Using geometric information in recognition and scene analysis

Martial Hebert

Carnegie Mellon University

Collaborators

- Aloysha Efros
- Derek Hoiem
- David Lee
- Abhinav Gupta
- Drew Bagnell
- Daniel Munoz
- Nicolas Vandapel

Not Close

- Biederman's relations in a well-formed scene (1981):
 - 1. Support (e.g., a floating fire hydrant). The object does not appear to be resting on a surface.
 - 2. Interposition (e.g., the background appearing through the hydrant). The objects undergoing this
 - violation appear to be transparent or passing through another object.
 - 3. Probability (e.g., the hydrant in a kitchen). The object is unlikely to appear in the scene.
 - Position (e.g., the fire hydrant on top of a mailbox in a street scene). The object is likely to occur in that scene, but it is unlikely to be in that particular position.
 - 5. Size (e.g., the fire hydrant appearing larger than a building). The object appears to be too large or too small relative to the other objects in the scene.

Machine learning box Reasoning

Input image

Set of feature of vectors + additional structure (e.g., geometry, relations) Training data + Geometry, relational information, physics, domain knowledge

tree building foreground road

Conclusion I

• *Qualitative* 3D information can be estimated and can be used effectively

Conclusion II

 Use reasoning/search about multiple hypotheses and interpretations in addition to "standard" learned classifiers

Conclusion II

 Use reasoning/search about multiple hypotheses and interpretations in addition to "standard" learned classifiers

- Guzman (*SEE*), 1968
- Yakimovsky & Feldman, 1973
- Hansen & Riseman (*VISIONS*), 1978
- Barrow & Tenenbaum 1978

- Brooks (ACRONYM), 1979
- Marr, 1982
- Ohta & Kanade, 1978

Then

Now

(a) "windows" and "building"

[(ACT (IF (AND (IS-PLAN *PCH *MRGN) (1) (*VERTICALLY-LONG *PCH)) (THEN (GET-SET *PLSET (PLAN *MRGN) PATCHES) ••••• (2) (AND (ALL-FETCH *WLIKE *PLSET ····· (3) (AND (IS (LABEL *WLIKE) NIL) (*VERTICALLY-LONG *WLIKE))) (ALL-FETCH *WIND *WLIKE ••••• (4) (THERE-IS *WK *WLIKE (*W-RELATION *WIND *WK)))))) (THEN (CONCLUDE P-LABEL B-WINDOW) (FOR-EACH *WIND (AND (MUST-BE *WIND P-LABEL B-WINDOW) (DONE-FOR *WIND))) (SCORE-IS (ADD 2.1 (DIV (NUMBER-OF *WIND) 100.0)))) (*PCH *MRGN)]

Combine "modern" data-driven techniques (e.g., classifiers learned from training data) with knowledge representations and reasoning tools in integrated control structure

(b) listing of the to-do rule for "windows" detection

Levels of 3D-ness

Levels of 3D-ness

Region labels

Qualitative

First attempt: Estimate surface labels

[D. Hoiem, A. A. Efros, and M. Hebert. *Recovering surface layout from an image*. IJCV, 75(1):151–172, 2007]

