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Stimuli from Hock, Romanski, Galie, and Williams (1978).

« Biederman’s relations in a well-formed scene (1981):

|. Support (e.g., a floating fire hydrant). The object does not appear to be resting on a surface.

2. Interposition (e.g., the background appearing through the hydrant). The objects undergoing this
violation appear to be transparent or passing through another object. ’

3. Probability (e.g., the hydrant in a kitchen). The object is unlikely to appear in the scene.

4. Position (¢.g., the fire hydrant on top of a mailbox in a street scene). The object is likely to occur
in that scene, but it is unlikely to be in that particular position.

5. Size (e.g., the fire hydrant appearing larger than a building). The object appears to be too large
or too small relative to the other objects in the scene.
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Conclusion |

» Qualitative 3D information can be
estimated and can be used effectively

from [Sinha and Adelson 1993]
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Conclusion I

« Use reasoning/search about multiple
hypotheses and interpretations in addition
to “standard” learned classifiers

ML box:
Image cues Interpretation from Interpretation
learned models




Conclusion I

« Use reasoning/search about multiple
hypotheses and interpretations in addition
to “standard” learned classifiers

Reason about
multiple hypothesis

ML box:
Individual classifiers
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INTENSITY)(SATURATION

(a) Bottom-up process (b) Top-down process (c) Result

[Ohta & Kanade 1978]

Guzman (SEE), 1968 « Brooks (ACRONYM), 1979
Yakimovsky & Feldman, 1973 Marr, 1982

Hansen & Riseman .
(VISIONS), 1978 Ohta & Kanade, 1978

Barrow & Tenenbaum 1978




© dlstance
comparable to
Wilrfow E1Ees

wrsest - [Ohta & Kanade 1978]

la} "windowe® and “building”

L{ACT (IF (AND {I5-PLAN *PCH *MRGH)
f*UERT CALLY-LONG *PCH)
[THEN {BET=-5ET *PLSET fPLHH *MPuN] PATCHES)
[AND [ALL-FETCH *WLIKE *PLSET
[AND (IS [LABEL *WLIKE} WIL)
{* u=H|1rALLT LONG HLIkEIJJ
(ALL-FETCH *WIND *WLIKE sememen
(THERE=I5 *WK *WLIKE
[*M-HELATION *WIND *WE)})1))
{THEN {COMCLUDE P-LABEL B-WINDOW)

[ FOR-EACH *WIND {AND [MUST-BE *WIND P-LABEL Eb=i LHDDW )

[DONE-FOR *WIND}))
VSCORE-15 (ADD 2.1 (DIV [NUMBER-OF *WIND) 100.0}))))

(*PCH *MREN) ]

(2} listing of the to-do rule for "Windows® datection

Now

Combine “modern”
data-driven
techniques (e.g.,
GESSHEICREEGE
from training data)
with knowledge
representations and
reasoning tools in
integrated control
structure




Levels of 3D-ness

More quantitative

" Qualitative more precise

Explicit




Levels of 3D-ness

Region labels

Qualitative




First attempt: Estimate surface labels

[D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface
layout from an image. |JCV, 75(1):151-172, 2007]
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Training data

Classification




Cues used to design features

EMercdith L. Clausen 1985 i = ;'-
i —

Vanishing points, lines




Exam

Material

Image Location

Perspective

Input to boosted
decision tree
classifier

ple features

SURFACE CUES

Location and Shape

L1. Location: normalized x and y, mean

L2. Location: norm. x and v, 10" and 90*" pctl

L3. Location: norm. y wrt estimated horizon, 10", 90" petl
L4. Location: whether segment is above, below, or straddles estimated horizon
L5. Shape: number of superpixels in segment

L6. Shape: normalized area in image

Color

C1. RGB values: mean

C2. HSV values: C1 in HSV space
C3. Hue: histogram (5 bins)

C4. Saturation: histogram (3 bins)

Texture
T1. LM filters: mean abs response (15 filters)
T2. LM filters: hist. of maximum responses (15 bins)

Perspective

P1. Long Lines: (num line pixels)/sqrt(area)

P2. Long Lines: % of nearly parallel pairs of lines

P3. Line Intersections: hist. over § orientations, entropy
P4. Line Intersections: % right of center

