Sparse Coding and Dictionary Learning for Image Analysis

Julien Mairal

INRIA Visual Recognition and Machine Learning Summer School, 27th July 2010

What this lecture is about?

• Why sparsity, what for and how?

- Signal and image processing: Restoration, reconstruction.
- Machine learning: Selecting relevant features.
- **Computer vision**: Modelling the local appearance of image patches.
- Computer vision: Recent (and intriguing) results in bags of words models.
- Optimization: Solving challenging problems.

The Image Denoising Problem

- **→** → **→**

Sparse representations for image restoration

Energy minimization problem - MAP estimation

Some classical priors

- Smoothness $\lambda \| \mathcal{L} \mathbf{x} \|_2^2$
- Total variation $\lambda \| \nabla \mathbf{x} \|_1^2$
- MRF priors

• . . .

What is a Sparse Linear Model?

Let $\mathbf{D} = [\mathbf{d}_1, \dots, \mathbf{d}_p] \in \mathbb{R}^{m \times p}$ be a set of normalized "basis vectors". We call it **dictionary**.

Julien Mairal

D is "adapted" to **x** if it can represent it with a few basis vectors—that is, there exists a sparse vector α in \mathbb{R}^p such that $\mathbf{x} \approx \mathbf{D}\alpha$. We call α the **sparse code**.

$$\underbrace{\begin{pmatrix} \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \in \mathbb{R}^{m} \\ \mathbf{x} \in \mathbb{R}^{p}, \mathbf{sparse} \\ \mathbf{x} \in \mathbb{R}^{p}, \mathbf{x$$

First Important Idea

Why Sparsity?

A dictionary can be good for representing a class of signals, but not for representing white Gaussian noise.

The Sparse Decomposition Problem

 ψ induces sparsity in \pmb{lpha} . It can be

. . .

- the ℓ_0 "pseudo-norm". $\|\boldsymbol{\alpha}\|_0 \stackrel{\scriptscriptstyle \triangle}{=} \#\{i \text{ s.t. } \boldsymbol{\alpha}[i] \neq 0\}$ (NP-hard)
- the ℓ_1 norm. $\|m{lpha}\|_1 \stackrel{\scriptscriptstyle \Delta}{=} \sum_{i=1}^p |m{lpha}[i]|$ (convex),

This is a selection problem. When ψ is the ℓ_1 -norm, the problem is called Lasso [Tibshirani, 1996] or basis pursuit [Chen et al., 1999]

Sparse representations for image restoration

Designed dictionaries

[Haar, 1910], [Zweig, Morlet, Grossman ~70s], [Meyer, Mallat, Daubechies, Coifman, Donoho, Candes ~80s-today]...(see [Mallat, 1999]) Wavelets, Curvelets, Wedgelets, Bandlets, ... lets

Learned dictionaries of patches

[Olshausen and Field, 1997], [Engan et al., 1999], [Lewicki and Sejnowski, 2000], [Aharon et al., 2006], [Roth and Black, 2005], [Lee et al., 2007]

$$\min_{\boldsymbol{\alpha}_i, \mathbf{D} \in \mathcal{C}} \sum_i \underbrace{\frac{1}{2} \|\mathbf{x}_i - \mathbf{D}\boldsymbol{\alpha}_i\|_2^2}_{\text{reconstruction}} + \underbrace{\lambda \psi(\boldsymbol{\alpha}_i)}_{\text{sparsity}}$$
• $\psi(\boldsymbol{\alpha}) = \|\boldsymbol{\alpha}\|_0$ (" ℓ_0 pseudo-norm")
• $\psi(\boldsymbol{\alpha}) = \|\boldsymbol{\alpha}\|_1$ (ℓ_1 norm)

Sparse representations for image restoration

Solving the denoising problem [Elad and Aharon, 2006]

- Extract all overlapping 8×8 patches \mathbf{x}_i .
- Solve a matrix factorization problem:

$$\min_{\boldsymbol{\alpha}_i, \mathbf{D} \in \mathcal{C}} \sum_{i=1}^{n} \underbrace{\frac{1}{2} \|\mathbf{x}_i - \mathbf{D}\boldsymbol{\alpha}_i\|_2^2}_{\text{reconstruction}} + \underbrace{\lambda \psi(\boldsymbol{\alpha}_i)}_{\text{sparsity}},$$

with n > 100,000

• Average the reconstruction of each patch.

Sparse representations for image restoration K-SVD: [Elad and Aharon, 2006]

Figure: Dictionary trained on a noisy version of the image boat.

Sparse representations for image restoration

Inpainting, Demosaicking

$$\min_{\mathbf{D}\in\mathcal{C},oldsymbol{lpha}} \sum_i rac{1}{2} \|oldsymbol{eta}_i\otimes (oldsymbol{\mathsf{x}}_i - oldsymbol{\mathsf{D}}oldsymbol{lpha}_i)\|_2^2 + \lambda_i \psi(oldsymbol{lpha}_i)$$

RAW Image Processing

Sparse representations for image restoration [Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009b]

Sparse representations for image restoration Inpainting, [Mairal, Elad, and Sapiro, 2008b]

Sparse representations for image restoration Inpainting, [Mairal, Elad, and Sapiro, 2008b]

Julien Mairal Sparse Coding and Dictionary Learning

Sparse representations for video restoration

Key ideas for video processing [Protter and Elad, 2009]

- Using a 3D dictionary.
- Processing of many frames at the same time.
- Dictionary propagation.

Figure: Inpainting results.

Figure: Inpainting results.

Figure: Inpainting results.

19/137

Figure: Inpainting results.

Figure: Inpainting results.

Digital Zooming Couzinie-Devy, 2010, Original

Julien Mairal

Sparse Coding and Dictionary Learning

Digital Zooming Couzinie-Devy, 2010, Bicubic

Digital Zooming

Couzinie-Devy, 2010, Proposed method

29/137

Digital Zooming Couzinie-Devy, 2010, Original

Julien Mairal Sparse Coding and Dictionary Learning

合 ▶ ◀

Digital Zooming Couzinie-Devy, 2010, Bicubic

- ● ● ●

Digital Zooming Couzinie-Devy, 2010, Proposed approach

_ ▶ <

Inverse half-toning Original

33/137

Inverse half-toning

Reconstructed image

Julien Mairal

Sparse Coding and Dictionary Learning

34/137

Inverse half-toning

Original

∉ File Options

ъ

Inverse half-toning

Reconstructed image

File Options

Inverse half-toning Original

< □ > < □ >

∃ >

Reconstructed image

Image: A image: A

Original

Julien Mairal

Reconstructed image

୬ ୯.୯ 10/137

Inverse half-toning Original

Julien Mairal

Reconstructed image

Julien Mairal

One short slide on compressed sensing

Important message

Sparse coding is not "compressed sensing".

Compressed sensing is a theory [see Candes, 2006] saying that a sparse signal can be recovered with high probability from a few linear measurements under some conditions.

