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What this lecture is about?

Why sparsity, what for and how?

Signal and image processing: Restoration, reconstruction.

Machine learning: Selecting relevant features.

Computer vision: Modelling the local appearance of image
patches.

Computer vision: Recent (and intriguing) results in bags of
words models.

Optimization: Solving challenging problems.
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The Image Denoising Problem

y
︸︷︷︸

measurements

= xorig
︸︷︷︸

original image

+ w︸︷︷︸
noise
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Sparse representations for image restoration

y
︸︷︷︸

measurements

= xorig
︸︷︷︸

original image

+ w
︸︷︷︸

noise

Energy minimization problem - MAP estimation

E (x) =
1

2
‖y − x‖22

︸ ︷︷ ︸

relation to measurements

+ Pr(x)
︸ ︷︷ ︸

image model (-log prior)

Some classical priors

Smoothness λ‖Lx‖22
Total variation λ‖∇x‖21
MRF priors

. . .
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What is a Sparse Linear Model?

Let x in R
m be a signal.

Let D = [d1, . . . ,dp] ∈ R
m×p be a set of

normalized “basis vectors”.
We call it dictionary.

D is “adapted” to x if it can represent it with a few basis vectors—that
is, there exists a sparse vector α in R

p such that x ≈ Dα. We call α
the sparse code.



x





︸ ︷︷ ︸

x∈Rm

≈



 d1 d2 · · · dp





︸ ︷︷ ︸

D∈Rm×p








α[1]
α[2]
...

α[p]








︸ ︷︷ ︸

α∈Rp
,sparse
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First Important Idea

Why Sparsity?

A dictionary can be good for representing a class of
signals, but not for representing white Gaussian noise.
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The Sparse Decomposition Problem

min
α∈Rp

1

2
‖x−Dα‖22

︸ ︷︷ ︸

data fitting term

+ λψ(α)
︸ ︷︷ ︸

sparsity-inducing
regularization

ψ induces sparsity in α. It can be

the ℓ0 “pseudo-norm”. ‖α‖0
△

= #{i s.t. α[i ] 6= 0} (NP-hard)

the ℓ1 norm. ‖α‖1
△

=
∑p

i=1 |α[i ]| (convex),

. . .

This is a selection problem. When ψ is the ℓ1-norm, the problem is
called Lasso [Tibshirani, 1996] or basis pursuit [Chen et al., 1999]
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Sparse representations for image restoration

Designed dictionaries

[Haar, 1910], [Zweig, Morlet, Grossman ∼70s], [Meyer, Mallat,
Daubechies, Coifman, Donoho, Candes ∼80s-today]. . . (see [Mallat,
1999])
Wavelets, Curvelets, Wedgelets, Bandlets, . . . lets

Learned dictionaries of patches

[Olshausen and Field, 1997], [Engan et al., 1999], [Lewicki and
Sejnowski, 2000], [Aharon et al., 2006] , [Roth and Black, 2005], [Lee
et al., 2007]

min
αi ,D∈C

∑

i

1

2
‖xi −Dαi‖

2
2

︸ ︷︷ ︸

reconstruction

+λψ(αi )
︸ ︷︷ ︸

sparsity

ψ(α) = ‖α‖0 (“ℓ0 pseudo-norm”)

ψ(α) = ‖α‖1 (ℓ1 norm)
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Sparse representations for image restoration

Solving the denoising problem

[Elad and Aharon, 2006]

Extract all overlapping 8× 8 patches xi .

Solve a matrix factorization problem:

min
αi ,D∈C

n∑

i=1

1

2
‖xi −Dαi‖

2
2

︸ ︷︷ ︸

reconstruction

+λψ(αi)
︸ ︷︷ ︸

sparsity

,

with n > 100, 000

Average the reconstruction of each patch.
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Sparse representations for image restoration
K-SVD: [Elad and Aharon, 2006]

Figure: Dictionary trained on a noisy version of the image
boat.
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Sparse representations for image restoration

Inpainting, Demosaicking

min
D∈C,α

∑

i

1

2
‖βi ⊗ (xi −Dαi )‖

2
2 + λiψ(αi )

RAW Image Processing

White
balance.
Black

substraction.