P5. Line Intersections: % above center

P6. Line Intersections: % far from center at 8 orientations
P7. Line Intersections: % very far from center at 8 orientations

P8. Vanishing Points: (num line pixels with vertical VP membership)/sqrt(area)
P9. Vanishing Points: (num line pixels with horizontal VP membership)/sqrt(area)
P10. Vanishing Points: percent of total line pixels with vertical VP membership
P11. Vanishing Points: x-pos of horizontal VP - segment center (0 if none)

P12. Vanishing Points: y-pos of highest/lowest vertical VP wrt segment center

. Vanishing Points: segment bounds wrt horizontal VP

. Gradient: x, y center of gradient mag. wrt. image center
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Using multiple segmentations

Labeled Pixels




Sample outputs

Main Class: 88.1%
Subclasses: 61.5%







Learning from image features to depth + MRF: A. Saxena, S. H.
Chung, and A. Y. Ng. 3-D depth reconstruction from a single still
image. IJCV, 76, 2007.




Stage classes: Nedovic, V., Smeulders, A., Redert, A., Geusebroek,
J.: Stages as models of scene geometry In PAI\/II (2010)

Class: pers+bkg Class: sk}r+bkg+gnd Class: tiltBkg Class: corridor

Class: pers+bkg Class: sky+bkg+gnd Class: tiltBkg




S. Divvala, A. Efros, and M. Hebert. Can Similar Scenes help Surface
Layout Estimation? [EEE Workshop on Internet Vision, 2008.

Lazebnik, S- Raginsky, M.: An empirical bayes approach to contextual
region classification. CVPR 20009.

b 'll eround right

B .

68.977% B7.66% eround solid porous right



M. Szummer, P. Kohli, D. Hoiem. Learning CRFs using Graph Cuts.
ECCV 2008.




Comments

« Concept of qualitative 3D information from
iImage cues

» Use of multiple segmentations combined
with “standard” classifiers




Next....

» Can coarse surface labels be used for
iImproving object recognition and scene
analysis performance through better
geometric reasoning?
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P(object) | | P(object | surfaces, viewpoint)




General model
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Approximate model
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Input

Object Detection Surface Estimates  Viewpoint Prior

Local Ped Detector”
[Dalal-Triggs 2005]




Car: TP/ FP
Ped: '~ /FP

Initial (Local) Final (Global)
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[D. Hoiem, A. Efros, M. Hebert. Putting objects in perspective. [JCV 2009]




S.Y. Bao, M. Sun, S.Savarese. Toward Coherent Object Detection
And Scene Layout Understanding. CVPR 2010.

(b) Detection Candidates

Py v:—__-.,.‘-. =
Joint Object Detection and

Scene Layout Estimation




« E. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky. Depth from
Familiar Objects: A Hierarchical Model for 3D Scenes. CVPR 2006.

B. Leibe, N. Cornelis, K. Cornelis, and L. Van Gool. Dynamic 3D Scene
Analysis from a Moving Vehicle. CVPRO7




* |s a more precise representation possible?

» For example: We would like to include
reasoning about interposition (relations
between object relative to a viewpoint
induced by occlusion boundaries)




Lev‘els of 3D-ness

w

Region labels + Boundaries
and objects

Qualitative




Using occlusion cues: Depth
ordering and depth estimation




OCCIUSlon cues from |mages

Pb Boundaries

M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik. Using Contours to
Detect and Localize Junctions in Natural Images. CVPR 2008.

C. Fowlkes, D. Martin, and J. Malik. Local Figure/Ground Cues are
Valid for Natural Images. Journal of Vision 2007.

D. Martin, C. Fowlkes, and J. Malik. Learning to Detect Natural
Image Boundaries Using Brightness and Texture.
NIPS 2002.




