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Introduction

Unsupervised learning

Dimension reduction
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Unsupervised learning

Dimension reduction

m Computational efficiency : space and time savings
m Statistical performance : fewer dimensions — regularization

m Visualization : discover underlying structure of the data

— PCA and KPCA
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Unsupervised learning

Feature extraction

xT.
@ Y- A view from Idyllwild, California,

with pine trees and snow capped Marion
Mountain under a blue sky.’

Harchaoui (FR) VRML

Grenoble

6/ 66



Unsupervised learning

Feature extraction

m Multimodality : leverage the correlation between the modalities
m Statistical performance : take advantage of both views of the data

m Putting in relation : discover underlying relations between the
modalities

— CCA and KCCA
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Unsupervised learning

Clustering
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Introduction

Unsupervised learning

Clustering

m Semantics : grouping datapoints in meaningful clusters
m Statistical performance : intrinsic degrees of freedom of the data

m Visualization : discover groupings between datapoints

— spectral clustering, temporal segmentation, and regularized clustering
(DIFFRAC)
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Introduction

Unsupervised learning

Detection problems
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Unsupervised learning

Detection problems

m Balance risks : control detection rate with a guaranteed false alarm
probability

m Power : detect differences not only in mean or covariance

— homogeneity testing, change detection
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Kernel methods and feature space
QOutline

Kernel methods and feature space
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Kernel methods

Machine Learning methods taking K = [k(X;, X;)]; j=1,....n (Gram matrix
as input for processing a sample { X, ..., X}, where k(z,y) is a similarity

measure between z and y defining a positive definite kernel.

Strengths of Kernel Methods

m Minimal assumptions on data types (vectors, strings, trees, graphs,
etc.)

m Interpretation of k(z,y) as a dot product k(x,y) = (¢(x), ¢(y))y in a
reproducing kernel Hilbert space H where the observations are
mapped via [¢ : X — H] the feature map ¢(e) = k(e,-)
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How does the feature space look like ?

Example : space of shapes of birds
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How does the feature space look like ?

Feature map ?
How does the feature map look like?

T 20
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Kernel methods and feature space

How does the feature space look like ?

Feature map ?

The feature map is a function whose values span the whole range of shapes
with varying magnitudes.
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Examples of Kernels

Kernels on vectors

Polynomial k(x,y) = (¢ + (x,y))?
Laplace k(x,y)=exp(—|x—yl1/0)
RBF k(x,y) = exp(—|lx — y|5/07)
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Examples of Kernels

Kernels on histograms
Kernels built on top of divergence between probability distributions

1/)JD(9’9/) =h < D) 2 )
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k(0,0") = exp(—(6,0")/a?) .
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The kernel jungle

Kernels on histograms

m Pyramid match kernels (Grauman and Darrell, 2005)
m Multiresolution (nested histograms) kernels (Cuturi, 2006)

m Walk and tree-walk kernels (Ramon & Gaertner, 2004 ; Harchaoui &
Bach, 2007 ; Mahe et al., 2007)

Kernels from statistical generative models

m Mutual Information Kernels (Seeger, 2002)
m Fisher kernels (see Shawe-Taylor & Cristianini, 2004)

Other kernels

m Kernels of shapes and point coulds (Bach, 2007)
m Kernels on time series (Cuturi, 2007)
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How does the feature space look like ?

Classical kernel trick

m Describes what happens to pairs of examples

m Focuses on the pointwise effect of the feature map on an example

“Remixed” kernel trick

m Describes what happens to a random sample from a probability
distribution

m Focuses on the global effect of the feature map on a sample
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Outline

Mean element and covariance operator
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Coordinate-free definitions of mean and covariance

Usual definitions

m need explicit basis to define quantities
— tricky in high-dimensional /co-dimensional feature spaces

Coordinate-free definitions

m define quantities through their projections along any direction
— allow direct application of the reproducing property
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Mean element and covariance operator

Mean vector and mean element

Empirical mean element

Empirical mean  vector
X, .., Xy ~P
Yw € X,
m
def 1
= xfa
m
(=1
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Mean element and covariance operator

Mean vector and mean element

Empirical mean element
Empirical mean element ji of x1,.

ey Xy ~ P
VfeH,

</l7 f>7-[ dﬁf

ak(xj,xe) , if £() =Y ajk(x;, )
=1 =1
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Mean element and covariance operator

Centering in feature space

Gram matrix

K = [k(Xi, Xj)]i j=1,..n of all evaluations of the kernel k(-,-) on the
sample x1,...,Xp,.

