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• Biederman’s relations in a well-formed scene (1981):
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Conclusion I
• Qualitative 3D information can be 

estimated and can be used effectively

vv

from [Sinha and Adelson 1993]





Conclusion II

• Use reasoning/search about multiple 
hypotheses and interpretations in addition 
to “standard” learned classifiers

Image cues

ML box:
Interpretation from 
learned models

Interpretation



Conclusion II

• Use reasoning/search about multiple 
hypotheses and interpretations in addition 
to “standard” learned classifiers

Image cues

ML box:
Individual classifiers

Interpretation

Reason about 
multiple hypothesis

Hypothesis generation

Iterate



• Guzman (SEE), 1968

• Yakimovsky & Feldman, 1973

• Hansen & Riseman
(VISIONS), 1978

• Barrow & Tenenbaum 1978

• Brooks (ACRONYM), 1979

• Marr, 1982

• Ohta & Kanade, 1978

[Ohta & Kanade 1978]



• Combine “modern”
data-driven 
techniques (e.g., 
classifiers learned 
from training data) 
with knowledge 
representations and 
reasoning tools in 
integrated control 
structure

[Ohta & Kanade 1978]

Then Now
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First attempt: Estimate surface labels

[D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface

layout from an image. IJCV, 75(1):151–172, 2007]
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Cues used to design features

Vanishing points, lines

Color, texture, image location

Texture gradient 



Example features

• Material

• Image Location

• Perspective

• Input to boosted 
decision tree 
classifier



Output

Support Vertical Sky

V-Left V-Center V-Right V-Porous V-Solid



Using multiple segmentations

…

…

Labeled Pixels



Sample outputs

Main Class: 88.1%

Subclasses: 61.5%





• Learning from image features to depth + MRF: A. Saxena, S. H. 
Chung, and A. Y. Ng. 3-D depth reconstruction from a single still 
image. IJCV, 76, 2007.



• Stage classes: Nedovic, V., Smeulders, A., Redert, A., Geusebroek, 
J.: Stages as models of scene geometry. In: PAMI (2010)



• S. Divvala, A. Efros, and M. Hebert. Can Similar Scenes help Surface 
Layout Estimation?  IEEE Workshop on Internet Vision, 2008. 

• Lazebnik, S., Raginsky, M.: An empirical bayes approach to contextual 
region classification. CVPR 2009.



• M. Szummer, P. Kohli, D. Hoiem. Learning CRFs using Graph Cuts.  
ECCV 2008.



Comments

• Concept of qualitative 3D information from 
image cues

• Use of multiple segmentations combined 
with “standard” classifiers



Next….

• Can coarse surface labels be used for 
improving object recognition and scene 
analysis performance through better 
geometric reasoning?



Image

P(object) P(object | surfaces)

P(surfaces) P(viewpoint)

P(object | viewpoint)



Image

P(object | surfaces, viewpoint)
P(object)

P(surfaces) P(viewpoint)



General model

Objects

3D SurfacesCamera Viewpoint



Approximate model

Objects

3D SurfacesViewpoint



Input
Surface Estimates Viewpoint Prior

Local Car Detector

Local Ped Detector

Object Detection

[Dalal-Triggs 2005]



4 TP / 2 FP

3 TP / 2 FP

4 TP / 1 FP

4 TP / 0 FP

Car: TP / FP

Ped: TP / FP

Initial (Local) Final (Global)

[D. Hoiem, A. Efros, M. Hebert. Putting objects in perspective. IJCV 2009]



• S.Y. Bao, M. Sun, S.Savarese. Toward Coherent Object Detection 
And Scene Layout Understanding. CVPR 2010.



• E. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky. Depth from 
Familiar Objects: A Hierarchical Model for 3D Scenes. CVPR 2006.

• B. Leibe, N. Cornelis, K. Cornelis, and L. Van Gool.  Dynamic 3D Scene 
Analysis from a Moving Vehicle. CVPR07



• Is a more precise representation possible?

