Kernel-based Methods for Unsupervised Learning

LEAR project-team, INRIA

Zaid Harchaoui

Grenoble, July 30th 2010

# Outline

## 1 Introduction

- 2 Kernel methods and feature space
- 3 Mean element and covariance operator
- 4 Kernel PCA
- 5 Kernel CCA
- 6 Spectral Clustering

# Outline

## 1 Introduction

- 2 Kernel methods and feature space
- 3 Mean element and covariance operator
- 4 Kernel PCA
- 5 Kernel CCA
- 6 Spectral Clustering

#### **Dimension** reduction



#### Dimension reduction

- Computational efficiency : space and time savings
- Statistical performance : fewer dimensions  $\rightarrow$  regularization
- Visualization : discover underlying structure of the data

 $\rightarrow$  PCA and KPCA

Feature extraction





 $\begin{array}{c} \mathcal{X}^*_{:} \\ \mathcal{Y}^*_{:} \\ \text{ "A view from Idyllwild, California,} \\ \text{with pine trees and snow capped Marion} \\ \text{Mountain under a blue sky."} \end{array}$ 

#### Feature extraction

- Multimodality : leverage the correlation between the modalities
- Statistical performance : take advantage of both views of the data
- Putting in relation : discover underlying relations between the modalities

#### $\rightarrow$ CCA and KCCA

## Clustering





## Clustering

- Semantics : grouping datapoints in meaningful clusters
- Statistical performance : intrinsic degrees of freedom of the data
- Visualization : discover groupings between datapoints

 $\rightarrow$  spectral clustering, temporal segmentation, and regularized clustering (DIFFRAC)

Detection problems



#### Detection problems

- Balance risks : control detection rate with a guaranteed false alarm probability
- Power : detect differences not only in mean or covariance
- ightarrow homogeneity testing, change detection

# Outline

## 1 Introduction

## 2 Kernel methods and feature space

3 Mean element and covariance operator

- 4 Kernel PCA
- 5 Kernel CCA
- 6 Spectral Clustering

# Kernel methods

Machine Learning methods taking  $\mathbf{K} = [k(X_i, X_j)]_{i,j=1,...,n}$  (Gram matrix as input for processing a sample  $\{X_1, \ldots, X_n\}$ , where k(x, y) is a similarity measure between x and y defining a positive definite kernel.

## Strengths of Kernel Methods

- Minimal assumptions on data types (vectors, strings, trees, graphs, etc.)
- Interpretation of k(x, y) as a dot product k(x, y) = ⟨φ(x), φ(y)⟩<sub>H</sub> in a reproducing kernel Hilbert space H where the observations are mapped via [φ : X → H] the feature map φ(•) = k(•, ·)

Example : space of shapes of birds



Feature map?

How does the feature map look like?

 $k(\mathbf{*}, \cdot)$ 

#### Feature map?

The feature map is a function whose values span the whole range of shapes with varying magnitudes.



# Examples of Kernels

#### Kernels on vectors

$$\begin{array}{ll} \mathsf{Polynomial} & k(\mathbf{x},\mathbf{y}) = (c + (\mathbf{x},\mathbf{y}))^d \\ \mathsf{Laplace} & k(\mathbf{x},\mathbf{y}) = \exp(-\|\mathbf{x} - \mathbf{y}\|_1/\sigma) \\ \mathsf{RBF} & k(\mathbf{x},\mathbf{y}) = \exp(-\|\mathbf{x} - \mathbf{y}\|_2^2/\sigma^2) \end{array}$$

# Examples of Kernels

#### Kernels on histograms

Kernels built on top of divergence between probability distributions

$$\begin{split} \psi_{JD}(\theta,\theta') &= h\left(\frac{\theta+\theta'}{2}\right) - \frac{h(\theta) + h(\theta')}{2}, \\ \psi_{\chi^2}(\theta,\theta') &= \sum_i \frac{(\theta_i - \theta_i')^2}{\theta_i + \theta_i'}, \quad \psi_{TV}(\theta,\theta') = \sum_i |\theta_i - \theta_i'|, \\ \psi_{H_2}(\theta,\theta') &= \sum_i |\sqrt{\theta_i} - \sqrt{\theta_i'}|^2, \quad \psi_{H_1}(\theta,\theta') = \sum_i |\sqrt{\theta_i} - \sqrt{\theta_i'}|. \end{split}$$

$$k(\theta, \theta') = \exp(-\psi(\theta, \theta')/\sigma^2)$$
.

# The kernel jungle

## Kernels on histograms

- Pyramid match kernels (Grauman and Darrell, 2005)
- Multiresolution (nested histograms) kernels (Cuturi, 2006)
- Walk and tree-walk kernels (Ramon & Gaertner, 2004; Harchaoui & Bach, 2007; Mahe et al., 2007)

#### Kernels from statistical generative models

- Mutual Information Kernels (Seeger, 2002)
- Fisher kernels (see Shawe-Taylor & Cristianini, 2004)

#### Other kernels

- Kernels of shapes and point coulds (Bach, 2007)
- Kernels on time series (Cuturi, 2007)

Harchaoui (FR)

## Classical kernel trick

- Describes what happens to pairs of examples
- Focuses on the pointwise effect of the feature map on an example

## "Remixed" kernel trick

- Describes what happens to a random sample from a probability distribution
- Focuses on the *global* effect of the feature map on a sample

# Outline

## 1 Introduction

2 Kernel methods and feature space

#### 3 Mean element and covariance operator

- 4 Kernel PCA
- 5 Kernel CCA
- 6 Spectral Clustering

# Coordinate-free definitions of mean and covariance

## Usual definitions

- need explicit basis to define quantities
  - ightarrow tricky in high-dimensional/ $\infty$ -dimensional feature spaces

#### Coordinate-free definitions

■ define quantities through their projections along any direction → allow direct application of the *reproducing property* 

# Mean vector and mean element

#### Empirical mean element

$$(\hat{\mu}, \mathbf{w}) \stackrel{\text{def}}{=} \frac{1}{m} \sum_{\ell=1}^{m} (\mathbf{x}_{\ell}, \mathbf{w})$$

$$\forall f \in \mathcal{H}, \\ \langle \hat{\mu}, f \rangle_{\mathcal{H}} \stackrel{\text{def}}{=} \frac{1}{m} \sum_{\ell=1}^{m} \langle \phi(\mathbf{x}_{\ell}), f \rangle_{\mathcal{H}}$$

## Mean vector and mean element

#### Empirical mean element

Empirical mean element  $\hat{\mu}$  of  $\mathbf{x}_1, \ldots, \mathbf{x}_m \sim \mathbb{P}$ 

$$\begin{aligned} \forall f \in \mathcal{H}, \\ \langle \hat{\mu}, f \rangle_{\mathcal{H}} \stackrel{\text{def}}{=} \frac{1}{m} \sum_{\ell=1}^{m} \langle \phi(\mathbf{x}_{\ell}), f \rangle_{\mathcal{H}} \\ \langle \hat{\mu}, f \rangle_{\mathcal{H}} \stackrel{\text{def}}{=} \frac{1}{m} \sum_{\ell=1}^{m} \langle k(\mathbf{x}_{\ell}, \cdot), f \rangle_{\mathcal{H}} \\ \stackrel{\text{def}}{=} \frac{1}{m} \sum_{\ell=1}^{m} f(\mathbf{x}_{\ell}) \text{ (reproducing property)} \\ \stackrel{\text{def}}{=} \frac{1}{m} \sum_{\ell=1}^{m} \sum_{j=1}^{n} \alpha_{j} k(\mathbf{x}_{j}, \mathbf{x}_{\ell}) \text{, if } f(\cdot) = \sum_{j=1}^{n} \alpha_{j} k(\mathbf{x}_{j}, \cdot) \end{aligned}$$

# Centering in feature space

#### Gram matrix

 $\mathbf{K} = [k(X_i, X_j)]_{i,j=1,...,n}$  of all evaluations of the kernel  $k(\cdot, \cdot)$  on the sample  $\mathbf{x}_1, \ldots, \mathbf{x}_n$ .