Centering in feature space

To center all ¢(x1),...,¢(xy,) simultaneously, do

K «+ K = IIKII ,

where
1
T
nm=I1,--1,1, .
n
VRML
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Mean element and covariance operator

Covariance matrix and covariance operator

Empirical covariance operator

Empirical covariance matrix X

XiyeeoyXm ~ P

VYw,v € X,

1 m
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m =1
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Mean element and covariance operator

Covariance matrix and covariance operator

Covariance operator

Empirical covariance operator 3 of x1,...,Xm ~ P
Vf,geH,
(£.89) = -3 {1.d6x0)) ((x0).9)
{=1

I
3=
NE
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Mean element and covariance operator

Computing variance along a direction in feature space

Gram matrix

K = [k(Xi, Xj)]i j=1,..n of all evaluations of the kernel k(-,-) on
Tlyeeey Ty,

Covariance along two directions

(£.59) = +-a"RKS

where
FO) =D ak(x;,)
j=1
g() =Y Bik(x;,) .
j=1
L
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Mean element and covariance operator

Mean element and covariance operator

Population mean element and covariance operator

Population mean element . and population covariance operator ¥ of x ~ P

(1, fry CEf(X)], VfeH

(f,S9)3 & Covlf(x),9(x)], VfgeH

Empirical mean element and covariance operator

Empirical mean element /i and empirical covariance operator X of
X1,y X ~ P
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Some casual considerations before the real stuff

Supervised learning

m least-square regression, kernel ridge regression, multilayer-perceptron
— tackled through (possibly a sequence of) linear of systems

m Operation \ in Matlab/Octave

Unsupervised learning

m (kernel) principal component analysis, (kernel) canonical correlation
analysis, spectral clustering
— tackled through (possibly a sequence of) eigenvalue problems

m Function eigs in Matlab/Octave
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Kernel PCA
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Kernel PCA

Kernel Principal Component Analysis
(Schélkopf et al., 1998 ; Shawe-Taylor & Cristianini, 2004)

Principal Component Analysis (PCA)
A brief refresher

m Let x1,...,x, a dataset of points in R?

m PCA is a classical method in multivariate statistics to define a set of
orthogonal directions, called principal components, that capture the
maximum variance

m Projection along the first 2-3 principal components allows to visualize
the dataset
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Refresher on Principal Component Analysis

Computational aspects

m Maximum variance criterion corresponds to a Rayleigh quotient

m PCA boils down to an eigenvalue problem on the centered covariance
matrix X of the dataset, i.e. the principal components wy,...,w, are
the eigenvectors of X (assuming n > d)

m Computational complexity : O(ndc) in time with a Singular Value
Decomposition (SVD ; see eigs in Matlab/Octave), with n the
number of points, d the dimension, ¢ the number of principal
components retained ; stochastic approximation version for
nonstationary/large-scale datasets.
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Variance along a direction and Rayleigh quotients

Variance along a direction
PCA seeks for directions w1, ..., w, such that

W = argmaXy crd.w, | {wi,..,w;_1} Varemp(
m
1 (w, )
- argmaXWERd;WjJ_{Wl,...,Wj 1} E W

= argMmaXy ecrd:w, | {wy,...w;_1} (
Rayleigh quotient

Principal components wy, ..., w, are the first ¢ eigenvectors of X.

Harchaoui (FR) VRML Grenoble

34 / 66



Variance along a direction and Rayleigh quotients

Variance along a direction
KPCA seeks for directions f1,..., f. such that

fi = argmaxseasr i1, 01} Varempw

N (f p(x))
= argmaXfe’H;ij{fl7~-~,f]’—1} E Z <<f(.)]i>)>
i=1 ’

(£.21)
= argmaXf.gH;ij{fl,.--7fj—1} W
N —’

Rayleigh quotient

Principal components fi, ..., f. are the first ¢ eigenvectors of . Is that it ?
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Rescue theorems

Properties of covariance operators
RKHS Covariance operators are (Zwald et al., 2005, Harchaoui et al.,
2008)

m self-adjoint (oco-dimensional counterpart of symmetric)
m positive

m trace-class

Consequence

The covariance operator 3 and the centered Gram matrix K share the
same eigenvalues on the nonzero part of their spectra, and their
eigenvectors are related by a simple relation.
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Kernel PCA

Kernel Principal Component Analysis

KPCA algorithm

m Center the Gram matrix

m Performs an SVD on K to get the first ¢ eigenvector /eigenvalue pairs
(€55 Aj)j=1,....c-
m Normalize the eigenvector €; <— e;/)\;

m Projections onto the j-th eigenvectors is given by Kéj
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Computational aspects of KPCA

Computational aspects

m Maximum variance in feature space corresponds to a Rayleigh quotient

m KPCA boils down to an eigenvalue problem involving the centered
auto-covariance matrices K

m Computational complexity : O(cn?) in time with a Singular Value
Decomposition (SVD ; see eigs in Matlab/Octave), with n the
number of points, ¢ the number of principal components retained ;
stochastic approximation version for nonstationary/large-scale
datasets.
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Low-dimensional representation with KPCA

Human body pose representation

m Walking sequence of length 400 (containing about 3 walking cycles)
obtained from the CMU Mocap database
m Data : silhouette images of size (160 100) taken at a side view

Human body pose representation (Kim & Pavlovic, 2008)

eaN G EY
LEhAARL L
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Low-dimensional representation with KPCA

Human body pose representation
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Low-dimensional representation with KPCA

Human body pose representation
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Super-resoluton with KPCA (Kim et al., 2005)

Super-resolution

10x10 40x40

VRML Grenoble 42 / 66
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Kernel PCA

KPCA+n : unsupervised alignment (de la Torre & Nguyen,
2009)

Unsupervised alignment
KPCA + Rigid motion model




Applications

Popular

m Image denoising (digits, faces, etc.)
m Visualization of bioinformatics data (strings, proteins, etc.)

m Dimension-reduction of high-dimensional features (appearance,
interest points, etc.)

