Local invariant features (C. Schmid)

Matching and recognition with local features (J. Sivic)

Efficient visual search (J. Sivic)

Very large scale indexing (C. Schmid)

Practical session (J. Sivic)

State-of-the-art: Bag-of-words [Sivic & Zisserman’03]

centroids
Query Setof SIFT |(visual words)
image descriptors [Nister & al 04, Chum & al 07]

l sparse frequency vector

Bag-of-features

processing (—[| o

+tf-idf weighting

Hessian-Affine
regions + SIFT descriptors

[Mikolajezyk & Schmid 04]
[Lowe 04]

v

Two issues: querying

- Matching approximation by visual words

- Still limited number of images

\ 4

Re—rf_:m ked Geometric ranked image
list verification short-list

[Lowe 04, Chum & al 2007]

Bag-of-features as an ANN search algorithm

« Matching function of descriptors : k-nearest neighbors

1 if z is a k-NN of y
0 otherwise

fk—NN (CB, y) — {

« Bag-of-features matching function fq (i-'- '.U) — 0q[mj,q[y\)

where q(x) is a quantizer, i.e., assignment to visual word and
0, is the Kronecker operator (5, ,=1 iff a=b)

Approximate nearest neighbor search evaluation

* ANN algorithms usually returns a short-list of nearest neighbors
 this short-list is supposed to contain the NN with high probability

» exact search may be performed to re-order this short-list

* Proposed quality evaluation of ANN search: trade-off between

» Accuracy: NN recall = probability that the NN is in this list
against

« Ambiguity removal = proportion of vectors in the short-list

« the lower this proportion, the more information we have about the vector

« the lower this proportion, the lower the complexity if we perform exact search on
the short-list

* ANN search algorithms usually have some parameters to handle this trade-off

NN recall

ANN evaluation of bag-of-features

0.7

1le-07

1e-05

0.0001 0.001
rate of points retrieved

0.01

ANN algorithms returns a
list of potential
neighbors

Accuracy: NN recall
= probability that the
NN is in this list

Ambiguity removal:
= proportion of vectors
in the short-list

In BOF, this trade-off is
managed by the
number of clusters k

Problem with bag-of-features

* The intrinsic matching scheme performed by BOF is weak
« for a “small” visual dictionary: too many false matches

« for a “large” visual dictionary: many true matches are missed

* No good trade-off between “small” and “large” !
« either the Voronoi cells are too big

» or these cells can’t absorb the descriptor noise

— intrinsic approximate nearest neighbor search of BOF is not sufficient

20K visual word: false matchs

Hamming Embedding \\ o1 -.\\\ : \
ym‘x : * - r\\o\\ \\
/éx\ 11 lll* 10 \//
Representation of a descriptor x V
* Vector-quantized to q(x) as in standard BOF ' /

/ : \
+ short binary vector b(x) for an additional localization in the Voronoi cell

q(x) = q(y) and h (b(x),b(y)) < hy

where h(a,b) is the Hamming distance

Two descriptors x and y match iif

Nearest neighbors for Hammg distance ~ the ones for Euclidean distance

Efficiency
« Hamming distance = very few operations

 Fewer random memory accesses: 3 faster that BOF with same dictionary size!

/< T
Hamming Embedding _ /L \<

\

DA

x
o 00>
. \//

\ll

« Off-line (given a quantizer)
« draw an orthogonal projection matrix P of size d, x d /
— this defines d, random projection directions / ' \

» for each Voronoi cell and projection direction, compute the median value
from a learning set

* On-line: compute the binary signature b(x) of a given descriptor
« project x onto the projection directions as z(x) = (z4,...24,)

* by(x)=1if z(x) is above the learned median value, otherwise 0

[H. Jegou et al., Improving bag of features for large scale image search, ICJV’10]

Hamming and Euclidean neighborhood

o
oo

o
o

0.4

rate of 5-NN retrieved (recall)

0 0.2 0.4 0.6 0.8 1
rate of cell points retrieved

» trade-off between
memory usage and
accuracy

— more bits yield higher
accuracy

We used 64 bits (8 bytes)

NN recall

ANN evaluation of Hamming Embedding

0.7

0.1

HE+BOW ——
BOW ——

O]
1e-08

le-07 1e-06 1e-05 0.0001 0.001
rate of points retrieved

0.01

0.1

compared to BOW: at
least 10 times less points
in the short-list for the
same level of accuracy

Hamming Embedding

provides a much better
trade-off between recall
and ambiguity removal

Matching points - 20k word vocabulary

201 matches 240 matches

Many matches with the non-corresponding image!

