

"Who are you?": Learning person specific classifiers from video

Josef Sivic

Mark Everingham and Andrew Zisserman

INRIA – Willow Project Département d'Informatique, Ecole Normale Supérieure http://www.di.ens.fr/willow

The objective

- Automatically annotate characters in video with their identity
- Recognize characters whenever they appear in the video

Visual search and automatic annotation of objects in video

[Sivic and Zisserman, ICCV'2003, CVPR'2004]

Visually defined search – on faces

Retrieve all shots in a video, e.g. a feature length film, containing a particular person

"Pretty Woman" [Marshall, 1990]

Applications:

- intelligent fast forward on characters
- pull out all videos of "x" from 1000s of digital camera mpegs

[Sivic, Everingham and Zisserman, CIVR'05]

Matching faces in video

"Pretty Woman" (Marshall, 1990)

Are these faces of the same person?

Uncontrolled viewing conditions Image variations due to:

• pose/scale

- partial occlusion
- expression

Matching Faces

Are these images of the same person?

Can be difficult for individual examples ...

Matching Faces

Are these images of the same person?

Easier for sets of faces

The benefits of video

Automatically associate face examples

Obtaining sets of faces from video: Tracking by detection

Face detection - example

Operate at high precision (90%) point – few false positives

Need to associate detections with the same identity

Example – tracked regions

Tracking covariant regions – two stages

Goal: develop very long and good quality tracks

Stage I – match regions detected in neighbouring frames

Problems: e.g. missing detections

Stage II – repair tracks by region propagation

[Ferrari et al. 2004, Sivic et al. 2004]

Region tubes

Connecting face detections temporally

Goal: associate face detections of each character within a shot

Approach: Agglomeratively merge face detections based on connecting 'tubes'

Measure connectivity score of a pair of faces by number of tracks intersecting both detections

require a minimum number of region tubes to overlap face detections

Connecting face detections temporally

Goal: associate face detections of each character within a shot

Approach: Agglomeratively merge face detections based on connecting 'tubes'

Alternatives: Avidan CVPR 01, Williams et al ICCV 03

500 400 o Frame number (time) 0000 300 200 Oa 100 CODUCTOR OF CODUCTOR OF CODUCTOR OF CODUCTOR Canal Contraction 00 £. 200 400 Position (x) 600 800

raw face detections

Face tracks

Face tracks Tracking by recognition

Tracking by recognition

Connected face tracks

Connecting face detections temporally

- + Does not require contiguous detections
- + Independent evidence no drift
- Tracking affine covariant regions is expensive

• Use "light-weight" KLT tracker (3fps)

 Fix occasional broken tracks later: tracking by recognition

Tracking faces in spatio-temporal video volume

Face representation and matching

Matching faces

Easier if faces aligned to remove pose variation

face detector

eyes/nose/mouth

Rectified face

Face normalization - example

affine transform face using detected features

original detection

rectified

Facial feature localization using a pictorial structure model

- Stabilize representation by localizing features
 - · Pose of face varies and face detector is noisy

- Extended "pictorial structure" model
 - Joint model of feature appearance and position

[Felzenszwalb and Huttenlocher'2004]

Facial feature localization using a pictorial structure model

- Stabilize representation by localizing features
 - Pose of face varies and face detector is noisy

 Matlab code available online: http://www.robots.ox.ac.uk/~vgg/research/nface/

Face representation – local descriptors: from sparse to dense

[Sivic, Everingham, Zisserman, 2005]

[Everingham, Sivic, Zisserman, 2006]

[Sivic, Everingham, Zisserman, 2009]

[Heisele et al., 2003]

Matching face sets

Matching face sets

min-min distance:
$$d(A, B) = \min_{\mathbf{a} \in A, \mathbf{b} \in B} d(\mathbf{a}, \mathbf{b})$$

A, B ... sets of face descriptors

Face retrieval – example

Query sequence

Retrieved sequences (shown by first detection)

Face retrieval in movies - demo

http://www.robots.ox.ac.uk/~vgg/research/fgoogle/

Training person specific classifiers: from retrieval to classification

 Automatically label appearances of characters with names

- Requires additional information
- No supervision from the user, use only readily-available annotation

Textual Annotation: Subtitles/Closed-captions

- DVD contains timed subtitles as bitmaps
 - Automatically convert to text using simple OCR

00:18:55,453 --> 00:18:56,086 Get out!

00:18:56,093 --> 00:19:00,044

- But, babe, this is where I belong.
- Out! I mean it.

00:19:00,133 --> 00:19:03,808

I've been doing a lot of reading, and I'm in control of my own power now,...

What is said, and when, but not who says it

[Everingham, Sivic, Zisserman, 2006]

Textual Annotation: Script

 Many fan websites publish transcripts

HARMONY

Get out.

SPIKE But, baby... This is where I belong.

HARMONY Out! I mean it. I've done a lot of reading, and, and I'm in control of my own power now.