• For example: We would like to include 
reasoning about interposition (relations 
between object relative to a viewpoint 
induced by occlusion boundaries)
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Using occlusion cues: Depth 

ordering and depth estimation

Depth estim
ate fro

m 

ground intersection

Depth ordering fro
m 

occlusion relations

[Labelme, Russel
et al., 2007]



Occlusion cues from images

• M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik. Using Contours to 
Detect and Localize Junctions in Natural Images. CVPR 2008.

• C. Fowlkes, D. Martin, and J. Malik. Local Figure/Ground Cues are 
Valid for Natural Images. Journal of Vision 2007.

• D. Martin, C. Fowlkes, and J. Malik. Learning to Detect Natural 
Image Boundaries Using Brightness and Texture. 
NIPS 2002.

Pb Boundaries

Manual Segmentation

Output

Ground Truth



region1 occludes

region2 occludes

non-occlusion

region1

region2

region3

junction

Occlusion detection as a 

classification task

[D. Hoiem, A. N. Stein, A. A. Efros, and M. Hebert. Recovering
occlusion boundaries from an image. In ICCV, 2007]



Cues from images

Region 

Cues

Contour 

Cues

Vertical Sky

Support Porous

Surface Cues



Derived cues: Depth ordering

Sky

Ground

Maximum Depth Interpretation

Minimum Depth Interpretation



Derived cues: Depth ordering

Minimum Depth Interpretation

Maximum Depth Interpretation

Current Boundary Estimate

ground/sky labels 

figure/ground labels 
ground contact points

Ground contact estimation: Lalonde et al. 2007

+



Gradual Inference of Scene Structure

Learned Models 
CRF Inference

P(occlusion)Next Segmentation

Input Image Oversegmentation Occlusion Cues



Gradual Inference of Scene Structure

Learned Models 
CRF Inference

P(occlusion)Next Segmentation

Input Image Oversegmentation Occlusion Cues



Example

1st Iteration 2nd Iteration 3rd Iteration



Final Estimate

Boundaries, 

Foreground/Background, Contact

Depth (Max)

Depth (Min)



Examples





Are 3D cues useful?

Edge/Region Cues + 3D Cues With CRF

Iter 1 58.7% 71.7% Not Used

Iter 2 65.4% 75.6% 77.3%

Final 68.2% 77.1% 79.9%

“Reasoning” through iterative 

reasoning is necessary: Straight 

classification can’t do it

3D cues necessary to boost 

performance

Fancy CRF models help a little 

but not much



Comments

• Qualitative representation of 3D (occlusion 
relations and relative depth ordering rather 
than absolute shape)

• Multiple segmentations

• Iterative search through multiple 
hypothesis combined with local classifiers



• We’ve improved our understanding of the 
3D structure of the scene

• Fine, but can we use this to help with 
scene interpretation as part of a larger 
reasoning system? 

[D. Hoiem, A. A. Efros, and M. Hebert. Closing the loop on

scene interpretation. In CVPR, 2008]



Scene Analysis Processes

Surface Orientation

Object/Viewpoint
Occlusion/Depth

Input Image

Intrinsic 
Images

[Barrow and Tenenbaum 1978]
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Iter 1

Iter 2

Final

• Small improvement of surface labels

• 7-10% improvement of object detections



Separate cues

Input Surfaces

Objects/HorizonOcclusion Boundaries



Combined reasoning

Input Surfaces

Objects and HorizonOcclusion Boundaries



Separate cues

Input Surfaces

Objects/HorizonOcclusion Boundaries



Combined reasoning

Input Surfaces

Objects and HorizonOcclusion Boundaries



CVPR’08



Comments

• Plus:

– Scene geometry (surface geometry and 

object relations) estimated from image data

– Scene geometry used explicit in scene 

understanding

• Minus:

– Still mostly bottom-up classification approach

– No use of domain constraints or known laws 

governing the physical world
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Example

• Using constraints induced by man-made 
environments in interpreting images

• Examples: Manhattan world, limited 
vocabulary of object configurations, etc.