Not so well-know property of KPCA

m Regularization in supervised learning can be enforced by projection
— careful not to regularize twice!

m Useful in settings where ridge-regularization is impractical (Zwald et
al., 2009 ; Harchaoui et al., 2009 ; Guillaumin et al., 2010)
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Kernel CCA
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Kernel CCA

Kernel Canonical Correlation Analysis
(Shawe-Taylor & Cristianini, 2004)

Canonical Correlation Analysis (CCA)
A brief refresher

m Let (X1,¥1),...,(Xn, ¥n) a dataset of points in R x RP, for which
two views are available : the “z-view" and the “y-view"

m CCA is a classical method from multivariate statistics to define a set
of pairs of orthogonal directions, called canonical variates, that
capture the maximum correlation between the two views.

m Projection along the first 2-3 pairs of canonical variates resp. of
“x-view" and the “y-view" allows to visualize the components dataset
maximizing the correlation between the two views.
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Refresher on Canonical Correlation Analysis

Computational aspects

m Maximum correlation criterion corresponds to a generalized Rayleigh
quotient

m CCA boils down to a generalized eigenvalue problem involving the
(centered) auto-covariance matrices Yx and Z yy and on the
(centered) cross-covariance matrix 3y

m Computational complexity : O(n(d + p)c) in time with a Singular
Value Decomposition (SVD ; see eigs in Matlab/Octave), with n the
number of points, d the dimension, ¢ the number of canonical variates
retained ; stochastic approximation version for
nonstationary/large-scale datasets.
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Kernel CCA

Cross-covariance matrix and cross-covariance operator

Empirical cross-covariance matrix

Empirical cross-covariance matrix f)xy Empirical cross-covariance operator f)xy
of x1,...,Xm ~Pxand y1,...,ym ~|of X1,...,Xm ~Px and y1,...,ym ~
Py Py
Yw,ve X,) Vf,ge F,H
1 & . 1 « -
W, S ) = =S (W k)Tev) | (LEmg) = — > (£96x0) (By0), )
=1 £=1
X¢ = X¢ — fix B(xe) = p(xe) — fix
Ye=Ye—fiy - P(ye) =p(ye) — fiy
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Kernel CCA

Covariance along two directions and generalized Rayleigh
quotients

Covariance along two directions
CCA seeks for directions (w1, v1) such that!

Cov((w,x), (v,y))
Var'/2((w, x)Var'/2((v,y)
(w, i]xyv)

(w, 2A]xxw)l/2 (v, 2A)yyv)l/2 ‘

(Wla Vl) = argmaX(y v)eR4xRP

= argmaX(y v)eR4xRp

1. focus here on the first pair of canonical variates
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Kernel CCA

Covariance along two directions and generalized Rayleigh
quotients

Generalized Rayleigh quotient

Canonical variates (w1,v1),..., (W, v¢) are the first ¢ pairs of vectors
solutions of the generalized eigenvalue problem

0 f)xy wo\ f]xx 0 w
Sy O v ) Pl 0 5y, v )
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Kernel CCA

Covariance along two directions and generalized Rayleigh
quotients

Covariance along two directions
Kernel CCA seeks for directions (f1,g1) such that?

R Cov((£,6(x)) , (9. 9(y)))
(F1:91) = 3€MX( 10130 (ar (7, 6(@)) + ¢ (f, £)}1/2 (Var (g, 0(2)) T < (g.9)] 72

<f7 2A:xyg>

(5 Gt 590) (1, By +599)

= argmax(f,g)eﬂxn

2. focus here on the first pair of canonical variates
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Kernel CCA

Correlation along two directions

Generalized eigenvalue problem

Coefficients of canonical variates (a1, 1), ..., (¢, Bc) are the first ¢ pairs
of vectors solutions of the generalized eigenvalue problem

0 KxKy]<oz>_ [KIKI 0 le%
KK, 0 g)=" 0 KK, } ( 6) ‘
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Computational aspects of KCCA

Computational aspects

m Maximum correlation in feature space corresponds to a Rayleigh
quotient

m KCCA boils down to a generalized eigenvalue problem involving the
squared centered Gram matrices matrices K, 2 Ky2 and the product
of the Gram matrices K, K

m Computational complexity : O(cn2) in time with a Singular Value
Decomposition (SVD ; see eigs in Matlab/Octave), with n the
number of points, ¢ the number of principal components retained ;
stochastic approximation version for nonstationary/large-scale
datasets.
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Kernel CCA

Multimedia content based image retrieval with KCCA

Multimedia

m Multimedia content — multi-view data

m images with text captions : text — “x"-view, image — “y"-view

Multimedia content based image retrieval (Hardoon et al, 2004)

Image | Label | Keywords

I Sports | position college weight born Ibs height guard
g Aviation | na air convair wing

I3 Paintball | check darkside force gog strike odt
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Outline

B Spectral Clustering
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Spectral Clustering

Spectral clustering
(von Luxburg, 2007)

Overview
m Let x;,...,%, a dataset of points in R?, along with pairwise
similarities s(x;,x;),1 <14,j < n.
m Build similarity graph, with data points as vertices and similarities as
edge lengths
m Spectral clustering finds the best cut through the graph