#### Centering in feature space

To center all  $\phi(\mathbf{x}_1), \ldots, \phi(\mathbf{x}_n)$  simultaneously, do

$$\mathbf{K} \leftarrow \tilde{\mathbf{K}} = \Pi \mathbf{K} \Pi \; ,$$

where

$$\Pi = \mathbf{I}_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T \; .$$

## Covariance matrix and covariance operator

# $\begin{array}{l} \mbox{Empirical covariance operator} \\ \mbox{Empirical covariance matrix } \hat{\Sigma} & \mbox{of} \\ \mbox{x}_1, \dots, \mbox{x}_m \sim \mathbb{P} \\ \\ \mbox{$\forall \mathbf{w}, \mathbf{v} \in \mathcal{X},$} \\ (\mbox{$\mathbf{w}, \hat{\Sigma} \mathbf{v}$}) = \frac{1}{m} \sum_{\ell=1}^m (\mbox{$\mathbf{w}, \tilde{\mathbf{x}}_\ell$}) (\tilde{\mathbf{x}}_\ell, \mbox{$\mathbf{v}$}) \\ \\ \mbox{$\tilde{\mathbf{x}}_\ell = \mathbf{x}_\ell - \hat{\mu}$} . \end{array} \right. \\ \begin{array}{l} \mbox{Empirical covariance operator } \hat{\Sigma} & \mbox{of} \\ \mbox{Empirical covariance operator } \hat{\Sigma} & \mbox{of} \\ \mbox{x}_1, \dots, \mbox{$\mathbf{x}_m \sim \mathbb{P}$} \\ \\ \mbox{$\forall f, g \in \mathcal{H},$} \\ \\ \\ \mbox{$\langle f, \hat{\Sigma}g \rangle = \frac{1}{m} \sum_{\ell=1}^m \left\langle f, \tilde{\phi}(\mbox{$\mathbf{x}_\ell$}) \right\rangle \left\langle \tilde{\phi}(\mbox{$\mathbf{x}_\ell$}), g \right\rangle \\ \\ \mbox{$\tilde{\mathbf{x}}_\ell = \mathbf{x}_\ell - \hat{\mu}$} . \end{array} \right. } \end{array}$

## Covariance matrix and covariance operator

## Covariance operator

Empirical covariance operator  $\hat{\Sigma}$  of  $\mathbf{x}_1,\ldots,\mathbf{x}_m\sim\mathbb{P}$ 

$$\begin{aligned} \forall f, g \in \mathcal{H}, \\ \left\langle f, \hat{\Sigma}g \right\rangle &= \frac{1}{m} \sum_{\ell=1}^{m} \left\langle f, \tilde{\phi}(\mathbf{x}_{\ell}) \right\rangle \left\langle \tilde{\phi}(\mathbf{x}_{\ell}), g \right\rangle \\ &= \frac{1}{m} \sum_{\ell=1}^{m} \{ f(\mathbf{x}_{\ell}) - \langle \hat{\mu}, f \rangle_{\mathcal{H}} \} \{ f(\mathbf{x}_{\ell}) - \langle \hat{\mu}, g \rangle_{\mathcal{H}} \} \;. \end{aligned}$$

# Computing variance along a direction in feature space

Gram matrix  $\mathbf{K} = [k(X_i, X_j)]_{i,j=1,...,n}$  of all evaluations of the kernel  $k(\cdot, \cdot)$  on  $x_1, \ldots, x_n$ .

Covariance along two directions

$$\left\langle f, \hat{\Sigma}g \right\rangle = \frac{1}{m} \alpha^T \tilde{\mathbf{K}} \tilde{\mathbf{K}} \beta ,$$

where

$$f(\cdot) = \sum_{j=1}^{n} \alpha_j k(\mathbf{x}_j, \cdot) ,$$
$$g(\cdot) = \sum_{j=1}^{n} \beta_j k(\mathbf{x}_j, \cdot) .$$

## Mean element and covariance operator

Population mean element and covariance operator Population mean element  $\mu$  and population covariance operator  $\Sigma$  of  $\mathbf{x} \sim \mathbb{P}$ 

$$\langle \mu, f \rangle_{\mathcal{H}} \stackrel{\text{def}}{=} \mathbb{E}[f(\mathbf{x})], \quad \forall f \in \mathcal{H}$$
  
 $\langle f, \Sigma g \rangle_{\mathcal{H}} \stackrel{\text{def}}{=} \operatorname{Cov}[f(\mathbf{x}), g(\mathbf{x})], \quad \forall f, g \in \mathcal{H}$ 

Empirical mean element and covariance operator Empirical mean element  $\hat{\mu}$  and empirical covariance operator  $\hat{\Sigma}$  of  $\mathbf{x}_1, \dots, \mathbf{x}_m \sim \mathbb{P}$ 

$$\langle \hat{\mu}, f \rangle_{\mathcal{H}} \stackrel{\text{def}}{=} \frac{1}{m} \sum_{\ell=1}^{m} f(\mathbf{x}_{\ell}) , \quad \forall f \in \mathcal{H}$$

$$\left\langle f, \hat{\Sigma}g \right\rangle_{\mathcal{H}} \stackrel{\text{def}}{=} \frac{1}{m} \sum_{\ell=1}^{m} \{f(\mathbf{x}_{\ell}) - \langle \hat{\mu}, f \rangle_{\mathcal{H}} \} \{f(\mathbf{x}_{\ell}) - \langle \hat{\mu}, g \rangle_{\mathcal{H}} \} \quad \forall f, g \in \mathcal{H}$$

# Some casual considerations before the real stuff

## Supervised learning

- least-square regression, kernel ridge regression, multilayer-perceptron → tackled through (possibly a sequence of) linear of systems
- Operation \ in Matlab/Octave

#### Unsupervised learning

- (kernel) principal component analysis, (kernel) canonical correlation analysis, spectral clustering
  - $\rightarrow$  tackled through (possibly a sequence of) eigenvalue problems
- Function eigs in Matlab/Octave

# Outline

## 1 Introduction

- 2 Kernel methods and feature space
- 3 Mean element and covariance operator
- 4 Kernel PCA
- 5 Kernel CCA
- 6 Spectral Clustering

# Kernel Principal Component Analysis (Schölkopf et al., 1998; Shawe-Taylor & Cristianini, 2004)

## Principal Component Analysis (PCA)

A brief refresher

- Let  $\mathbf{x}_1, \dots, \mathbf{x}_n$  a dataset of points in  $\mathbf{R}^d$
- PCA is a classical method in multivariate statistics to define a set of orthogonal directions, called *principal components*, that capture the maximum variance
- Projection along the first 2-3 principal components allows to visualize the dataset

# Refresher on Principal Component Analysis

#### Computational aspects

- Maximum variance criterion corresponds to a Rayleigh quotient
- PCA boils down to an eigenvalue problem on the *centered* covariance matrix  $\hat{\Sigma}$  of the dataset, *i.e.* the principal components  $\mathbf{w}_1, \ldots, \mathbf{w}_d$  are the eigenvectors of  $\hat{\Sigma}$  (assuming n > d)
- Computational complexity : O(ndc) in time with a Singular Value Decomposition (SVD; see eigs in Matlab/Octave), with n the number of points, d the dimension, c the number of principal components retained; stochastic approximation version for nonstationary/large-scale datasets.

# Variance along a direction and Rayleigh quotients

#### Variance along a direction

PCA seeks for directions  $\mathbf{w}_1,\ldots,\mathbf{w}_c$  such that

$$\begin{split} \mathbf{w}_{j} &= \operatorname{argmax}_{\mathbf{w} \in \mathbb{R}^{d}; \mathbf{w}_{j} \perp \{\mathbf{w}_{1}, \dots, \mathbf{w}_{j-1}\}} \operatorname{Var}_{\mathsf{emp}} \frac{(\mathbf{w}, \mathbf{x})}{(\mathbf{w}, \mathbf{w})} \\ &= \operatorname{argmax}_{\mathbf{w} \in \mathbb{R}^{d}; \mathbf{w}_{j} \perp \{\mathbf{w}_{1}, \dots, \mathbf{w}_{j-1}\}} \frac{1}{m} \sum_{i=1}^{m} \frac{(\mathbf{w}, \mathbf{x}_{i})^{2}}{(\mathbf{w}, \mathbf{w})} \\ &= \operatorname{argmax}_{\mathbf{w} \in \mathbb{R}^{d}; \mathbf{w}_{j} \perp \{\mathbf{w}_{1}, \dots, \mathbf{w}_{j-1}\}} \underbrace{\frac{(\mathbf{w}, \hat{\Sigma} \mathbf{w})}{(\mathbf{w}, \mathbf{w})}}_{\mathsf{Rayleigh quotient}}. \end{split}$$

Principal components  $\mathbf{w}_1, \ldots, \mathbf{w}_c$  are the first c eigenvectors of  $\hat{\Sigma}$ .

# Variance along a direction and Rayleigh quotients

#### Variance along a direction

KPCA seeks for directions  $f_1,\ldots,f_c$  such that

$$\begin{split} f_{j} &= \operatorname{argmax}_{f \in \mathcal{H}; f_{j} \perp \{f_{1}, \dots, f_{j-1}\}} \operatorname{Var_{emp}} \frac{\langle f, \phi(\mathbf{x}) \rangle}{\langle f, f \rangle} \\ &= \operatorname{argmax}_{f \in \mathcal{H}; f_{j} \perp \{f_{1}, \dots, f_{j-1}\}} \frac{1}{m} \sum_{i=1}^{m} \frac{\langle f, \phi(\mathbf{x}_{i}) \rangle^{2}}{\langle f, f \rangle} \\ &= \operatorname{argmax}_{f \in \mathcal{H}; f_{j} \perp \{f_{1}, \dots, f_{j-1}\}} \underbrace{\frac{\langle f, \hat{\Sigma}f \rangle}{\langle f, f \rangle}}_{\operatorname{Rayleigh quotient}}. \end{split}$$

Principal components  $f_1, \ldots, f_c$  are the first c eigenvectors of  $\hat{\Sigma}$ . Is that it?