Denoising

Demosaicking

Conversion
to sRGB.
Gamma

correction.
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Sparse representations for image restoration
[Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009b]
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Sparse representations for image restoration
[Mairal, Sapiro, and Elad, 2008d]
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Sparse representations for image restoration
Inpainting, [Mairal, Elad, and Sapiro, 2008b]
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Sparse representations for image restoration
Inpainting, [Mairal, Elad, and Sapiro, 2008b]
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Sparse representations for video restoration

Key ideas for video processing

[Protter and Elad, 2009]

Using a 3D dictionary.

Processing of many frames at the same time.

Dictionary propagation.
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Sparse representations for image restoration
Inpainting, [Mairal, Sapiro, and Elad, 2008d]

Figure: Inpainting results.
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Sparse representations for image restoration
Inpainting, [Mairal, Sapiro, and Elad, 2008d]

Figure: Inpainting results.
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Sparse representations for image restoration
Inpainting, [Mairal, Sapiro, and Elad, 2008d]

Figure: Inpainting results.
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Sparse representations for image restoration
Inpainting, [Mairal, Sapiro, and Elad, 2008d]

Figure: Inpainting results.
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Sparse representations for image restoration
Inpainting, [Mairal, Sapiro, and Elad, 2008d]

Figure: Inpainting results.

Julien Mairal Sparse Coding and Dictionary Learning 21/137



Sparse representations for image restoration
Color video denoising, [Mairal, Sapiro, and Elad, 2008d]

Figure: Denoising results. σ = 25
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Sparse representations for image restoration
Color video denoising, [Mairal, Sapiro, and Elad, 2008d]

Figure: Denoising results. σ = 25
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Sparse representations for image restoration
Color video denoising, [Mairal, Sapiro, and Elad, 2008d]
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Sparse representations for image restoration
Color video denoising, [Mairal, Sapiro, and Elad, 2008d]

Figure: Denoising results. σ = 25
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Sparse representations for image restoration
Color video denoising, [Mairal, Sapiro, and Elad, 2008d]

Figure: Denoising results. σ = 25
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Digital Zooming
Couzinie-Devy, 2010, Original
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Digital Zooming
Couzinie-Devy, 2010, Bicubic
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Digital Zooming
Couzinie-Devy, 2010, Proposed method
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Digital Zooming
Couzinie-Devy, 2010, Original
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Digital Zooming
Couzinie-Devy, 2010, Bicubic
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Digital Zooming
Couzinie-Devy, 2010, Proposed approach
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Inverse half-toning
Original
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Inverse half-toning
Reconstructed image
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Inverse half-toning
Original
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Inverse half-toning
Reconstructed image
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Inverse half-toning
Original
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Inverse half-toning
Reconstructed image
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Inverse half-toning
Original
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Inverse half-toning
Reconstructed image
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Inverse half-toning
Original
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Inverse half-toning
Reconstructed image
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One short slide on compressed sensing

Important message

Sparse coding is not “compressed sensing”.

Compressed sensing is a theory [see Candes, 2006] saying that a sparse
signal can be recovered with high probability from a few linear
measurements under some conditions.

Signal Acquisition: W⊤x, where W ∈ R
m×s is a “sensing” matrix

with s ≪ m.

Signal Decoding: minα∈Rp ‖α‖1 s.t. W⊤x = W⊤Dα.

with extensions to approximately sparse signals, noisy measurements.

Remark

The dictionaries we are using in this lecture do not satisfy the recovery
assumptions of compressed sensing.
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Important messages

Patch-based approaches are achieving state-of-the-art results for
many image processing task.

Dictionary Learning adapts to the data you want to restore.

Dictionary Learning is well adapted to data that admit sparse
representation. Sparsity is for sparse data only.
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Next topics

Why does the ℓ1-norm induce sparsity?

Some properties of the Lasso.

Beyond sparsity: Group-sparsity.

The simplest algorithm for learning dictionaries.

Links between dictionary learning and matrix factorization
techniques.
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Why does the ℓ1-norm induce sparsity?
Exemple: quadratic problem in 1D

min
α∈R

1

2
(x − α)2 + λ|α|

Piecewise quadratic function with a kink at zero.

Derivative at 0+: g+ = −x + λ and 0−: g− = −x − λ.