Matching points - 200k word vocabulary

69 matches 35 matches

Still many matches with the non-corresponding one

Matching points - 20k word vocabulary + HE

83 matches 8 matches

10x more matches with the corresponding image!

Experimental results

Evaluation for the INRIA holidays dataset, 1491 images
« 500 query images + 991 annotated true positives

» Most images are holiday photos of friends and family
* 1 million & 10 million distractor images from Flickr
» Vocabulary construction on a different Flickr set

* Almost real-time search speed

« Evaluation metric: mean average precision (in [0,1], bigger = better)

» Average over precision/recall curve

day dataset — example queries

Hol

Dataset : Venice Channel

Dataset : San Marco square

Example distractors - Flickr

Experimental evaluation

Evaluation on our holidays dataset, 500 query images, 1 million distracter

images

Metric: mean average precision (in [0,1], bigger = better)

mAP

1 |
Daseling e
0.9 HE o s = |
08 O = S g+re-ranking..¢._
- ik 1
07 ¥ A ~wog
*
0.6
-I\ %
0.5 L &
0.3 [
0.2
0.1
0
1000 10000 100000 1000000

database size

BOF 2
Ours 1

BOF 5890
Ours 4

BOF 43064
Ours 5

Results — Venice Channel

: Y Iy
Flickr

Demo at http://bigimbaz.inrialpes.fr

Comparison with the state of the art: Oxford dataset [Philbin et al. CVPR’07]

Evaluation measure:
Mean average precision (mAP)

Comparison with the state of the art: Kentucky dataset [Nister et al. CVPR’06]

= .
\-

4 images per object

Evaluation measure: among the 4 best retrieval results how
many are correct (ranges from 1 to 4)

Comparison with the state of the art

dataset Oxcford Kentucky
distractors 0 100K 0 IM
soft assignment [14] 0.493 0.343
Ours 0.615 0.516

soft + geometrical re-ranking [14]| 0.598 0.480

ours + geometrical re-ranking 0.667 0.591
soft + query expansion [14] 0.718 0.605
ours 4+ query expansion 0.747 0,687
hierarchical vocabulary [6] 3.19
CDM [11] 3.61 2.93
Ours 3.42 3.10
ours + geometrical re-ranking 3.6 3.40

[14] Philbin et al., CVPR’08; [6] Nister et al., CVPR’06; [10] Harzallah et al., CVPR’07]

Extension to videos: video copy detection

* Indexing individual sampled frames
 Addition of a spatio-temporal filter
« Excellent results in the TrecVid video copy detection competiton

=vragenjwe'hem of daar mensen
Bvanfons'zijn achtergebleven.
§

Towards larger databases?

e BOF can handle up to ~10 M d’'images
» with a limited number of descriptors per image

» 40 GB of RAM
» search=2s

e \Web-scale = billions of images
» With 100 M per machine
— search = 20 s, RAM =400 GB
— not tractable!

%I INRIA

Recent approaches for very large scale indexing

ZIINRIA

Hessian-Affine
regions + SIFT descriptors

centroids }

Set of SIFT [(visual words)

descriptors

Re-ranked
list

l

sparse frequency vector

Bag-of-features
processing

—
I A=

+tf-idf weighting_

Geometric
verification

Vector
compression

|

Vector
search

ranked image
short-list

Related work on very large scale image search

e Min-hash and geometrical min-hash [Chum et al. 07-09]

e GIST descriptors with Spectral Hashing

e Compressing the BoF representation (miniBof) [Jegou et al. 09]

e Aggregating local desc into a compact image representation [Jegou et al. 10]

e Efficient object category recognition using classemes [Torresani et al.’10]

%I INRIA

Compact image representation

e Aim: improving the tradeoff between
search speed
memory usage
search quality

e Approach: joint optimization of three stages
local descriptor aggregation
dimension reduction
indexing algorithm