4

Harchaoui (FR) VRML Grenoble 56 / 66



Spectral Clustering

Laplacian matrix and spectral clustering

Laplacian matrix

Spectral clustering relies on the spectrum of the Laplacian matrix L

L == D - S ’
~~ —~—
degree matrix  similarity matrix
where
D= Diag(deg(xl) .., deg(xy))
deg(x;) Z s(x4, %)
J=1
VRML
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Laplacian matrix and the Laplace-Beltrami operator

Laplacian matrix
The Laplacian matrix measures the discrete variation of f along the graph

n

vfeRr? fTLf = ;;smxﬂ(ﬂ SO
N 1
fTLf~ = Zd xz,xj) ;o ifs(xg, %)) & i, %))

Laplacian operator
The Laplacian matrix is the discrete counterpart of the Laplace operator

Vi ER? (f,Af) = / V£ 2

3. Laplace-Beltrami generalizes the Laplace operator to manifold data.
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Spectral Clustering

Rescue theorems

Properties of Laplacian operators
Laplacian matrices are (von Luxburg et al., 2005, Gine and Koltchinskii,
2008)

m symmetric

m positive definite

m smallest eigenvalue is 0, and associated eigenvector 1

Interpretation
m Multiplicity of eigenvalue 0 is the number of connected components of
the graph Ay, ..., Ay

m Eigenspace spanned by the characteristic functions 14,,...,14, on
those components (so all eigenvectors are piecewise constants)
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Spectral Clustering

Normalization
Normalized graph Laplacians
Graph Laplacian matrices can be normalized in two ways*

Lyw=D""L
Lyym = D™Y2LD71/2

random walk normalization ,

symmetrized normalization .

Interpretation

m L, and Ly, share similar spectral properties with A

m Normalized graph Laplacians are better understood theoretically and
are consistent under general assumptions in large-sample settings

m Un-normalized ones are still used (!) despite their lack of consistency
in some cases in large-sample settings.

4. Caution : eigenspace of L,,, spanned by the 14,
spanned by the D'/?1,4,,...,D?1,,.
VRWE

..., 14, ; eigenspace of Lgym
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Spectral clustering

Spectral clustering algorithm

m Build similarity graph

m Performs an SVD on L,,, or Ly, to get the first k
eigenvector/eigenvalue pairs (v;, Aj)j=1,..c-

m Build the matrix V' = [v1, ..., vy] stacking the k eigenvectors as
columns

m Launch your favourite clustering algorithm on the n rows of V
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Example

2D example with 3 clusters

Data set
5,
*
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Example

Projections onto eigenvectors

Eigenvectors (1.row: same color range, 2.row: individual)

eig 1 eig2 eig3 eig 4 eig5
4 4 4 4 4
3 3 3 3 3
2 2 2 2|, 2 *
1 1 1 1 1
0 0 [ ot % 0
o 2 4 o 2 4 o 2 4 o 2 4 o 2 4
€ig 1 (ind. range) eig 2 (ind. range) eig 3 (ind. range) eig 4 (ind. range) eig 5 (ind. range)
4 4 4 4 4
) # # "
3 * 3 *y 3 * 3 * 3 *x
* £ *Ht o e T Hok K 2 x ¥
*
™ e K e F *x *g}* o LR
1 1 1 1 1 §
*mﬁ"": ; *«a«%“}fj i *@5 o *"if o v
ot ¥ off % ot % 0 & ol v %
0o 2 4 0o 2 4 0o 2 4 0o 2 4 0o 2 4

archaoui (FR) VRML Grenoble 63 / 66



Example

Clustering obtained with k-means as the favourite clustering algorithm

Data points and the spectral clustering (sigma=0.500000)

spectral k=2 spectral k=3 spectral k=4 spectral k=5
6 6 6
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Spectral clustering for image segmentation

Image segmentation algorithm
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GrabCut and foreground extraction

Interactive foreground extraction algorithm
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Discriminative clustering

Temporal Segmentation
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Outline

Discriminative clustering
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Discriminative clustering

Summary

m Discriminative clustering = find labels that maximize linear
separability

m Multiclass square loss for classification = cost function in closed
form

m Optimization of the labels by convex relaxation

m Efficient optimization algorithm by partial dualization

m Application in semi-supervised learning
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Discriminative clustering

Classification with square loss

m n points X1,...,X, in R% represented in a matrix X € R"*¢,

m Labels = partitions of {1,...,n} into k > 1 clusters, represented by

indicator matrices
y € {0,11* such that y1, =1,
m Regularized linear regression problem of y given X :

— ; 1 _ _ 2 T
T X =i b X b T

m Multi-label classification problems with square loss functions
= Solution in closed form (with IT,, = I,, — 11,1)) :

1
w* = (X', X +nkl,) ' X,y and b* = glz(y —Xw")
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Discriminative clustering cost

Discriminative clustering consists in finding labels such that they

lead to best linear separation by a discriminative classifier (Xu et al.,

2004, 2005)

m Main advantages

m minimizing the regularized cost in closed form
m including a bias term by simply centering the data