- Signal Acquisition: $\mathbf{W}^{\top}\mathbf{x}$, where $\mathbf{W} \in \mathbb{R}^{m \times s}$ is a "sensing" matrix with $s \ll m$.
- Signal Decoding: $\min_{\alpha \in \mathbb{R}^p} \|\alpha\|_1$ s.t. $\mathbf{W}^\top \mathbf{x} = \mathbf{W}^\top \mathbf{D} \alpha$.

with extensions to approximately sparse signals, noisy measurements.

Remark

The dictionaries we are using in this lecture do not satisfy the recovery assumptions of compressed sensing.

向下 イヨト イヨト

Important messages

- Patch-based approaches are achieving state-of-the-art results for many image processing task.
- Dictionary Learning adapts to the data you want to restore.
- Dictionary Learning is well adapted to data that admit sparse representation. Sparsity is for sparse data only.

Next topics

- Why does the ℓ_1 -norm induce sparsity?
- Some properties of the Lasso.
- Beyond sparsity: Group-sparsity.
- The simplest algorithm for learning dictionaries.
- Links between dictionary learning and matrix factorization techniques.

Why does the ℓ_1 -norm induce sparsity? Exemple: quadratic problem in 1D

$$\min_{\alpha \in \mathbb{R}} \frac{1}{2} (x - \alpha)^2 + \lambda |\alpha|$$

Piecewise quadratic function with a kink at zero.

Derivative at 0_+ : $g_+ = -x + \lambda$ and 0_- : $g_- = -x - \lambda$.

Optimality conditions. α is optimal iff:

•
$$|\alpha| > 0$$
 and $(x - \alpha) + \lambda \operatorname{sign}(\alpha) = 0$

•
$$lpha=$$
 0 and $g_+\geq$ 0 and $g_-\leq$ 0

The solution is a **soft-thresholding**:

$$\alpha^{\star} = \operatorname{sign}(x)(|x| - \lambda)^{+}.$$

Why does the ℓ_1 -norm induce sparsity?

(a) soft-thresholding operator

Why does the ℓ_1 -norm induce sparsity? Analysis of the norms in 1D

The gradient of the ℓ_2 -norm vanishes when α get close to 0. On its differentiable part, the norm of the gradient of the ℓ_1 -norm is constant.

Why does the ℓ_1 -norm induce sparsity?

Geometric explanation

Important property of the Lasso

Piecewise linearity of the regularization path

Figure: Regularization path of the Lasso

Sparsity-Inducing Norms (1/2)

Standard approach to enforce sparsity in learning procedures:

- Regularizing by a sparsity-inducing norm ψ .
- The effect of ψ is to set some α_j's to zero, depending on the regularization parameter λ ≥ 0.

The most popular choice for ψ :

- The ℓ_1 norm, $\|\boldsymbol{\alpha}\|_1 = \sum_{j=1}^p |\boldsymbol{\alpha}_j|$.
- For the square loss, Lasso [Tibshirani, 1996].
- However, the ℓ_1 norm encodes poor information, just cardinality!

Sparsity-Inducing Norms (2/2)

Another popular choice for ψ :

• The ℓ_1 - ℓ_2 norm,

 $\sum_{G \in \mathcal{G}} \|\alpha_G\|_2 = \sum_{G \in \mathcal{G}} \big(\sum_{j \in \mathcal{G}} \alpha_j^2\big)^{1/2}, \text{ with } \mathcal{G} \text{ a partition of } \{1, \dots, p\}.$

- The l₁-l₂ norm sets to zero groups of non-overlapping variables (as opposed to single variables for the l₁ norm).
- For the square loss, group Lasso [Yuan and Lin, 2006].
- However, the ℓ_1 - ℓ_2 norm encodes fixed/static prior information, requires to know in advance how to group the variables !

Applications:

- Selecting groups of features instead of individual variables.
- Multi-task learning.

Optimization for Dictionary Learning

$$\min_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^{\rho \times n} \\ \mathbf{D} \in \mathcal{C}}} \sum_{i=1}^{n} \frac{1}{2} \|\mathbf{x}_{i} - \mathbf{D}\boldsymbol{\alpha}_{i}\|_{2}^{2} + \lambda \|\boldsymbol{\alpha}_{i}\|_{1}$$

 $\mathcal{C} \stackrel{\scriptscriptstyle \Delta}{=} \{ \mathbf{D} \in \mathbb{R}^{m imes p} \; \; ext{s.t.} \; \; \forall j = 1, \dots, p, \; \; \|\mathbf{d}_j\|_2 \leq 1 \}.$

- Classical optimization alternates between ${\sf D}$ and lpha.
- Good results, but slow!
- Instead use online learning [Mairal et al., 2009a]

THE SALINAS VALLEY is in Northern California. It is a long narrow swale between two ranges of mountains, and the Salinas River winds and twists up the center until it fails at last into Monterey Bay.

I ramamber my childhood names for grasses and secret flowers. I remember where a toad may live and whet time the birds awaken in the summer and what trees and seasons smelled like-how people looked and walked and smelled awa. The memory at odors is very rich.

Tremember that the Gabilan Mountains to the east of the valley were lipht gay monitains full-of-sun and lavaliness and a kind of invitation, so that you wanted to climb into their warm foothills almost as you want to climb into the tap of a beloved mather. They were berkoning meuarans with a brown grass love. The Santa Luciat stand up against the sky to the west and kept the valley from the speak see, and they were dark and broading unifiedly and dangerous. Latheays found in may if darking and and were dark and broading unifiedly and dangerous. Latheays found in may if darking and a love of east. Where I ever got such an idea I cannot say, unless it could be that the morning came over the peaks of the Gabilans and the angit of the back from the lingues of the Santa Lucies. It hav be that the bight and death of the day had some part in my training anoth the two ranges of mountains.

From both sides of the valley little streams slipped out or one hit canyons and fail into the bad of the Salinas River. In the winter of wet years the streams fail treshet, and they swelled the river until sametimes it raged and bolled, bank full, and they it was a destroyer. The river tore the edges of the familiands and washed whole acress down, it toppied barn (and houses into itself, do go floating and bobbing away. It trapped cows and balar and sheep and drowed to go the familiant the late

can so all opport ground, some pools would be let in the dops such places under a high bank the toles and on the objective and with we similar the objective the flood of some in their spont that can be the sole of a only the difference of the date of the objective of the sole of the sole of all objective sole only the date of the sole of a boot of a boot of the sole of the sole of the sole of all objectives was the off one we had and the boot of about in two denomenous it has not we needed and boot sole of all objectives was a dry support of a line boots about anything in its shifting these. Maybe the less you have the more you are required to boots.

The floor of the Salinas Value, between the ranges and allow the foothills. Is reveribecause this valley used to be the parton of a hundred mice flet from this dea. The ver mouth at Mass Landing was centilles ago the entrance to this long inland water of core, fifty miles dayn the valley, my father body a well, the daily among first with to part and them with white sea sind stime shell she even of .