## Rescue theorems

#### Properties of covariance operators

RKHS Covariance operators are (Zwald et al., 2005, Harchaoui et al., 2008)

- self-adjoint ( $\infty$ -dimensional counterpart of symmetric)
- positive
- trace-class

## Consequence

The covariance operator  $\hat{\Sigma}$  and the centered Gram matrix  $\tilde{K}$  share the same eigenvalues on the nonzero part of their spectra, and their eigenvectors are related by a simple relation.
# Kernel Principal Component Analysis

### KPCA algorithm

- Center the Gram matrix
- Performs an SVD on  $\tilde{\mathbf{K}}$  to get the first c eigenvector/eigenvalue pairs  $(e_j, \lambda_j)_{j=1,...,c}$ .
- Normalize the eigenvector  $\tilde{e}_j \leftarrow e_j / \lambda_j$
- Projections onto the j-th eigenvectors is given by  $ilde{\mathbf{K}} ilde{e}_j$

# Computational aspects of KPCA

#### Computational aspects

- Maximum variance in feature space corresponds to a Rayleigh quotient
- $\blacksquare$  KPCA boils down to an eigenvalue problem involving the centered auto-covariance matrices  $\tilde{\mathbf{K}}$
- Computational complexity : O(cn<sup>2</sup>) in time with a Singular Value Decomposition (SVD; see eigs in Matlab/Octave), with n the number of points, c the number of principal components retained; stochastic approximation version for nonstationary/large-scale datasets.

## Low-dimensional representation with KPCA

#### Human body pose representation

- Walking sequence of length 400 (containing about 3 walking cycles) obtained from the CMU Mocap database
- Data : silhouette images of size (160 100) taken at a side view

Human body pose representation (Kim & Pavlovic, 2008)



# Low-dimensional representation with KPCA

#### Human body pose representation



# Low-dimensional representation with KPCA

#### Human body pose representation



# Super-resoluton with KPCA (Kim et al., 2005)

Super-resolution



# KPCA+n : unsupervised alignment (de la Torre & Nguyen, 2009)

#### Unsupervised alignment

KPCA + Rigid motion model

| D           | C           |
|-------------|-------------|
| 47788888999 | 1228882288  |
| 677889900   | 66778885560 |
| 277887988   | 677889900   |
| 6778882200  | 6622882288  |
| 277889700   | 0699889900  |
| 2778899800  | 6233883380  |
|             |             |

# Applications

#### Popular

- Image denoising (digits, faces, etc.)
- Visualization of bioinformatics data (strings, proteins, etc.)
- Dimension-reduction of high-dimensional features (appearance, interest points, etc.)

### Not so well-know property of KPCA

- Regularization in supervised learning can be enforced by projection → careful not to regularize twice !
- Useful in settings where ridge-regularization is impractical (Zwald et al., 2009; Harchaoui et al., 2009; Guillaumin et al., 2010)

## Outline

## 1 Introduction

- 2 Kernel methods and feature space
- 3 Mean element and covariance operator
- 4 Kernel PCA
- 5 Kernel CCA
- 6 Spectral Clustering

# Kernel Canonical Correlation Analysis (Shawe-Taylor & Cristianini, 2004)

## Canonical Correlation Analysis (CCA)

A brief refresher

- Let  $(\mathbf{x}_1, \mathbf{y}_1), \ldots, (\mathbf{x}_n, \mathbf{y}_n)$  a dataset of points in  $\mathbf{R}^d \times \mathbf{R}^p$ , for which two *views* are available : the "x-view" and the "y-view"
- CCA is a classical method from multivariate statistics to define a set of pairs of orthogonal directions, called *canonical variates*, that capture the *maximum correlation* between the two views.
- Projection along the first 2-3 pairs of canonical variates resp. of "x-view" and the "y-view" allows to visualize the components dataset maximizing the correlation between the two views.

# Refresher on Canonical Correlation Analysis

#### Computational aspects

- Maximum correlation criterion corresponds to a generalized Rayleigh quotient
- CCA boils down to a generalized eigenvalue problem involving the (centered) auto-covariance matrices  $\hat{\Sigma}_{xx}$  and  $\hat{\Sigma}_{yy}$  and on the (centered) cross-covariance matrix  $\hat{\Sigma}_{xy}$
- Computational complexity : O(n(d + p)c) in time with a Singular Value Decomposition (SVD; see eigs in Matlab/Octave), with n the number of points, d the dimension, c the number of canonical variates retained; stochastic approximation version for nonstationary/large-scale datasets.

## Cross-covariance matrix and cross-covariance operator

#### Empirical cross-covariance matrix

| Empirical cross-covariance matrix $\hat{\Sigma}_{\mathbf{x}\mathbf{y}}$<br>of $\mathbf{x}_1, \dots, \mathbf{x}_m \sim \mathbb{P}_{\mathbf{x}}$ and $\mathbf{y}_1, \dots, \mathbf{y}_m \sim \mathbb{P}_{\mathbf{y}}$ | Empirical cross-covariance operator $\hat{\Sigma}_{\mathbf{xy}}$<br>of $\mathbf{x}_1, \dots, \mathbf{x}_m \sim \mathbb{P}_{\mathbf{x}}$ and $\mathbf{y}_1, \dots, \mathbf{y}_m \sim \mathbb{P}_{\mathbf{y}}$                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $orall \mathbf{w}, \mathbf{v} \in \mathcal{X}, \mathcal{Y}$                                                                                                                                                        | $\forall f,g\in\mathcal{F},\mathcal{H}$                                                                                                                                                                                          |
| $(\mathbf{w}, \hat{\Sigma}_{\mathbf{x}\mathbf{y}}\mathbf{v}) = rac{1}{m}\sum_{\ell=1}^m (\mathbf{w}, 	ilde{\mathbf{x}}_\ell)(	ilde{\mathbf{y}}_\ell, \mathbf{v})$                                                  | $\left\langle f, \hat{\Sigma}_{\mathbf{x}\mathbf{y}}g \right\rangle = \frac{1}{m} \sum_{\ell=1}^{m} \left\langle f, \tilde{\phi}(\mathbf{x}_{\ell}) \right\rangle \left\langle \tilde{\psi}(\mathbf{y}_{\ell}), g \right\rangle$ |
| $	ilde{\mathbf{x}_\ell} = \mathbf{x}_\ell - \hat{\mu}_{\mathbf{x}}$                                                                                                                                                 | $	ilde{\phi}(\mathbf{x}_{\ell}) = \phi(\mathbf{x}_{\ell}) - \hat{\mu}_{\mathbf{x}}$                                                                                                                                              |
| $	ilde{\mathbf{y}_\ell} = \mathbf{y}_\ell - \hat{\mu}_\mathbf{y} \; .$                                                                                                                                              | $	ilde{\psi}(\mathbf{y}_\ell) = \psi(\mathbf{y}_\ell) - \hat{\mu}_\mathbf{y} \; .$                                                                                                                                               |

# Covariance along two directions and generalized Rayleigh quotients

#### Covariance along two directions

CCA seeks for directions  $(\mathbf{w}_1,\mathbf{v}_1)$  such that  $^1$ 

$$\begin{split} \mathbf{f}(\mathbf{w}_1, \mathbf{v}_1) &= \mathsf{argmax}_{(\mathbf{w}, \mathbf{v}) \in \mathbb{R}^d \times \mathbb{R}^p} \; \frac{\mathrm{Cov}((\mathbf{w}, \mathbf{x}), (\mathbf{v}, \mathbf{y}))}{\mathrm{Var}^{1/2}((\mathbf{w}, \mathbf{x})\mathrm{Var}^{1/2}((\mathbf{v}, \mathbf{y}))} \\ &= \mathsf{argmax}_{(\mathbf{w}, \mathbf{v}) \in \mathbb{R}^d \times \mathbb{R}^p} \; \frac{(\mathbf{w}, \hat{\Sigma}_{\mathbf{xy}} \mathbf{v})}{(\mathbf{w}, \hat{\Sigma}_{\mathbf{xx}} \mathbf{w})^{1/2} (\mathbf{v}, \hat{\Sigma}_{\mathbf{yy}} \mathbf{v})^{1/2}} \; . \end{split}$$

1. focus here on the first pair of canonical variates

Harchaoui (FR)

Covariance along two directions and generalized Rayleigh quotients

#### Generalized Rayleigh quotient

Canonical variates  $(\mathbf{w}_1, \mathbf{v}_1), \ldots, (\mathbf{w}_c, \mathbf{v}_c)$  are the first c pairs of vectors solutions of the generalized eigenvalue problem

$$\begin{bmatrix} \mathbf{0} & \hat{\Sigma}_{\mathbf{x}\mathbf{y}} \\ \hat{\Sigma}_{\mathbf{x}\mathbf{y}} & \mathbf{0} \end{bmatrix} \begin{pmatrix} \mathbf{w} \\ \mathbf{v} \end{pmatrix} = \rho \begin{bmatrix} \hat{\Sigma}_{\mathbf{x}\mathbf{x}} & \mathbf{0} \\ \mathbf{0} & \hat{\Sigma}_{\mathbf{y}\mathbf{y}} \end{bmatrix} \begin{pmatrix} \mathbf{w} \\ \mathbf{v} \end{pmatrix}$$

