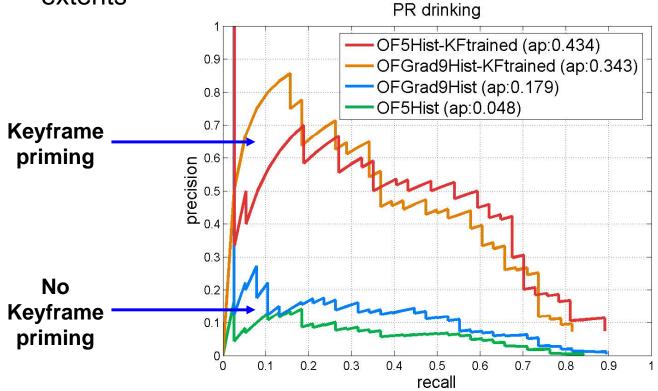
Action detection

Test set:

- 25min from "Coffee and Cigarettes" with GT 38 drinking actions
- No overlap with the training set in subjects or scenes

Detection:

• search over all space-time locations and spatio-temporal extents



Action Detection (ICCV 2007)

Test episodes from the movie "Coffee and cigarettes"

Video available at http://www.irisa.fr/vista/Equipe/People/Laptev/actiondetection.html

20 most confident detections

Learning Actions from Movies

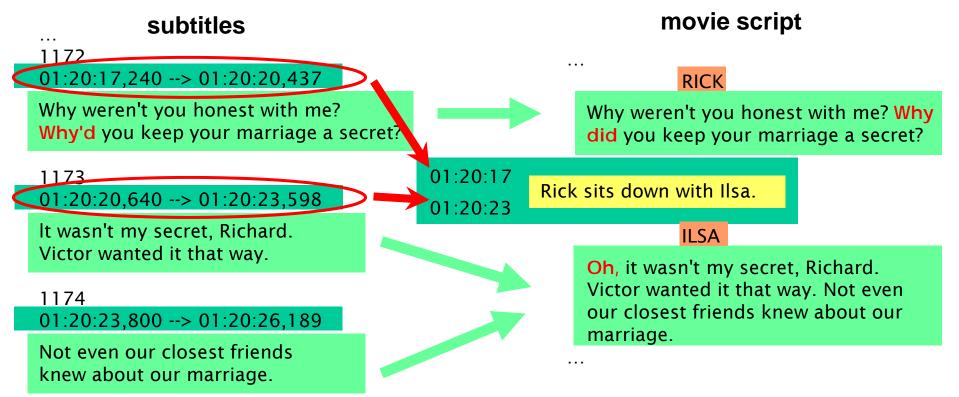
- Realistic variation of human actions
- Many classes and many examples per class

Problems:

- Typically only a few class-samples per movie
- Manual annotation is very time consuming

Automatic video annotation with scripts

- Scripts available for >500 movies (no time synchronization) www.dailyscript.com, www.movie-page.com, www.weeklyscript.com ...
- Subtitles (with time info.) are available for the most of movies
- Can transfer time to scripts by text alignment



Script-based action annotation

– On the good side:

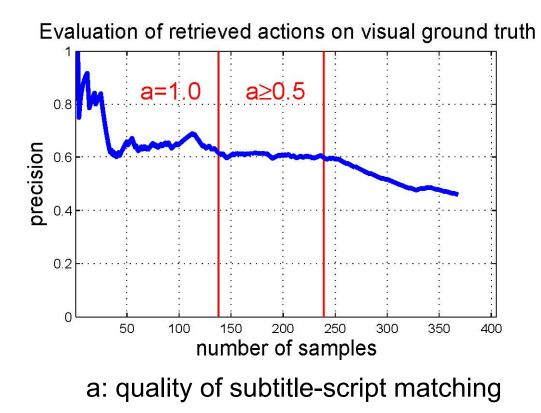
- Realistic variation of actions: subjects, views, etc...
- Many examples per class, many classes
- No extra overhead for new classes
- Actions, objects, scenes and their combinations
- Character names may be used to resolve "who is doing what?"

- Problems:

- No spatial localization
- Temporal localization may be poor
- Missing actions: e.g. scripts do not always follow the movie
- Annotation is incomplete, not suitable as ground truth for testing action detection
- Large within-class variability of action classes in text

Script alignment: Evaluation

- Annotate action samples *in text*
- Do automatic script-to-video alignment
- Check the correspondence of actions in scripts and movies

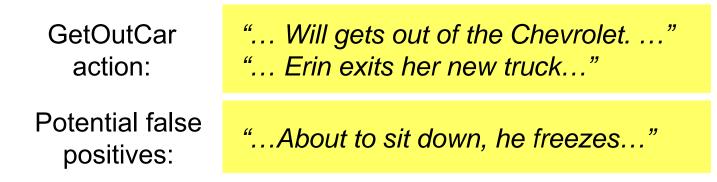


Example of a "visual false positive"

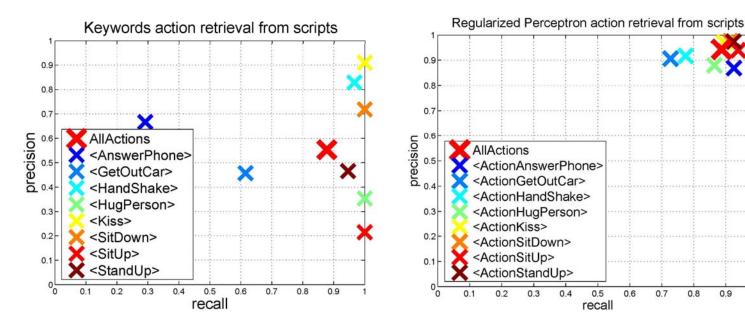
A black car pulls up, two army officers get out.

Text-based action retrieval

• Large variation of action expressions in text:



=> Supervised text classification approach



Automatically annotated action samples

[Laptev, Marszałek, Schmid, Rozenfeld 2008]

Hollywood-2 actions dataset

Actions			
	Training subset (clean)	Training subset (automatic)	Test subset (clean)
AnswerPhone	66	59	64
DriveCar	85	90	102
Eat	40	44	33
FightPerson	54	33	70
GetOutCar	51	40	57
HandShake	32	38	45
HugPerson	64	27	66
Kiss	114	125	103
Run	135	187	141
SitDown	104	87	108
SitUp	24	26	37
StandUp	132	133	146
All Samples	823	810	884

Training and test samples are obtained from 33 and 36 distinct movies respectively.