Cues used to design features

Vanishing points, lines

Color, texture, image location

Texture gradient

Example features

SURFACE CUES

Location and Shape Material L1. Location: normalized x and y, mean L2. Location: norm. x and y, 10^{th} and 90^{th} pctl L3. Location: norm. y wrt estimated horizon, 10th, 90th pctl L4. Location: whether segment is above, below, or straddles estimated horizon L5. Shape: number of superpixels in segment L6. Shape: normalized area in image Color Image Location C1. RGB values: mean igodolC2. HSV values: C1 in HSV space C3. Hue: histogram (5 bins) C4. Saturation: histogram (3 bins) Texture T1. LM filters: mean abs response (15 filters) T2. LM filters: hist. of maximum responses (15 bins) Perspective ightarrowPerspective P1. Long Lines: (num line pixels)/sqrt(area) P2. Long Lines: % of nearly parallel pairs of lines P3. Line Intersections: hist. over 8 orientations, entropy P4. Line Intersections: % right of center P5. Line Intersections: % above center P6. Line Intersections: % far from center at 8 orientations Input to boosted P7. Line Intersections: % very far from center at 8 orientations ightarrowP8. Vanishing Points: (num line pixels with vertical VP membership)/sqrt(area) P9. Vanishing Points: (num line pixels with horizontal VP membership)/sqrt(area) decision tree P10. Vanishing Points: percent of total line pixels with vertical VP membership P11. Vanishing Points: x-pos of horizontal VP - segment center (0 if none) P12. Vanishing Points: y-pos of highest/lowest vertical VP wrt segment center classifier P13. Vanishing Points: segment bounds wrt horizontal VP P14. Gradient: x, y center of gradient mag. wrt. image center

Output

Support

Sky

Using multiple segmentations

Labeled Pixels

Sample outputs

 Learning from image features to depth + MRF: A. Saxena, S. H. Chung, and A. Y. Ng. 3-D depth reconstruction from a single still image. IJCV, 76, 2007.

Stage classes: Nedovic, V., Smeulders, A., Redert, A., Geusebroek, J.: Stages as models of scene geometry. In: PAMI (2010)

Class: corridor

Class: pers+bkg

Class: pers+bkg Class: sky+bkg+gnd

Class: tiltBkg

• S. Divvala, A. Efros, and M. Hebert. Can *Similar Scenes help Surface Layout Estimation? I*EEE Workshop on Internet Vision, 2008.

• Lazebnik, S., Raginsky, M.: An empirical bayes approach to contextual region classification. CVPR 2009.

• M. Szummer, P. Kohli, D. Hoiem. *Learning CRFs using Graph Cuts*. ECCV 2008.

Comments

- Concept of qualitative 3D information from image cues
- Use of multiple segmentations combined with "standard" classifiers

Next....

 Can coarse surface labels be used for improving object recognition and scene analysis performance through better geometric reasoning?

Image

P(viewpoint)

P(object)

P(object | surfaces)

P(object | viewpoint)

General model

Approximate model

Viewpoint

3D Surfaces

Object Detection

Local Car Detector

Local Ped Detector [Dalal-Triggs 2005]

Input Surface Estimates Viewpoint Prior

Car: TP / FP

Final (Global)

Ped: TP / FP

Initial (Local)

• S.Y. Bao, M. Sun, S.Savarese. *Toward Coherent Object Detection* And Scene Layout Understanding. CVPR 2010.

• E. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky. *Depth from Familiar Objects: A Hierarchical Model for 3D Scenes.* CVPR 2006.

• B. Leibe, N. Cornelis, K. Cornelis, and L. Van Gool. *Dynamic 3D Scene Analysis from a Moving Vehicle*. CVPR07

• Is a more precise representation possible?

 For example: We would like to include reasoning about interposition (relations between object relative to a viewpoint induced by occlusion boundaries)

Levels of 3D-ness

+ Boundaries and objects

Qualitative

Using occlusion cues: Depth ordering and depth estimation

Occlusion cues from images

Manual Segmentation

Pb Boundaries

Ground Truth

Output

- M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik. Using Contours to Detect and Localize Junctions in Natural Images. CVPR 2008.
- C. Fowlkes, D. Martin, and J. Malik. Local Figure/Ground Cues are Valid for Natural Images. Journal of Vision 2007.
- D. Martin, C. Fowlkes, and J. Malik. Learning to Detect Natural Image Boundaries Using Brightness and Texture. NIPS 2002.