# Covariance along two directions and generalized Rayleigh quotients

#### Covariance along two directions

Kernel CCA seeks for directions  $(f_1,g_1)$  such that <sup>2</sup>

$$\begin{split} (f_1,g_1) &= \operatorname{argmax}_{(f,g)\in\mathcal{H}\times\mathcal{H}} \; \frac{\operatorname{Cov}(\langle f,\phi(\mathbf{x})\rangle,\langle g,\psi(\mathbf{y})\rangle)}{\{\operatorname{Var}\langle f,\phi(x)\rangle + \epsilon\,\langle f,f\rangle\}^{1/2}\{\operatorname{Var}\langle g,\psi(x)\rangle + \epsilon\,\langle g,g\rangle\}^{1/2}} \\ &= \operatorname{argmax}_{(f,g)\in\mathcal{H}\times\mathcal{H}} \; \frac{\left\langle f,\hat{\Sigma}_{\mathbf{xy}}g\right\rangle}{\left\langle f,(\hat{\Sigma}_{\mathbf{xx}} + \frac{n\epsilon}{2})g\right\rangle^{1/2}\left\langle f,(\hat{\Sigma}_{\mathbf{yy}} + \frac{n\epsilon}{2})g\right\rangle^{1/2}} \; . \end{split}$$

2. focus here on the first pair of canonical variates

Harchaoui (FR)

Grenoble 51/66

## Correlation along two directions

#### Generalized eigenvalue problem

Coefficients of canonical variates  $(\alpha_1, \beta_1), \ldots, (\alpha_c, \beta_c)$  are the first c pairs of vectors solutions of the generalized eigenvalue problem

$$\begin{bmatrix} \mathbf{0} & \tilde{\mathbf{K}_x}\tilde{\mathbf{K}_y} \\ \tilde{\mathbf{K}_x}\tilde{\mathbf{K}_y} & \mathbf{0} \end{bmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \rho \begin{bmatrix} \tilde{\mathbf{K}_x}\tilde{\mathbf{K}_x} & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{K}_y}\tilde{\mathbf{K}_y} \end{bmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

# Computational aspects of KCCA

#### Computational aspects

- Maximum correlation in feature space corresponds to a Rayleigh quotient
- KCCA boils down to a generalized eigenvalue problem involving the squared centered Gram matrices matrices  $\tilde{\mathbf{K}_x}^2 \tilde{\mathbf{K}_y}^2$  and the product of the Gram matrices  $\tilde{\mathbf{K}_x}\tilde{\mathbf{K}_y}$ .
- Computational complexity : O(cn<sup>2</sup>) in time with a Singular Value Decomposition (SVD; see eigs in Matlab/Octave), with n the number of points, c the number of principal components retained; stochastic approximation version for nonstationary/large-scale datasets.

# Multimedia content based image retrieval with KCCA

#### Multimedia

- $\blacksquare Multimedia \text{ content} \rightarrow multi-view \text{ data}$
- $\blacksquare$  images with text captions : text  $\rightarrow$  "x"-view, image  $\rightarrow$  "y"-view

## Multimedia content based image retrieval (Hardoon et al, 2004)



| Image | Label     | Keywords                                      |
|-------|-----------|-----------------------------------------------|
| $I_1$ | Sports    | position college weight born lbs height guard |
| $I_2$ | Aviation  | na air convair wing                           |
| $I_3$ | Paintball | check darkside force gog strike odt           |

## Outline

## 1 Introduction

- 2 Kernel methods and feature space
- 3 Mean element and covariance operator
- 4 Kernel PCA

## 5 Kernel CCA

6 Spectral Clustering

# Spectral clustering (von Luxburg, 2007)

#### Overview

- Let  $\mathbf{x}_1, \ldots, \mathbf{x}_n$  a dataset of points in  $\mathbf{R}^d$ , along with pairwise similarities  $s(\mathbf{x}_i, \mathbf{x}_j), 1 \leq i, j \leq n$ .
- Build similarity graph, with data points as vertices and similarities as edge lengths
- Spectral clustering finds the best cut through the graph



## Laplacian matrix and spectral clustering

#### Laplacian matrix

Spectral clustering relies on the spectrum of the Laplacian matrix  ${f L}$ 



where

$$\begin{split} \mathbf{D} &= \mathsf{Diag}(\mathsf{deg}(\mathbf{x}_1), \dots, \mathsf{deg}(\mathbf{x}_n)) \\ \mathsf{deg}(\mathbf{x}_i) &= \sum_{j=1}^n s(\mathbf{x}_i, \mathbf{x}_j) \;. \end{split}$$

# Laplacian matrix and the Laplace-Beltrami operator

#### Laplacian matrix

The Laplacian matrix measures the discrete variation of f along the graph

$$\forall f \in \mathbb{R}^d , f^T \mathbf{L} f = \frac{1}{2} \sum_{j=1}^n s(\mathbf{x}_i, \mathbf{x}_j) (f_i - f_j)^2 ,$$
  
$$f^T \mathbf{L} f \approx \frac{1}{2} \sum_{j=1}^n \frac{(f_i - f_j)^2}{d(\mathbf{x}_i, \mathbf{x}_j)^2} , \quad \text{if } s(\mathbf{x}_i, \mathbf{x}_j) \approx \frac{1}{d(\mathbf{x}_i, \mathbf{x}_j)^2} .$$

#### Laplacian operator

The Laplacian matrix is the discrete counterpart of the Laplace<sup>3</sup> operator

$$\forall f \in \mathbb{R}^d , \langle f, \Delta f \rangle = \int |\nabla f|^2 dx .$$

3. Laplace-Beltrami generalizes the Laplace operator to manifold data. Harchaoui (FR) VRML Grenoble 58 / 66

## Rescue theorems

#### Properties of Laplacian operators

Laplacian matrices are (von Luxburg et al., 2005, Gine and Koltchinskii, 2008)

- symmetric
- positive definite
- $lacksymbol{i}$  smallest eigenvalue is 0, and associated eigenvector  $oldsymbol{1}$

#### Interpretation

- Multiplicity of eigenvalue 0 is the number of connected components of the graph A<sub>1</sub>,..., A<sub>k</sub>
- Eigenspace spanned by the characteristic functions 1<sub>A1</sub>,..., 1<sub>Ak</sub> on those components (so all eigenvectors are piecewise constants)

# Normalization

#### Normalized graph Laplacians

Graph Laplacian matrices can be normalized in two ways<sup>4</sup>

$${f L}_{rw}=D^{-1}L$$
 random walk normalization ,  
 ${f L}_{sym}=D^{-1/2}LD^{-1/2}$  symmetrized normalization .

#### Interpretation

- $\mathbf{L}_{rw}$  and  $\mathbf{L}_{sym}$  share similar spectral properties with  $\Lambda$
- Normalized graph Laplacians are better understood theoretically and are consistent under general assumptions in large-sample settings
- Un-normalized ones are still used (!) despite their lack of consistency in some cases in large-sample settings.

<sup>4.</sup> Caution : eigenspace of  $\mathbf{L}_{rw}$  spanned by the  $\mathbf{1}_{A_1}, \ldots, \mathbf{1}_{A_k}$ ; eigenspace of  $\mathbf{L}_{sym}$  spanned by the  $D^{1/2} \mathbf{1}_{A_1}, \ldots, D^{1/2} \mathbf{1}_{A_k}$ .

# Spectral clustering

#### Spectral clustering algorithm

- Build similarity graph
- Performs an SVD on L<sub>rw</sub> or L<sub>sym</sub> to get the first k eigenvector/eigenvalue pairs  $(v_j, \lambda_j)_{j=1,...,c}$ .
- Build the matrix  $V = [v_1, \ldots, v_k]$  stacking the k eigenvectors as columns
- $\blacksquare$  Launch your favourite clustering algorithm on the n rows of V

# Example

#### 2D example with 3 clusters



## Example

#### Projections onto eigenvectors



## Example

Clustering obtained with k-means as the favourite clustering algorithm



# Spectral clustering for image segmentation

Image segmentation algorithm



# GrabCut and foreground extraction

#### Interactive foreground extraction algorithm







Kernel-based Methods for Unsupervised Learning

LEAR project-team, INRIA

Zaid Harchaoui

Grenoble, July 30th 2010

## 1 Discriminative clustering

**2** Temporal Segmentation



## 1 Discriminative clustering

2 Temporal Segmentation



- Discriminative clustering = find labels that maximize linear separability
- Multiclass square loss for classification = cost function in closed form
- Optimization of the labels by convex relaxation
- Efficient optimization algorithm by partial dualization
- Application in semi-supervised learning

## Classification with square loss

- n points  $\mathbf{x}_1, \ldots, \mathbf{x}_n$  in  $\mathbb{R}^d$ , represented in a matrix  $X \in \mathbb{R}^{n \times d}$ .
- $\blacksquare$  Labels = partitions of  $\{1,\ldots,n\}$  into k>1 clusters, represented by indicator matrices

$$y \in \{0,1\}^{n imes k}$$
 such that  $y 1_k = 1_n$ 

• Regularized linear regression problem of y given X :

$$J(y, X, \kappa) = \min_{\mathbf{w} \in \mathbb{R}^{d \times k}, \ b \in \mathbb{R}^{1 \times k}} \frac{1}{n} \|y - X\mathbf{w} - \mathbf{1}_n b\|_F^2 + \kappa \text{ Tr } \mathbf{w}^\top \mathbf{w}$$

Multi-label classification problems with square loss functions Solution in closed form (with  $\Pi_n = I_n - \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^{\top}$ ):

$$\mathbf{w}^* = (X^\top \Pi_n X + n\kappa I_n)^{-1} X^\top \Pi_n y \quad \text{and} \quad b^* = \frac{1}{n} \mathbf{1}_n^\top (y - X \mathbf{w}^*)$$