Optimal value equal to J(y, X, k) = Tr yy " A(X, k), where

Use square loss for multi-class classification

A(X, 1) = L1,

n

(I,— X (X "I, X +nxl)~ X IL,

Harchaoui (FR)
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Diffrac

m Optimization problem : minimize Tryy " A(X, &) with respect to y
(indicator matrices)

m The cost function only involves the matrix M = yy ' € R"*"
= k-class equivalence matrix € {0,1}"*"

m Convex outer approximation for M

m M is positive semidefinite (denoted as M = 0)
m the diagonal of M is equal to 1, (denoted as diag(M) = 1,,)
m if M corresponds to at most k clusters, we have M 3= +1,1]

m Convex set :

Co={MeR™", M=M", diag(M) =1,, M >0, M = 1,1}
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Discriminative clustering

Minimum cluster sizes

m Avoid trivial solution by imposing a minimum size )\ for each cluster,
through :
m Row sums : M1,, > M\gl, and M1, < (n— (k—1)\g)1, (same
constraint as Xu et al., 2005).
m Eigenvalues : The sizes of the clusters are exactly the k largest
eigenvalues of M = constraint equivalent to Y7 | 1, (an)>a, = k.
where A1 (M), ..., A\, (M) are the n eigenvalues of M.

m Non convex constraint
m Relaxed as 37" | dao (Ai(M)) > k, where ¢, (k) = min{x/Ao, 1}

m Final convex relaxation : minimize TrA(X, k)M such that
M=MT", diag(M)=1,, M >0, M = +1,1],
2limy O (Xi(M)) = k
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Comparison with K-means
m DIFFRAC (k = 0) : minimize
Tr I, (1, — X (X "I, X)X DILyy "
m K-Means : minimize (Zha et al., 2002, Bach & Jordan, 2004)
ming,egrxa | X = ypll = Te(ln —y(y Ty) "'y ) (LX) (T, X) T
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Discriminative clustering

Kernels

m The matrix A(X, k) can be expressed only in terms of the Gram
matrix K = XX .

A(K, k) = kI1,(K + nkl,) "',

where K = II,, K11, is the “centered Gram matrix” of the points X.
m Additional relaxation to kernel PCA :

relaxing the constraints M = %1,11;1r into M =0
relaxing diag(M) = 1,, into TrM =n
removing the constraint M > 0 and the constraints on the row sums.

m Important constraint : diag(M) = 1,
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Optimization by partial dualization - |

m Optimization problem :

min TrAM suchthat M =M" M =0, TtM =n
D (M) =370 dag(Ni(M)) > k
diag(M) =1,
M1, < (n—(k—1DX)1ln, M1, > Xl, | £
M >0
M= 1,1} ‘
~ k

m Partial dualization of constraints
m Kept constraints lead to simple spectral problem
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Optimization by partial dualization - Il

m Lagrangian equal to TrB(8)M — b(f3) with

B(B) = A+ Diag(B1) — 5(82 — 83)17 — 31(B2 — B3) T — Ba+ %B%i;

b(B) = By 1 — (n— (k= 1)X0)B3 1+ X3 1+ kfs/2 + B 1
m Primal variable M, dual variables 51, B2, 83, B4, (85, B6)
m Dual problem : max{ min TrB(S)M — b(ﬁ)}
B | M=0,TxM=n,05,(M)>k
m Minimization with respect to M leads to convex non differentiable
spectral function in 8

m Maximization with respect to 3 by projected subgradient or projected
gradient (after smoothing)
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Discriminative clustering

Computational complexity - Rounding

Constant times the matrix-vector operation with the matrix A

]
m Linear complexity in the number n of data points.
m For linear kernels with dimension d : O(d?n)

]

For general kernels : O(n?) or O(m?n) using an incomplete Cholesky
decomposition of rank m
m Rounding
m After the convex optimization, we obtain a low-rank matrix M € Cy,
which is pointwise nonnegative with unit diagonal

m Spectral clustering algorithm on the matrix M (Ng & al., 2001)

m NB : Diffrac works better than just doing spectral clustering on A or
K
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Discriminative clustering

Semi-supervised learning

m Equivalence matrices M allow simple inclusion of prior knowledge (Xu

et al., 2004, De Bie and Cristianini, 2006)
m “must-link” constraints (positive constraints) : M;; = 1
m With a square loss = equivalent to grouping into chuncks

m “must-not-link” constraints (negative constraints) : M;; =0

20% x n 40% x n

oyl —w— K—-means|

clustering error
o
a1

0 20 40 0 20 40
noise dimension noise dimension
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Discriminative clustering

Simulations

m Clustering classification datasets
m Performance measured by clustering error between 0 and 100(k — 1)
m Comparison with K-means and RCA (Bar-Hillel et al., 2003)
m Different amount of labelled data (0 to 40 %)

Dataset K-means Diffrac RCA
Mnist-linear 0% | 5.6 £0.1| 6.04+0.4
Mnist-linear 20%| 4.54+0.3 | 3.6 0.3 | 3.0+ 0.2
Mnist-linear 40%| 2.94+03 | 22+0.2 |1.8+0.4
Mnist-RBF 0% 56+02]49+0.2

Mnist-RBF 20% | 46+0.0|1.84+0.4| 4.14+0.2
Mnist-RBF 40% | 494+0.0]09+0.1| 294+0.1
Isolet-linear 0% |12.1 +£0.6/ 12.3 £0.3
Isolet-linear 20% | 10.5+0.2| 7.8 £0.8| 9.5+ 0.4
Isolet-linear 40% | 9.24+05|3.7+0.2| 7.0+0.4
Isolet-RBF 0% 1144+04(11.0+0.3
Isolet-RBF 20% | 10.6 £0.0| 7.5 +£0.5| 7.8 +£0.5
Isolet-RBF 40% | 10.0£0.0] 3.7+1.0| 6.9+0.6