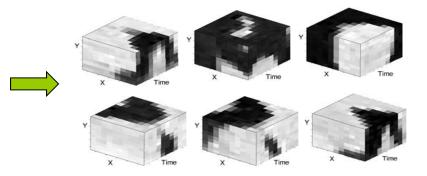
Hollywood-2 dataset is on-line: http://www.irisa.fr/vista /actions/hollywood2

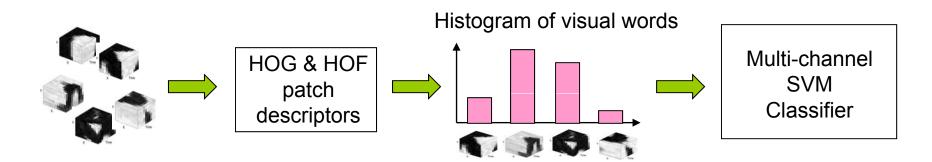
[Laptev, Marszałek, Schmid, Rozenfeld 2008]

Action Classification: Overview

Bag of space-time features + multi-channel SVM [Laptev'03, Schuldt'04, Niebles'06, Zhang'07]

Collection of space-time patches





Action classification (CVPR08)

Test episodes from movies "The Graduate", "It's a Wonderful Life", "Indiana Jones and the Last Crusade"

Evaluation of local features for action recognition

- Local features provide a popular approach to video description for action recognition:
 - ~50% of recent action recognition methods (cvpr09, iccv09, bmvc09) are based on local features
 - Large variety of feature detectors and descriptors is available
 - Very limited and inconsistent comparison of different features

Goal:

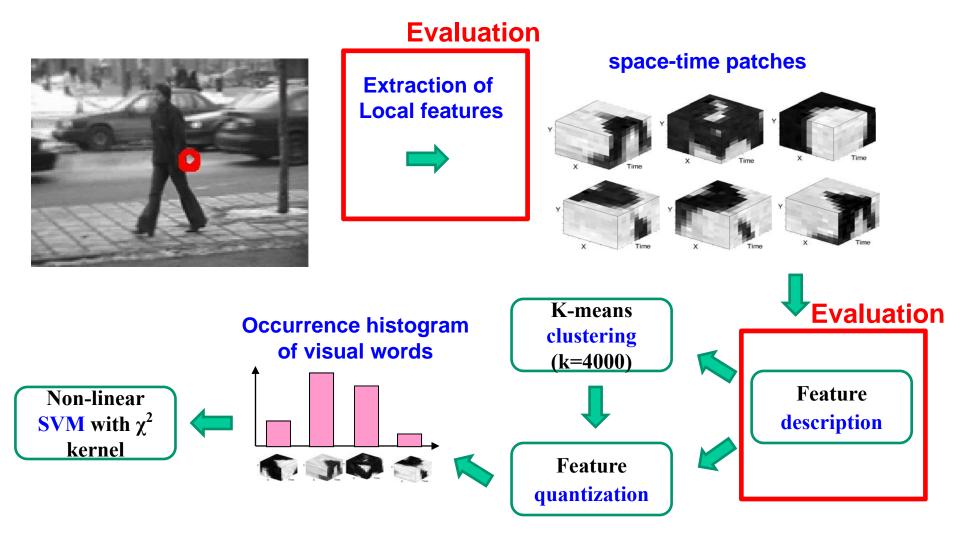
- Systematic evaluation of local *feature-descriptor* combinations
- Compare performance on common datasets
- Propose improvements

Evaluation of local features for action recognition

- Evaluation study [Wang et al. BMVC'09]
 - Common recognition framework
 - Same datasets (varying difficulty): KTH, UCF sports, Hollywood2
 - Same train/test data
 - Same classification method
 - Alternative local feature detectors and descriptors from recent literature
 - Comparison of different detector-descriptor combinations

Action recognition framework

Bag of space-time features + SVM [Schuldt'04, Niebles'06, Zhang'07]



Local feature detectors/descriptors

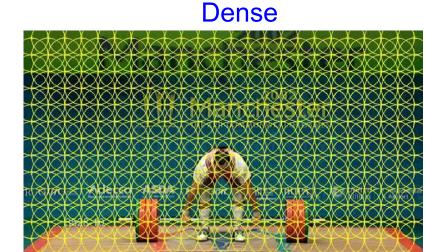
- Four types of detectors:
 - Harris3D [Laptev'05]
 - Cuboids [Dollar'05]
 - Hessian [Willems'08]
 - Regular dense sampling
- Four different types of descriptors:
 - HoG/HoF [Laptev'08]
 - Cuboids [Dollar'05]
 - HoG3D [Kläser'08]
 - Extended SURF [Willems'08]

Illustration of ST detectors

Harris3D

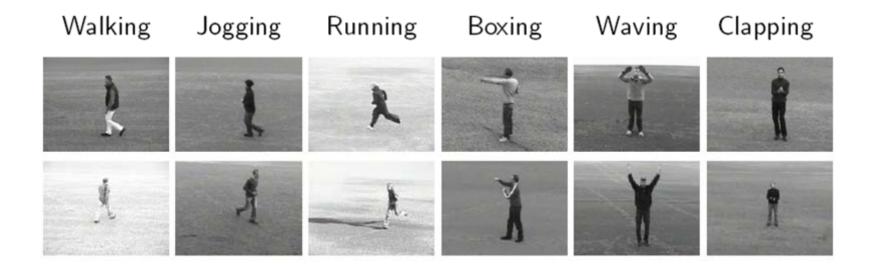
Hessian

Cuboid



Dataset: KTH-Actions

- 6 action classes by 25 persons in 4 different scenarios
- Total of 2391 video samples
- Performance measure: average accuracy over all classes



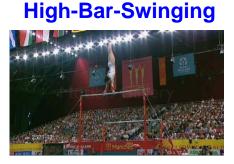
UCF-Sports -- samples

- 10 different action classes
- 150 video samples in total
 - We extend the dataset by flipping videos
- Evaluation method: *leave-one-out*
- Performance measure: *average accuracy* over all classes

Kicking

Walking

Skateboarding



Golf-Swinging

Dataset: Hollywood2

- 12 different action classes from 69 Hollywood movies
- 1707 video sequences in total
- Separate movies for training / testing
- Performance measure: mean average precision (mAP) over all classes