# Discriminative clustering cost

- Discriminative clustering consists in finding labels such that they lead to best linear separation by a discriminative classifier (Xu et al., 2004, 2005)
- Use square loss for multi-class classification
- Main advantages
  - minimizing the regularized cost in closed form
  - including a bias term by simply centering the data

• Optimal value equal to  $J(y, X, \kappa) = \operatorname{Tr} yy^{\top} A(X, \kappa)$ , where

$$A(X,\kappa) = \frac{1}{n} \Pi_n (I_n - X(X^\top \Pi_n X + n\kappa I)^{-1} X^\top) \Pi_n$$
# Diffrac

- Optimization problem : minimize  $\text{Tr}yy^{\top}A(X,\kappa)$  with respect to y (indicator matrices)
- The cost function only involves the matrix  $M = yy^{\top} \in \mathbb{R}^{n \times n}$ = k-class equivalence matrix  $\in \{0, 1\}^{n \times n}$
- Convex outer approximation for M
  - M is positive semidefinite (denoted as  $M \geq 0$ )
  - the diagonal of M is equal to  $1_n$  (denoted as  $\operatorname{diag}(M) = 1_n$ )
  - if M corresponds to at most k clusters, we have  $M \succcurlyeq \frac{1}{k} 1_n 1_n^{\top}$

Convex set :

$$\mathcal{C}_k = \{ M \in \mathbb{R}^{n \times n}, \ M = M^\top, \ \text{diag}(M) = 1_n, \ M \ge 0, \ M \succcurlyeq \frac{1}{k} 1_n 1_n^\top \}$$

## Minimum cluster sizes

- Avoid trivial solution by imposing a minimum size  $\lambda_0$  for each cluster, through :
  - **Row sums** :  $M1_n \ge \lambda_0 1_n$  and  $M1_n \le (n (k 1)\lambda_0)1_n$  (same constraint as Xu et al., 2005).
  - **Eigenvalues** : The sizes of the clusters are exactly the k largest eigenvalues of  $M \Rightarrow$  constraint equivalent to  $\sum_{i=1}^{n} 1_{\lambda_i(M) \ge \lambda_0} \ge k$ , where  $\lambda_1(M), \ldots, \lambda_n(M)$  are the n eigenvalues of M.
    - Non convex constraint
    - Relaxed as  $\sum_{i=1}^n \phi_{\lambda_0}(\lambda_i(M)) \geqslant k$ , where  $\phi_{\lambda_0}(\kappa) = \min\{\kappa/\lambda_0, 1\}$
- Final convex relaxation : minimize  $\operatorname{Tr} A(X,\kappa)M$  such that  $M = M^{\top}$ ,  $\operatorname{diag}(M) = 1_n$ ,  $M \ge 0$ ,  $M \ge \frac{1}{k} 1_n 1_n^{\top}$ ,  $\sum_{i=1}^n \phi_{\lambda_0}(\lambda_i(M)) \ge k$

# Comparison with K-means

 DIFFRAC (κ = 0) : minimize Tr Π<sub>n</sub>(I<sub>n</sub> - X(X<sup>T</sup>Π<sub>n</sub>X)<sup>-1</sup>X<sup>T</sup>)Π<sub>n</sub>yy<sup>T</sup>

 K-Means : minimize (Zha et al., 2002, Bach & Jordan, 2004) min<sub>μ∈ℝ<sup>k×d</sup></sub> ||X - yμ||<sup>2</sup><sub>F</sub> = Tr(I<sub>n</sub> - y(y<sup>T</sup>y)<sup>-1</sup>y<sup>T</sup>)(Π<sub>n</sub>X)(Π<sub>n</sub>X)<sup>T</sup>

## Kernels

• The matrix  $A(X,\kappa)$  can be expressed only in terms of the Gram matrix  $K = XX^{\top}$ .

$$A(K,\kappa) = \kappa \Pi_n (\widetilde{K} + n\kappa I_n)^{-1} \Pi_n$$

where  $\widetilde{K} = \prod_n K \prod_n$  is the "centered Gram matrix" of the points X.

Additional relaxation to kernel PCA :

**1** relaxing the constraints  $M \succcurlyeq \frac{1}{k} \mathbf{1}_n \mathbf{1}_n^\top$  into  $M \succcurlyeq 0$ 

2 relaxing 
$$\operatorname{diag}(M) = 1_n$$
 into  $\operatorname{Tr} M = n$ 

3 removing the constraint  $M \ge 0$  and the constraints on the row sums.

• Important constraint :  $\operatorname{diag}(M) = 1_n$ 

# Optimization by partial dualization - I

Optimization problem :

 $\begin{array}{ll} \min \operatorname{Tr} AM & \text{ such that } & M = M^{\top}, \ M \succcurlyeq 0, \ \operatorname{Tr} M = n \\ & \Phi_{\lambda_0}(M) = \sum_{i=1}^n \phi_{\lambda_0}(\lambda_i(M)) \geqslant k \\ & \operatorname{diag}(M) = 1_n \\ & M 1_n \leqslant (n - (k-1)\lambda_0)1_n, \ M 1_n \geqslant \lambda_0 1_n \\ & M \geqslant 0 \\ & M \succcurlyeq \frac{1n1_n^{\top}}{k} \end{array} \right| \beta$ 

Partial dualization of constraints
 Kept constraints lead to simple spectral problem

# Optimization by partial dualization - II

• Lagrangian equal to  ${\rm Tr} B(\beta) M - b(\beta)$  with

$$B(\beta) = A + \text{Diag}(\beta_1) - \frac{1}{2}(\beta_2 - \beta_3)\mathbf{1}^{\top} - \frac{1}{2}\mathbf{1}(\beta_2 - \beta_3)^{\top} - \beta_4 + \frac{1}{2}\frac{\beta_5\beta_5^{\top}}{\beta_6}$$

$$b(\beta) = \beta_1^{\top} 1 - (n - (k - 1)\lambda_0)\beta_2^{\top} 1 + \lambda_0 \beta_3^{\top} 1 + k\beta_6/2 + \beta_5^{\top} 1$$

- Primal variable M, dual variables  $eta_1$ ,  $eta_2$ ,  $eta_3$ ,  $eta_4$ ,  $(eta_5,eta_6)$
- **Dual problem** :  $\max_{\beta} \left\{ \min_{M \succcurlyeq 0, \operatorname{Tr} M = n, \Phi_{\lambda_0}(M) \ge k} \operatorname{Tr} B(\beta) M b(\beta) \right\}$
- Minimization with respect to M leads to convex non differentiable spectral function in β
- Maximization with respect to β by projected subgradient or projected gradient (after smoothing)

# Computational complexity - Rounding

- $\blacksquare$  Constant times the matrix-vector operation with the matrix A
- Linear complexity in the number n of data points.
- For linear kernels with dimension  $d: O(d^2n)$
- For general kernels :  ${\cal O}(n^3)$  or  ${\cal O}(m^2n)$  using an incomplete Cholesky decomposition of rank m
- Rounding
  - After the convex optimization, we obtain a low-rank matrix  $M \in C_k$  which is pointwise nonnegative with unit diagonal
  - Spectral clustering algorithm on the matrix M (Ng & al., 2001)
  - NB : Diffrac works better than just doing spectral clustering on A or K!

# Semi-supervised learning

- Equivalence matrices M allow simple inclusion of prior knowledge (Xu et al., 2004, De Bie and Cristianini, 2006)
- "must-link" constraints (positive constraints) :  $M_{ij} = 1$ 
  - $\blacksquare$  With a square loss  $\Rightarrow$  equivalent to grouping into chuncks
- "must-not-link" constraints (negative constraints) :  $M_{ij} = 0$



# Simulations

## Clustering classification datasets

- $\blacksquare$  Performance measured by clustering error between 0 and 100(k-1)
- Comparison with K-means and RCA (Bar-Hillel et al., 2003)
- Different amount of labelled data (0 to 40 %)

| Dataset              | K-means        | Diffrac        | RCA           |
|----------------------|----------------|----------------|---------------|
| Mnist-linear $0\%$   | $5.6 \pm 0.1$  | $6.0 \pm 0.4$  |               |
| Mnist-linear $20\%$  | $4.5\pm0.3$    | $3.6\pm0.3$    | $3.0 \pm 0.2$ |
| Mnist-linear $40\%$  | $2.9\pm0.3$    | $2.2\pm0.2$    | $1.8 \pm 0.4$ |
| Mnist-RBF 0%         | $5.6 \pm 0.2$  | $4.9 \pm 0.2$  |               |
| Mnist-RBF $20\%$     | $4.6 \pm 0.0$  | $1.8 \pm 0.4$  | $4.1\pm0.2$   |
| Mnist-RBF $40\%$     | $4.9\pm0.0$    | $0.9 \pm 0.1$  | $2.9\pm0.1$   |
| lsolet-linear $0\%$  | $12.1 \pm 0.6$ | $12.3\pm0.3$   |               |
| lsolet-linear $20\%$ | $10.5\pm0.2$   | $7.8 \pm 0.8$  | $9.5\pm0.4$   |
| lsolet-linear $40\%$ | $9.2\pm0.5$    | $3.7 \pm 0.2$  | $7.0\pm0.4$   |
| Isolet-RBF $0\%$     | $11.4\pm0.4$   | $11.0 \pm 0.3$ |               |
| lsolet-RBF $20\%$    | $10.6\pm0.0$   | $7.5 \pm 0.5$  | $7.8\pm0.5$   |
| lsolet-RBF $40\%$    | $10.0 \pm 0.0$ | $3.7 \pm 1.0$  | $6.9\pm0.6$   |