2

5

6

7

8

D. Lee, T. Kanade, M. Hebert. Geometric Reasoning for Single Image 
Structure Recovery. CVPR09. (+ under review, 2010)



Constraint: Manhattan world assumption
• Three dominant directions corresponding to 

three “orthogonal” vanishing points
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Line Drawing Interpretation (1970~)

12 Possible JunctionsLabeled Line drawings





Geometric reasoning on corners

4 Possible Corners 4 Possible Corners4 Possible Corners



Geometric reasoning on corners

Impossible

Possible



World Model
• Manhattan World

[[Delage et al. CVPR’06, Kosecka et al. CVIU’05, Coughlan & Yuille Neural Computation’03]



Dictionary

Concave (-) Convex (+) Occluding (>)

Combination



Recovering Structure

1. Detect line segments

2. Estimate vanishing points

3. Generate scene hypotheses

4. Evaluate scene hypotheses

J. Coughlan and A. Yuille. Manhattan world: Compass direction from a single image by 
bayesian inference.  In Proceedings ICCV, 1999.

J. Kosecka andW. Zhang. Video compass. In Proceedings of  European Conference on 

Computer Vision, pages 657 – 673, 2002.



Generating Hypotheses



Generating Hypotheses



Generating Hypotheses



Generating Hypotheses



Generating Hypotheses



Generating Hypotheses



Generating Hypotheses



Generating Hypotheses



Generating Hypotheses



Generating Hypotheses



Generating Hypotheses



Evaluating scene hypotheses



[Lee et al. CVPR’09]



Evaluated on data 

from UIUC (Hoiem) 

and BC (Yu)





Constraints: Solid objects must 

satisfy physical constraints

• Finite volume

• Spatial exclusion

• Containment



Why more constraints? Volume vs. 

surface reasoning

Input image

Spatial layout without

object reasoning

Object fitted with

parametric model
Spatial layout with 3D 

volumetric reasoning

Object removed Spatial layout with 2D 

object reasoning



Input image Line segments and 

Vanishing points
Room hypotheses

Object hypothesesOrientation mapGeometric context

Scene configuration hypothesesEvaluate
Final scene 

configuration

Reject invalid

configurations



Input image Line segments and 

Vanishing points
Room hypotheses

Cube hypothesesOrientation mapGeometric context

Scene configuration hypotheses

Reject invalid

configurations

Evaluate
Final scene 

configuration

What cost function should be used to evaluate 
an hypothesis?
• Learn an evaluation function from training data



Relative improvement on surface labeling >10% on UIUC data set





• Iterative grouping: X. Yu, Hao Zhang, and Jitendra Malik. Inferring 
Spatial Layout from A Single Image via Depth-Ordered Grouping. 
Workshop on Perceptual Organization in Computer Vision, 2008. 

• Fusion line features + surface labels: V. Hedau , D. 
Hoiem, D.Forsyth. Recovering the Spatial Layout of Cluttered 
Rooms. ICCV09.



• Line and color features + MRF: E. Delage, H. Lee, and A. Y. Ng. 
Automatic Single-Image 3d Reconstructions of Indoor Manhattan 
World Scenes. ISRR05.

• Hypothesis generation and verification: D. Lee, T. Kanade, M. 
Hebert. Geometric Reasoning for Single Image Structure Recovery.
CVPR09. (+ NIPS 2010)