Julien Mairal Sparse Coding and Dictionary Learning

Julien Mairal Sparse Coding and Dictionary Learning

Matrix Factorization Problems and Dictionary Learning

$$\min_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^{p \times n} \\ \mathbf{D} \in \mathcal{C}}} \sum_{i=1}^{n} \frac{1}{2} \|\mathbf{x}_{i} - \mathbf{D}\boldsymbol{\alpha}_{i}\|_{2}^{2} + \lambda \|\boldsymbol{\alpha}_{i}\|_{1}$$

can be rewritten

$$\min_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^{p \times n} \\ \mathbf{D} \in \mathcal{C}}} \frac{1}{2} \|\mathbf{X} - \mathbf{D}\boldsymbol{\alpha}\|_{F}^{2} + \lambda \|\boldsymbol{\alpha}\|_{1},$$

where $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ and $\boldsymbol{\alpha} = [\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_n]$.

Matrix Factorization Problems and Dictionary Learning PCA

$$\min_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^{p \times n} \\ \mathbf{D} \in \mathbb{R}^{m \times p}}} \|\mathbf{X} - \mathbf{D}\boldsymbol{\alpha}\|_{F}^{2},$$

with the additional constraints that ${\bf D}$ is orthonormal and ${\boldsymbol \alpha}^\top$ is orthogonal.

 $\mathbf{D} = [\mathbf{d}_1, \dots, \mathbf{d}_p]$ are the principal components.

Matrix Factorization Problems and Dictionary Learning Hard clustering

$$\min_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^{p \times n} \\ \mathbf{D} \in \mathbb{R}^{m \times p}}} \|\mathbf{X} - \mathbf{D}\boldsymbol{\alpha}\|_F^2,$$

with the additional constraints that α is binary and its columns sum to one.

Matrix Factorization Problems and Dictionary Learning Soft clustering

$$\min_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^{p \times n} \\ \mathbf{D} \in \mathbb{R}^{m \times p}}} \|\mathbf{X} - \mathbf{D}\boldsymbol{\alpha}\|_F^2,$$

with the additional constraints that the columns of lpha sum to one.

Matrix Factorization Problems and Dictionary Learning Non-negative matrix factorization [Lee and Seung, 2001]

$$\min_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^{p \times n} \\ \mathbf{D} \in \mathbb{R}^{m \times p}}} \|\mathbf{X} - \mathbf{D}\boldsymbol{\alpha}\|_{F}^{2},$$

with the additional constraints that the entries of ${\bf D}$ and α are non-negative.

Matrix Factorization Problems and Dictionary Learning NMF+sparsity?

$$\min_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^{p \times n} \\ \mathbf{D} \in \mathbb{R}^{m \times p}}} \|\mathbf{X} - \mathbf{D}\boldsymbol{\alpha}\|_{F}^{2} + \lambda \|\boldsymbol{\alpha}\|_{1}$$

with the additional constraints that the entries of ${\bf D}$ and α are non-negative.

Most of these formulations can be addressed the same types of algorithms.

Matrix Factorization Problems and Dictionary Learning Natural Patches

Matrix Factorization Problems and Dictionary Learning Faces

Important messages

- The l₁-norm induces sparsity and shrinks the coefficients (soft-thresholding)
- The regularization path of the Lasso is piecewise linear.
- Sparsity can be induced at the group level.
- Learning the dictionary is simple, fast and scalable.
- Dictionary learning is related to several matrix factorization problems.

Software SPAMS is available for all of this:

www.di.ens.fr/willow/SPAMS/.

Next topics: Computer Vision

- Intriguing results on the use of dictionary learning for bags of words.
- Modelling the local appearance of image patches.

Learning Codebooks for Image Classification

ldea

Replacing Vector Quantization by Learned Dictionaries!

- unsupervised: [Yang et al., 2009]
- supervised: [Boureau et al., 2010, Yang et al., 2010]

Learning Codebooks for Image Classification

Let an image be represented by a set of low-level descriptors \mathbf{x}_i at N locations identified with their indices i = 1, ..., N.

hard-quantization:

$$\mathbf{x}_i pprox \mathbf{D} oldsymbol{lpha}_i, \quad oldsymbol{lpha}_i \in \{0,1\}^p \; \; ext{and} \; \; \sum_{j=1}^p oldsymbol{lpha}_i[j] = 1$$

soft-quantization:

$$\boldsymbol{\alpha}_{i}[j] = \frac{e^{-\beta \|\mathbf{x}_{i} - \mathbf{d}_{j}\|_{2}^{2}}}{\sum_{k=1}^{p} e^{-\beta \|\mathbf{x}_{i} - \mathbf{d}_{k}\|_{2}^{2}}}$$

sparse coding:

$$\mathbf{x}_i pprox \mathbf{D} oldsymbol{lpha}_i, \quad oldsymbol{lpha}_i = rgmin_{oldsymbol{lpha}} rac{1}{2} \|\mathbf{x}_i - \mathbf{D} oldsymbol{lpha}\|_2^2 + \lambda \|oldsymbol{lpha}\|_1$$

Learning Codebooks for Image Classification Table from Boureau et al. [2010]

Method	Caltech-101, 30 training examples		15 Scenes, 100 training examples	
	Average Pool	Max Pool	Average Pool	Max Pool
	Results with basic features, SIFT extracted each 8 pixels			
Hard quantization, linear kernel	51.4 ± 0.9 [256]	64.3 ± 0.9 [256]	73.9 ± 0.9 [1024]	80.1 ± 0.6 [1024]
Hard quantization, intersection kernel	64.2 ± 1.0 [256] (1)	64.3 ± 0.9 [256]	80.8 ± 0.4 [256] (1)	80.1 ± 0.6 [1024]
Soft quantization, linear kernel	57.9 ± 1.5 [1024]	69.0 ± 0.8 [256]	75.6 ± 0.5 [1024]	81.4 ± 0.6 [1024]
Soft quantization, intersection kernel	66.1 ± 1.2 [512] (2)	70.6 ± 1.0 [1024]	81.2 ± 0.4 [1024] (2)	83.0 ± 0.7 [1024]
Sparse codes, linear kernel	61.3 ± 1.3 [1024]	71.5 ± 1.1 [1024] (3)	76.9 ± 0.6 [1024]	83.1 ± 0.6 [1024] (3)
Sparse codes, intersection kernel	70.3 ± 1.3 [1024]	$71.8 \pm 1.0 \text{ [1024] (4)}$	83.2 ± 0.4 [1024]	$84.1 \pm 0.5 \text{ [1024] (4)}$
	Results with macrofeatures and denser SIFT sampling			
Hard quantization, linear kernel	55.6 ± 1.6 [256]	70.9 ± 1.0 [1024]	74.0 ± 0.5 [1024]	80.1 ± 0.5 [1024]
Hard quantization, intersection kernel	68.8 ± 1.4 [512]	70.9 ± 1.0 [1024]	81.0 ± 0.5 [1024]	80.1 ± 0.5 [1024]
Soft quantization, linear kernel	61.6 ± 1.6 [1024]	71.5 ± 1.0 [1024]	76.4 ± 0.7 [1024]	81.5 ± 0.4 [1024]
Soft quantization, intersection kernel	70.1 ± 1.3 [1024]	73.2 ± 1.0 [1024]	81.8 ± 0.4 [1024]	83.0 ± 0.4 [1024]
Sparse codes, linear kernel	65.7 ± 1.4 [1024]	75.1 ± 0.9 [1024]	78.2 ± 0.7 [1024]	83.6 ± 0.4 [1024]
Sparse codes, intersection kernel	73.7 ± 1.3 [1024]	$75.7 \pm 1.1 \text{ [1024]}$	83.5 ± 0.4 [1024]	$84.3 \pm 0.5 \ [1024]$

	Unsup	Discr
Linear	83.6 ± 0.4	84.9 ± 0.3
Intersect	84.3 ± 0.5	84.7 ± 0.4

Yang et al. [2009] have won the PASCAL VOC'09 challenge using this kind of techniques.