Optimality conditions. α is optimal iff:

|α| > 0 and (x − α) + λ sign(α) = 0

α = 0 and g+ ≥ 0 and g− ≤ 0

The solution is a soft-thresholding:

α⋆ = sign(x)(|x | − λ)+.
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Why does the ℓ1-norm induce sparsity?

x

α⋆

(a) soft-thresholding operator

x

α⋆

(b) hard-thresholding operator
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Why does the ℓ1-norm induce sparsity?
Analysis of the norms in 1D

ψ(α) = α2

ψ′(α) = 2α

ψ(α) = |α|

ψ′
−(α) = −1, ψ′

+(α) = 1

The gradient of the ℓ2-norm vanishes when α get close to 0. On its
differentiable part, the norm of the gradient of the ℓ1-norm is constant.
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Why does the ℓ1-norm induce sparsity?
Geometric explanation

x

y

x

y

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1

min
α∈Rp

‖x−Dα‖22 s.t. ‖α‖1 ≤ T .
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Important property of the Lasso
Piecewise linearity of the regularization path
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Figure: Regularization path of the Lasso

min
1
‖x−Dα‖2 + λ‖α‖ .
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Sparsity-Inducing Norms (1/2)

min
α∈Rp

data fitting term
︷︸︸︷

f (α) + λ ψ(α)
︸ ︷︷ ︸

sparsity-inducing norm

Standard approach to enforce sparsity in learning procedures:

Regularizing by a sparsity-inducing norm ψ.

The effect of ψ is to set some αj ’s to zero, depending on the
regularization parameter λ ≥ 0.

The most popular choice for ψ:

The ℓ1 norm, ‖α‖1 =
∑p

j=1 |αj |.

For the square loss, Lasso [Tibshirani, 1996].

However, the ℓ1 norm encodes poor information, just cardinality!
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Sparsity-Inducing Norms (2/2)

Another popular choice for ψ:

The ℓ1-ℓ2 norm,

∑

G∈G

‖αG‖2 =
∑

G∈G

(∑

j∈G

α2
j

)1/2
, with G a partition of {1, . . . , p}.

The ℓ1-ℓ2 norm sets to zero groups of non-overlapping variables

(as opposed to single variables for the ℓ1 norm).

For the square loss, group Lasso [Yuan and Lin, 2006].

However, the ℓ1-ℓ2 norm encodes fixed/static prior information,
requires to know in advance how to group the variables !

Applications:

Selecting groups of features instead of individual variables.

Multi-task learning.
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Optimization for Dictionary Learning

min
α∈Rp×n

D∈C

n∑

i=1

1

2
‖xi −Dαi‖

2
2 + λ‖αi‖1

C
△

= {D ∈ R
m×p s.t. ∀j = 1, . . . , p, ‖dj‖2 ≤ 1}.

Classical optimization alternates between D and α.

Good results, but slow!

Instead use online learning [Mairal et al., 2009a]
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Optimization for Dictionary Learning
Inpainting a 12-Mpixel photograph
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Optimization for Dictionary Learning
Inpainting a 12-Mpixel photograph

Julien Mairal Sparse Coding and Dictionary Learning 55/137



Optimization for Dictionary Learning
Inpainting a 12-Mpixel photograph
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Optimization for Dictionary Learning
Inpainting a 12-Mpixel photograph
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Matrix Factorization Problems and Dictionary Learning

min
α∈Rp×n

D∈C

n∑

i=1

1

2
‖xi −Dαi‖

2
2 + λ‖αi‖1

can be rewritten

min
α∈Rp×n

D∈C

1

2
‖X−Dα‖2F + λ‖α‖1,

where X = [x1, . . . , xn] and α = [α1, . . . ,αn].
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Matrix Factorization Problems and Dictionary Learning
PCA

min
α∈Rp×n

D∈Rm×p

‖X−Dα‖2F ,

with the additional constraints that D is orthonormal and α⊤ is
orthogonal.