Occlusion detection as a classification task

[D. Hoiem, A. N. Stein, A. A. Efros, and M. Hebert. Recovering occlusion boundaries from an image. In ICCV, 2007]

Cues from images

Region Cues

Contour Cues

Surface Cues

Support

Porous

Vertical

Sky

Derived cues: Depth ordering

Minimum Depth Interpretation

Maximum Depth Interpretation

Derived cues: Depth ordering

Minimum Depth Interpretation

Current Boundary Estimate

ground/sky labels figure/ground labels ground contact points

Ground contact estimation: Lalonde et al. 2007

Maximum Depth Interpretation

Gradual Inference of Scene Structure

Gradual Inference of Scene Structure

Example

Final Estimate

Depth (Max)

Boundaries, **Foreground/Background, Contact**

Examples

Are 3D cues useful?

Fancy CRF models help a little but not much

	Edge/Region Cues	+ 3D Cues	With CRF
Iter 1	58.7%	71.7%	Not Used
Iter 2	65.4%	75.6%	77.3%
Final	68.2%	77.1%	79.9%
"Reasoning" through iterative reasoning is necessary: Straight classification can't do it		3D cues necessary to boost performance	

Comments

- Qualitative representation of 3D (occlusion relations and relative depth ordering rather than absolute shape)
- Multiple segmentations
- Iterative search through multiple
 hypothesis combined with local classifiers

- We've improved our understanding of the 3D structure of the scene
- Fine, but can we use this to help with scene interpretation as part of a larger reasoning system?

[D. Hoiem, A. A. Efros, and M. Hebert. *Closing the loop on scene interpretation*. In CVPR, 2008]

Surface Maps Depth, Boundaries

- Small improvement of surface labels
- 7-10% improvement of object detections

Separate cues

Input

Surfaces

Occlusion Boundaries

Objects/Horizon

Combined reasoning

Input

Surfaces

Occlusion Boundaries

Objects and Horizon

Separate cues

Surfaces

Occlusion Boundaries

Objects/Horizon

Combined reasoning

Surfaces

Occlusion Boundaries

Objects and Horizon

CVPR'08

Comments

- Plus:
 - Scene geometry (surface geometry and object relations) estimated from image data
 - Scene geometry used explicit in scene understanding
- Minus:
 - Still mostly bottom-up classification approach
 - No use of domain constraints or known laws governing the physical world

Levels of 3D-ness

+ Boundaries and objects

Stronger geometric constraints from domain knowledge

Qualitative

More quantitative more precise

Example

- Using constraints induced by man-made environments in interpreting images
- Examples: Manhattan world, limited vocabulary of object configurations, etc.

D. Lee, T. Kanade, M. Hebert. Geometric Reasoning for Single Image Structure Recovery. CVPR09. (+ under review, 2010)

Constraint: Manhattan world assumption

 Three dominant directions corresponding to three "orthogonal" vanishing points

Line Drawing Interpretation (1970~)

Labeled Line drawings

+

12 Possible Junctions

Geometric reasoning on corners

Geometric reasoning on corners

World Model

Manhattan World

[Delage et al. CVPR'06, Kosecka et al. CVIU'05, Coughlan & Yuille Neural Computation'03]

Dictionary

Recovering Structure

Detect line segments Estimate vanishing points

J. Coughlan and A. Yuille. Manhattan world: Compass direction from a single image by bayesian inference. In Proceedings ICCV, 1999. J. Kosecka andW. Zhang. Video compass. In Proceedings of European Conference on Computer Vision, pages 657 – 673, 2002.

3. Generate scene hypotheses

4. Evaluate scene hypotheses

Evaluating scene hypotheses

[Lee et al. CVPR'09]

Evaluated on data from UIUC (Hoiem) and BC (Yu)

Constraints: Solid objects must satisfy physical constraints

- Finite volume
- Spatial exclusion

Why more constraints? Volume vs. surface reasoning

Relative improvement on surface labeling >10% on UIUC data set

 Iterative grouping: X. Yu, Hao Zhang, and Jitendra Malik. Inferring Spatial Layout from A Single Image via Depth-Ordered Grouping. Workshop on Perceptual Organization in Computer Vision, 2008.