Learning dictionaries with a discriminative cost function

Idea:

Let us consider 2 sets S_- , S_+ of signals representing 2 different classes. Each set should admit a dictionary best adapted to its reconstruction.

Classification procedure for a signal $\mathbf{x} \in \mathbb{R}^n$:

 $\min(\mathbf{R}^{\star}(\mathbf{x},\mathbf{D}_{-}),\mathbf{R}^{\star}(\mathbf{x},\mathbf{D}_{+}))$

where

$$\mathsf{R}^{\star}(\mathsf{x},\mathsf{D}) = \min_{\boldsymbol{lpha}\in\mathbb{R}^p}\|\mathbf{x}-\mathsf{D}\boldsymbol{lpha}\|_2^2 ext{ s.t. } \|\boldsymbol{lpha}\|_0 \leq L.$$

"Reconstructive" training

$$\begin{cases} \min_{\mathbf{D}_{-}} \sum_{i \in S_{-}} \mathbf{R}^{\star}(\mathbf{x}_{i}, \mathbf{D}_{-}) \\ \min_{\mathbf{D}_{+}} \sum_{i \in S_{+}} \mathbf{R}^{\star}(\mathbf{x}_{i}, \mathbf{D}_{+}) \end{cases}$$

[Grosse et al., 2007], [Huang and Aviyente, 2006], [Sprechmann et al., 2010] for unsupervised clustering (CVPR '10)

Learning dictionaries with a discriminative cost function

"Discriminative" training

[Mairal, Bach, Ponce, Sapiro, and Zisserman, 2008a]

$$\min_{\mathbf{D}_{-},\mathbf{D}_{+}}\sum_{i}\mathcal{C}\Big(\lambda z_{i}\big(\mathbf{R}^{\star}(\mathbf{x}_{i},\mathbf{D}_{-})-\mathbf{R}^{\star}(\mathbf{x}_{i},\mathbf{D}_{+})\big)\Big),$$

where $z_i \in \{-1, +1\}$ is the label of \mathbf{x}_i .

Learning dictionaries with a discriminative cost function Examples of dictionaries

Top: reconstructive, Bottom: discriminative, Left: Bicycle, Right: Background.

Learning dictionaries with a discriminative cost function Texture segmentation

Learning dictionaries with a discriminative cost function Texture segmentation

Learning dictionaries with a discriminative cost function Pixelwise classification

Learning dictionaries with a discriminative cost function weakly-supervised pixel classification

Application to edge detection and classification [Mairal, Leordeanu, Bach, Hebert, and Ponce, 2008c]

Good edges

Bad edges

Application to edge detection and classification Berkeley segmentation benchmark

Raw edge detection on the right

Application to edge detection and classification Berkeley segmentation benchmark

Raw edge detection on the right

Application to edge detection and classification Berkeley segmentation benchmark

Application to edge detection and classification Contour-based classifier: [Leordeanu, Hebert, and Sukthankar, 2007]

Is there a bike, a motorbike, a car or a person on this image?

Application to edge detection and classification

Julien Mairal

Application to edge detection and classification Performance gain due to the prefiltering

Ours + [Leordeanu '07]	[Leordeanu '07]	[Winn '05]
96.8%	89.4%	76.9%

Recognition rates for the same experiment as [Winn et al., 2005] on VOC 2005.

Category	Ours+[Leordeanu '07]	[Leordeanu '07]
Aeroplane	71.9%	61.9%
Boat	67.1%	56.4%
Cat	82.6%	53.4%
Cow	68.7%	59.2%
Horse	76.0%	67%
Motorbike	80.6%	73.6%
Sheep	72.9%	58.4%
Tvmonitor	87.7%	83.8%
Average	75.9%	64.2 %

Recognition performance at equal error rate for 8 classes on a subset of images from Pascal 07.

Digital Art Authentification

Data Courtesy of Hugues, Graham, and Rockmore [2009]

Authentic

Fake

Digital Art Authentification

Data Courtesy of Hugues, Graham, and Rockmore [2009]

Authentic

Fake

Fake

Julien Mairal Sparse Coding and Dictionary Learning

Digital Art Authentification

Data Courtesy of Hugues, Graham, and Rockmore [2009]

Authentic

Authentic

Fake

Important messages

- Learned dictionaries are well adapted to model the local appearance of images and edges.
- They can be used to learn dictionaries of SIFT features.

Next topics

- Optimization for solving sparse decomposition problems
- Optimization for dictionary learning

Recall: The Sparse Decomposition Problem

 ψ induces sparsity in \pmb{lpha} . It can be

- the ℓ_0 "pseudo-norm". $\|\boldsymbol{\alpha}\|_0 \stackrel{\scriptscriptstyle riangle}{=} \#\{i \text{ s.t. } \boldsymbol{\alpha}[i] \neq 0\}$ (NP-hard)
- the ℓ_1 norm. $\|m{lpha}\|_1 \stackrel{\scriptscriptstyle riangle}{=} \sum_{i=1}^p |m{lpha}[i]|$ (convex)

• . . .

This is a selection problem.

92/137

Finding your way in the sparse coding literature...

... is not easy. The literature is vast, redundant, sometimes confusing and many papers are claiming victory...

The main class of methods are

- greedy procedures [Mallat and Zhang, 1993], [Weisberg, 1980]
- homotopy [Osborne et al., 2000], [Efron et al., 2004], [Markowitz, 1956]
- soft-thresholding based methods [Fu, 1998], [Daubechies et al., 2004], [Friedman et al., 2007], [Nesterov, 2007], [Beck and Teboulle, 2009], ...
- reweighted- ℓ_2 methods [Daubechies et al., 2009],...
- active-set methods [Roth and Fischer, 2008].

• . . .