D = [d1, . . . ,dp] are the principal components.
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Matrix Factorization Problems and Dictionary Learning
Hard clustering

min
α∈Rp×n

D∈Rm×p

‖X−Dα‖2F ,

with the additional constraints that α is binary and its columns sum to
one.
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Matrix Factorization Problems and Dictionary Learning
Soft clustering

min
α∈Rp×n

D∈Rm×p

‖X−Dα‖2F ,

with the additional constraints that the columns of α sum to one.
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Matrix Factorization Problems and Dictionary Learning
Non-negative matrix factorization [Lee and Seung, 2001]

min
α∈Rp×n

D∈Rm×p

‖X−Dα‖2F ,

with the additional constraints that the entries of D and α are
non-negative.
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Matrix Factorization Problems and Dictionary Learning
NMF+sparsity?

min
α∈Rp×n

D∈Rm×p

‖X−Dα‖2F + λ‖α‖1

with the additional constraints that the entries of D and α are
non-negative.

Most of these formulations can be addressed the same types of

algorithms.
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Matrix Factorization Problems and Dictionary Learning
Natural Patches

(a) PCA (b) NNMF (c) DL
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Matrix Factorization Problems and Dictionary Learning
Faces

(d) PCA (e) NNMF (f) DL
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Important messages

The ℓ1-norm induces sparsity and shrinks the coefficients
(soft-thresholding)

The regularization path of the Lasso is piecewise linear.

Sparsity can be induced at the group level.

Learning the dictionary is simple, fast and scalable.

Dictionary learning is related to several matrix factorization
problems.

Software SPAMS is available for all of this:

www.di.ens.fr/willow/SPAMS/.
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Next topics: Computer Vision

Intriguing results on the use of dictionary learning for bags of words.

Modelling the local appearance of image patches.
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Learning Codebooks for Image Classification

Idea

Replacing Vector Quantization by Learned Dictionaries!

unsupervised: [Yang et al., 2009]

supervised: [Boureau et al., 2010, Yang et al., 2010]
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Learning Codebooks for Image Classification

Let an image be represented by a set of low-level descriptors xi at N
locations identified with their indices i = 1, . . . ,N.

hard-quantization:

xi ≈ Dαi , αi ∈ {0, 1}
p and

p
∑

j=1

αi [j ] = 1

soft-quantization:

αi [j ] =
e−β‖xi−dj‖

2
2

∑p
k=1 e

−β‖xi−dk‖
2
2

sparse coding:

xi ≈ Dαi , αi = argmin
α

1

2
‖xi −Dα‖22 + λ‖α‖1
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Learning Codebooks for Image Classification
Table from Boureau et al. [2010]

Yang et al. [2009] have won the PASCAL VOC’09 challenge using this
kind of techniques.
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Learning dictionaries with a discriminative cost function

Idea:

Let us consider 2 sets S−, S+ of signals representing 2 different classes.
Each set should admit a dictionary best adapted to its reconstruction.

Classification procedure for a signal x ∈ R
n:

min(R⋆(x,D−),R
⋆(x,D+))

where
R⋆(x,D) = min

α∈Rp
‖x−Dα‖22 s.t. ‖α‖0 ≤ L.

“Reconstructive” training
{

minD−

∑

i∈S−
R⋆(xi ,D−)

minD+

∑

i∈S+
R⋆(xi ,D+)

[Grosse et al., 2007], [Huang and Aviyente, 2006],
[Sprechmann et al., 2010] for unsupervised clustering (CVPR ’10)
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Learning dictionaries with a discriminative cost function

“Discriminative” training

[Mairal, Bach, Ponce, Sapiro, and Zisserman, 2008a]

min
D−,D+

∑

i

C
(

λzi
(
R⋆(xi ,D−)− R⋆(xi ,D+)

))

,

where zi ∈ {−1,+1} is the label of xi .

Logistic regression function
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Learning dictionaries with a discriminative cost function
Examples of dictionaries

Top: reconstructive, Bottom: discriminative, Left: Bicycle, Right:
Background.
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Learning dictionaries with a discriminative cost function
Texture segmentation
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Learning dictionaries with a discriminative cost function
Texture segmentation
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Learning dictionaries with a discriminative cost function
Pixelwise classification
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Learning dictionaries with a discriminative cost function
weakly-supervised pixel classification
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Application to edge detection and classification
[Mairal, Leordeanu, Bach, Hebert, and Ponce, 2008c]

Good edges Bad edges
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Application to edge detection and classification
Berkeley segmentation benchmark