Occlusion detection as a
classification task

regiong
\l.
junction

\

‘non-occlusion
region, occludes
_region, occludes

[D. Hoiem, A. N. Stein, A. A. Efros, and M. Hebert. Recovering
occlusion boundaries from an image. In ICCV, 2007]




Cues from images

Surface Cues

Support Porous

Contour [ e T~ R e f
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Derived cues: Depth ordering
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Current Boundary Estimate

+
ground/sky labels
figure/ground labels
ground contact points

Ground contact estimation: Lalonde et al. 2007 Maximum Depth Interpretation




Gradual Inference of Scene Structure
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Input Image Oversegmentation Occlusion Cues

Learned Models
CRF Inference

Next Segmentation P(occlusion)




Gradual Inference of Scene Structure

Occlusion Cues

Learned Models
CRF Inference

Next Segmentation P(occlusion)




1st [teration 2d |teration lteration




Final Estimate

Depth (Min)

Boundaries, i Depth (Max)
Foreground/Background, Contact




Examples
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Are 3D cues useful?

Fancy CRF models help a little
but not much

Edge/Region Cues With CRF

58.7% . Not Used

65.4% \ 77.3%

68.2% 79.9%

“Reasoning” through iterative
reasoning is necessary: Straight
classification can’t do it

3D cues necessary to boost
performance




Comments

« Qualitative representation of 3D (occlusion
relations and relative depth ordering rather
than absolute shape)

* Multiple segmentations

* lterative search through multiple
hypothesis combined with local classifiers




« We've improved our understanding of the
3D structure of the scene

Fine, but can we use this to help with

scene interpretation as part of a larger
reasoning system?

[D. Hoiem, A. A. Efros, and M. Hebert. Closing the loop on
scene interpretation. In CVPR, 2008]




Scene Analysis Processes

Surface Orientation
Object/Viewpoint
Occlusion/Depth

Intrinsic
Images
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[Barrow and Tenenbaum 1978]




Viewpoint/Size

N{easoning

Objects and Viewpoint.'




Image Scene Analysis Intrinsic ~ Contextual
Features Processes Images Features




* Small improvement of surface labels
« 7-10% improvement of object detections




Separate cues

= e A S
= s ; )
< r
- i

Occlusion Boundaries Objects/Horizon




Combined reasoning

Surfaces

Occlusion Boundaries Objects and Horizon




Separate cues

Surfaces

il

Occlusion Boundaries Objects/Horizon




Combined reasoning

p—

Surfaces

Occlusion Boundaries Objects and Horizon
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Comments

Plus:

— Scene geometry (surface geometry and
object relations) estimated from image data

— Scene geometry used explicit in scene
understanding

* Minus:
— Still mostly bottom-up classification approach

— No use of domain constraints or known laws
governing the physical world




Lev‘els of 3D-ness
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Region labels + Boundaries Stronger geometric
and objects constraints from
domain knowledge

More quantitative

Qualitative more precise




Example

» Using constraints induced by man-made
environments in interpreting images

« Examples: Manhattan world, limited
vocabulary of object configurations, etc.

D. Lee, T. Kanade, M. Hebert. Geometric Reasoning for Single Image
Structure Recovery. CVPRO09. (+ under review, 2010)




Constraint: Manhattan world assumption

« Three dominant directions corresponding to
three “orthogonal” vanishing points




Line Drawing Interpretation (1970~)

Labeled Line drawings 12 Possible Junctions







Geometric reasoning on corners

4 Possible Corners 4 Possible Corners 4 Possible Corners




Geometric reasoning on corners

Impossible

1T

Possible
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Recovering Structure

1. Detect line segments
2. Estimate vanishing points

J. Coughlan and A. Yuille. Manhattan world: Compass direction from a single image by

bayesian inference. In Proceedings ICCV, 1999.
J. Kosecka andW. Zhang. Video compass. In Proceedings of European Conference on

Computer Vision, pages 657 — 673, 2002.

3. Generate scene hypotheses

4. Evaluate scene hypotheses




Generating Hypotheses




Generating Hypotheses




Generating Hypotheses




Generating Hypotheses




Generating Hypotheses




Generating Hypotheses




Generating Hypotheses




Generating Hypotheses




Generating Hypotheses




Generating Hypotheses




Generating Hypotheses







[Lee et al. CVPR’09]




Evaluated on data
from UIUC (Hoiem)
and BC (Yu)







Constraints: Solid objects must
satisfy physical constraints

 Finite volume

» Spatial exclusion &

 Containment




Why more constraints? Volume vs.