KTH-Actions -- results

		Delectors		
	Harris3D	Cuboids	Hessian	Dense
HOG3D	89.0%	90.0%	84.6%	85.3%
HOG/HOF	91.8%	88.7%	88.7%	86.1%
HOG	80.9%	82.3%	77.7%	79.0%
HOF	92.1%	88.2%	88.6%	88.0%
Cuboids	-	89.1%	-	-
E-SURF	-		81.4%	n de la construir de la constru La construir de la construir de

Detectors

- Best results for **Sparse** Harris3D + HOF
- Good results for Harris3D and Cuboid detectors with HOG/HOF and HOG3D descriptors
- Dense features perform relatively poor compared to sparse features

UCF-Sports -- results

		Dotootoro		
	Harris3D	Cuboids	Hessian	Dense
HOG3D	79.7%	82.9%	79.0%	85.6%
HOG/HOF	78.1%	77.7%	79.3%	81.6%
HOG	71.4%	72.7%	66.0%	77.4%
HOF	75.4%	76.7%	75.3%	82.6%
Cuboids	-	76.6%	-	-
E-SURF	_		77.3%	

Detectors

- Best results for **Dense** + HOG3D
- Good results for Dense and HOG/HOF
- Cuboids: good performance with HOG3D

Hollywood2 -- results

	Harris3D	Cuboids	Hessian	Dense
HOG3D	43.7%	45.7%	41.3%	45.3%
HOG/HOF	45.2%	46.2%	46.0%	47.4%
HOG	32.8%	39.4%	36.2%	39.4%
HOF	43.3%	42.9%	43.0%	45.5%
Cuboids		45.0%		-
E-SURF			38.2%	

Detectors

- Best results for **Dense** + HOG/HOF
- Good results for HOG/HOF

Evaluation summary

- Dense sampling consistently outperforms all the tested sparse features in realistic settings (UCF + Hollywood2)
 - Importance of realistic video data
 - Limitations of current feature detectors
 - Note: large number of features (15-20 times more)
- Sparse features provide more or less similar results (sparse features better than Dense on KTH)
- Descriptors' performance
 - Combination of gradients + optical flow seems a good choice (HOG/HOF & HOG3D)

How to improve BoF classification?

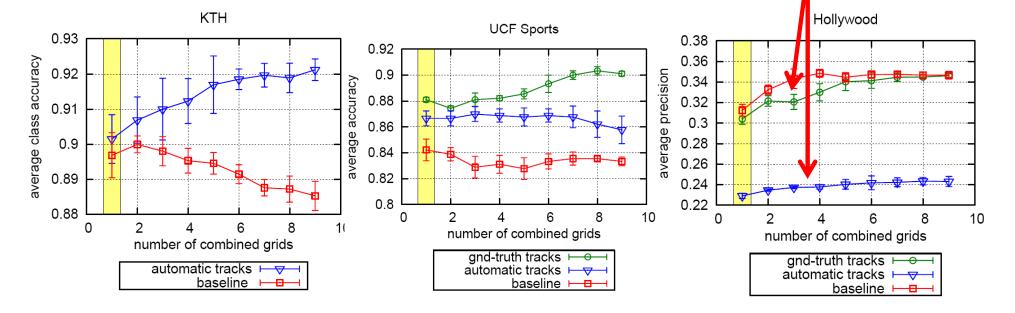
Actions are about people

Why not try to combine BoF with person detection?

Detect and track people

2x2, 3x2, 3x3...

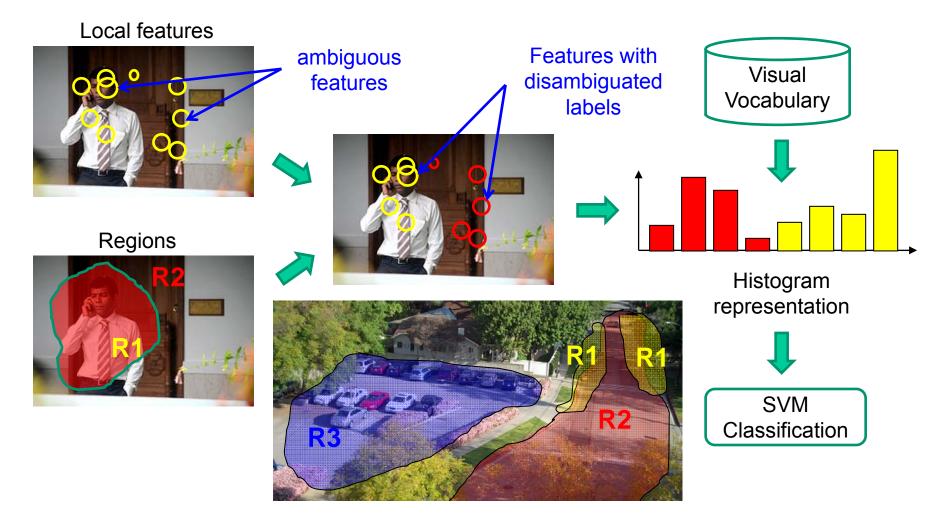
Surprise!



How to improve BoF classification?

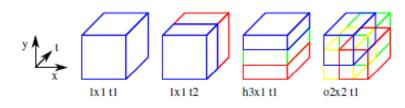
2nd attampt:

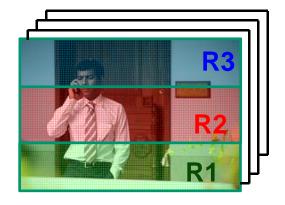
- Do not remove background
- Improve local descriptors with region-level information



Video Segmentation

• Spatio-temporal grids





Static action detectors [Felzenszwalb'08]
 Trained from ~100 web-images per class

DriveCar

HandShake

HugPerson

Kiss

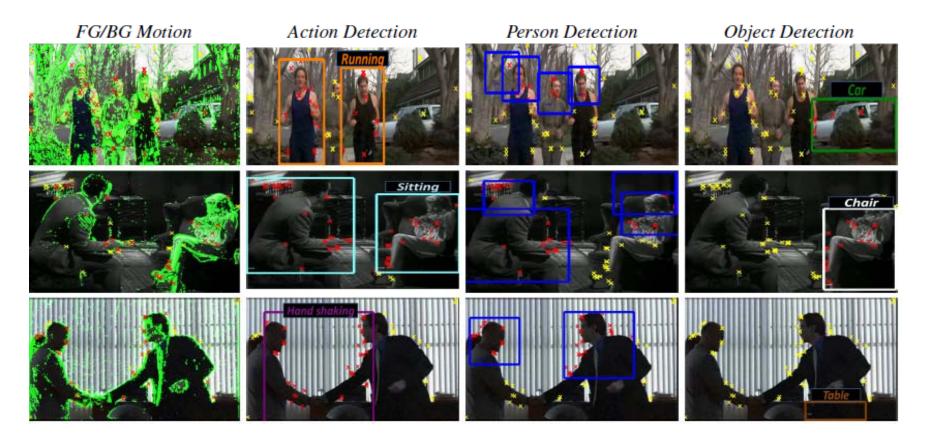
Run

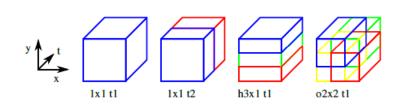
Sitting

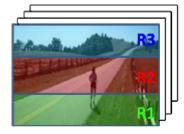
 Object and Person detectors (Upper body) [Felzenszwalb'08]