VRML
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Discriminative clustering

Simulations

m Semi-supervised classification
m Diffrac "works” with any amount of supervision
m Comparison with LDS (Chapelle & Zien, 2004)

Learning curve on Coil100

0.8
=-©-DIFFRAC

0.6 =¥—=| DS
S
Loa
17}
(]
'_

0.2

0 n n
0 50 100 150 200

Number of labelled training points
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Extension to images co-segmentation (Joulin et al., 2010)

Natural images

e
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Extension to images co-segmentation (Joulin et al., 2010)

Cycles and horses
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Outline

Temporal Segmentation
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Temporal Segmentation

Temporal segmentation (clustering with temporal
consistency)

Change-in-mean model
Time series of independent r.v. {Y;};—1 ., such that

Y, RN o?), G +1<t<t;, k=1, K*+1, (1)

P4
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Temporal segmentation

Change-in-mean-element model
Time series of independent r.v. {Y;};—1 ., such that

Ek(Y, )] =pp, tiq+1<t<ty, k=1,...,K*+1.

P1 P2 P3 P4
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Temporal segmentation with kernels

Classical least-squares formulation Kernel-based version in H
Minimize Minimize
t1,.. bR t1,.. b x
K*+1 tr K*+1 tr
. 2
E E tk latk)) E : E : Hk(n")_’u[tkflitk}H’H
k=1 t=ty_ 1+1 k=1 t=tp_1+1
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Massaging the objective function

Intra-segment scatter

K-1
Minimize V(Yit1-- 5 Yo)
t1,.. b
k=1
with V(Yigr,. o, Yirs) = [[B(Ye, ) = fipsnasa [,
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Temporal Segmentation

Forward-backwrad recursions

Forward recursions

t1,.. ﬂfk 1,tk

K—
Ik(t) = Z nk-i-l?"'?Y;fk-q-l)
k:

= Min Min ZA(YtkH,...,YtHI)

te—15tk=t t1,...,tk—2
1 et

A~

—Mln(Ik 1(tk 1)+V(Y§gk71,...,Y2)).

Dynamic programming
Dynamic programming algorithm working on submatrices of the Gram
matrix, leading to a time-complexity of O(Kn?).
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Outline

Introduction

Homogeneity testing

Change-point Analysis
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Outline

Homogeneity testing
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Kernel methods

Machine Learning methods taking K = [k(X;, X;)]; j=1,....n (Gram matrix
as input for processing a sample { X, ..., X}, where k(z,y) is a similarity

measure between z and y defining a positive definite kernel.

Strengths of Kernel Methods

m Minimal assumptions on data types (vectors, strings, trees, graphs,
etc.)

m Interpretation of k(z,y) as a dot product k(x,y) = (¢(x), ¢(y))y in a
reproducing kernel Hilbert space H where the observations are
mapped via [¢ : X — H] (feature map)
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Homogeneity testing

Mean element and covariance operator

Population mean element and covariance operator

Population mean element 1 and population covariance operator X of
X~P

(s o CE[F(X)], VfeH

(f.Sg)y & Cov[f(X),9(X)], VigeH

Empirical mean element and covariance operator

Empirical mean element /i and empirical covariance operator X of
X1, .., Xy ~P

G fhn S I Vi EH
(=1

(1.59) - > U0 = G DM X0 ~ (s} VS €
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Test for homogeneity

Homogeneity of two samples

m Two samples Xfl), e ,qull) ~ P and XfQ), e ,X,g) ~

independent

m Problem : decide between

Ho : PO =p®
Hy: PO 2£p@
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Test statistic

Empirical mean elemnts [i; and jis, and empirical covariance operators X1

and 2, resp. {Xfl), e ,Xflll)} et {Xf2),...,XT(L22)}

XV XY o (1,51 and (X XP) < (i, )

Regularized Fisher ratio

KFDRyy, o (XY, XD x P x(2))

L) ny 9 ng
def M1M2 ny no -1/ ’
€ - - ~ ~
= —|[| =X1+ —X2 9l (fi2 — fin)
ni + no n n z
N e’
Sw

Hotelling’s T? : homogeneity of two normal probability distributions with different
means and unknown covariance matrices

2
nin2

ni g na g 2, "
25+ 2% ) -
|| G S 58e) =)

n n

nd
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Homogeneity testing

Large-sample distribution under Hy : regime v, = v

Proposition
Assume the kernel is bounded and that for @ = 1,2 the eigenvalues

Mp(2a) }y>1 satisfy S0 AL2 ) < 00. Assume also that P; and Py are
p p> p=17\P
equal i.e. Py =Py =P, and that v,, =~ > 0. Then,

KFDRnl’nz;’y_dl ni, II)"(ZU )

ni,na

ﬁdlnww <Z}}| 11>>
D 1 i p(EW) (Z2 _1)
T V() 2 () 7
X7
Remarks
Dy (Sw) E Te(Sw +91) 7 Sw) recentering
2.y oy (Bw) def [Tr((Sw +~I) 7255 )]1/2 renormalization
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Homogeneity testing