surface reasoning

B o i v oo B e B s oo B

Spatial layout without|| Object removed Spatial Iaydut with 2D

\object reasoning/f object reasoning

\_ Input image ) Object fitted with
Qarametric model

Spatial layout with 3D
volumetric reasoning /




Line segments and

Vanishing points

Reject invalid
configurations

Evaluate

Scene configuration hypotheses

Final scene
configuration
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Input image Line se
VEWRll \What cost function should be used to evaluate
an hypothesis?
 Learn an evaluation function from training data

Reject invalid
configurations

3 AN

Cube hypotheses

Final scene Scene configuration hypotheses

configuration




Relative improvement on surface labeling >10% on UIUC data set







lterative grouping: X. Yu, Hao Zhang, and Jitendra Malik. Inferring
Spatial Layout from A Single Image via Depth-Ordered Grouping.
Workshop on Perceptual Organization in Computer Vision, 2008.

proximiry curvilinearity, parallelism proximity coplanarity
curvilinearity orthogonality, perspectivity orthagonality depth ordering

Line groups Quadrilaterals Depth-ordered planes

Fusion line features + surface labels: V. Hedau , D.
Hoiem, D.Forsyth. Recovering the Spatial Layout of Cluttered
Rooms. ICCVO09.




« Line and color features + MRF: E. Delage, H. Lee, and A. Y. Ng.
Automatic Single-Image 3d Reconstructions of Indoor Manhattan
World Scenes. ISRRO05.

Hypothesis generation and verification: D. Lee, T. Kanade, M.
Hebert. Geometric Reasoning for Single Image Structure Recovery.
CVPRO09. (+ NIPS 2010)




Comments

 Plus:

— Added explicit reasoning about domain
constraints

— Combine reasoning through multiple hypotheses
with learning task

e Minus:

— Relies mostly on top-down constraint satisfaction
with limited use of bottom-up learned models

— Incorporates specific domain knowledge about
geometry, little knowledge about other constraints
of the real world




Lev‘els of 3D-ness
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More quantitative

Qualitative more precise

Explicit




Moving along: From surfaces to objects




Moving along: From surfaces to objects

But the world is not a set of surfaces
It is a set of solid objects
First approximation: solid objects = blocks

We can define a richer set of constraints once we
recognize that the world is populated by solid objects

[A. Gupta, A. Efros, and M. Hebert. Blocks World Revisited: Image
Understanding Using Qualitative Geometry and Mechanics. ECCV 2010]
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Physical constraints
2. Static equilibrium
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Facing Right
Frontal

Segments

Initialize: Estimate cues
from image

lterate: Place blocks in
the scene one by one




Building Blocks World

Contact
E—) Force
viewpoint
(b)
(a) Current Configuration
. (c) Estimate Geometric Attributes (d) Estimate Physical Stalqllty
Farther
viewpoint
Closer
(f) Spllt and Merge Proposals (e) Estimate Depth Order
(h) New Configuration Hypothe5|s Evaluation




http://www.cs.cmu.edu/~abhinavg/blocksworld/

Heavy
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endering



http://www.cs.cmu.edu/~abhinavg/blocksworld/
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http://www.cs.cmu.edu/~abhinavg/blocksworld/
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http://www.cs.cmu.edu/~abhinavg/blocksworld/
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Facing Right
. Frontal
0B Facing Left
= Porous

Ground

Geometry
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Bag of Segments

« Approach combines:
» Multiple segmentations
« Set of bottom-up learned classifiers, each with a well-defined,
“simple” task
 Control structure to enable search through combinatorial set
of hypothesis

[See also: Munoz ECCV2010]




INTENSITY)(SATURATION

(a) Bottom-up process (b) Top-down process (c) Result

[Ohta & Kanade 1978]

Guzman (SEE), 1968 « Brooks (ACRONYM), 1979
Yakimovsky & Feldman, 1973 Marr, 1982

Hansen & Riseman .
(VISIONS), 1978 Ohta & Kanade, 1978

Barrow & Tenenbaum 1978




» Stochastic grammars: Zhu, S., Mumford, D.: A
stochastic grammar of images. In: Found. and

Trends. In Graph. and Vision (2006)

B} cube rule ) nest ule

parse graph
G

configuration

L

edge map




« 2D labeling:

Gould, S., Fulton, R., Koller, D.: Decomposing a scene into geometric
and semantically consistent regions. In: ICCV (2009)
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Levels of 3D-ness

3D Parse Graph

Region labels + Boundaries Stronger geometric + constraints from 3D point clouds
and objects constraints from statics of solids
domain knowledge

More quantitative

Qualitative more precise

Explicit




An exercise in using explicit 3D data

« What if we have explicit 3D data (from stereo,
SFM, or other sensors)?