向下 イヨト イヨト

$\boldsymbol{lpha}=(0,0,0)$

$\boldsymbol{lpha}=(0,0,0)$

у **d**₂₇ \mathbf{d}_1 \mathbf{d}_3 $\overline{\langle \mathbf{r}, \mathbf{d}_3 \rangle \langle \mathbf{d}_3 \rangle}$ Х ∃ >

$\boldsymbol{lpha}=(0,0,0)$

$\alpha = (0, 0, 0.75)$

$\alpha = (0, 0, 0.75)$

$\alpha = (0, 0, 0.75)$

 $\alpha = (0, 0.24, 0.75)$

 $\alpha = (0, 0.24, 0.75)$

 $\alpha = (0, 0.24, 0.65)$

$$\min_{\boldsymbol{\alpha}\in\mathbb{R}^{p}} \|\underbrace{\mathbf{x}-\mathbf{D}\boldsymbol{\alpha}}_{\mathbf{r}}\|_{2}^{2} \text{ s.t. } \|\boldsymbol{\alpha}\|_{0} \leq L$$

- 1: $\pmb{lpha} \leftarrow \pmb{0}$
- 2: $\mathbf{r} \leftarrow \mathbf{x}$ (residual).
- 3: while $\| \boldsymbol{\alpha} \|_0 < L$ do
- 4: Select the atom with maximum correlation with the residual

$$\hat{\imath} \leftarrow \underset{i=1,...,p}{\operatorname{arg\,max}} |\mathbf{d}_i^T \mathbf{r}|$$

5: Update the residual and the coefficients

$$egin{array}{rcl} lpha [\hat{\imath}] &\leftarrow & lpha [\hat{\imath}] + \mathsf{d}_{\hat{\imath}}^{\mathsf{T}}\mathsf{r} \ \mathsf{r} &\leftarrow & \mathsf{r} - (\mathsf{d}_{\hat{\imath}}^{\mathsf{T}}\mathsf{r})\mathsf{d}_{\hat{\imath}} \end{array}$$

6: end while

$$\min_{oldsymbol{lpha} \in \mathbb{R}^p} \| oldsymbol{x} - oldsymbol{D}oldsymbol{lpha} \|_2^2 ext{ s.t. } \|oldsymbol{lpha}\|_0 \leq L$$

 $1:\ \Gamma=\emptyset.$

- 2: for $iter = 1, \ldots, L$ do
- 3: Select the atom which most reduces the objective

$$\hat{\imath} \leftarrow \operatorname*{arg\,min}_{i \in \mathsf{\Gamma}^\mathsf{C}} \left\{ \min_{\alpha'} \| \mathbf{x} - \mathbf{D}_{\mathsf{\Gamma} \cup \{i\}} \alpha' \|_2^2 \right\}$$

- 4: Update the active set: $\Gamma \leftarrow \Gamma \cup \{\hat{i}\}.$
- 5: Update the residual (orthogonal projection)

$$\textbf{r} \leftarrow (\textbf{I} - \textbf{D}_{\Gamma}(\textbf{D}_{\Gamma}^{T}\textbf{D}_{\Gamma})^{-1}\textbf{D}_{\Gamma}^{T})\textbf{x}.$$

6: Update the coefficients

$$\alpha_{\mathsf{\Gamma}} \leftarrow (\mathsf{D}_{\mathsf{\Gamma}}^{\mathsf{T}}\mathsf{D}_{\mathsf{\Gamma}})^{-1}\mathsf{D}_{\mathsf{\Gamma}}^{\mathsf{T}}\mathsf{x}.$$

7: end for
Orthogonal Matching Pursuit

Contrary to MP, an atom can only be selected one time with OMP. It is, however, more difficult to implement efficiently. The keys for a good implementation in the case of a large number of signals are

- Precompute the Gram matrix $\mathbf{G} = \mathbf{D}^T \mathbf{D}$ once in for all,
- Maintain the computation of $\mathbf{D}^{\mathcal{T}}\mathbf{r}$ for each signal,
- Maintain a Cholesky decomposition of $(\mathbf{D}_{\Gamma}^{T}\mathbf{D}_{\Gamma})^{-1}$ for each signal.

The total complexity for decomposing n *L*-sparse signals of size m with a dictionary of size p is

$$\underbrace{O(p^2m)}_{\text{Gram matrix}} + \underbrace{O(nL^3)}_{\text{Cholesky}} + \underbrace{O(n(pm + pL^2))}_{\mathbf{D}^{\mathsf{T}}\mathbf{r}} = O(np(m + L^2))$$

It is also possible to use the matrix inversion lemma instead of a Cholesky decomposition (same complexity, but less numerical stability)

4 E 6 4 E 6

Example with the software SPAMS

Software available at http://www.di.ens.fr/willow/SPAMS/

- >> I=double(imread('data/lena.eps'))/255;
- >> %extract all patches of I
- >> X=im2col(I,[8 8],'sliding');
- >> %load a dictionary of size 64 x 256
- >> D=load('dict.mat');

>>

>> %set the sparsity parameter L to 10

```
>> param.L=10;
```

>> alpha=mexOMP(X,D,param);

On a 8-cores 2.83Ghz machine: 230000 signals processed per second!

Optimality conditions of the Lasso

Nonsmooth optimization

Directional derivatives and subgradients are useful tools for studying ℓ_1 -decomposition problems:

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^{p}} \frac{1}{2} \|\mathbf{x} - \mathbf{D}\boldsymbol{\alpha}\|_{2}^{2} + \lambda \|\boldsymbol{\alpha}\|_{1}$$

In this tutorial, we use the **directional derivatives** to derive simple optimality conditions of the Lasso.

For more information on convex analysis and nonsmooth optimization, see the following books: [Boyd and Vandenberghe, 2004], [Nocedal and Wright, 2006], [Borwein and Lewis, 2006], [Bonnans et al., 2006], [Bertsekas, 1999].

伺 と く ヨ と く ヨ と

Optimality conditions of the Lasso Directional derivatives

• **Directional derivative** in the direction **u** at *α*:

$$abla f(oldsymbol{lpha}, oldsymbol{\mathsf{u}}) = \lim_{t o 0^+} rac{f(oldsymbol{lpha} + toldsymbol{\mathsf{u}}) - f(oldsymbol{lpha})}{t}$$

- Main idea: in non smooth situations, one may need to look at all directions u and not simply p independent ones!
- **Proposition 1:** if f is differentiable in α , $\nabla f(\alpha, \mathbf{u}) = \nabla f(\alpha)^T \mathbf{u}$.
- **Proposition 2:** α is optimal iff for all **u** in \mathbb{R}^p , $\nabla f(\alpha, \mathbf{u}) \ge 0$.