# Simulations

- Semi-supervised classification
  - Diffrac "works" with any amount of supervision
  - Comparison with LDS (Chapelle & Zien, 2004)



# Extension to images co-segmentation (Joulin et al., 2010)

## Natural images





# Extension to images co-segmentation (Joulin et al., 2010)

Cycles and horses







## 1 Discriminative clustering

**2** Temporal Segmentation

# Temporal segmentation (clustering with temporal consistency)

#### Change-in-mean model

Time series of independent r.v.  $\{Y_t\}_{t=1,\dots,n}$  such that

$$Y_t \stackrel{\mathcal{D}}{\sim} \mathcal{N}(\mu_k^{\star}, \sigma^2) , \quad t_{k-1}^{\star} + 1 \le t \le t_k^{\star}, \quad k = 1, \dots, K^{\star} + 1 ,$$
 (1)



# Temporal segmentation

## Change-in-mean-element model

Time series of independent r.v.  $\{Y_t\}_{t=1,...,n}$  such that

$$\mathbb{E}[k(Y_t, \cdot)] = \mu_k^{\star}, \quad t_{k-1}^{\star} + 1 \le t \le t_k^{\star}, \quad k = 1, \dots, K^{\star} + 1.$$



# Temporal segmentation with kernels

Classical least-squares formulation

Minimize  $t_1, ..., t_K \star$  $\overline{k=1}$   $t=t_{k-1}+1$  Kernel-based version in  $\mathcal{H}$ 

Minimize  $t_1, ..., t_K \star$  $\sum_{k=1}^{K^{\star}+1} \sum_{k=1}^{t_{k}} (Y_{t} - \overline{Y}(t_{k-1}, t_{k}))^{2} \sum_{k=1}^{K^{\star}+1} \sum_{k=1}^{t_{k}} \left\| k(Y_{t}, \cdot) - \hat{\mu}_{[t_{k-1}:t_{k}]} \right\|_{\mathcal{H}}^{2}$  $\bar{k=1}$   $t=\bar{t_{k-1}+1}$ 

# Massaging the objective function

#### Intra-segment scatter

$$\underset{t_1,\ldots,t_{K^\star}}{\mathsf{Minimize}} \sum_{k=1}^{K-1} \hat{V}(Y_{t_k+1},\ldots,Y_{t_{k+1}})$$

with 
$$\hat{V}(Y_{t+1}, \dots, Y_{t+s}) = \left\| k(Y_t, \cdot) - \hat{\mu}_{[t+1:t+s]} \right\|_{\mathcal{H}}^2$$

# Forward-backwrad recursions

## Forward recursions

$$\begin{split} I_k(t) &= \min_{t_1, \dots, t_{k-1}; t_k = t} \sum_{k=1}^{K-1} \hat{V}(Y_{t_k+1}, \dots, Y_{t_{k+1}}) \\ &= \min_{t_{k-1}; t_k = t} \min_{t_1, \dots, t_{k-2}} \sum_{k=1}^{K-1} \hat{V}(Y_{t_k+1}, \dots, Y_{t_{k+1}}) \\ &= \min_{t_{k-1}} (I_{k-1}(t_{k-1}) + \hat{V}(Y_{t_{k-1}}, \dots, Y_t)) \;. \end{split}$$

#### Dynamic programming

Dynamic programming algorithm working on submatrices of the Gram matrix, leading to a time-complexity of  $O(Kn^2)$ .

Kernel-based Methods for Unsupervised Learning

LEAR project-team, INRIA

Zaid Harchaoui

Grenoble, July 30th 2010

# Outline

## 1 Introduction

2 Homogeneity testing

3 Change-point Analysis

# Outline

## 1 Introduction

2 Homogeneity testing

3 Change-point Analysis

# Kernel methods

Machine Learning methods taking  $\mathbf{K} = [k(X_i, X_j)]_{i,j=1,...,n}$  (Gram matrix as input for processing a sample  $\{X_1, \ldots, X_n\}$ , where k(x, y) is a similarity measure between x and y defining a positive definite kernel.

## Strengths of Kernel Methods

- Minimal assumptions on data types (vectors, strings, trees, graphs, etc.)
- Interpretation of k(x, y) as a dot product k(x, y) = ⟨φ(x), φ(y)⟩<sub>H</sub> in a reproducing kernel Hilbert space H where the observations are mapped via [φ : X → H] (feature map)

## Mean element and covariance operator

Population mean element and covariance operator Population mean element  $\mu$  and population covariance operator  $\Sigma$  of  $X\sim\mathbb{P}$ 

$$\langle \mu, f \rangle_{\mathcal{H}} \stackrel{\text{def}}{=} \mathbb{E}[f(X)], \quad \forall f \in \mathcal{H}$$
  
 $\langle f, \Sigma g \rangle_{\mathcal{H}} \stackrel{\text{def}}{=} \operatorname{Cov}[f(X), g(X)], \quad \forall f, g \in \mathcal{H}$ 

Empirical mean element and covariance operator Empirical mean element  $\hat{\mu}$  and empirical covariance operator  $\hat{\Sigma}$  of  $X_1, \ldots, X_m \sim \mathbb{P}$ 

# Test for homogeneity

## Homogeneity of two samples

- Two samples  $X_1^{(1)},\ldots,X_{n_1}^{(1)}\sim\mathbb{P}^{(1)}$  and  $X_1^{(2)},\ldots,X_{n_2}^{(2)}\sim\mathbb{P}^{(2)}$  independent
- Problem : decide between

$$\begin{aligned} \mathbf{H}_0 &: \quad \mathbb{P}^{(1)} = \mathbb{P}^{(2)} \\ \mathbf{H}_A &: \quad \mathbb{P}^{(1)} \neq \mathbb{P}^{(2)} \end{aligned}$$

## Test statistic

Empirical mean elemnts  $\hat{\mu}_1$  and  $\hat{\mu}_2$ , and empirical covariance operators  $\hat{\Sigma}_1$ and  $\hat{\Sigma}_2$  resp.  $\{X_1^{(1)}, \ldots, X_{n_1}^{(1)}\}$  et  $\{X_1^{(2)}, \ldots, X_{n_2}^{(2)}\}$ 

 $\{X_1^{(1)},\ldots,X_{n_1}^{(1)}\} \hookrightarrow (\hat{\mu}_1,\hat{\Sigma}_1) \quad \text{and} \quad \{X_1^{(2)},\ldots,X_{n_2}^{(2)}\} \hookrightarrow (\hat{\mu}_2,\hat{\Sigma}_2) \; .$ 

Regularized Fisher ratio

$$\mathsf{KFDR}_{n_1,n_2;\gamma}(X_1^{(1)},\dots,X_{n_1}^{(1)};X_1^{(2)},\dots,X_{n_2}^{(2)}) \\ \stackrel{\text{def}}{=} \frac{n_1 n_2}{n_1 + n_2} \left\| \underbrace{\left( \underbrace{\frac{n_1}{n} \hat{\Sigma}_1 + \frac{n_2}{n} \hat{\Sigma}_2}_{\hat{\Sigma}_W} + \gamma \mathbf{I} \right)^{-1/2} (\hat{\mu}_2 - \hat{\mu}_1) \right\|_{\mathcal{H}}^2.$$

Hotelling's  $T^2$  : homogeneity of two normal probability distributions with different means and unknown covariance matrices

$$\frac{n_1 n_2}{n_1 + n_2} \left\| \left( \frac{n_1}{n} \hat{\Sigma}_1 + \frac{n_2}{n} \hat{\Sigma}_2 \right)^{-1/2} (\hat{\mu}_2 - \hat{\mu}_1) \right\|_{\Re^d}^2$$

~

# Large-sample distribution under $H_0$ : regime $\gamma_n \equiv \gamma$

#### Proposition

Assume the kernel is bounded and that for a = 1, 2 the eigenvalues  $\{\lambda_p(\Sigma_a)\}_{p\geq 1}$  satisfy  $\sum_{p=1}^{\infty} \lambda_p^{1/2}(\Sigma_a) < \infty$ . Assume also that  $\mathbb{P}_1$  and  $\mathbb{P}_2$  are equal *i.e.*  $\mathbb{P}_1 = \mathbb{P}_2 = \mathbb{P}$ , and that  $\gamma_n \equiv \gamma > 0$ . Then,

$$\frac{\operatorname{KFDR}_{n_1,n_2;\gamma} - d_{1,n_1,n_2;\gamma}(\hat{\Sigma}^W_{n_1,n_2})}{\sqrt{2} \ d_{2,n_1,n_2;\gamma}(\hat{\Sigma}^W_{n_1,n_2})} \xrightarrow{\mathcal{D}} \frac{1}{\sqrt{2} \ d_{2,n_1,n_2;\gamma}(\Sigma_W)} \sum_{p=1}^{\infty} \frac{\lambda_p(\Sigma_W)}{\lambda_p(\Sigma_W) + \gamma} (\underbrace{Z_p^2}_{\chi_1^2} - 1) ,$$