What is said, and who says it, but not when

[Everingham, Sivic, Zisserman, 2006]

Subtitle/Script Alignment

- Alignment of <u>what</u> allows subtitles to be tagged with identity giving <u>who</u> and <u>when</u>
 - "Dynamic Time Warping" algorithm

Knowledge of speaker is a <u>weak</u> cue that the character is visible

Multiple characters

Speaker not detected

Speaker not visible

 Ambiguities will be resolved using vision-based speaker detection

[Everingham, Sivic, Zisserman, 2006]

Speaker Detection

- Measure the amount of motion of the mouth
 - Search across frames around detected mouth points

[Everingham, Sivic, Zisserman, 2006]

Resolved Ambiguity

When the speaker (if any) is identified, the ambiguity in the textual annotation is resolved

[Everingham, Sivic, Zisserman, 2006]

Exemplar Extraction

 Face tracks detected as speaking and with a single proposed name give exemplars

Willow

Xander

2,300 faces

1,222 faces

425 faces

Annotation as classification

 Use extracted exemplars to train a classifier for each character (Nearest Neighbour or SVM)

- Need to deal with noise in the training data (~10% errors)
- Assign names to unlabelled faces by classification based on extracted exemplars

Example Results

No user involvement, just hit "go"...

Detection, tracking and recognition of profile views

Going profile

- Adapt and extend existing techniques to profile views (tracking / facial features / recognition)
- Combine information from profile and frontal faces within tracks

Going profile

 Improve both accuracy (precision) and coverage of the video (recall)

Detection and tracking of frontal and profile views

- Apply frontal and profile face detector [Klaeser & Schmid]
- Based on Histograms of Oriented Gradients (HOG) [Dalal&Triggs'05]

Face Association (frontals and profiles)

Face Association (frontals and profiles)

Facial feature localization in profile

- Stabilize representation by localizing features
 - Pose of face varies and face detector is noisy
 - Extended pictorial structure model

Frontal views [Everingham, Sivic, Zisserman'06]

Profile views

Profile Speaker Detection

Speaker detection adapted to profile views

Profile Speaker Detection

Speaker detection adapted to profile views

Automatically identified faces

 Transfer of frontal/profile speaker detections expands available annotation for both views

Benefits of profile views

- Improved coverage of the video
 - From 55% to 79% coverage on manual ground truth
- More training data
 - speaker detection in frontal and profile views
- Recognition of profile views
 - Improve recall recognition of profile only tracks
 - Improve precision some tracks are easier recognized using profile faces (e.g. due to profile training data available)

Classification with multiple kernels

Multiple kernel SVM

Learn an SVM classifier with the kernel of the form

$$K(i,j) = \sum_{f} b_f K_f(i,j)$$

where base kernels $K_f(i,j)$ correspond to different facial features (81 frontal and 81 profile kernels).

Multiple kernel SVM

Learn an SVM classifier with the kernel of the form

$$K(i,j) = \sum_{f} b_f K_f(i,j)$$

where base kernels $K_f(i,j)$ correspond to different facial features (81 frontal and 81 profile kernels).

 Weights b_f set uniformly (learning weights brings only a small additional benefit)

[Bach et al.,'04, Varma and Ray,'07]

Min-min distance "kernel"

• For feature f, the kernel between two face tracks, i and j, represented by sets of exemplars $F^f = \{\mathbf{F}_m^f\}$

$$K_f(i,j) = \exp(-\gamma_f d(F_i^f, F_j^f)^2)$$

where

$$d(F_i^f, F_j^f) = \min_{\mathbf{F}_k \in F_i^f} \min_{\mathbf{F}_l \in F_j^f} ||\mathbf{F}_k - \mathbf{F}_l||$$

Benefits of multiple kernel SVM

- Combine information from profile and frontal views
- Combine information from local facial features
 - large distance between faces for a particular facial feature (e.g. due to occlusion) will give only a limited contribution to the kernel value

Sum of kernels: $\Sigma_f \exp\{-d_f(i,j)\}$

c.f. single kernel: $\exp \{\Sigma_f - d_f(i,j)\}$

Examples of correct classification

Experiments

- Tested on seven episodes
 - 60k frames per episode
 - 19-30k frontal detections, 8-14k profile detections
 - 1,500-2,000 face tracks
 - 13-19 main characters

	Episode									
	1	2	3	4	5	6	13			
(a) frames	62,620	62,157	64,100	63,700	64,083	64,107	64,075			
(b) face detections (frontal)	28,170	28,055	19,421	24,510	25,884	30,202	26,794			
(c) face detections (profile)	8,315	14,327	13,931	12,996	8,103	11,685	8,449			
(d) face detections (all)	36,485	42,382	33,352	37,506	33,987	41,887	35,243			
(e) face tracks	1,506	2,088	2,140	1,985	1,532	2,020	1,548			
(f) training tracks w/ spk. det.	202	198	200	182	162	123	215			
(g) test tracks (longer than 10)	390	558	620	470	442	679	462			
(h) main characters	14	17	13	14	14	19	14			

Experiments

Methods

- MKL: Frontal and profile faces + multiple kernels + learnt weights.
- SUM: Frontal and profile faces + multiple kernels + uniform weights.
- CAT: Frontal and profile faces + single kernel

- Baseline: Only frontal faces + single kernel [BMVC'06]
- MKLgt: Frontal and profile faces + multiple kernels + noiseless labels (manual).

Experimental evaluation

- Recall is proportion of face tracks assigned a name
- Precision is proportion of correct names

Experimental evaluation

 Average precision (area under the PR curve) for all seven episodes

	Episode										
Method	1	2	3	4	5	6	13				
(a) MKL	0.90	0.83	0.70	0.86	0.85	0.70	0.80				
(b) SUM	0.89	0.83	0.68	0.82	0.85	0.69	0.78				
(c) CAT	0.83	0.76	0.62	0.82	0.81	0.66	0.81				
(d) MKLgt	0.94	0.91	0.96	0.91	0.84	0.86	0.94				
(f) Baseline	0.74	0.60	0.46	0.60	0.62	0.53	0.65				