Large-sample distribution under Hy : regime v, — 0

Proposition
Assume the kernel is bounded and that for a = 1,2 the eigenvalues

{Ap(Ea)}p>1 satisfy D702, /\117/2(Ea) < 00. Assume in addition that
Py =Py =P, and that {v,} is such that

Yn + Yy T —0.
! d27n1,n2w(EW) "

Then, X
KFDRm,nng - dlanlvrb?}[;/’Yn(ZK,nz) 2} N(O, 1) .
Remarks \/Q d27n1 sN25Yn (an,ng)

m Typical situation ~y,, — 0 slower than 1//n

__om . —1/2m —1/4m
m Case A\, = p ™ diny mosyn ~ In

et d2,ny,na3vn ™~ In
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Distribution under H

m Total sample size ny; + no = 500, Gaussian RBF kernel with 0 =1,
PM = P(2) normal probability distributions

L Hf#++

Y Quantiles

5
X Quantiles
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Consistency in power

Proposition

Assume the kernel is bounded and that for @ = 1,2 the eigenvalues
{A\p(Za) }p>1 satisfy >° 2, )\,1,/2(Ea) < 00, and that the RKHS H is dense
in L2(P) for all P. Let P; and Py two probability distributions such that
Py # Py. In both regimes (v, = and v, — 0), forall 0 < a < 1

W
(KFDRM,M;% - dlvnlan%’Y(an,ng
Ha

)
~ > Cl—q > 1. (1)
\/§ d2,n1,n2;7(2n1,n2)

Remarks

Universal density of the RKHS satisfied for translation-invariant kernels
k(x,y) = k(z —y) such as the Gaussian RBF kernel (Steinwart, 2006 ;
Sriperumbudur et al., 2008).
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Consistency against local alternatives

m Framework of local alternatives

H(): Plng
Hy: P #PY

where Py and P4 get closer as n — 0o, meaning that the
x>2-divergence

Dy (Py,Py) <7, asn— 0.
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Homogeneity testing

[[lustration :

uniforme vs. uniform+high-frequency contamination

with spline kernels

puissance
puissance

00123456789
-logy

01234567829
~logy

puissance

o
2]

—#—KFDR|
~~MMD

3

01234567839
—logy

Figure: Comparison of change in power of KFDA versus MMD as
~=1,10"1,...,107Y, for local alternatives spanned by the g-ieme component

(from left to right) with ¢ = 1,5,9.
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Computational aspects

Computation

. 2
| Ew + 2D ™20 = )|
=7 {m!K,m, - n"'m!K,N,, (v I+ n'N,K,N,)"'N, K, m,} .
K, = [k(z;,2j)]ij=1,..n is the Gram matrix, N,, is that intra-class
re-centering matrix (each block re-centers each sample), and

m,, = (m, ;)i<i<, stand for the “vector of mean difference” with
my,; = —nfl pourt=1,...,n1 etmy; = ngl fori=mi+1,...,n1+ns

Computational complexity
O((n1 + n2)?) is space and O((n1 + n2)3) in time.
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Application : speaker verification

m 8 speakers from the NIST evaluation 2004

m descriptors : MFCC

Puissance
o o
(o)} o]

o
IS

o
)

Courbe ROC

-6~ KFDA
MMD
—#—HT

0.1 0.2 0.3 0.4 0.5

Niveau

Figure: Comparison ROC curves for speaker verification
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Application : audio segmentation

“Grand echiquier” TV-shows archives

m Semantic segmentation (coarse segmentation) :
applause/film/music/interview

m Speaker segmentation (fine segmentation) :
Coluche/J. Chancel/F.-R. Duchable/etc.

Nb. of sections | Mean duration (sec.)
applause 84 14
film 29 155
music 38 194
speech 188 70
spk turns 962 6

Table: Data description
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Homogeneity testing

Experiments in audio segmentation

Experiences

m sliding-window along the signal

m super-descriptors cbuilt from cepstral coefficients

m comparison with unsupervised approaches MMD (Gretton et al.,
2004), KCD (Desobry et al., 2005), and supervised HMM (Rabiner et

al., 2007)
Semantic seg. Spk seg.
Precision Recall | Precision Recall
KFDR 0.72 0.63 0.89 0.90
MMD 0.71 0.58 0.76 0.73
KCD 0.65 0.63 0.78 0.74
HMM 0.73 0.65 0.93 0.96

Table: Precision and recall

Harchaoui (FR) VRML
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Outline

Change-point Analysis
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Change-point Analysis

Change-point Analysis

Assumption

Time series X1, ..., X, of independent observations

Change-point Problem

detection 1) Decide between

Hy: Px, =---=Px,=---=Px,
H4: there exists 1 < k* < n such that
Px, =---=Px,, #Px,.., = =Px, .
estimation 2) Estimate k* from the sample {X1,..., X, } if Hy is true .