Optimality conditions of the Lasso

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^p} \ \frac{1}{2} \| \mathbf{x} - \mathbf{D} \boldsymbol{\alpha} \|_2^2 + \lambda \| \boldsymbol{\alpha} \|_1$$

 \pmb{lpha}^{\star} is optimal iff for all $\pmb{\mathsf{u}}$ in \mathbb{R}^{p} , $abla f(\pmb{lpha},\pmb{\mathsf{u}})\geq 0$ —that is,

$$-\mathbf{u}^{\mathsf{T}}\mathbf{D}^{\mathsf{T}}(\mathbf{x}-\mathbf{D}\boldsymbol{\alpha}^{\star})+\lambda\sum_{i,\boldsymbol{\alpha}^{\star}[i]\neq 0}\mathsf{sign}(\boldsymbol{\alpha}^{\star}[i])\mathbf{u}[i]+\lambda\sum_{i,\boldsymbol{\alpha}^{\star}[i]=0}|\mathbf{u}_{i}|\geq 0,$$

which is equivalent to the following conditions:

$$\forall i = 1, \dots, p, \quad \left\{ \begin{array}{ll} |\mathbf{d}_i^T(\mathbf{x} - \mathbf{D}\boldsymbol{\alpha}^*)| &\leq \lambda & \text{if } \boldsymbol{\alpha}^*[i] = 0\\ \mathbf{d}_i^T(\mathbf{x} - \mathbf{D}\boldsymbol{\alpha}^*) &= \lambda \operatorname{sign}(\boldsymbol{\alpha}^*[i]) & \text{if } \boldsymbol{\alpha}^*[i] \neq 0 \end{array} \right.$$

Homotopy

- A homotopy method provides a set of solutions indexed by a parameter.
- The regularization path $(\lambda, \alpha^*(\lambda))$ for instance!!
- It can be useful when the path has some "nice" properties (piecewise linear, piecewise quadratic).
- LARS [Efron et al., 2004] starts from a trivial solution, and follows the regularization path of the Lasso, which is is **piecewise linear**.

Homotopy, LARS [Osborne et al., 2000], [Efron et al., 2004]

$$\forall i = 1, \dots, p, \quad \begin{cases} |\mathbf{d}_i^T(\mathbf{x} - \mathbf{D}\alpha^*)| \leq \lambda & \text{if } \alpha^*[i] = 0 \\ \mathbf{d}_i^T(\mathbf{x} - \mathbf{D}\alpha^*) = \lambda \operatorname{sign}(\alpha^*[i]) & \text{if } \alpha^*[i] \neq 0 \end{cases}$$
(1)

The regularization path is piecewise linear:

$$\begin{split} \mathbf{D}_{\Gamma}^{T}(\mathbf{x} - \mathbf{D}_{\Gamma}\boldsymbol{\alpha}_{\Gamma}^{\star}) &= \lambda \operatorname{sign}(\boldsymbol{\alpha}_{\Gamma}^{\star}) \\ \boldsymbol{\alpha}_{\Gamma}^{\star}(\lambda) &= (\mathbf{D}_{\Gamma}^{T}\mathbf{D}_{\Gamma})^{-1}(\mathbf{D}_{\Gamma}^{T}\mathbf{x} - \lambda \operatorname{sign}(\boldsymbol{\alpha}_{\Gamma}^{\star})) = \mathbf{A} + \lambda \mathbf{B} \end{split}$$

A simple interpretation of LARS

- Start from the trivial solution $(\lambda = \|\mathbf{D}^T \mathbf{x}\|_{\infty}, \alpha^*(\lambda) = 0).$
- Maintain the computations of $|\mathbf{d}_i^T(\mathbf{x} \mathbf{D}\alpha^*(\lambda))|$ for all *i*.
- Maintain the computation of the current direction **B**.
- Follow the path by reducing λ until the next kink.

Example with the software SPAMS

http://www.di.ens.fr/willow/SPAMS/

- >> I=double(imread('data/lena.eps'))/255;
- >> %extract all patches of I
- >> X=normalize(im2col(I,[8 8],'sliding'));
- >> %load a dictionary of size 64 x 256
- >> D=load('dict.mat');
- >>
- >> %set the sparsity parameter lambda to 0.15
- >> param.lambda=0.15;
- >> alpha=mexLasso(X,D,param);

On a 8-cores 2.83Ghz machine: **77000 signals processed per second!** Note that it can also solve **constrained** version of the problem. The complexity is more or less the same as OMP and uses the same tricks (Cholesky decomposition).

Coordinate Descent

- Coordinate descent + nonsmooth objective: WARNING: not convergent in general
- Here, the problem is equivalent to a convex smooth optimization problem with separable constraints

$$\min_{\boldsymbol{\alpha}_+,\boldsymbol{\alpha}_-} \frac{1}{2} \| \mathbf{x} - \mathbf{D}_+ \boldsymbol{\alpha}_+ + \mathbf{D}_- \boldsymbol{\alpha}_- \|_2^2 + \lambda \boldsymbol{\alpha}_+^T \mathbf{1} + \lambda \boldsymbol{\alpha}_-^T \mathbf{1} \quad \text{s.t.} \quad \boldsymbol{\alpha}_-, \boldsymbol{\alpha}_+ \ge \mathbf{0}.$$

- For this **specific** problem, coordinate descent is **convergent**.
- Supposing $\|\mathbf{d}_i\|_2 = 1$, updating the coordinate *i*:

$$\boldsymbol{\alpha}[i] \leftarrow \arg\min_{\beta} \frac{1}{2} \| \underbrace{\mathbf{x} - \sum_{j \neq i} \boldsymbol{\alpha}[j] \mathbf{d}_{j}}_{\mathbf{r}} - \beta \mathbf{d}_{i} \|_{2}^{2} + \lambda |\beta|$$
$$\leftarrow \operatorname{sign}(\mathbf{d}_{i}^{T} \mathbf{r})(|\mathbf{d}_{i}^{T} \mathbf{r}| - \lambda)^{+}$$

● ⇒ soft-thresholding!

Example with the software SPAMS

http://www.di.ens.fr/willow/SPAMS/

- >> I=double(imread('data/lena.eps'))/255;
- >> %extract all patches of I
- >> X=normalize(im2col(I,[8 8],'sliding'));
- >> %load a dictionary of size 64 x 256
- >> D=load('dict.mat');

>>

- >> %set the sparsity parameter lambda to 0.15
- >> param.lambda=0.15;
- >> param.tol=1e-2;
- >> param.itermax=200;
- >> alpha=mexCD(X,D,param);

On a 8-cores 2.83Ghz machine: 93000 signals processed per second!

first-order/proximal methods

 $\min_{\boldsymbol{\alpha} \in \mathbb{R}^p} \ f(\boldsymbol{\alpha}) + \lambda \psi(\boldsymbol{\alpha})$

- *f* is strictly convex and continuously differentiable with a Lipshitz gradient.
- Generalize the idea of gradient descent

$$\begin{aligned} \boldsymbol{\alpha}_{k+1} &\leftarrow \argmin_{\boldsymbol{\alpha} \in \mathbb{R}} f(\boldsymbol{\alpha}_k) + \nabla f(\boldsymbol{\alpha}_k)^T (\boldsymbol{\alpha} - \boldsymbol{\alpha}_k) + \frac{L}{2} \|\boldsymbol{\alpha} - \boldsymbol{\alpha}_k\|_2^2 + \lambda \psi(\boldsymbol{\alpha}) \\ &\leftarrow \argmin_{\boldsymbol{\alpha} \in \mathbb{R}} \frac{1}{2} \|\boldsymbol{\alpha} - (\boldsymbol{\alpha}_k - \frac{1}{L} \nabla f(\boldsymbol{\alpha}_k))\|_2^2 + \frac{\lambda}{L} \psi(\boldsymbol{\alpha}) \end{aligned}$$

When $\lambda = 0$, this is equivalent to a classical gradient descent step.

first-order/proximal methods

• They require solving efficiently the proximal operator

$$\min_{oldsymbol{lpha} \in \mathbb{R}^{
ho}} \; rac{1}{2} \| oldsymbol{u} - oldsymbol{lpha} \|_2^2 + \lambda \psi(oldsymbol{lpha})$$

 $\bullet\,$ For the $\ell_1\text{-norm},$ this amounts to a soft-thresholding:

$$\alpha^{\star}[i] = \operatorname{sign}(\mathbf{u}[i])(\mathbf{u}[i] - \lambda)^+.$$

- There exists accelerated versions based on Nesterov optimal first-order method (gradient method with "extrapolation") [Beck and Teboulle, 2009, Nesterov, 2007, 1983]
- suited for large-scale experiments.