Image representation PCA + (Non) — exhaustive
VLAD PQ codes search

[H. Jegou et al., Aggregating local desc into a compact image representation, CVPR’10]

Aggregation of local descriptors

e Problem: represent an image by a single fixed-size vector:

set of n local descriptors — 1 vector

e Most popular idea: BoF representation [Sivic & Zisserman 03]

» sparse vector
» highly dimensional
— high dimensionality reduction introduces loss

e Alternative: Fisher Kernels [Perronnin et al 07]
» Nnon sparse vector

» excellent results with a small vector dimensionality
— our method (VLAD) the spirit of this representation

VLAD : vector of locally aggregated descriptors
e Simplification of Fisher kernels

e Learning: a vector quantifier (k-means)
» output: k centroids (visual words): c,,...,C,...C,
» centroid ¢, has dimension d

e Fora givenimage
» assign each descriptor to closest center c
» accumulate (sum) descriptors per cell
V.=V, + (X-G)

e VLAD (dimension D =k x d)

e The vectoris L2-normalized

VLADs for corresponding images

44 —K\J'q\"'-— .\l k¥l v » |4
—l— 4’\%{-‘1\—\- Jr— ¥ - & _.-—J-

ff"—h«g*‘kd—irq—p—#

+ b H= a = &+

4 A ke & = 4

1
o= ok ~ & * 4|%
4

SIFT-like representation per centroid (+ components: blue, - components: red)

e good coincidence of energy & orientations

VLAD performance and dimensionality reduction

e \We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%)
e Dimension is reduced to from D to D’ dimensions with PCA

Aggregator k D D’=D D’=128 D’=64
(no reduction)
BoF 1,000 1,000 41.4 44 4 43.4
BoF 20,000 20,000 44.6 45.2 445
BoF 200,000 200,000 54.9 43.2 41.6
VLAD 16 2,048 49.6 49.5 49.4
VLAD 64 8,192 52.6 51.0 47.7
VLAD 256 32,768 57.5 50.8 47.6

e (Observations:

VLAD better than BoF for a given descriptor size
— comparable to Fisher kernels for these operating points

Choose a small D if output dimension D’ is small

Product quantization for nearest neighbor search

e Vector splitinto m subvectors: y — [y1] ... |ypm]

e Subvectors are quantized separately by quantizers ¢(y) = [fh (y1)]--- Iqm(ym)]
where each 4i is learned by k-means with a limited number of centroids

e Example: y = 128-dim vector split in 8 subvectors of dimension 16
» each subvector is quantized with 256 centroids -> 8 bit
» very large codebook 25678 ~ 1.8x10*19

16 components

Y1 Yo Y3 Ya Ys Ye Y7 Ys
256
centroids

q4(Y4) da(Y2) d3(Y3) Q4(Y4) 9s5(Ys) d6(Ys) g7(Y7) Js(Ys)

Product quantizer: distance computation

e Asymmetric distance computation (ADC)

N /\/\/_

amy q(y)
___——\ B ‘*mx

" aw)
T . \/

symmetric case asymmetric case

e Sum of square distances with quantization centroids

Product quantizer: asymmetric distance computation (ADC)

e Compute the square distance approximation in the compressed domain
m
2 2
i=1

e To compute distance between query x and many codes
» compute a‘,'(:z:,;,cm-)2 for each subvector x; and all possible centroids
— stored in look-up tables
» for each database code: sum the elementary square distances

e Each 8x8=64-bits code requires only m=8 additions per distance!

e |VFADC: combination with an inverted file to avoid exhaustive search

Optimizing the dimension reduction and quantization together

e VLAD vectors suffer two approximations

mean square error from PCA projection:

mean square error from quantization:

e,(D’)
eq(D’)

e Given k and bytes/image, choose D’ minimizing their sum

Ex, k=16, 16B:

D’ e,(D)) e,(D’) e,(D)+e,(D’)
32 0.0632 0.0164 0.0796
48 0.0508 0.0248 0.0757
64 0.0434 0.0321 0.0755
80 0.0386 0.0458 0.0844