#### Remarks

$$\begin{split} d_{1,n_1,n_2;\gamma}(\hat{\Sigma}_W) &\stackrel{\text{def}}{=} \operatorname{Tr}((\hat{\Sigma}_W + \gamma I)^{-1} \hat{\Sigma}_W) & \text{recentering} \\ d_{2,n_1,n_2;\gamma}(\hat{\Sigma}_W) &\stackrel{\text{def}}{=} [\operatorname{Tr}((\hat{\Sigma}_W + \gamma I)^{-2} \hat{\Sigma}_W^2)]^{1/2} & \text{renormalization} \end{split}$$

# Large-sample distribution under $H_0$ : regime $\gamma_n \rightarrow 0$

## Proposition

Assume the kernel is bounded and that for a = 1, 2 the eigenvalues  $\{\lambda_p(\Sigma_a)\}_{p\geq 1}$  satisfy  $\sum_{p=1}^{\infty} \lambda_p^{1/2}(\Sigma_a) < \infty$ . Assume in addition that  $\mathbb{P}_1 = \mathbb{P}_2 = \mathbb{P}$ , and that  $\{\gamma_n\}$  is such that

$$\gamma_n + \frac{d_{1,n_1,n_2;\gamma}(\Sigma_W)}{d_{2,n_1,n_2;\gamma}(\Sigma_W)} \gamma_n^{-1} n^{-1/2} \to 0 \; .$$

Then,

$$\frac{\mathsf{KFDR}_{n_1,n_2;\gamma_n} - d_{1,n_1,n_2;\gamma_n}(\hat{\Sigma}^W_{n_1,n_2})}{\sqrt{2} \ d_{2,n_1,n_2;\gamma_n}(\hat{\Sigma}^W_{n_1,n_2})} \xrightarrow{\mathcal{D}} \mathcal{N}(0,1) \ .$$

Remarks

• Typical situation  $\gamma_n \to 0$  slower than  $1/\sqrt{n}$ • Case  $\lambda_p = p^{-2m} : d_{1,n_1,n_2;\gamma_n} \sim \gamma_n^{-1/2m}$  et  $d_{2,n_1,n_2;\gamma_n} \sim \gamma_n^{-1/4m}$ 

# Distribution under $H_0$

• Total sample size  $n_1 + n_2 = 500$ , Gaussian RBF kernel with  $\sigma = 1$ ,  $\mathbb{P}^{(1)} = \mathbb{P}^{(2)}$  normal probability distributions



## Consistency in power

## Proposition

Assume the kernel is bounded and that for a = 1, 2 the eigenvalues  $\{\lambda_p(\Sigma_a)\}_{p\geq 1}$  satisfy  $\sum_{p=1}^{\infty} \lambda_p^{1/2}(\Sigma_a) < \infty$ , and that the RKHS  $\mathcal{H}$  is dense in  $L^2(\mathbb{P})$  for all  $\mathbb{P}$ . Let  $\mathbb{P}_1$  and  $\mathbb{P}_2$  two probability distributions such that  $\mathbb{P}_2 \neq \mathbb{P}_1$ . In both regimes ( $\gamma_n \equiv \gamma$  and  $\gamma_n \to 0$ ), for all  $0 < \alpha < 1$ 

$$\mathbb{P}_{\mathbf{H}_{A}}\left(\frac{\mathsf{KFDR}_{n_{1},n_{2};\gamma_{n}}-d_{1,n_{1},n_{2};\gamma}(\hat{\Sigma}_{n_{1},n_{2}}^{W})}{\sqrt{2}\,d_{2,n_{1},n_{2};\gamma}(\hat{\Sigma}_{n_{1},n_{2}}^{W})} > c_{1-\alpha}\right) \to 1\,.$$
(1)

#### Remarks

Universal density of the RKHS satisfied for translation-invariant kernels k(x, y) = k(x - y) such as the Gaussian RBF kernel (Steinwart, 2006; Sriperumbudur et al., 2008).

# Consistency against local alternatives

## Framework of local alternatives

| $\mathbf{H}_0$ : | $\mathbb{P}_1 = \mathbb{P}_2^n$    |
|------------------|------------------------------------|
| $H_A$ :          | $\mathbb{P}_1 \neq \mathbb{P}_2^n$ |

where  $\mathbb{P}_1$  and  $\mathbb{P}_2^n$  get closer as  $n\to\infty,$  meaning that the  $\chi^2\text{-divergence}$ 

$$D_{\chi^2}(\mathbb{P}_1,\mathbb{P}_2^n) \leq \eta_n \;, \quad ext{as} \; n o \infty \;.$$

# Illustration : uniforme vs. uniform+high-frequency contamination with spline kernels



Figure: Comparison of change in power of KFDA versus MMD as  $\gamma = 1, 10^{-1}, \ldots, 10^{-9}$ , for local alternatives spanned by the *q*-ieme component (from left to right) with q = 1, 5, 9.

# Computational aspects

## Computation

$$\left\| (\hat{\Sigma}_W + \gamma_n \mathbf{I})^{-1/2} (\hat{\mu}_2 - \hat{\mu}_1) \right\|_{\mathcal{H}}^2$$
  
=  $\gamma^{-1} \left\{ \mathbf{m}_n^T \mathbf{K}_n \mathbf{m}_n - n^{-1} \mathbf{m}_n^T \mathbf{K}_n \mathbf{N}_n (\gamma \mathbf{I} + n^{-1} \mathbf{N}_n \mathbf{K}_n \mathbf{N}_n)^{-1} \mathbf{N}_n \mathbf{K}_n \mathbf{m}_n \right\}$ 

 $\mathbf{K}_n = [k(x_i, x_j)]_{i,j=1,...,n}$  is the Gram matrix,  $\mathbf{N}_n$  is that intra-class re-centering matrix (each block re-centers each sample), and  $\mathbf{m}_n = (\mathbf{m}_{n,i})_{1 \leq i \leq n}$  stand for the "vector of mean difference" with  $\mathbf{m}_{n,i} = -n_1^{-1}$  pour  $i = 1, \ldots, n_1$  et  $\mathbf{m}_{n,i} = n_2^{-1}$  for  $i = n_1 + 1, \ldots, n_1 + n_2$ 

#### Computational complexity

$$O((n_1+n_2)^2)$$
 is space and  $O((n_1+n_2)^3)$  in time.

# Application : speaker verification

- 8 speakers from the NIST evaluation 2004
- descriptors : MFCC



Figure: Comparison ROC curves for speaker verification

|      |        | (ED)           |
|------|--------|----------------|
| Harc | haouii | $\mathbf{FRI}$ |
|      |        | $\cdots$       |

# Application : audio segmentation

## "Grand echiquier" TV-shows archives

- Semantic segmentation (coarse segmentation) : applause/film/music/interview
- Speaker segmentation (fine segmentation) : Coluche/J. Chancel/F.-R. Duchable/etc.

|           | Nb. of sections | Mean duration (sec.) |
|-----------|-----------------|----------------------|
| applause  | 84              | 14                   |
| film      | 29              | 155                  |
| music     | 38              | 194                  |
| speech    | 188             | 70                   |
| spk turns | 962             | 6                    |

Table: Data description

| Harc  | haou | 1 ( | FR1 |
|-------|------|-----|-----|
| Thure | nuou |     | ,   |

# Experiments in audio segmentation

## Experiences

- sliding-window along the signal
- super-descriptors cbuilt from cepstral coefficients
- comparison with unsupervised approaches MMD (Gretton et al., 2004), KCD (Desobry et al., 2005), and supervised HMM (Rabiner et al., 2007)

|      | Semantic seg. |        | Spk seg.  |        |
|------|---------------|--------|-----------|--------|
|      | Precision     | Recall | Precision | Recall |
| KFDR | 0.72          | 0.63   | 0.89      | 0.90   |
| MMD  | 0.71          | 0.58   | 0.76      | 0.73   |
| KCD  | 0.65          | 0.63   | 0.78      | 0.74   |
| НММ  | 0.73          | 0.65   | 0.93      | 0.96   |

Table: Precision and recall

| Harchaoui (FR) | VRML | Grenoble 17 / 28 |
|----------------|------|------------------|

# Outline

## 1 Introduction

2 Homogeneity testing

3 Change-point Analysis
# Change-point Analysis

Assumption

Time series  $X_1,\ldots,X_n$  of independent observations

Change-point Problem

## Change-point Analysis = Change-point Detection + Estimation

|   |       |    |   |   |   |     |    | -  | - |  |
|---|-------|----|---|---|---|-----|----|----|---|--|
| a | r C l | h. | a | n | ш | 1 1 |    | н. | ь |  |
|   |       |    |   |   |   |     | ι. |    |   |  |

# Running Maximum Strategy

## Running Maximum Strategy for change-point detection

run along the series of observations  $X_1, \ldots, X_n$ , scanning all change-point candidates  $k \in ]1, n[$ , in order to catch the true change-point instant  $k^*$ , for which the segment *before change* and the segment *after change* have minimum homogeneity