Optimization for Grouped Sparsity

The formulation:

The main class of algorithms for solving grouped-sparsity problems are

- Greedy approaches
- Block-coordinate descent
- Proximal methods

121/137

Optimization for Grouped Sparsity

The proximal operator:

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^p} \ \frac{1}{2} \| \mathbf{u} - \boldsymbol{\alpha} \|_2^2 + \lambda \sum_{g \in \mathcal{G}} \| \boldsymbol{\alpha}_g \|_q$$

For q = 2,

$$\boldsymbol{\alpha}_{g}^{\star} = rac{\mathbf{u}_{g}}{\|\mathbf{u}_{g}\|_{2}} (\|\mathbf{u}_{g}\|_{2} - \lambda)^{+}, \ \forall g \in \mathcal{G}$$

For $q = \infty$,

$$oldsymbol{lpha}_g^\star = oldsymbol{u}_g - \Pi_{\|.\|_1 \leq \lambda} [oldsymbol{u}_g], \ \ orall g \in \mathcal{G}$$

These formula generalize soft-thrsholding to groups of variables. They are used in block-coordinate descent and proximal algorithms.

Reweighted ℓ_2

Let us start from something simple

$$a^2-2ab+b^2\geq 0.$$

Then

$$a \leq rac{1}{2} \Big(rac{a^2}{b} + b \Big) \;\; {
m with \; equality \; iff} \;\; a = b$$

and

$$\|\boldsymbol{\alpha}\|_1 = \min_{\eta_j \ge 0} \frac{1}{2} \sum_{j=1}^p \frac{\boldsymbol{\alpha}[j]^2}{\eta_j} + \eta_j.$$

The formulation becomes

$$\min_{\boldsymbol{\alpha},\eta_j \geq \varepsilon} \frac{1}{2} \|\mathbf{x} - \mathbf{D}\boldsymbol{\alpha}\|_2^2 + \frac{\lambda}{2} \sum_{j=1}^p \frac{\boldsymbol{\alpha}[j]^2}{\eta_j} + \eta_j.$$

∃ >

Important messages

- Greedy methods directly address the NP-hard $\ell_0\text{-decomposition}$ problem.
- Homotopy methods can be extremely efficient for small or medium-sized problems, or when the solution is very sparse.
- Coordinate descent provides in general quickly a solution with a small/medium precision, but gets slower when there is a lot of correlation in the dictionary.
- First order methods are very attractive in the large scale setting.
- Other good alternatives exists, active-set, reweighted ℓ_2 methods, stochastic variants, variants of OMP,...

124/137

Optimization for Dictionary Learning

$$\min_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^{p \times n} \\ \mathbf{D} \in \mathcal{C}}} \sum_{i=1}^{n} \frac{1}{2} \|\mathbf{x}_{i} - \mathbf{D}\boldsymbol{\alpha}_{i}\|_{2}^{2} + \lambda \|\boldsymbol{\alpha}_{i}\|_{1}$$

 $\mathcal{C} \stackrel{\scriptscriptstyle riangle}{=} \{ \mathbf{D} \in \mathbb{R}^{m imes p} \; \; ext{s.t.} \; \; \forall j = 1, \dots, p, \; \; \|\mathbf{d}_j\|_2 \leq 1 \}.$

Classical optimization alternates between **D** and *α*.
Good results, but very slow!

Optimization for Dictionary Learning [Mairal, Bach, Ponce, and Sapiro, 2009a]

Classical formulation of dictionary learning

$$\min_{\mathbf{D}\in\mathcal{C}}f_n(\mathbf{D})=\min_{\mathbf{D}\in\mathcal{C}}\frac{1}{n}\sum_{i=1}^n l(\mathbf{x}_i,\mathbf{D}),$$

where

$$I(\mathbf{x}, \mathbf{D}) \stackrel{\scriptscriptstyle \Delta}{=} \min_{\boldsymbol{\alpha} \in \mathbb{R}^p} \frac{1}{2} \|\mathbf{x} - \mathbf{D}\boldsymbol{\alpha}\|_2^2 + \lambda \|\boldsymbol{\alpha}\|_1.$$

Which formulation are we interested in?

$$\min_{\mathbf{D}\in\mathcal{C}}\left\{f(\mathbf{D})=\mathbb{E}_{x}[l(\mathbf{x},\mathbf{D})]\approx\lim_{n\to+\infty}\frac{1}{n}\sum_{i=1}^{n}l(\mathbf{x}_{i},\mathbf{D})\right\}$$

[Bottou and Bousquet, 2008]: Online learning can

- handle potentially infinite or dynamic datasets,
- be dramatically faster than batch algorithms.

Optimization for Dictionary Learning

Require: $D_0 \in \mathbb{R}^{m \times p}$ (initial dictionary); $\lambda \in \mathbb{R}$

- 1: $\mathbf{A}_0 = 0, \ \mathbf{B}_0 = 0.$
- 2: for $t=1,\ldots,T$ do
- 3: Draw **x**_t
- 4: Sparse Coding

$$oldsymbol{lpha}_t \leftarrow rgmin_{oldsymbol{lpha} \in \mathbb{R}^p} rac{1}{2} \| oldsymbol{x}_t - oldsymbol{\mathsf{D}}_{t-1} oldsymbol{lpha} \|_2^2 + \lambda \|oldsymbol{lpha}\|_1,$$

- 5: Aggregate sufficient statistics $\mathbf{A}_t \leftarrow \mathbf{A}_{t-1} + \alpha_t \alpha_t^T, \mathbf{B}_t \leftarrow \mathbf{B}_{t-1} + \mathbf{x}_t \alpha_t^T$
- 6: Dictionary Update (block-coordinate descent)

$$\mathbf{D}_t \leftarrow \operatorname*{arg\,min}_{\mathbf{D}\in\mathcal{C}} \frac{1}{t} \sum_{i=1}^t \Big(\frac{1}{2} \|\mathbf{x}_i - \mathbf{D}\boldsymbol{\alpha}_i\|_2^2 + \lambda \|\boldsymbol{\alpha}_i\|_1 \Big).$$

7: end for

Optimization for Dictionary Learning

Which guarantees do we have?