* How far can we go in scene interpretation from 3D
data only?

« Can we adapt reasoning or classification tools

from the image domain




Motivation

» Specialized sensors available in robotics
applications

« Cheap depth cameras
« Large-scale Structure From Motion (SFM) systems

Snavely et al. ICCV’09
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eneral approach

Classifier

Features

What features and classifiers?
What neighborhood and scale?
What model for grouping and consistency?




Example [anguelov-cvpr-05, triebel-icra-06, triebel-ijcai-07]




A=A >> A,

A, M

Gpointz AO Osurface= A 1 AZ AO — A1

Olinear=

 Directional features from tangent/normal

— How to select scale: Unnikrishnan et al., “Scale Selection for
Geometric Fitting in Noisy Point Clouds”, IJCGA 2010.

— How to deal with unstructured point clouds: Lalonde et al., “Data
Structures for Efficient Dynamic Processing in 3-D”, |IJRR 2007.
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1 Model
P(ylx) :EH(D(yi’xi)ng(yi’yj?xij)

Ly /0 )

Features of node i Features of relationship
between i and j

AMN: Potentials favor all
variables in the clique to take Learn w by maximizing

the same assignment of labels: P(ylx) over training data

(Taskar'04)
logg, (k,l)=0k #1

log (0 (k, k) — wk’ejc.. — Directional model:
v ‘ Y Even more

parameters to learn

log ¢, (k)= W, X,




Standard AMN

L
e

D. Munoz, N. Vandapel, and M. Hebert. Directional AMN for 3D
point cloud classification. In 3DPVT, 2008.
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Larger support regions

>(y | x) =%H(ﬂ(y,-,xi)qu(yi,y,-,xij)nqﬂ(yc,x)

Inference possible with appropriate ¢ (P"
Potts model) [Kohli et al. 2007, 2008]




Larger support regions

Elevation coded
point cloud

Regions from over-
segmentation
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, Best score over
”}Vm all labelings
(+margin)

Score with ground truth
labeling

« Convex program [Taskar et al. ICML'04]

» Subgradient |N. Ratliff, J. Bagnell, and M. Zinkevich. Online
subgradient methods for structured prediction. In AISTATS, 2007]

Wt+1 é Wt +(ng




, Best score over
”Jv'n all labelings
(+margin)

Score with ground truth
labeling

» Convex program [Taskar et al. ICML 04]
» Subgradient [Ratliff et al. AlStats’07]

Wt+1 é Wt +(ng

* Functional subgradient [N. Ratliff, D. Bradley, J. Bagnell, and J.

Chestnutt. Boosting structured prediction for imitation learning. NIPS, 2007; D.
Munoz, J. Bagnell, N. Vandapel, Contextual Classification with Functional
Max-Margin Markov Networks. CVPR’09]

¢t+1 < (Dt +Octht
h, trained to:
iIncrease the score of correctly classified nodes
decrease the score of incorrectly classified nodes
Efficient + enables more general potential




, Best score over
”Jv'n all labelings
(+margin)

Score with ground truth
labeling

» Convex program [Taskar et al. ICML 04]
» Subgradient [Ratliff et al. AlStats’07]

Wt+1 é Wt +(ng

* Functional subgradient [Ratliff et al. NIPS’07, Munoz et al.
CVPR'09]

¢t+1 é ¢t +O(’tht

h, trained to:
increase the score of correctly classified nodes
decrease the score of incorrectly classified nodes

Efficient + enables more general potential

Gradient Tree Boosting for CRFs [Dietterich et al. 2004];
Boosted Random Fields [Torralbaet al. 2004]; Virtual
Evidence Boosting for CRFs [Liao ef al. 2007]
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Key issues

Unstructured geometric data
Incremental processing

Efficient, online computation
Alternate learning/inference models
Un/Semi-supervised learning

Online learning and adaptation
Data fusion
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