Change-point Analysis = Change-point Detection + Estimation

Harchaoui (FR) VRML Grenoble 19 / 28



Running Maximum Strategy

Running Maximum Strategy for change-point detection

run along the series of observations X7, ..., X,,, scanning all change-point
candidates k €]1, n], in order to catch the true change-point instant k*, for
which the segment before change and the segment after change have
minimum homogeneity

P P
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Change-point Analysis

Building block for the test statistic : finite-dimensional case

m Time series X1,..., X, € R? of independent observations
) 7 p

m For any interval [i,j] C {2,...,n — 1}, define resp. the mean vector [i;.; and the
covariance matrix ;. .

m For any instant k € {2,...,n — 1},

2
of k(n — k)| (k¢ n—ke -1z .
T k(X155 Xon) o k(n — k) (721:/'&: + 72k+1:n) (fik+1m — frek)|| -
n n n ]
Bk
m Null distribution
d 2
_,B:(t
max Tn k(X177Xn)£> max M
an<k<bp ’ wes, t(l — t)

m Consistency in Power (see James, James, Siegmund, 1987)
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Building block for the test statistic : kernelized case

m Time series X1,..., X, of independent observations

m For any interval [i,j] C {2,...,n — 1}, define for all f,g € H

J
(s o 5=y 0060

<fa XAJ'L:J‘9>H d:Cf z—l—l Z{f (Xe) = (icj, £)3 H9(Xe) = (fhig> 9)p}

m For any instant k € {2,...,n — 1},

KFDRy, k7 (X1, ..., X,) (maximum) Kernel Fisher Discriminant Ratio

2
def k(n — k)

n

i . —1/2
( Yk + 7Ek+1 n +’YI> (fkt1:m — fi1:k)

SW
Xk

H
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Kernel Change-point Analysis (KCpA)

KCpA Test statistic

KFDRy. kv, — 1,0 k57, (/\:‘f,‘.vz,')

Ty, = max g
T an<k<en V2 2 ki, (31
with
dy oy (5W1) def Te((E0 + D) 205 recentering
Do (51 ETH((SY + D) T2(EW)) V2 rescaling
Change-point Detection Change-point Estimation
5 KFDRn ki = dim ki (S
Trivn <ti—a no change occured kn = argmax - A;/ (1)
\/§ d2,n ki, (Zn k)
Tyniyn > ti—a a change occured ) . ’
if a change has indeed occured (Ha4), and
with ¢1_, the a-significance threshold. where k., is the change-point estimator.
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Limiting distribution under Hy : 7, — 0 regime

Proposition

Assume that the kernel is bounded and that for a = 1, 2 the eigenvalues {\,(Xa)}p>1 of
the covariance operatorX satisfy > 7 M/2(24) < 00. Assume in addition Ho,

ie. Px, =P for all 1 <i < n, and that {7, }n>1 is such that

dl»”;"/n (E) _ln_1/2

n _> 0 bl
d27n;"/n (Z)’Y

Yn +

Then,
max Tn;%(k)g sup B®)

an <k<bp u<t<v \/t(l — t) ’

where an/n — u >0 and b,/n — v <1 as n — oo, and {B,(¢)}: is a brownian bridge.

Remark
m Typically : v, — 0 slower than 1//n

2 ) —1/2m —1/4m
m Case AP =Dp ™o dly“la”??’Yn ~ Yn / et d2vn1vn2§7n ~ In /
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Consistency in power

Proposition
Assume that the kernel is bounded and that for a = 1,2 the eigenvalues {\,(24)}p>1
satisfy >°°7 | A}/Q(Ea) < 00, and that the RKHS is dense in L?(P) for all P, and Ha,

. p . .
ie. u <0 <wvwithu>0and v <1 such that Px |00 #+ Px | ox |41 forall 1 <i<n.

Then, in either regularization scheme, for all 0 < a < 1,

KFDRy iy — dim ki (5,
Ph, max kil 1’"lk’W( n.k) >ti_e | 1, asn—oo, (2)
an<k<bn V2 dan,kiy (B

where an/n — u >0 and b,/n — v <1 asn — co.

Remark

Universal density of RKHS satisfied for most translation-invariant kernels

k(z,y) = k(z — y), such as the gaussian kernel (Steinwart, 2006 ; Sriperumbudur et al.,
2008).
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Change-point Analysis

Mental task segmentation : comparison with supervised
methods

Dataset

m Data : 3 normal subjects during 4 non-feedback sessions

m 3 tasks : imagination of repetitive self-paced left hand movements or
right hand movements, and generation of words beginning with the
same random letter

m Features : based on Power Spectral Density

Experimental results

Subject 1 | Subject 2 | Subject 3
KCpA 79% 74% 61%
SVM 76% 69% 60%
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Change-point Analysis

Mental task segmentation : comparison with unsupervised
methods

Dataset

m Data : 3 normal subjects during 4 non-feedback sessions

m 3 tasks : imagination of repetitive self-paced left hand movements or right hand
movements, and generation of words beginning with the same random letter

m Features : based on Power Spectral Density

Experimental results

ROC Curve
1 7N
0.8
. 06
[
2
o
a
0.4
0.2
-6-KCpA
—+— param|
0.1 0.2 0.3 0.4 05

Level
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Conclusion

Kernel learning and regularization

m Extension of mean element/covariance operator analysis to
varying-kernel/multiple kernel settings

m Importance of regularization in unsupervised learning (see
discriminative clustering and detection problems)

Computational efficiency

m efficient large-scale versions of kernel-based unsupervised learning
algorithms

m low-rank approximation suited for particular unsupervised learning
tasks
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