 Fusion line features + surface labels: V. Hedau, D. Hoiem, D.Forsyth. Recovering the Spatial Layout of Cluttered Rooms. ICCV09.

 Line and color features + MRF: E. Delage, H. Lee, and A. Y. Ng. Automatic Single-Image 3d Reconstructions of Indoor Manhattan World Scenes. ISRR05.

 Hypothesis generation and verification: D. Lee, T. Kanade, M. Hebert. Geometric Reasoning for Single Image Structure Recovery. CVPR09. (+ NIPS 2010)

Comments

- Plus:
 - Added explicit reasoning about domain constraints
 - Combine reasoning through multiple hypotheses with learning task
- Minus:
 - Relies mostly on top-down constraint satisfaction with limited use of bottom-up learned models
 - Incorporates specific domain knowledge about geometry, little knowledge about other constraints of the real world

Levels of 3D-ness

Moving along: From surfaces to objects

Qualitative 3D surface model

Moving along: From surfaces to objects

- But the world is not a set of surfaces
- It is a set of solid objects
- First approximation: solid objects = blocks
- We can define a richer set of constraints once we recognize that the world is populated by solid objects

[A. Gupta, A. Efros, and M. Hebert. *Blocks World Revisited: Image Understanding Using Qualitative Geometry and Mechanics.* ECCV 2010]

Before

Physical constraints 1. Volumetric constraint: Surfaces must form (partially visible) blocks

Physical constraints

2. Static equilibrium

Physical constraints 3. Internal stability

Initialize: Estimate cues from image

Iterate: Place blocks in the scene one by one
Building Blocks World

Original Image

Input Surface Layout

Input Segmentations

Surface Orientations

3D Rendering

3D Parse Graph

Original Image

Input Surface Layout

Surface Orientations

3D Rendering

3D Parse Graph

• Approach combines:

- Multiple segmentations
- Set of bottom-up learned classifiers, each with a well-defined, "simple" task
- Control structure to enable search through combinatorial set of hypothesis

[See also: Munoz ECCV2010]

- Guzman (*SEE*), 1968
- Yakimovsky & Feldman, 1973
- Hansen & Riseman (*VISIONS*), 1978
- Barrow & Tenenbaum 1978

- Brooks (ACRONYM), 1979
- Marr, 1982
- Ohta & Kanade, 1978

• *Stochastic grammars:* Zhu, S., Mumford, D.: A stochastic grammar of images. In: Found. and Trends. In Graph. and Vision (2006)

• 2D labeling:

Gould, S., Fulton, R., Koller, D.: Decomposing a scene into geometric and semantically consistent regions. In: ICCV (2009)

sky

tree

road

vert.

Levels of 3D-ness sky above Prob. Med Point-Prob. Med. Point Ground upporte XXTTTT **3D Parse Graph Region labels** + Boundaries Stronger geometric + constraints from **3D** point clouds and objects constraints from statics of solids domain knowledge More quantitative Qualitative **Explicit** more precise

An exercise in using explicit 3D data

- What if we have explicit 3D data (from stereo, SFM, or other sensors)?
- How far can we go in scene interpretation from 3D data only?
- Can we adapt reasoning or classification tools from the image domain?

Motivation

- Specialized sensors available in robotics applications
- Cheap depth cameras
- Large-scale Structure From Motion (SFM) systems

Snavely et al. ICCV'09

Ground truth labels

General approach

- What features and classifiers?
- What neighborhood and scale?
- What model for grouping and consistency?

