
OverviewOverview

• Local invariant features (C. Schmid)

• Matching and recognition with local features (J. Sivic)

• Efficient visual search (J. Sivic)

• Very large scale indexing (C. Schmid)

• Practical session (J. Sivic) 
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Bag-of-features as an ANN search algorithm

M t hi f ti f d i t k t i hb• Matching function of descriptors : k-nearest neighbors

• Bag-of-features matching function

where q(x) is a quantizer, i.e., assignment to visual word and
δa,b is the Kronecker operator (δa,b=1 iff a=b)



Approximate nearest neighbor search evaluation

• ANN algorithms usually returns a short-list of nearest neighbors

• this short list is supposed to contain the NN with high probability• this short-list is supposed to contain the NN with high probability

• exact search may be performed to re-order this short-list

• Proposed quality evaluation of ANN search: trade-off between

• Accuracy: NN recall = probability that the NN is in this listAccuracy: NN recall  probability that the NN is in this list

against

• Ambiguity removal = proportion of vectors in the short-list

• the lower this proportion, the more information we have about the vector 

• the lower this proportion, the lower the complexity if we perform exact search on 
the short-list

• ANN search algorithms usually have some parameters to handle this trade-offg y p



ANN evaluation of bag-of-features
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Problem with bag-of-features

• The intrinsic matching scheme performed by BOF is weak

• for a “small” visual dictionary: too many false matches• for a small  visual dictionary: too many false matches 

• for a “large” visual dictionary: many true matches are missed

• No good trade-off between “small” and “large” !

• either the Voronoi cells are too big• either the Voronoi cells are too big

• or these cells can’t absorb the descriptor noise

→ intrinsic approximate nearest neighbor search of BOF is not sufficient→ intrinsic approximate nearest neighbor search of BOF is not sufficient



20K visual word: false matchs



200K visual word: good matches missed



Hamming Embedding

• Representation of a descriptor x
• Vector-quantized to q(x) as in standard BOFVector quantized to q(x) as in standard BOF
+ short binary vector b(x) for an additional localization in the Voronoi cell

• Two descriptors x and y match iif
where h(a,b) is the Hamming distance

• Nearest neighbors for Hammg distance ≈ the ones for Euclidean distance

• Efficiency
• Hamming distance = very few operations

• Fewer random memory accesses: 3�faster that BOF with same dictionary size!



Hamming Embedding

• Off-line (given a quantizer)

d th l j ti t i P f i d d• draw an orthogonal projection matrix P of size db × d

→ this defines db random projection directions

• for each Voronoi cell and projection direction compute the median value• for each Voronoi cell and projection direction, compute the median value 
from a learning set

• On-line: compute the binary signature b(x) of a given descriptor

• project x onto the projection directions as z(x) = (z1,…zdb) 

• bi(x) = 1 if zi(x) is above the learned median value, otherwise 0

[H. Jegou et al., Improving bag of features for large scale image search, ICJV’10]



Hamming and Euclidean neighborhood

• trade-off between 
memory usage and 
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ANN evaluation of Hamming Embedding
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Matching points - 20k word vocabulary

201 matches 240 matches

Many matches with the non-corresponding image!



Matching points - 200k word vocabulary

69 matches 35 matches

Still many matches with the non-corresponding one



Matching points - 20k word vocabulary + HE

83 matches 8 matches

10x more matches with the corresponding image!



Experimental results

• Evaluation for the INRIA holidays dataset, 1491 images

• 500 query images + 991 annotated true positives• 500 query images + 991 annotated true positives

• Most images are holiday photos of friends and family 

• 1 million & 10 million distractor images from Flickr• 1 million & 10 million distractor images from Flickr

• Vocabulary construction on a different Flickr set 

Al t l ti h d• Almost real-time search speed

E l ti t i i i (i [0 1] bi b tt )• Evaluation metric: mean average precision (in [0,1], bigger = better)

• Average over precision/recall curve 



Holiday dataset – example queries 



Dataset : Venice Channel

Query Base 2Base 1

Base 4Base 3



Dataset : San Marco square

Query Base 1 Base 3Base 2Query Base 1 Base 3Base 2

Base 4 Base 5 Base 7Base 6

Base 9Base 8



Example distractors - Flickr



Experimental evaluation

• Evaluation on our holidays dataset, 500 query images, 1 million distracter 
imagesg