## Building block for the test statistic : finite-dimensional case

- Time series  $X_1,\ldots,X_n\in \mathbf{R}^d$  of independent observations
- For any interval  $[i, j] \subset \{2, ..., n-1\}$ , define resp. the mean vector  $\hat{\mu}_{i:j}$  and the covariance matrix  $\hat{\Sigma}_{i:j}$ .
- For any instant  $k \in \{2, \ldots, n-1\}$ ,

$$T_{n,k}(X_1,...,X_n) \stackrel{\text{def}}{=} \frac{k(n-k)}{n} \left\| \left( \underbrace{\frac{k}{n} \hat{\Sigma}_{1:k} + \frac{n-k}{n} \hat{\Sigma}_{k+1:n}}_{\hat{\Sigma}_{n,k}^W} \right)^{-1/2} (\hat{\mu}_{k+1:n} - \hat{\mu}_{1:k}) \right\|_2^2.$$

Null distribution

$$\max_{a_n < k < b_n} T_{n,k}(X_1, \dots, X_n) \xrightarrow{\mathcal{D}} \max_{u < t < v} \frac{\sum_{p=1}^d \mathbf{B}_p^2(t)}{t(1-t)}$$

Consistency in Power (see James, James, Siegmund, 1987)

## Building block for the test statistic : kernelized case

- Time series  $X_1, \ldots, X_n$  of independent observations
- For any interval  $[i,j] \subset \{2,\ldots,n-1\}$ , define for all  $f,g \in \mathcal{H}$

$$\begin{split} \langle \hat{\mu}_{i:j}, f \rangle_{\mathcal{H}} &\stackrel{\text{def}}{=} \frac{1}{j-i+1} \sum_{\ell=i}^{j} f(X_{\ell}) \\ \left\langle f, \hat{\Sigma}_{i:j}g \right\rangle_{\mathcal{H}} \stackrel{\text{def}}{=} \frac{1}{j-i+1} \sum_{\ell=i}^{j} \{f(X_{\ell}) - \langle \hat{\mu}_{i:j}, f \rangle_{\mathcal{H}} \} \{g(X_{\ell}) - \langle \hat{\mu}_{i:j}, g \rangle_{\mathcal{H}} \} \end{split}$$

• For any instant  $k \in \{2, \ldots, n-1\}$ ,

 $\mathsf{KFDR}_{n,k;\gamma}(X_1,\ldots,X_n)$  (maximum) Kernel Fisher Discriminant Ratio

$$\stackrel{\text{def}}{=} \frac{k(n-k)}{n} \left\| \left( \underbrace{\frac{k}{n} \hat{\Sigma}_{1:k} + \frac{n-k}{n} \hat{\Sigma}_{k+1:n}}_{\hat{\Sigma}_{n,k}^W} + \gamma \mathbf{I} \right)^{-1/2} (\hat{\mu}_{k+1:n} - \hat{\mu}_{1:k}) \right\|_{\mathcal{H}}^2.$$

# Kernel Change-point Analysis (KCpA)

#### KCpA Test statistic

$$T_{n;\gamma_n} = \max_{a_n < k < b_n} \frac{\mathsf{KFDR}_{n,k;\gamma_n} - d_{1,n,k;\gamma_n}(\hat{\Sigma}^W_{n,k})}{\sqrt{2} \, d_{2,n,k;\gamma_n}(\hat{\Sigma}^W_{n,k})}$$

with

$$\begin{split} d_{1,n,k;\gamma}(\hat{\Sigma}_{n,k}^{W}) &\stackrel{\text{def}}{=} \operatorname{Tr}((\hat{\Sigma}_{n,k}^{W} + \gamma I)^{-1} \hat{\Sigma}_{n,k}^{W}) & \text{recentering} \\ d_{2,n,k;\gamma}(\hat{\Sigma}_{n,k}^{W}) &\stackrel{\text{def}}{=} [\operatorname{Tr}((\hat{\Sigma}_{n,k}^{W} + \gamma I)^{-2} (\hat{\Sigma}_{n,k}^{W})^{2})]^{1/2} & \text{rescaling} \end{split}$$

#### Change-point Detection

#### Change-point Estimation

$$\hat{k}_n = \operatorname{argmax} \frac{\mathsf{KFDR}_{n,k;\gamma_n} - d_{1,n,k;\gamma_n}(\hat{\Sigma}^W_{n,k})}{\sqrt{2} \; d_{2,n,k;\gamma_n}(\hat{\Sigma}^W_{n,k})}$$

if a change has indeed occured (H  $_A),$  and where  $\hat{k}_n$  is the change-point estimator.

 $T_{n;\gamma_n} \leq t_{1-lpha}$  no change occured  $T_{n;\gamma_n} > t_{1-lpha}$  a change occured

with  $t_{1-\alpha}$  the  $\alpha$ -significance threshold.

## Limiting distribution under $H_0: \gamma_n \to 0$ regime

#### Proposition

Assume that the kernel is bounded and that for a = 1, 2 the eigenvalues  $\{\lambda_p(\Sigma_a)\}_{p\geq 1}$  of the covariance operator  $\Sigma$  satisfy  $\sum_{p=1}^{\infty} \lambda_p^{1/2}(\Sigma_a) < \infty$ . Assume in addition  $\mathbf{H}_0$ , *i.e.*  $\mathbb{P}_{X_i} = \mathbb{P}$  for all  $1 \leq i \leq n$ , and that  $\{\gamma_n\}_{n\geq 1}$  is such that

$$\gamma_n + \frac{d_{1,n;\gamma_n}(\Sigma)}{d_{2,n;\gamma_n}(\Sigma)} \gamma_n^{-1} n^{-1/2} \to 0 ,$$

Then,

$$\max_{a_n < k < b_n} T_{n;\gamma_n}(k) \xrightarrow{\mathcal{D}} \sup_{u < t < v} \frac{\mathbf{B}(t)}{\sqrt{t(1-t)}} ,$$

where  $a_n/n \to u > 0$  and  $b_n/n \to v < 1$  as  $n \to \infty$ , and  $\{\mathbf{B}_p(t)\}_t$  is a brownian bridge.

#### Remark

• Typically : 
$$\gamma_n \to 0$$
 slower than  $1/\sqrt{n}$   
• Case  $\lambda_p = p^{-2m}$  :  $d_{1,n_1,n_2;\gamma_n} \sim \gamma_n^{-1/2m}$  et  $d_{2,n_1,n_2;\gamma_n} \sim \gamma_n^{-1/4m}$ 

## Consistency in power

#### Proposition

Assume that the kernel is bounded and that for a = 1, 2 the eigenvalues  $\{\lambda_p(\Sigma_a)\}_{p \ge 1}$ satisfy  $\sum_{p=1}^{\infty} \lambda_p^{1/2}(\Sigma_a) < \infty$ , and that the RKHS is dense in  $L^2(\mathbb{P})$  for all  $\mathbb{P}$ , and  $\mathbf{H}_A$ , *i.e.*  $u < \theta^* < v$  with u > 0 and v < 1 such that  $\mathbb{P}_{X_{\lfloor n\theta^* \rfloor}} \neq \mathbb{P}_{X_{\lfloor n\theta^* \rfloor + 1}}$  for all  $1 \le i \le n$ . Then, in either regularization scheme, for all  $0 < \alpha < 1$ ,

$$\mathbb{P}_{\mathbf{H}_{A}}\left(\max_{a_{n} < k < b_{n}} \frac{\mathsf{KFDR}_{n,k;\gamma} - d_{1,n,k;\gamma}(\hat{\Sigma}_{n,k}^{W})}{\sqrt{2} \, d_{2,n,k;\gamma}(\hat{\Sigma}_{n,k}^{W})} > t_{1-\alpha}\right) \to 1 \,, \quad \text{as } n \to \infty \,, \qquad (2)$$

where  $a_n/n \rightarrow u > 0$  and  $b_n/n \rightarrow v < 1$  as  $n \rightarrow \infty$ .

#### Remark

Universal density of RKHS satisfied for most translation-invariant kernels k(x,y) = k(x-y), such as the gaussian kernel (Steinwart, 2006; Sriperumbudur et al., 2008).

# Mental task segmentation : comparison with supervised methods

#### Dataset

- Data : 3 normal subjects during 4 non-feedback sessions
- 3 tasks : imagination of repetitive self-paced left hand movements or right hand movements, and generation of words beginning with the same random letter
- Features : based on Power Spectral Density

### Experimental results

|      | Subject 1 | Subject 2 | Subject 3 |
|------|-----------|-----------|-----------|
| КСрА | 79%       | 74%       | 61%       |
| SVM  | 76%       | 69%       | 60%       |

# Mental task segmentation : comparison with unsupervised methods

#### Dataset

- Data : 3 normal subjects during 4 non-feedback sessions
- 3 tasks : imagination of repetitive self-paced left hand movements or right hand movements, and generation of words beginning with the same random letter

Grenoble

27 / 28

Features : based on Power Spectral Density



# Conclusion

## Kernel learning and regularization

- Extension of mean element/covariance operator analysis to varying-kernel/multiple kernel settings
- Importance of regularization in unsupervised learning (see discriminative clustering and detection problems)

## Computational efficiency

- efficient large-scale versions of kernel-based unsupervised learning algorithms
- low-rank approximation suited for particular unsupervised learning tasks