Comments

• Plus:
– Added explicit reasoning about domain 

constraints
– Combine reasoning through multiple hypotheses 

with learning task

• Minus:
– Relies mostly on top-down constraint satisfaction 

with limited use of bottom-up learned models
– Incorporates specific domain knowledge about 

geometry, little knowledge about other constraints 
of the real world



Levels of 3D-ness

Qualitative
More quantitative 

more precise

Region labels + Boundaries 

and objects

Stronger geometric 

constraints from 

domain knowledge

+ constraints from 

statics of solids

3D point clouds

Explicit



Moving along: From surfaces to objects

VERTICAL

SKY

SUPPORT

Qualitative 3D surface model



Moving along: From surfaces to objects

• But the world is not a set of surfaces

• It is a set of solid objects 

• First approximation: solid objects = blocks

• We can define a richer set of constraints once we 
recognize that the world is populated by solid objects

[A. Gupta, A. Efros, and M. Hebert. Blocks World Revisited: Image 
Understanding Using Qualitative Geometry and Mechanics. ECCV 2010]



Before Now



Physical constraints
1. Volumetric constraint: Surfaces must 

form (partially visible) blocks

Popup (Occlusion)

Physicality of object binds 

the surface



Physical constraints
2. Static equilibrium



Physical constraints
3. Internal stability

Light Bottom



Geometry
HeavyLight

Density

Bag of 

Segments

Sky

Facing Right

Frontal

Facing Left

Porous

Solid

Ground

Initialize: Estimate cues 
from image

Iterate: Place blocks in 
the scene one by one



Hypothesis Evaluation

(a) Current Configuration

(h) New Configuration

(f) Split and Merge Proposals

(c) Estimate Geometric Attributes (d) Estimate Physical Stability

Contact 

Force

r2

(e) Estimate Depth Order

Closer

Farther

viewpoint

(b)

viewpoint

Building Blocks World



3D Rendering

Input Image

3D Parse Graph

Ground

Sky

Probably Medium
On-top-of & 

Supported by Point-supported by

above

viewpoint
Heavy

//

Heavy

viewpoint

Heavy

viewpoint

On-top-of & 

Supported by

infront-of

infront-of

above

above

Blocks World

http://www.cs.cmu.edu/~abhinavg/blocksworld/



http://www.cs.cmu.edu/~abhinavg/blocksworld/



http://www.cs.cmu.edu/~abhinavg/blocksworld/



http://www.cs.cmu.edu/~abhinavg/blocksworld/



• Approach combines:

• Multiple segmentations
• Set of bottom-up learned classifiers, each with a well-defined, 

“simple” task

• Control structure to enable search through combinatorial set 
of hypothesis

Geometry
HeavyLight

Density

Bag of Segments

Sky

Facing Right

Frontal

Facing Left

Porous

Solid

Ground

[See also: Munoz ECCV2010]



• Guzman (SEE), 1968

• Yakimovsky & Feldman, 1973

• Hansen & Riseman
(VISIONS), 1978

• Barrow & Tenenbaum 1978

• Brooks (ACRONYM), 1979

• Marr, 1982

• Ohta & Kanade, 1978

[Ohta & Kanade 1978]



• Stochastic grammars: Zhu, S., Mumford, D.: A 
stochastic grammar of images. In: Found. and 
Trends. In Graph. and Vision (2006)



• 2D labeling: 

Gould, S., Fulton, R., Koller, D.: Decomposing a scene into geometric 
and semantically consistent regions. In: ICCV (2009)
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+ constraints from 
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3D point clouds

Explicit

3D point clouds



An exercise in using explicit 3D data

• What if we have explicit 3D data (from stereo, 
SFM, or other sensors)?

• How far can we go in scene interpretation from 3D 
data only?

• Can we adapt reasoning or classification tools 
from the image domain?



Snavely et al. ICCV’09

Motivation

• Specialized sensors available in robotics 
applications

• Cheap depth cameras

• Large-scale Structure From Motion (SFM) systems



Ground truth labels

Wire Load bearing

Shrub

Pole/trunk

FacadeVehicle Foliage

Cross-armPaved road Traffic lights



General approach

• What features and classifiers? 
• What neighborhood and scale?
• What model for grouping and consistency?