Joint optimization of VLAD and dimension reduction-indexing

e ForVLAD
» The larger k, the better the raw search performance
» Butlarge k produce large vectors, that are harder to index

e Optimization of the vocabulary size
» Fixed output size (in bytes)
» D’ computed from k via the joint optimization of reduction/indexing
» Only k has to be set

=» end-to-end parameter optimization

Results on the Holidays dataset with various quantization parameters

ADC parameters
8x8 16x8 32x10 128x10

055 1 e I T - e — —

0 J-J) SRS SN S s M— S— A— A—

VLI N — A— — H— E— S— a—
- ; ! ;] i . miniBOF 32

0.4 _£T _________________ rmimBOHE ______________ _
: - - - miniBOF 8 =

mAP

T e e e o

L et T
. VLAD k=16 +—+—
[0)1 S S W NSRS S— i VLAD k=64 |
MINBOF 1 | . VLAD k=256 +--*---:
02 L1 | | i miniBOF [8] | ©

8 16 32 64 128 256 512
number of bytes

Results on standard datasets

e Datasets

University of Kentucky benchmark score: nb relevant images, max: 4
INRIA Holidays dataset score: mAP (%)

Method bytes UKB Holidays

BoF, k=20,000 10K 2.92 44.6

BoF, k=200,000 12K 3.06 54.9

miniBOF 20 2.07 25.5

miniBOF 160 2.72 40.3

VLAD k=16, ADC 16 x 8 16 2.88 46.0

VLAD k=64, ADC 32 x10 40 3.10 49.5

D’ =64 for k=16 and D’ =96 for k=64
ADC (subvectors) x (bits to encode each subvector)

miniBOF: “Packing Bag-of-Features”, ICCV’09

Comparison BOF / VLAD + ADC

e Datasets
INRIA Holidays dataset , score: mAP (%)

Method Holidays
BOF, k=2048, D’'= 64, ADC 16x8 42.5
VLAD k=16,D=2048, D’ = 64, ADC 16 x 8 46.0
BOF, k=8192, D’'= 128, AD16x8 41.9
VLAD k=64, D= 8192, D’=128, ADC 16X8 45.8

VLAD improves results over BOF
Product quantizer gives excellent results for BOF!

Searching with quantization: comparison with spectral Hashing

GIST, 64-bit codes

1 | ——
f‘x‘-
0.8 |)
r 06| |]
e
E 0.4 I)é.’ fr'r 1
Ve SDC —+—
' e O R ADC ---x---
W IVFADCw=1 o
T e IVFADC w=8
¥ - IVFADC w=64 - & —
| spectral hashing ---*---
O?-'f""' l | | I I
1 10 100 1k 10k 100k 1M

R

Large scale experiments (10 million images)

e Exhaustive search of VLADs, D’'=64
» 4.77s

e With the product quantizer
» Exhaustive search with ADC: 0.29s
» Non-exhaustive search with IVFADC: 0.014s

IVFADC -- Combination with an inverted file

inverted file structure

, Database indexing inverted list E‘i
(o~ T T 1 1
: coarse lis
quantizer qe ist entry
i id | code §
: Q(y) : !
: y :
§ compute Q—E /
: residual >—< /
2 € e HE N N
' riy)
J append
product | ap(r(y)) to inverted list
guantizer ga

Large scale experiments (10 million images)

recall@100

0.8

0.7 -

0.6

0.5

0.4

03 1

0.2

01 -

0

BOF D=200k —+—

VLAD k=64 ——

VLAD k=64, D'=96 —e—

VLAD k=64, ADC 16 bytes —=—
VLAD+Spectral Hashing, 16 bytes —=—

1000

10k 100k 1M
Database size: Holidays+images from Flickr

Timings

|~ 4.768s

++++++++++++++ i

ADC: 0.286<
IVFADC: 0.014s<

SH = 0.267s

Conclusion & future work

Excellent search accuracy and speed in 10 million of images

e Each image is represented by very few bytes (20 — 40 bytes)

e Tested on up to 220 million video frame
» extrapolation for 1 billion images: 20GB RAM, query < 1s on 8 cores

e On-line available:
Matlab source code of ADC

e Improved Fisher kernels by Perronnin et al., CVPR’2010

e Extension to video & more “semantic” search