Raw edge detection on the right
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Application to edge detection and classification
Berkeley segmentation benchmark

Raw edge detection on the right
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Application to edge detection and classification
Berkeley segmentation benchmark
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Application to edge detection and classification
Contour-based classifier: [Leordeanu, Hebert, and Sukthankar, 2007]

Is there a bike, a motorbike, a car or a person on this
image?
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Application to edge detection and classification
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Application to edge detection and classification
Performance gain due to the prefiltering

Ours + [Leordeanu ’07] [Leordeanu ’07] [Winn ’05]

96.8% 89.4% 76.9%

Recognition rates for the same experiment as [Winn et al., 2005] on
VOC 2005.

Category Ours+[Leordeanu ’07] [Leordeanu ’07]
Aeroplane 71.9% 61.9%

Boat 67.1% 56.4%
Cat 82.6% 53.4%
Cow 68.7% 59.2%
Horse 76.0% 67%

Motorbike 80.6% 73.6%
Sheep 72.9% 58.4%

Tvmonitor 87.7% 83.8%

Average 75.9% 64.2 %

Recognition performance at equal error rate for 8 classes on a subset of
images from Pascal 07.
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Digital Art Authentification
Data Courtesy of Hugues, Graham, and Rockmore [2009]

Authentic Fake
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Digital Art Authentification
Data Courtesy of Hugues, Graham, and Rockmore [2009]

Authentic Fake

Fake
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Digital Art Authentification
Data Courtesy of Hugues, Graham, and Rockmore [2009]

Authentic Fake

Authentic
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Important messages

Learned dictionaries are well adapted to model the local
appearance of images and edges.

They can be used to learn dictionaries of SIFT features.
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Next topics

Optimization for solving sparse decomposition problems

Optimization for dictionary learning
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Recall: The Sparse Decomposition Problem

min
α∈Rp

1

2
‖x−Dα‖22

︸ ︷︷ ︸

data fitting term

+ λψ(α)
︸ ︷︷ ︸

sparsity-inducing
regularization

ψ induces sparsity in α. It can be

the ℓ0 “pseudo-norm”. ‖α‖0
△

= #{i s.t. α[i ] 6= 0} (NP-hard)

the ℓ1 norm. ‖α‖1
△

=
∑p

i=1 |α[i ]| (convex)

. . .

This is a selection problem.
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Finding your way in the sparse coding literature. . .

. . . is not easy. The literature is vast, redundant, sometimes
confusing and many papers are claiming victory. . .

The main class of methods are

greedy procedures [Mallat and Zhang, 1993], [Weisberg, 1980]

homotopy [Osborne et al., 2000], [Efron et al., 2004],
[Markowitz, 1956]

soft-thresholding based methods [Fu, 1998], [Daubechies et al.,
2004], [Friedman et al., 2007], [Nesterov, 2007], [Beck and
Teboulle, 2009], . . .

reweighted-ℓ2 methods [Daubechies et al., 2009],. . .

active-set methods [Roth and Fischer, 2008].

. . .
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Matching Pursuit α = (0, 0, 0)

d1

d2

d3

rz

x

y
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Matching Pursuit α = (0, 0, 0)

z

x

y

d1

d2

d3

r

< r,d3 > d3
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Matching Pursuit α = (0, 0, 0)

z

x

y

d1

d2

d3

r
r− < r,d3 > d3
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Matching Pursuit α = (0, 0, 0.75)

d1

d2

d3

r
z

x

y
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Matching Pursuit α = (0, 0, 0.75)

z

x

y

d1

d2

d3

r
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Matching Pursuit α = (0, 0, 0.75)
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Matching Pursuit α = (0, 0.24, 0.75)
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Matching Pursuit α = (0, 0.24, 0.75)
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Matching Pursuit α = (0, 0.24, 0.65)
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Matching Pursuit

min
α∈Rp

‖ x−Dα
︸ ︷︷ ︸

r

‖22 s.t. ‖α‖0 ≤ L

1: α← 0
2: r← x (residual).
3: while ‖α‖0 < L do

4: Select the atom with maximum correlation with the residual

ı̂← argmax
i=1,...,p

|dTi r|

5: Update the residual and the coefficients

α[̂ı] ← α[̂ı] + dTı̂ r

r ← r − (dTı̂ r)dı̂

6: end while
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Orthogonal Matching Pursuit
α = (0, 0, 0)