Example [anguelov-cvpr-05, triebel-icra-06, triebel-ijcai-07]

SVM

M3N

Spectral features (inspired from tensor voting work)

- Directional features from tangent/normal
 - How to select scale: Unnikrishnan et al., "Scale Selection for Geometric Fitting in Noisy Point Clouds", IJCGA 2010.
 - How to deal with unstructured point clouds: Lalonde et al., "Data Structures for Efficient Dynamic Processing in 3-D", IJRR 2007.

$$\begin{array}{c} \textbf{Model} \\ \textbf{P}(\textbf{y} \mid \textbf{x}) = \frac{1}{Z} \prod_{i} \varphi(\textbf{y}_{i}, \textbf{x}_{i}) \prod_{ij} \varphi(\textbf{y}_{i}, \textbf{y}_{j}, \textbf{x}_{ij}) \\ \textbf{Labels} \quad \textbf{Data} \\ \end{array}$$
Features of node *i* Features of relationship between *i* and *j*

AMN: Potentials favor all variables in the clique to take the same assignment of labels:

Learn w by maximizing P(y|x) over training data (Taskar'04)

model:

$$\log \varphi_{ij}(k,l) = 0 \ k \neq l$$

$$\log \varphi_{ij}(k,k) = w_e^{k,\theta} \underbrace{x_{ij}}_{k,ij} \qquad \begin{array}{l} \text{Directional model:} \\ \text{Even more} \\ \text{parameters to learn} \end{array}$$

D. Munoz, N. Vandapel, and M. Hebert. Directional AMN for 3D point cloud classification. In 3DPVT, 2008.

Larger support regions

 $P(y \mid x) = \frac{1}{Z} \prod_{i} \varphi(y_{i}, x_{i}) \prod_{ij} \varphi(y_{i}, y_{j}, x_{ij}) \prod_{c} \varphi(y_{c}, x)$ Inference possible with appropriate φ (Pⁿ Potts model) [Kohli *et al.* 2007, 2008]

Larger support regions

Elevation coded point cloud

Regions from oversegmentation

min w <u>all</u> labelings (+margin)

• Convex program [Taskar et al. ICML'04]

• *Subgradient* [N. Ratliff, J. Bagnell, and M. Zinkevich. Online subgradient methods for structured prediction. In AISTATS, 2007]

<u>Best</u> score over <u>all</u> labelings (+*margin*)

min

W

- Convex program [Taskar et al. ICML'04]
- *Subgradient* [Ratliff *et al.* AIStats'07]

$$w_{t+1} \leftarrow w_t + \alpha g_w$$

• *Functional subgradient* [N. Ratliff, D. Bradley, J. Bagnell, and J. Chestnutt. *Boosting structured prediction for imitation learning*. NIPS, 2007; D. Munoz, J. Bagnell, N. Vandapel, *Contextual Classification with Functional Max-Margin Markov Networks*. CVPR'09]

$$\varphi_{t+1} \leftarrow \varphi_t + \alpha_t h_t$$

 h_t trained to:

increase the score of correctly classified nodes decrease the score of incorrectly classified nodes Efficient + enables more general potential

<u>Best</u> score over <u>all</u> labelings (+*margin*)

min

W

Score with ground truth labeling

- Convex program [Taskar et al. ICML'04]
- Subgradient [Ratliff et al. AIStats'07]

 $w_{t+1} \leftarrow w_t + \alpha g_w$

• *Functional subgradient* [Ratliff *et al.* NIPS'07, Munoz *et al.* CVPR'09]

 h_t trained to: $\varphi_{t+1} \leftarrow \varphi_t + \alpha_t h_t$

increase the score of correctly classified nodes decrease the score of incorrectly classified nodes Efficient + enables more general potential

Gradient Tree Boosting for CRFs [Dietterich *et al.* 2004]; Boosted Random Fields [Torralba*et al.* 2004]; Virtual Evidence Boosting for CRFs [Liao *et al.* 2007]

Key issues

- Unstructured geometric data
- Incremental processing
- Efficient, online computation
- Alternate learning/inference models
- Un/Semi-supervised learning
- Online learning and adaptation
- Data fusion

- Aloysha Efros
- Derek Hoiem
- David Lee
- Abhinav Gupta
- Drew Bagnell
- Daniel Munoz
- Nicolas Vandapel