Eat

Video Segmentation







Hollywood-2 action classification

Attributed feature	Performance (meanAP)
BoF	48.55
Spatiotemoral grid 24 channels	51.83
Motion segmentation	50.39
Upper body	49.26
Object detectors	49.89
Action detectors	52.77
Spatiotemoral grid + Motion segmentation	53.20
Spatiotemoral grid + Upper body	53.18
Spatiotemoral grid + Object detectors	52.97
Spatiotemoral grid + Action detectors	55.72
Spatiotemoral grid + Motion segmentation + Upper body + Object detectors + Action detectors	55.33

Hollywood-2 action classification

Channels	BoF	STG24	AD-class	STG24 + AD-class	STG24 + MS8
					+ AD-class
					+ UB $+$ OD
mean AP	48.55%	51.83%	52.77%	55.72%	55.33%
AnswerPhone	15.71%	25.87%	20.75%	26.32%	24.77%
DriveCar	87.61%	85.91%	86.87%	86.48%	88.11 %
Eat	54.77%	56.39%	57.38%	59.19%	61.42%
FightPerson	73.90%	74.93%	75.73%	76.21%	76.47%
GetOutCar	33.35%	44.02%	38.26%	45.71%	47.42%
HandShake	19.99%	29.68%	45.71%	49.73%	38.41%
HugPerson	37.80%	46.08%	40.75%	45.41%	44.58%
Kiss	52.12%	54.96%	56.00%	58.96%	61.47 %
Run	71.13%	69.40%	73.18%	71.97%	74.31%
SitDown	59.01%	58.89%	59.59%	62.43%	61.26%
SitUp	23.90%	18.40%	24.06%	27.52%	25.50%
StandUp	53.30%	57.41%	54.94%	58.76%	60.41%

Actions in Context (CVPR 2009)

• Human actions are frequently correlated with particular scene classes Reasons: *physical properties* and *particular purposes* of scenes

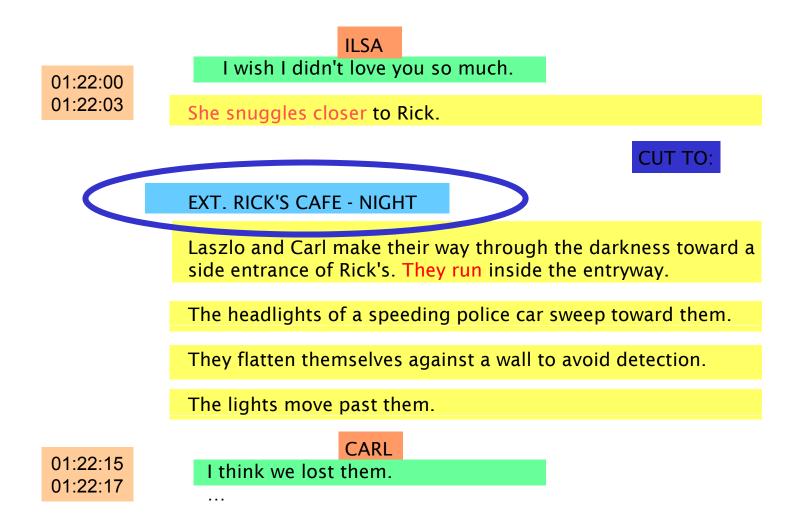
Eating -- kitchen

Eating -- cafe

Running -- road

Running -- street

Mining scene captions



Mining scene captions

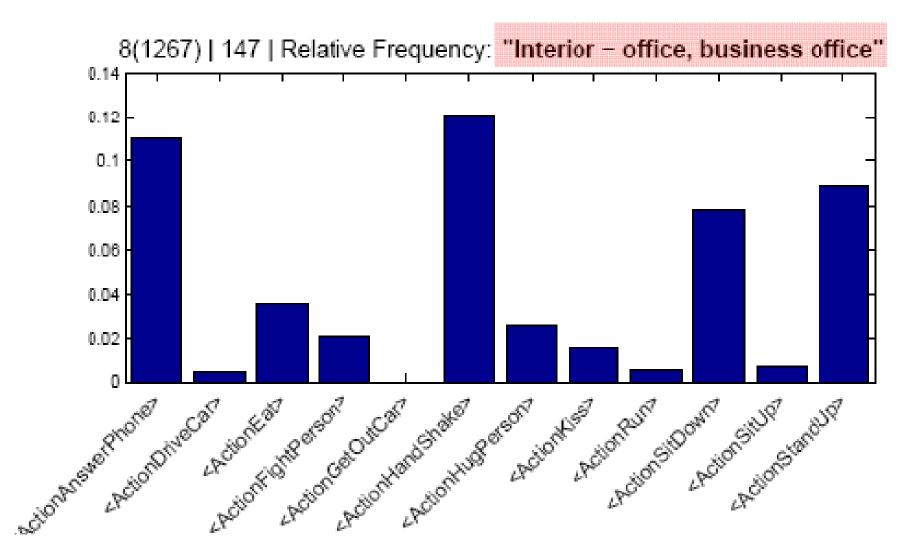
INT. TRENDY RESTAURANT - NIGHT INT. MARSELLUS WALLACE'S DINING ROOM MORNING EXT. STREETS BY DORA'S HOUSE - DAY. INT. MELVIN'S APARTMENT, BATHROOM – NIGHT EXT. NEW YORK CITY STREET NEAR CAROL'S RESTAURANT – DAY INT. CRAIG AND LOTTE'S BATHROOM - DAY

- Maximize word frequency street, living room, bedroom, car
- Merge words with similar senses using WordNet:

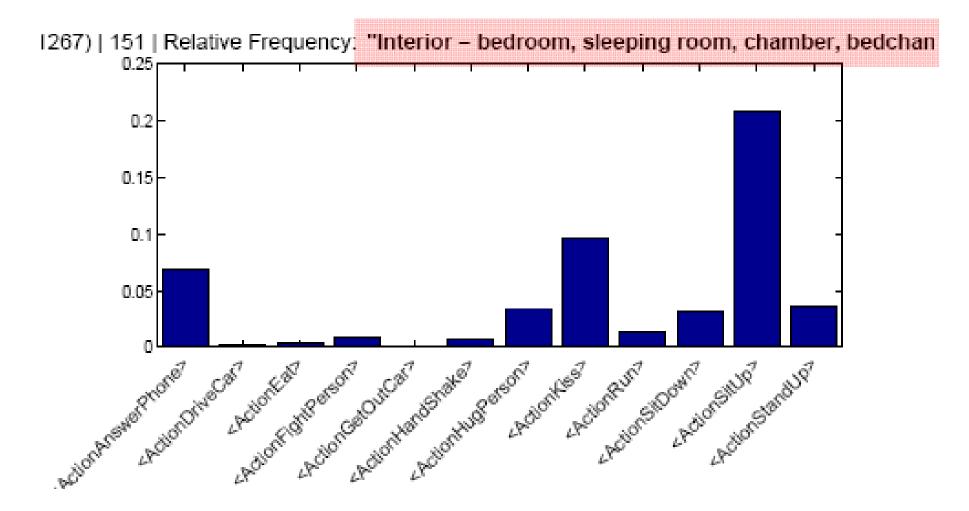
```
taxi -> car, cafe -> restaurant
```

- · Measure correlation of words with actions (in scripts) and
- Re-sort words by the entropy $S = -k \sum P_i \ln P_i$ for P = p(action | word)

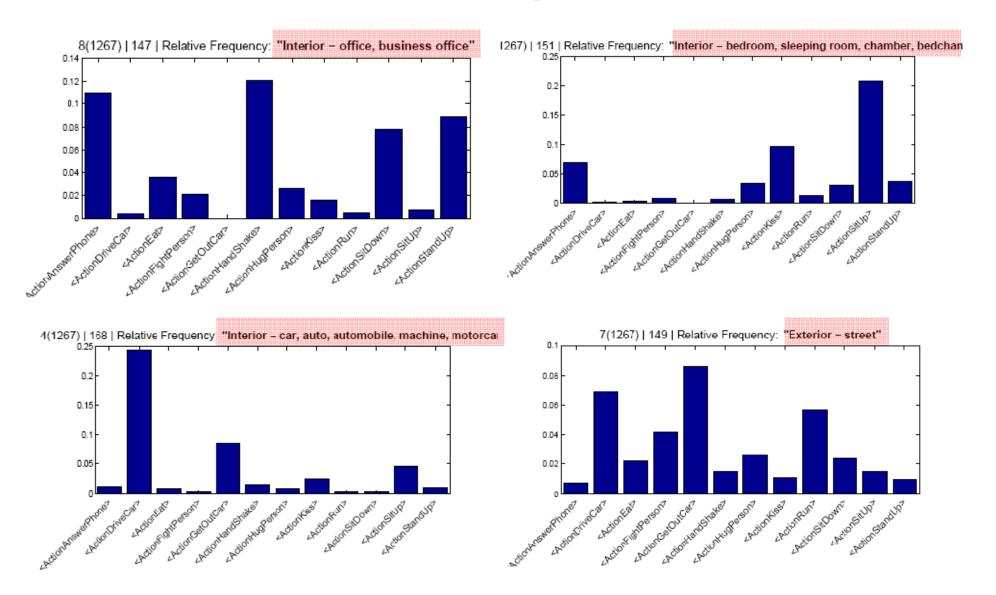
Co-occurrence of actions and scenes in scripts



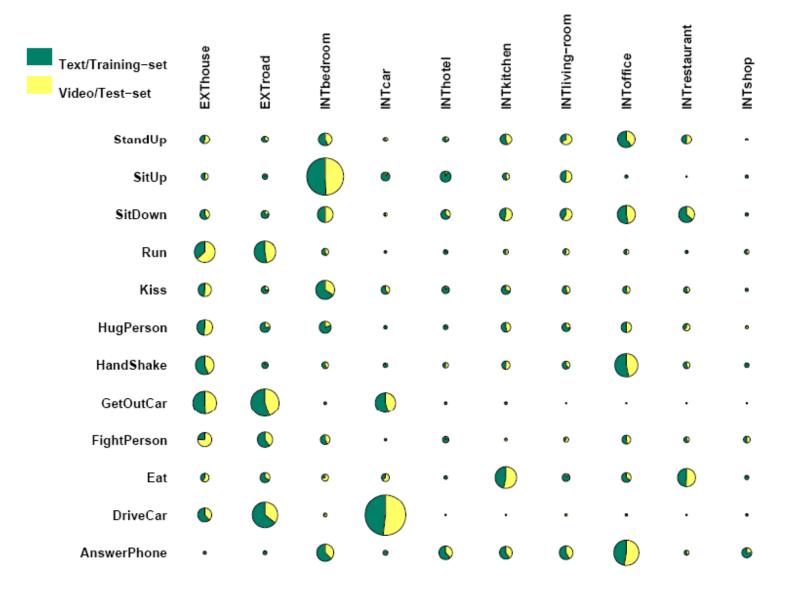
Co-occurrence of actions and scenes in scripts



Co-occurrence of actions and scenes in scripts



Co-occurrence of actions and scenes in text vs. video



Automatic gathering of relevant scene classes and visual samples

· · · · · · · · · · · · · · · · · · ·			1	
	Auto-Train-Actions	Clean-Test-Actions		
AnswerPhone	59	64		
DriveCar	90	102		
Eat	44	33		EXT-house
FightPerson	33	70		EXT-road
GetOutCar	40	57		INT-bedroom
HandShake	38	45		INT-car
HugPerson	27	66		INT-hotel
Kiss	125	103		INT-kitchen
Run	187	141		INT-living-room
SitDown	87	108		INT-office
SitUp	26	37		INT-restaurant
StandUp	133	146		INT-shop
All Samples	810	884		All Samples