Γ = ∅
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Orthogonal Matching Pursuit α = (0, 0, 0.75)
Γ = {3}
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Orthogonal Matching Pursuit α = (0, 0.29, 0.63)
Γ = {3, 2}
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Orthogonal Matching Pursuit

min
α∈Rp

‖x−Dα‖22 s.t. ‖α‖0 ≤ L

1: Γ = ∅.
2: for iter = 1, . . . , L do

3: Select the atom which most reduces the objective

ı̂← argmin
i∈ΓC

{

min
α

′

‖x−DΓ∪{i}α
′‖22

}

4: Update the active set: Γ← Γ ∪ {ı̂}.
5: Update the residual (orthogonal projection)

r← (I−DΓ(D
T
Γ DΓ)

−1DT
Γ )x.

6: Update the coefficients

αΓ ← (DT
Γ DΓ)

−1DT
Γ x.

7: end for
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Orthogonal Matching Pursuit

Contrary to MP, an atom can only be selected one time with OMP. It is,
however, more difficult to implement efficiently. The keys for a good
implementation in the case of a large number of signals are

Precompute the Gram matrix G = DTD once in for all,

Maintain the computation of DT r for each signal,

Maintain a Cholesky decomposition of (DT
Γ DΓ)

−1 for each signal.

The total complexity for decomposing n L-sparse signals of size m with a
dictionary of size p is

O(p2m)
︸ ︷︷ ︸

Gram matrix

+O(nL3)
︸ ︷︷ ︸

Cholesky

+O(n(pm + pL2))
︸ ︷︷ ︸

DT r

= O(np(m + L2))

It is also possible to use the matrix inversion lemma instead of a
Cholesky decomposition (same complexity, but less numerical stability)

Julien Mairal Sparse Coding and Dictionary Learning 109/137



Example with the software SPAMS

Software available at http://www.di.ens.fr/willow/SPAMS/

>> I=double(imread(’data/lena.eps’))/255;

>> %extract all patches of I

>> X=im2col(I,[8 8],’sliding’);

>> %load a dictionary of size 64 x 256

>> D=load(’dict.mat’);

>>

>> %set the sparsity parameter L to 10

>> param.L=10;

>> alpha=mexOMP(X,D,param);

On a 8-cores 2.83Ghz machine: 230000 signals processed per second!
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Optimality conditions of the Lasso
Nonsmooth optimization

Directional derivatives and subgradients are useful tools for studying
ℓ1-decomposition problems:

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1

In this tutorial, we use the directional derivatives to derive simple
optimality conditions of the Lasso.

For more information on convex analysis and nonsmooth optimization,
see the following books: [Boyd and Vandenberghe, 2004], [Nocedal and
Wright, 2006], [Borwein and Lewis, 2006], [Bonnans et al., 2006],
[Bertsekas, 1999].
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Optimality conditions of the Lasso
Directional derivatives

Directional derivative in the direction u at α:

∇f (α,u) = lim
t→0+

f (α+ tu)− f (α)

t

Main idea: in non smooth situations, one may need to look at all
directions u and not simply p independent ones!

Proposition 1: if f is differentiable in α, ∇f (α,u) = ∇f (α)Tu.

Proposition 2: α is optimal iff for all u in R
p, ∇f (α,u) ≥ 0.
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Optimality conditions of the Lasso

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1

α⋆ is optimal iff for all u in R
p, ∇f (α,u) ≥ 0—that is,

−uTDT (x−Dα⋆) + λ
∑

i ,α⋆[i ] 6=0

sign(α⋆[i ])u[i ] + λ
∑

i ,α⋆[i ]=0

|ui | ≥ 0,

which is equivalent to the following conditions:

∀i = 1, . . . , p,

{
|dTi (x−Dα⋆)| ≤ λ if α⋆[i ] = 0
dTi (x−Dα⋆) = λ sign(α⋆[i ]) if α⋆[i ] 6= 0
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Homotopy

A homotopy method provides a set of solutions indexed by a
parameter.

The regularization path (λ,α⋆(λ)) for instance!!