Features

Classifier

Grouping



Example [anguelov-cvpr-05, triebel-icra-06, triebel-ijcai-07]

SVM M3N



λ0 ≈ λ1 ≈ λ2 λ0 ≈ λ1 >> λ2 λ0 >> λ1 ≈ λ2

λ2

λ0

λ1
λ0

λ1

λ2

σpoint= λ0 σsurface= λ1 – λ2 σlinear= λ0 – λ1

Features

• Spectral features (inspired from tensor voting work)

• Directional features from tangent/normal
– How to select scale: Unnikrishnan et al., “Scale Selection for 

Geometric Fitting in Noisy Point Clouds”, IJCGA 2010.
– How to deal with unstructured point clouds: Lalonde et al., “Data 

Structures for Efficient Dynamic Processing in 3-D”, IJRR 2007.
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Model

Features of node i Features of relationship 
between i and j

( ) ( )∏∏=
ij

ijji

i

ii xyyxy
Z

xyP ,,,
1

)|( ϕϕ

Labels Data

( ) lklkij ≠= 0,logϕ

( ) ij

k

eij xwkk .,log =ϕ

( ) i

k

ni xwk .log =ϕ

Learn w by maximizing 

P(y|x) over training data

(Taskar’04)

AMN: Potentials favor all 

variables in the clique to take 

the same assignment of labels:

( ) ij

k

eij xwkk .,log ,θϕ = Directional model: 
Even more 

parameters to learn



Standard AMN

D. Munoz, N. Vandapel, and M. Hebert. Directional AMN for 3D
point cloud classification. In 3DPVT, 2008.





Model

Features of node i Features of relationship 
between i and j
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Larger support regions

( ) ( ) ( )∏∏∏=
c

c

ij

ijji

i

ii xyxyyxy
Z

xyP ,,,,
1

)|( ϕϕϕ

c

Inference possible with appropriate ϕ (Pn

Potts model) [Kohli et al. 2007, 2008] 



Larger support regions

Elevation coded 

point cloud

Regions from over-

segmentation



Best score over 
all labelings 

(+margin)

Score with ground truth 
labeling

min
w

• Convex program [Taskar et al. ICML’04]

• Subgradient [N. Ratliff, J. Bagnell, and M. Zinkevich. Online 

subgradient methods for structured prediction. In AISTATS, 2007]

wt+1  wt +αgw



Best score over 
all labelings 

(+margin)

Score with ground truth 
labeling

min
w

• Convex program [Taskar et al. ICML’04]

• Subgradient [Ratliff et al. AIStats’07]

wt+1  wt +αgw

• Functional subgradient [N. Ratliff, D. Bradley, J. Bagnell, and J. 

Chestnutt. Boosting structured prediction for imitation learning. NIPS, 2007; D. 

Munoz, J. Bagnell, N. Vandapel, Contextual Classification with Functional 

Max-Margin Markov Networks. CVPR’09]

ϕt+1  ϕt +αtht
ht trained to: 

increase the score of correctly classified nodes

decrease the score of incorrectly classified nodes

Efficient + enables more general potential



Best score over 
all labelings 

(+margin)

Score with ground truth 
labeling

min
w

• Convex program [Taskar et al. ICML’04]

• Subgradient [Ratliff et al. AIStats’07]

wt+1  wt +αgw

• Functional subgradient [Ratliff et al. NIPS’07, Munoz et al. 

CVPR’09]

ϕt+1  ϕt +αtht
ht trained to: 

increase the score of correctly classified nodes

decrease the score of incorrectly classified nodes

Efficient + enables more general potential

Gradient Tree Boosting for CRFs [Dietterich et al. 2004]; 
Boosted Random Fields [Torralbaet al. 2004]; Virtual 

Evidence Boosting for CRFs [Liao et al. 2007]



• “sweeping”

3DPVT 2008









Parametric Functional (this work)



Key issues

• Unstructured geometric data

• Incremental processing

• Efficient, online computation

• Alternate learning/inference models

• Un/Semi-supervised learning

• Online learning and adaptation

• Data fusion
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