• Metric: mean average precision (in [0,1], bigger = better)
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Results – Venice Channel

Base 1 Flickr

Query

Flickr Base 4

Query

Demo at http://bigimbaz inrialpes frDemo at http://bigimbaz.inrialpes.fr 



Comparison with the state of the art: Oxford dataset [Philbin et al. CVPR’07]

Evaluation measure:
Mean average precision (mAP)



Comparison with the state of the art: Kentucky dataset [Nister et al. CVPR’06]

4 images per object 

Evaluation measure: among the 4 best retrieval results how 
many are correct (ranges from 1 to 4)



Comparison with the state of the art

[14] Philbin et al., CVPR’08;       [6] Nister et al., CVPR’06;     [10] Harzallah et al., CVPR’07]



Extension to videos: video copy detection

• Indexing individual sampled frames
Additi f ti t l filt• Addition of a spatio-temporal filter

• Excellent results in the TrecVid video copy detection competiton



Towards larger databases?

BOF can handle up to ~10 M d’images
► with a limited number of descriptors per image
► 40 GB of RAM  
► search = 2 s

Web-scale = billions of imagesWeb scale = billions of images
► With 100 M per machine 

→ search = 20 s, RAM = 400 GB
t t t bl !→ not tractable!



Recent approaches for very large scale indexing  
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Related work on very large scale image search

Min-hash and geometrical min-hash [Chum et al. 07-09]

GIST descriptors with Spectral Hashing [Torralba et al.’08]p p g [ ]

Compressing the BoF representation (miniBof) [Jégou et al. 09]

Aggregating local desc into a compact image representation [Jegou et al. 10]

Efficient object category recognition using classemes [Torresani et al.’10]



Compact image representation

Aim: improving the tradeoff between
► search speed
► memory usage
► search quality

Approach: joint optimization of three stages
► local descriptor aggregation
► dimension reduction► dimension reduction
► indexing algorithm

Image representation
VLAD

PCA + 
PQ codes

(Non) – exhaustive 
searchVLAD PQ codes search

[H. Jegou et al., Aggregating local desc into a compact image representation, CVPR’10]



Aggregation of local descriptors

Problem: represent an image by a single fixed-size vector:

set of n local descriptors → 1 vector

Most popular idea: BoF representation [Sivic & Zisserman 03]p p p [ ]
► sparse vector
► highly dimensional
high dimensionality reduction introduces loss→ high dimensionality reduction introduces loss

Alternative: Fisher Kernels [Perronnin et al 07]
► non sparse vector
► excellent results with a small vector dimensionality
→ our method (VLAD) the spirit of this representation→ our method (VLAD) the spirit of this representation



VLAD : vector of locally aggregated descriptors

Simplification of Fisher kernels

Learning: a vector quantifier (k-means)
► output: k centroids (visual words): c1,…,ci,…ck

► centroid ci has dimension di

For a given image 
► assign each descriptor to closest center ci► assign each descriptor to closest center ci

► accumulate (sum) descriptors per cell
vi := vi + (x - ci) x

VLAD (dimension D = k x d)
ci

The vector is L2-normalized



VLADs for corresponding images

v1 v2 v3 ...

SIFT-like representation per centroid (+ components: blue, - components: red)

good coincidence of energy & orientations



VLAD performance and dimensionality reduction

We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%)
Dimension is reduced to from D to D’ dimensions with PCA

Aggregator k D D’=D
(no reduction)

D’=128 D’=64

BoF 1,000 1,000 41.4 44.4 43.4

BoF 20,000 20,000 44.6 45.2 44.5

BoF 200 000 200 000 54 9 43 2 41 6BoF 200,000 200,000 54.9 43.2 41.6

VLAD 16 2,048 49.6 49.5 49.4

VLAD 64 8 192 52 6 51 0 47 7

Observations:

VLAD 64 8,192 52.6 51.0 47.7

VLAD 256 32,768 57.5 50.8 47.6

Observations:
► VLAD better than BoF for a given descriptor size

→ comparable to Fisher kernels for these operating points
Ch ll D if t t di i D’ i ll► Choose a small D if output dimension D’ is small



Product quantization for nearest neighbor search

Vector split into m subvectors:

S b t ti d t l b tiSubvectors are quantized separately by quantizers
where each     is learned by k-means with a limited number of centroids

Example: y = 128-dim vector split in 8 subvectors of dimension 16
► each subvector is quantized with 256 centroids  -> 8 bit 
► very large codebook 256^8 ~ 1 8x10^19► very large codebook 256^8 ~ 1.8x10^19

16 components

y1 y2 y3 y4 y5 y6 y7 y8

q1 q2 q3 q4 q5 q6 q7 q8
256

centroids 1 2 3 4 5 6 7 8

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8)

centroids

8 bits
8 subvectors x 8 bits = 64-bit quantization index



Product quantizer: distance computation

Asymmetric distance computation (ADC) 

Sum of square distances with quantization centroids 



Product quantizer: asymmetric distance computation (ADC)

Compute the square distance approximation in the compressed domain

To compute distance between query      and many codes
► compute                    for each subvector      and all possible centroids

t d i l k t bl→ stored in look-up tables 
► for each database code: sum the elementary square distances

Each 8x8=64-bits code requires only m=8 additions per distance!

IVFADC: combination with an inverted file to avoid exhaustive searchIVFADC: combination with an inverted file to avoid exhaustive search



Optimizing the dimension reduction and quantization together

VLAD vectors suffer two approximations
► mean square error from PCA projection: ep(D’)
► mean square error from quantization: eq(D’)

Given k and bytes/image, choose D’ minimizing their sum

Ex, k=16, 16B: D’ ep(D’) eq(D’) ep(D’)+eq(D’)

32 0.0632 0.0164 0.0796

48 0.0508 0.0248 0.0757

64 0.0434 0.0321 0.0755

80 0.0386 0.0458 0.0844



Joint optimization of VLAD and dimension reduction-indexing 

For VLAD
► The larger k, the better the raw search performance
► But large k produce large vectors, that are harder to index

Optimization of the vocabulary size
► Fixed output size (in bytes)
► D’ computed from k via the joint optimization of reduction/indexing
► Only k has to be set► Only k has to be set

end-to-end parameter optimization



Results on the Holidays dataset with various quantization parameters 



Results on standard datasets

Datasets
► University of Kentucky benchmark score: nb relevant images, max: 4 
► INRIA Holidays dataset                 score: mAP (%)

M th d b t UKB H lidMethod bytes UKB Holidays
BoF, k=20,000 10K 2.92 44.6

BoF k 200 000 12K 3 06 54 9BoF, k=200,000 12K 3.06 54.9

miniBOF 20 2.07 25.5

miniBOF 160 2.72 40.3

VLAD k=16, ADC 16 x 8 16 2.88 46.0

VLAD k=64, ADC 32 x10 40 3.10 49.5

D’ =64 for k=16 and D’ =96 for k=64
ADC (subvectors) x (bits to encode each subvector)

miniBOF: “Packing Bag-of-Features”, ICCV’09

ADC  (subvectors) x (bits to encode each subvector)



Comparison BOF / VLAD  + ADC 

Datasets
► INRIA Holidays dataset , score: mAP (%)

Method Holidays
BOF,  k=2048, D’= 64, ADC 16x8 42.5

VLAD k=16,D=2048, D’ = 64, ADC 16 x 8 46.0

BOF,  k=8192, D’= 128, AD16x8 41.9

VLAD k=64, D= 8192, D’=128, ADC 16X8 45.8, , ,

► VLAD improves results over BOFp
► Product quantizer gives excellent results for BOF!



Searching with quantization: comparison with spectral Hashing

*** Put Only ADC ***



Large scale experiments (10 million images)

Exhaustive search of VLADs, D’=64
► 4.77s

With the product quantizer
► Exhaustive search with ADC: 0.29s
► Non-exhaustive search with IVFADC: 0.014s

IVFADC -- Combination with an inverted fileIVFADC  Combination with an inverted file 



Large scale experiments (10 million images)
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Conclusion & future work 

Excellent search accuracy and speed in 10 million of images

Each image is represented by very few bytes (20 – 40 bytes)

Tested on up to 220 million video frame
► extrapolation for 1 billion images: 20GB RAM, query < 1s on 8 cores

On-line available:
► Matlab source code of ADC 

Improved Fisher kernels by Perronnin et al., CVPR’2010p y ,

Extension to video & more “semantic” search 