It can be useful when the path has some “nice” properties
(piecewise linear, piecewise quadratic).

LARS [Efron et al., 2004] starts from a trivial solution, and follows
the regularization path of the Lasso, which is is piecewise linear.
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Homotopy, LARS
[Osborne et al., 2000], [Efron et al., 2004]

∀i = 1, . . . , p,

{
|dTi (x−Dα⋆)| ≤ λ if α⋆[i ] = 0
dTi (x−Dα⋆) = λ sign(α⋆[i ]) if α⋆[i ] 6= 0

(1)
The regularization path is piecewise linear:

DT
Γ (x−DΓα

⋆
Γ) = λ sign(α⋆

Γ)

α⋆
Γ(λ) = (DT

Γ DΓ)
−1(DT

Γ x− λ sign(α
⋆
Γ)) = A+ λB

A simple interpretation of LARS

Start from the trivial solution (λ = ‖DTx‖∞,α
⋆(λ) = 0).

Maintain the computations of |dTi (x−Dα⋆(λ))| for all i .

Maintain the computation of the current direction B.

Follow the path by reducing λ until the next kink.
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Example with the software SPAMS
http://www.di.ens.fr/willow/SPAMS/

>> I=double(imread(’data/lena.eps’))/255;

>> %extract all patches of I

>> X=normalize(im2col(I,[8 8],’sliding’));

>> %load a dictionary of size 64 x 256

>> D=load(’dict.mat’);

>>

>> %set the sparsity parameter lambda to 0.15

>> param.lambda=0.15;

>> alpha=mexLasso(X,D,param);

On a 8-cores 2.83Ghz machine: 77000 signals processed per second!

Note that it can also solve constrained version of the problem. The
complexity is more or less the same as OMP and uses the same tricks
(Cholesky decomposition).
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Coordinate Descent

Coordinate descent + nonsmooth objective: WARNING: not

convergent in general

Here, the problem is equivalent to a convex smooth optimization
problem with separable constraints

min
α+,α−

1

2
‖x−D+α++D−α−‖

2
2+λα

T
+1+λα

T
−1 s.t. α−,α+ ≥ 0.

For this specific problem, coordinate descent is convergent.

Supposing ‖di‖2 = 1, updating the coordinate i :

α[i ]← argmin
β

1

2
‖ x−

∑

j 6=i

α[j ]dj

︸ ︷︷ ︸

r

−βdi‖
2
2 + λ|β|

← sign(dTi r)(|d
T
i r| − λ)

+

⇒ soft-thresholding!
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Example with the software SPAMS
http://www.di.ens.fr/willow/SPAMS/

>> I=double(imread(’data/lena.eps’))/255;

>> %extract all patches of I

>> X=normalize(im2col(I,[8 8],’sliding’));

>> %load a dictionary of size 64 x 256

>> D=load(’dict.mat’);

>>

>> %set the sparsity parameter lambda to 0.15

>> param.lambda=0.15;

>> param.tol=1e-2;

>> param.itermax=200;

>> alpha=mexCD(X,D,param);

On a 8-cores 2.83Ghz machine: 93000 signals processed per second!
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first-order/proximal methods

min
α∈Rp

f (α) + λψ(α)

f is strictly convex and continuously differentiable with a Lipshitz
gradient.

Generalize the idea of gradient descent

αk+1←argmin
α∈R

f (αk)+∇f (αk)
T (α−αk)+

L

2
‖α−αk‖

2
2+λψ(α)

← argmin
α∈R

1

2
‖α− (αk −

1

L
∇f (αk))‖

2
2 +

λ

L
ψ(α)

When λ = 0, this is equivalent to a classical gradient descent step.
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first-order/proximal methods

They require solving efficiently the proximal operator

min
α∈Rp

1

2
‖u−α‖22 + λψ(α)

For the ℓ1-norm, this amounts to a soft-thresholding:

α⋆[i ] = sign(u[i ])(u[i ]− λ)+.