Source: 69 movies aligned with the scripts

Hollywood-2 dataset is on-line: http://www.irisa.fr/vista /actions/hollywood2

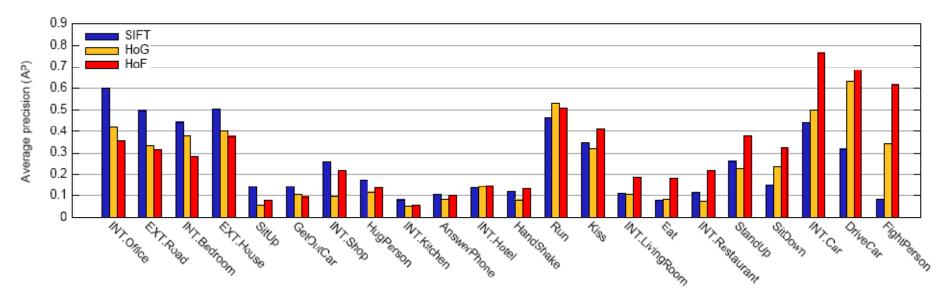
(a) Actions

(b) Scenes

Auto-Train-Scenes

Clean-Test-Scenes

Results: actions and scenes (separately)



EXT.House	0.503	0.363	0.491
EXT.Road	0.498	0.372	0.389
INT.Bedroom	0.445	0.362	0.462
INT.Car	0.444	0.759	0.773
INT.Hotel	0.141	0.220	0.250
INT.Kitchen	0.081	0.050	0.070
INT.LivingRoom	0.109	0.128	0.152
INT.Office	0.602	0.453	0.574
INT.Restaurant	0.112	0.103	0.108
INT.Shop	0.257	0.149	0.244
Scene average	0.319	0.296	0.351
Total average	0.259	0.310	0.339

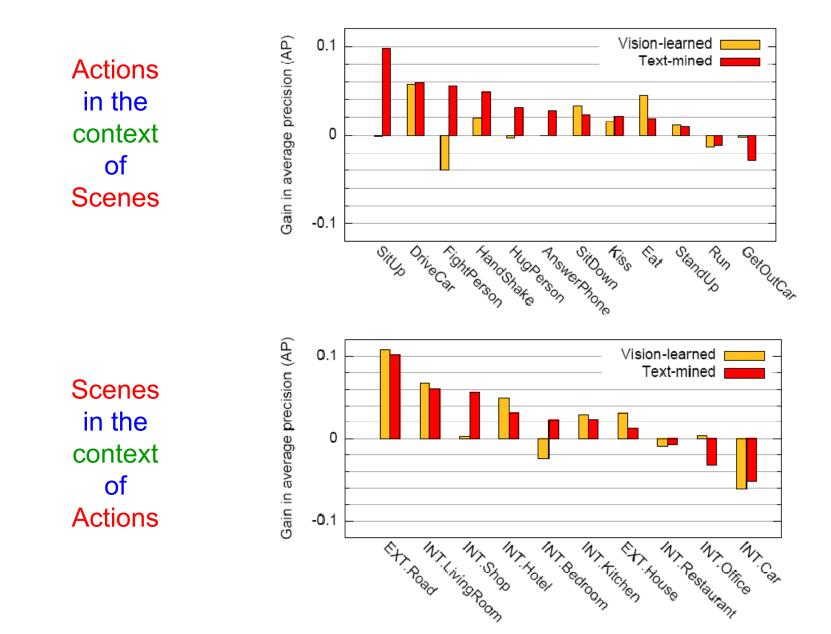
			SIFT
		HoG	HoG
	SIFT	HoF	HoF
AnswerPhone	0.105	0.088	0.107
DriveCar	0.313	0.749	0.750
Eat	0.082	0.263	0.286
FightPerson	0.081	0.675	0.571
GetOutCar	0.191	0.090	0.116
HandShake	0.123	0.116	0.141
HugPerson	0.129	0.135	0.138
Kiss	0.348	0.496	0.556
Run	0.458	0.537	0.565
SitDown	0.161	0.316	0.278
SitUp	0.142	0.072	0.078
StandUp	0.262	0.350	0.325
Action average	0.200	0.324	0.326

Classification with the help of context

$$a'_i(\boldsymbol{x}) = a_i(\boldsymbol{x}) + \tau \sum_{j \in S} w_{ij} s_j(\boldsymbol{x})$$

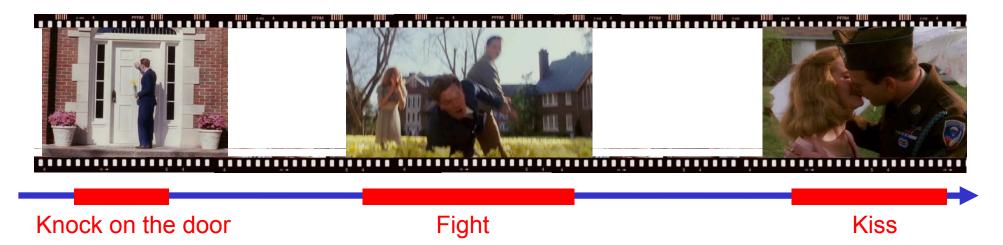
- $a_i(x)$ Action classification score
- $s_j(\boldsymbol{x})$ Scene classification score
 - w_{ij} Weight, estimated from text: p(Scene|Action)
 - $a_i'(\boldsymbol{x})$ New action score

Results: actions and scenes (jointly)



Weakly-Supervised Temporal Action Annotation

• Answer questions: *WHAT actions and WHEN they happened*?



• Train visual action detectors and annotate actions with the minimal manual supervision

WHAT actions?

- Automatic discovery of action classes in text (movie scripts)
 - -- Text processing:

Part of Speech (POS) tagging; Named Entity Recognition (NER); WordNet pruning; Visual Noun filtering

-- Search action patterns

Person+Verb

3725 /PERSON .* is
2644 /PERSON .* looks
1300 /PERSON .* turns
916 /PERSON .* takes
840 /PERSON .* sits
829 /PERSON .* has
807 /PERSON .* walks
701 /PERSON .* stands
622 /PERSON .* goes
591 /PERSON .* starts
585 /PERSON .* does
569 /PERSON .* gets
552 /PERSON .* pulls
503 /PERSON .* comes
493 /PERSON .* sees
462 /PERSON .* are/VBP

Person+Verb+Prep.