Under a few reasonable assumptions,

• we build a surrogate function \hat{f}_t of the expected cost f verifying

$$\lim_{t\to+\infty}\hat{f}_t(\mathbf{D}_t)-f(\mathbf{D}_t)=0,$$

• **D**_t is asymptotically close to a stationary point.

Extensions (all implemented in SPAMS)

- non-negative matrix decompositions.
- sparse PCA (sparse dictionaries).
- fused-lasso regularizations (piecewise constant dictionaries)

Optimization for Dictionary Learning Experimental results, batch vs online

Optimization for Dictionary Learning Experimental results, batch vs online

Julien Mairal Sparse Coding and Dictionary Learning

References I

- M. Aharon, M. Elad, and A. M. Bruckstein. The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representations. *IEEE Transactions on Signal Processing*, 54(11):4311–4322, November 2006.
- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.
- D. P. Bertsekas. Nonlinear programming. Athena Scientific Belmont, Mass, 1999.
- J.F. Bonnans, J.C. Gilbert, C. Lemarechal, and C.A. Sagastizabal. Numerical optimization: theoretical and practical aspects. Springer-Verlag New York Inc, 2006.
- J. M. Borwein and A. S. Lewis. *Convex analysis and nonlinear optimization: Theory and examples.* Springer, 2006.
- L. Bottou and O. Bousquet. The trade-offs of large scale learning. In J.C. Platt,
 D. Koller, Y. Singer, and S. Roweis, editors, *Advances in Neural Information Processing Systems*, volume 20, pages 161–168. MIT Press, Cambridge, MA, 2008.
- Y-L. Boureau, F. Bach, Y. Lecun, and J. Ponce. Learning mid-level features for recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2010.

ヘロン 人間 とくほ とくほ とう

References II

- S. P. Boyd and L. Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.
- E. Candes. Compressive sampling. In *Proceedings of the International Congress of Mathematicians*, volume 3, 2006.
- S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20:33–61, 1999.
- Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. *Comm. Pure Appl. Math*, 57: 1413–1457, 2004.
- I. Daubechies, R. DeVore, M. Fornasier, and S. Gunturk. Iteratively re-weighted least squares minimization for sparse recovery. *Commun. Pure Appl. Math*, 2009.
- B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. *Annals of statistics*, 32(2):407–499, 2004.
- M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. *IEEE Transactions on Image Processing*, 54(12): 3736–3745, December 2006.

References III

- K. Engan, S. O. Aase, and J. H. Husoy. Frame based signal compression using method of optimal directions (MOD). In *Proceedings of the 1999 IEEE International Symposium on Circuits Systems*, volume 4, 1999.
- J. Friedman, T. Hastie, H. Hölfling, and R. Tibshirani. Pathwise coordinate optimization. *Annals of statistics*, 1(2):302–332, 2007.
- W. J. Fu. Penalized regressions: The bridge versus the Lasso. *Journal of computational and graphical statistics*, 7:397–416, 1998.
- R. Grosse, R. Raina, H. Kwong, and A. Y. Ng. Shift-invariant sparse coding for audio classification. In *Proceedings of the Twenty-third Conference on Uncertainty in Artificial Intelligence*, 2007.
- A. Haar. Zur theorie der orthogonalen funktionensysteme. *Mathematische Annalen*, 69:331–371, 1910.
- K. Huang and S. Aviyente. Sparse representation for signal classification. In Advances in Neural Information Processing Systems, Vancouver, Canada, December 2006.
- J. M. Hugues, D. J. Graham, and D. N. Rockmore. Quantification of artistic style through sparse coding analysis in the drawings of Pieter Bruegel the Elder. *Proceedings of the National Academy of Science, TODO USA*, 107(4):1279–1283, 2009.

(日)

References IV

- D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In *Advances in Neural Information Processing Systems*, 2001.
- H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In B. Schölkopf, J. Platt, and T. Hoffman, editors, *Advances in Neural Information Processing Systems*, volume 19, pages 801–808. MIT Press, Cambridge, MA, 2007.
- M. Leordeanu, M. Hebert, and R. Sukthankar. Beyond local appearance: Category recognition from pairwise interactions of simple features. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2007.
- M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neural Computation, 12(2):337–365, 2000.
- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative learned dictionaries for local image analysis. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2008a.
- J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. *IEEE Transactions on Image Processing*, 17(1):53–69, January 2008b.
- J. Mairal, M. Leordeanu, F. Bach, M. Hebert, and J. Ponce. Discriminative sparse image models for class-specific edge detection and image interpretation. In *Proceedings of the European Conference on Computer Vision (ECCV)*, 2008c.

- 4 回 ト 4 ラト 4 ラト

References V

- J. Mairal, G. Sapiro, and M. Elad. Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Modelling and Simulation, 7(1): 214–241, April 2008d.
- J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In *Proceedings of the International Conference on Machine Learning* (*ICML*), 2009a.
- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image restoration. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, 2009b.
- S. Mallat. A Wavelet Tour of Signal Processing, Second Edition. Academic Press, New York, September 1999.
- S. Mallat and Z. Zhang. Matching pursuit in a time-frequency dictionary. *IEEE Transactions on Signal Processing*, 41(12):3397–3415, 1993.
- H. M. Markowitz. The optimization of a quadratic function subject to linear constraints. *Naval Research Logistics Quarterly*, 3:111–133, 1956.
- Y. Nesterov. A method for solving a convex programming problem with convergence rate $O(1/k^2)$. Soviet Math. Dokl., 27:372–376, 1983.

・ 同 ト ・ ヨ ト ・ ヨ ト

References VI

- Y. Nesterov. Gradient methods for minimizing composite objective function. Technical report, CORE, 2007.
- J. Nocedal and SJ Wright. *Numerical Optimization*. Springer: New York, 2006. 2nd Edition.
- B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? *Vision Research*, 37:3311–3325, 1997.
- M. R. Osborne, B. Presnell, and B. A. Turlach. On the Lasso and its dual. Journal of Computational and Graphical Statistics, 9(2):319–37, 2000.
- M. Protter and M. Elad. Image sequence denoising via sparse and redundant representations. *IEEE Transactions on Image Processing*, 18(1):27–36, 2009.
- S. Roth and M. J. Black. Fields of experts: A framework for learning image priors. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (*CVPR*), 2005.
- V. Roth and B. Fischer. The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2008.
- P. Sprechmann, I. Ramirez, G. Sapiro, and Y. C. Eldar. Collaborative hierarchical sparse modeling. Technical report, 2010. Preprint arXiv:1003.0400v1.

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

References VII

- R. Tibshirani. Regression shrinkage and selection via the Lasso. *Journal of the Royal Statistical Society. Series B*, 58(1):267–288, 1996.
- S. Weisberg. Applied Linear Regression. Wiley, New York, 1980.
- J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual dictionary. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, 2005.
- J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image classification. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2009.
- J. Yang, K. Yu, , and T. Huang. Supervised translation-invariant sparse coding. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (*CVPR*), 2010.
- M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. *Journal of the Royal Statistical Society Series B*, 68:49–67, 2006.

・ 同 ト ・ ヨ ト ・ ヨ ト …