
OverviewOverview

• Local invariant features (C. Schmid)

• Matching and recognition with local features (J. Sivic)

• Efficient visual search (J. Sivic)

• Very large scale indexing (C. Schmid)

• Practical session (J. Sivic)

State-of-the-art: Bag-of-words [Sivic & Zisserman’03]g
centroids

(visual words)Set of SIFT
descriptors

Query
image [Nister & al 04, Chum & al 07]

Hessian-Affine
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

sparse frequency vector

g g

[Mikolajezyk & Schmid 04]
[Lowe 04]

InvertedTwo issues: queryingInverted
file

Two issues:
- Matching approximation by visual words

ranked imageG t iRe ranked

- Still limited number of images

ranked image
short-list

Geometric
verification

Re-ranked
list

[Lowe 04, Chum & al 2007]

Bag-of-features as an ANN search algorithm

M t hi f ti f d i t k t i hb• Matching function of descriptors : k-nearest neighbors

• Bag-of-features matching function

where q(x) is a quantizer, i.e., assignment to visual word and
δa,b is the Kronecker operator (δa,b=1 iff a=b)

Approximate nearest neighbor search evaluation

• ANN algorithms usually returns a short-list of nearest neighbors

• this short list is supposed to contain the NN with high probability• this short-list is supposed to contain the NN with high probability

• exact search may be performed to re-order this short-list

• Proposed quality evaluation of ANN search: trade-off between

• Accuracy: NN recall = probability that the NN is in this listAccuracy: NN recall probability that the NN is in this list

against

• Ambiguity removal = proportion of vectors in the short-list

• the lower this proportion, the more information we have about the vector

• the lower this proportion, the lower the complexity if we perform exact search on
the short-list

• ANN search algorithms usually have some parameters to handle this trade-offg y p

ANN evaluation of bag-of-features

ANN algorithms returns a
list of potential 0 6

0.7

k=100 p
neighbors

Accuracy: NN recall
= probability that the

0.5

0.6
200

500
= probability that the
NN is in this list

Ambiguity removal: 0.4

ec
al

l

1000

2000 g y
= proportion of vectors
in the short-list0.3N

N
 r

e

5000

10000
20000

In BOF, this trade-off is
managed by the

0.2

20000
30000

50000

g y
number of clusters k0.1

BOW
0
1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

rate of points retrieved

BOW

Problem with bag-of-features

• The intrinsic matching scheme performed by BOF is weak

• for a “small” visual dictionary: too many false matches• for a small visual dictionary: too many false matches

• for a “large” visual dictionary: many true matches are missed

• No good trade-off between “small” and “large” !

• either the Voronoi cells are too big• either the Voronoi cells are too big

• or these cells can’t absorb the descriptor noise

→ intrinsic approximate nearest neighbor search of BOF is not sufficient→ intrinsic approximate nearest neighbor search of BOF is not sufficient

20K visual word: false matchs

200K visual word: good matches missed

Hamming Embedding

• Representation of a descriptor x
• Vector-quantized to q(x) as in standard BOFVector quantized to q(x) as in standard BOF
+ short binary vector b(x) for an additional localization in the Voronoi cell

• Two descriptors x and y match iif
where h(a,b) is the Hamming distance

• Nearest neighbors for Hammg distance ≈ the ones for Euclidean distance

• Efficiency
• Hamming distance = very few operations

• Fewer random memory accesses: 3�faster that BOF with same dictionary size!

Hamming Embedding

• Off-line (given a quantizer)

d th l j ti t i P f i d d• draw an orthogonal projection matrix P of size db × d

→ this defines db random projection directions

• for each Voronoi cell and projection direction compute the median value• for each Voronoi cell and projection direction, compute the median value
from a learning set

• On-line: compute the binary signature b(x) of a given descriptor

• project x onto the projection directions as z(x) = (z1,…zdb)

• bi(x) = 1 if zi(x) is above the learned median value, otherwise 0

[H. Jegou et al., Improving bag of features for large scale image search, ICJV’10]

Hamming and Euclidean neighborhood

• trade-off between
memory usage and

1

y g
accuracy

→ more bits yield higher
accuracy

0.8

ca
ll)

accuracy

W d 64 bit (8 b t)

0.6

tri
ev

ed
 (r

ec

We used 64 bits (8 bytes)

0.4

f 5
-N

N
 re

t

0.2

ra
te

 o
f

8 bits
16 bit

0

16 bits
32 bits
64 bits

128 bits
0

0 0.2 0.4 0.6 0.8 1
rate of cell points retrieved

ANN evaluation of Hamming Embedding

0 6

0.7

k=100
32 28

24

0.5

0.6
200

500
20

22
compared to BOW: at
least 10 times less points
in the short list for the

0.4

ec
al

l

1000

2000

18

in the short-list for the
same level of accuracy

0.3N
N

 r
e

5000

10000
20000

ht=16 Hamming Embedding
provides a much better
trade-off between recall

0.2

20000
30000

50000

trade off between recall
and ambiguity removal

0.1

HE+BOW
BOW

0
1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

rate of points retrieved

BOW

Matching points - 20k word vocabulary

201 matches 240 matches

Many matches with the non-corresponding image!