989 /PERSON .* looks .* at 384 /PERSON .* is .* in 363 /PERSON .* looks .* up 234 /PERSON .* is .* on 215 /PERSON .* picks .* up 196 /PERSON .* is .* at 139 /PERSON .* sits .* in 138 /PERSON .* is .* with 134 /PERSON .* stares .* at 129 /PERSON .* is .* by 126 /PERSON .* looks .* down 124 /PERSON .* sits .* on 122 /PERSON .* is .* of 114 /PERSON .* gets .* up 109 /PERSON .* sits .* at 107 /PERSON .* sits .* down

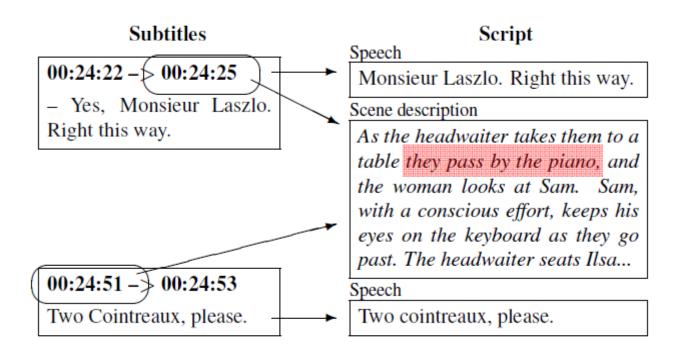
Person+Verb+Prep+Vis.Noun

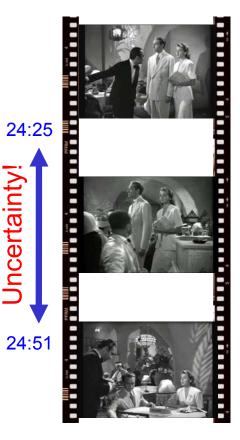
41	/PERSON	.* sits .* in .* chair
37	/PERSON	.* sits .* at .* table
31	/PERSON	.* sits .* on .* bed
29	/PERSON	.* sits .* at .* desk
26	/PERSON	.* picks .* up .* phone
23	/PERSON	.* gets .* out .* car
23	/PERSON	.* looks .* out .* window
21	/PERSON	.* looks .* around .* room
18	/PERSON	.* is .* at .* desk
17	/PERSON	.* hangs .* up .* phone
17	/PERSON	.* is .* on .* phone
17	/PERSON	.* looks .* at .* watch
16	/PERSON	.* sits .* on .* couch
15	/PERSON	.* opens .* of .* door
15	/PERSON	.* walks .* into .* room
14	/PERSON	.* goes .* into .* room

WHEN: Video Data and Annotation

- Want to target realistic video data
- Want to avoid manual video annotation for training

Use movies + scripts for automatic annotation of training samples





Overview

Input:

- Action type, e.g. Person Opens Door
- Videos + aligned scripts

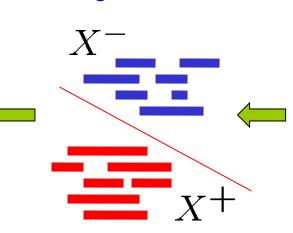
Automatic collection of training clips

- ... Jane jumps up and opens the door Carolyn opens the front door ...
- ... Jane opens her bedroom door ...

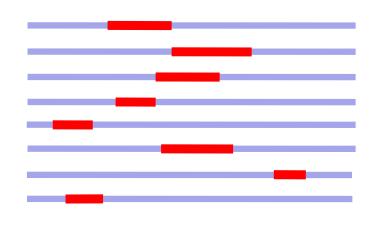
Output:

Slidingwindow-style temporal action localization

Training classifier

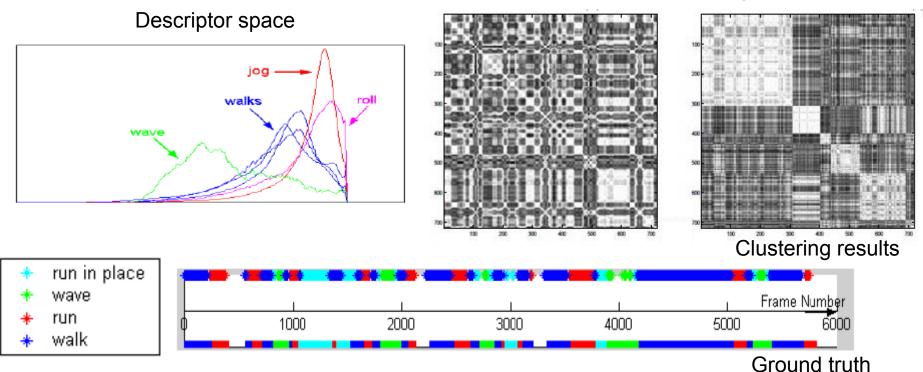


Clustering of positive segments



[Lihi Zelnik-Manor and Michal Irani CVPR 2001]

Spectral clustering

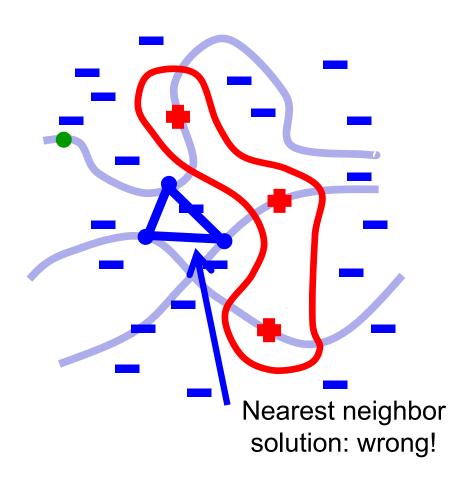


Complex data:

Standard clustering methods do not work on this data

Our view at the problem

Feature space



Video space

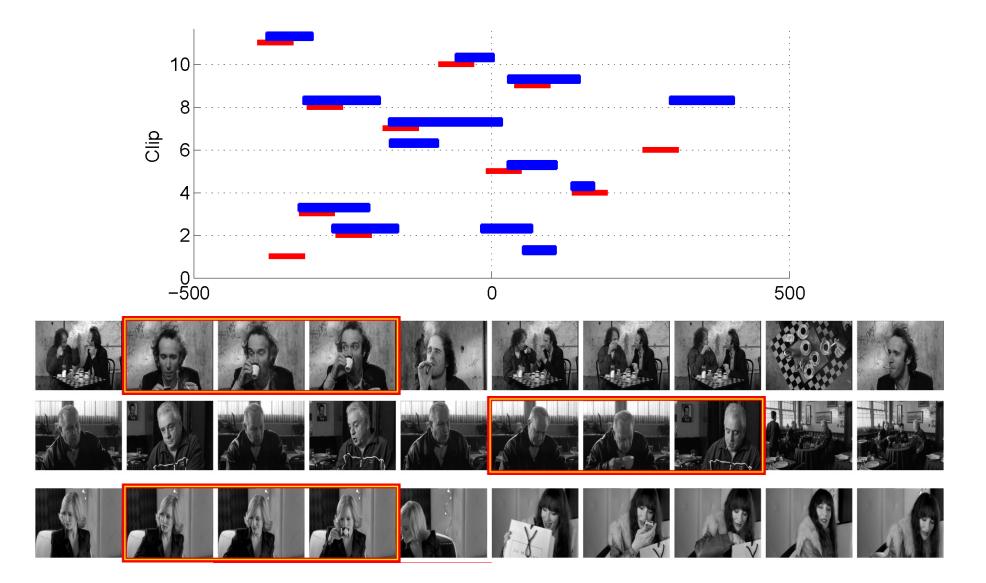
Negative samples!