There exists accelerated versions based on Nesterov optimal
first-order method (gradient method with “extrapolation”) [Beck
and Teboulle, 2009, Nesterov, 2007, 1983]

suited for large-scale experiments.
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Optimization for Grouped Sparsity

The formulation:

min
α∈Rp

1

2
‖x−Dα‖22

︸ ︷︷ ︸

data fitting term

+ λ
∑

g∈G

‖αg‖q

︸ ︷︷ ︸

group-sparsity-inducing
regularization

The main class of algorithms for solving grouped-sparsity problems are

Greedy approaches

Block-coordinate descent

Proximal methods
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Optimization for Grouped Sparsity

The proximal operator:

min
α∈Rp

1

2
‖u−α‖22 + λ

∑

g∈G

‖αg‖q

For q = 2,

α⋆
g =

ug

‖ug‖2
(‖ug‖2 − λ)

+, ∀g ∈ G

For q =∞,
α⋆

g = ug − Π‖.‖1≤λ[ug ], ∀g ∈ G

These formula generalize soft-thrsholding to groups of variables. They
are used in block-coordinate descent and proximal algorithms.
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Reweighted ℓ2

Let us start from something simple

a2 − 2ab + b2 ≥ 0.

Then

a ≤
1

2

(a2

b
+ b

)

with equality iff a = b

and

‖α‖1 = min
ηj≥0

1

2

p
∑

j=1

α[j ]2

ηj
+ ηj .

The formulation becomes

min
α,ηj≥ε

1

2
‖x−Dα‖22 +

λ

2

p
∑

j=1

α[j ]2

ηj
+ ηj .

Julien Mairal Sparse Coding and Dictionary Learning 123/137



Important messages

Greedy methods directly address the NP-hard ℓ0-decomposition
problem.

Homotopy methods can be extremely efficient for small or
medium-sized problems, or when the solution is very sparse.

Coordinate descent provides in general quickly a solution with a
small/medium precision, but gets slower when there is a lot of
correlation in the dictionary.

First order methods are very attractive in the large scale setting.

Other good alternatives exists, active-set, reweighted ℓ2 methods,
stochastic variants, variants of OMP,. . .
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Optimization for Dictionary Learning

min
α∈Rp×n

D∈C

n∑

i=1

1

2
‖xi −Dαi‖

2
2 + λ‖αi‖1

C
△

= {D ∈ R
m×p s.t. ∀j = 1, . . . , p, ‖dj‖2 ≤ 1}.

Classical optimization alternates between D and α.

Good results, but very slow!
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Optimization for Dictionary Learning
[Mairal, Bach, Ponce, and Sapiro, 2009a]

Classical formulation of dictionary learning

min
D∈C

fn(D) = min
D∈C

1

n

n∑

i=1

l(xi ,D),

where

l(x,D)
△

= min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1.

Which formulation are we interested in?

min
D∈C

{

f (D) = Ex [l(x,D)] ≈ lim
n→+∞

1

n

n∑

i=1

l(xi ,D)
}

[Bottou and Bousquet, 2008]: Online learning can

handle potentially infinite or dynamic datasets,

be dramatically faster than batch algorithms.
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Optimization for Dictionary Learning

Require: D0 ∈ R
m×p (initial dictionary); λ ∈ R

1: A0 = 0, B0 = 0.
2: for t=1,. . . ,T do

3: Draw xt
4: Sparse Coding

αt ← argmin
α∈Rp

1

2
‖xt −Dt−1α‖

2
2 + λ‖α‖1,

5: Aggregate sufficient statistics
At ← At−1 +αtα

T
t , Bt ← Bt−1 + xtα

T
t

6: Dictionary Update (block-coordinate descent)

Dt ← argmin
D∈C

1

t

t∑

i=1

(1

2
‖xi −Dαi‖

2
2 + λ‖αi‖1

)

.

7: end for
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Optimization for Dictionary Learning

Which guarantees do we have?

Under a few reasonable assumptions,

we build a surrogate function f̂t of the expected cost f verifying

lim
t→+∞

f̂t(Dt)− f (Dt) = 0,

Dt is asymptotically close to a stationary point.

Extensions (all implemented in SPAMS)

non-negative matrix decompositions.

sparse PCA (sparse dictionaries).

fused-lasso regularizations (piecewise constant dictionaries)
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Optimization for Dictionary Learning
Experimental results, batch vs online

m = 8× 8, p = 256
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Optimization for Dictionary Learning
Experimental results, batch vs online

m = 12× 12× 3, p = 512
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