Random video samples: lots of them, very low chance to be positives

Formulation [Xu et al. NIPS'04] [Bach & Harchaoui NIPS'07] discriminative cost Feature space $U(f, w, b) = C_{+} \sum_{i=1}^{M} \max\{0, 1 - w^{\top} \Phi(c_{i}[f_{i}]) - b\} + C_{+}$ Loss on positive samples $+C_{-}\sum_{i=1}^{n}\max\{0,1+w^{\top}\Phi(x_{i}^{-})+b\}+\|w\|^{2}$ Loss on negative samples $x_i^$ negative samples $c_i[f_i]$ parameterized positive samples c_i Optimization SVM solution for w, bCoordinate descent on f_i

Clustering results

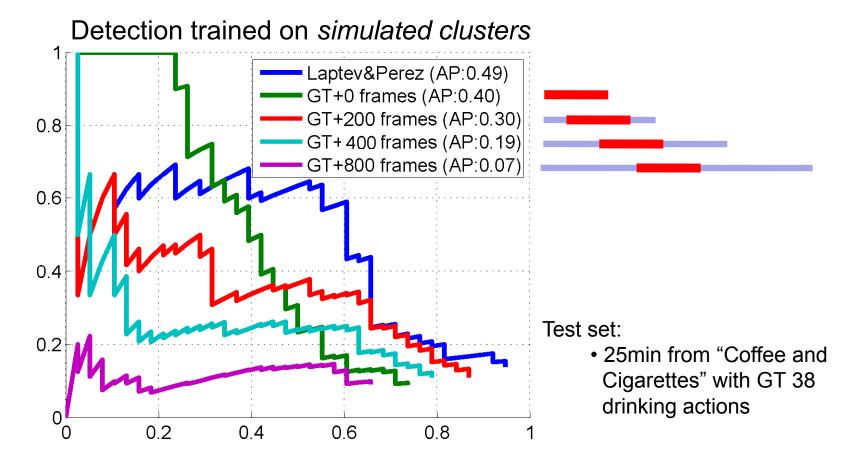
Drinking actions in Coffee and Cigarettes



Detection results

Drinking actions in Coffee and Cigarettes

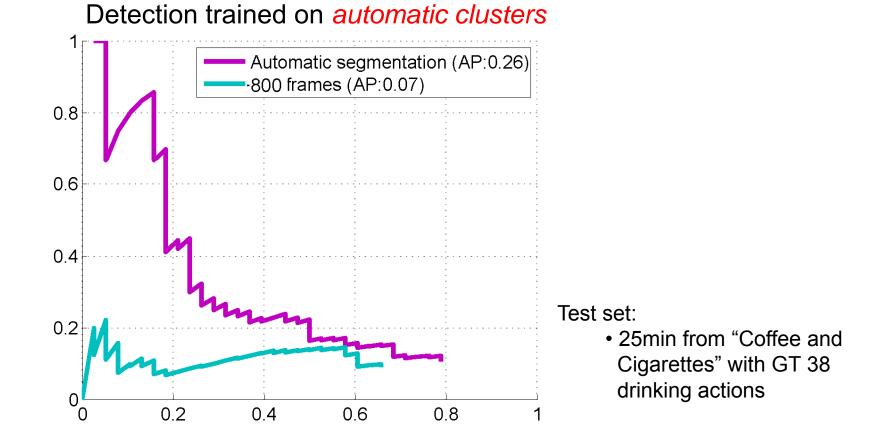
- Training Bag-of-Features classifier
- Temporal sliding window classification
- Non-maximum suppression



Detection results

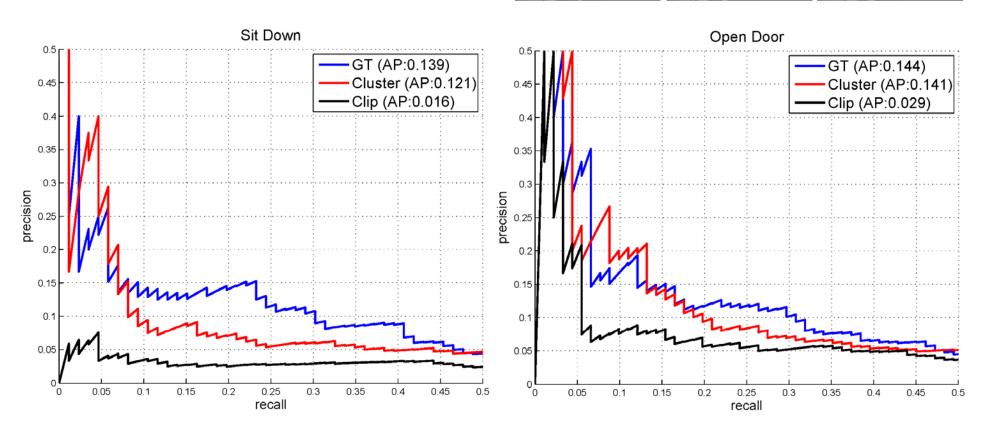
Drinking actions in Coffee and Cigarettes

- Training Bag-of-Features classifier
- Temporal sliding window classification
- Non-maximum suppression



Detection results

"Sit Down" and "Open Door" actions in ~5 hours of movies



Automatic Annotation of Human Actions in Video

ICCV 2009 DEMO

O.Duchenne, I.Laptev, J.Sivic, F.Bach and J.Ponce

Temporal detection of actions OpenDoor and SitDown in episodes of The Graduate, The Crying Game, Living in Oblivion

Temporal detection of "Sit Down" and "Open Door" actions in movies: The Graduate, The Crying Game, Living in Oblivion

Conclusions

- Bag-of-words models are currently dominant, the structure (human poses, etc.) should be integrated.
- Vocabulary of actions is not well-defined it depends on the goal and the task
- Actions should be used for the functional interpretation of the visual world