Matching points - 200k word vocabulary

69 matches 35 matches

Still many matches with the non-corresponding one

Matching points - 20k word vocabulary + HE

83 matches 8 matches

10x more matches with the corresponding image!

Experimental results

• Evaluation for the INRIA holidays dataset, 1491 images

• 500 query images + 991 annotated true positives• 500 query images + 991 annotated true positives

• Most images are holiday photos of friends and family

• 1 million & 10 million distractor images from Flickr• 1 million & 10 million distractor images from Flickr

• Vocabulary construction on a different Flickr set

Al t l ti h d• Almost real-time search speed

E l ti t i i i (i [0 1] bi b tt)• Evaluation metric: mean average precision (in [0,1], bigger = better)

• Average over precision/recall curve

Holiday dataset – example queries

Dataset : Venice Channel

Query Base 2Base 1

Base 4Base 3

Dataset : San Marco square

Query Base 1 Base 3Base 2Query Base 1 Base 3Base 2

Base 4 Base 5 Base 7Base 6

Base 9Base 8

Example distractors - Flickr

Experimental evaluation

• Evaluation on our holidays dataset, 500 query images, 1 million distracter
imagesg

• Metric: mean average precision (in [0,1], bigger = better)

0 8

0.9

1
baseline

HE

+re-ranking

0.6

0.7

0.8

P

0 3

0.4

0.5m
A

P

0.1

0.2

0.3

0
1000000100000100001000

database size

Query
BOF 2
Ours 1

BOF 5890
Ours 4

BOF 43064
OOurs 5

Results – Venice Channel

Base 1 Flickr

Query

Flickr Base 4

Query

Demo at http://bigimbaz inrialpes frDemo at http://bigimbaz.inrialpes.fr

Comparison with the state of the art: Oxford dataset [Philbin et al. CVPR’07]

Evaluation measure:
Mean average precision (mAP)

Comparison with the state of the art: Kentucky dataset [Nister et al. CVPR’06]

4 images per object

Evaluation measure: among the 4 best retrieval results how
many are correct (ranges from 1 to 4)

Comparison with the state of the art

[14] Philbin et al., CVPR’08; [6] Nister et al., CVPR’06; [10] Harzallah et al., CVPR’07]

Extension to videos: video copy detection

• Indexing individual sampled frames
Additi f ti t l filt• Addition of a spatio-temporal filter

• Excellent results in the TrecVid video copy detection competiton

Towards larger databases?

BOF can handle up to ~10 M d’images
► with a limited number of descriptors per image
► 40 GB of RAM
► search = 2 s

Web-scale = billions of imagesWeb scale = billions of images
► With 100 M per machine

→ search = 20 s, RAM = 400 GB
t t t bl !→ not tractable!

Recent approaches for very large scale indexing

centroids
(visual words)Set of SIFT

descriptors
Query
image

Hessian-Affine
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

sparse frequency vector

g g

Vector
compression

Vector
search

ranked imageG t iRe ranked ranked image
short-list

Geometric
verification

Re-ranked
list

Related work on very large scale image search

Min-hash and geometrical min-hash [Chum et al. 07-09]

GIST descriptors with Spectral Hashing [Torralba et al.’08]p p g []

Compressing the BoF representation (miniBof) [Jégou et al. 09]

Aggregating local desc into a compact image representation [Jegou et al. 10]

Efficient object category recognition using classemes [Torresani et al.’10]

Compact image representation

Aim: improving the tradeoff between
► search speed
► memory usage
► search quality

Approach: joint optimization of three stages
► local descriptor aggregation
► dimension reduction► dimension reduction
► indexing algorithm

Image representation
VLAD

PCA +
PQ codes

(Non) – exhaustive
searchVLAD PQ codes search

[H. Jegou et al., Aggregating local desc into a compact image representation, CVPR’10]

Aggregation of local descriptors

Problem: represent an image by a single fixed-size vector:

set of n local descriptors → 1 vector

Most popular idea: BoF representation [Sivic & Zisserman 03]p p p []
► sparse vector
► highly dimensional
high dimensionality reduction introduces loss→ high dimensionality reduction introduces loss

Alternative: Fisher Kernels [Perronnin et al 07]
► non sparse vector
► excellent results with a small vector dimensionality
→ our method (VLAD) the spirit of this representation→ our method (VLAD) the spirit of this representation

VLAD : vector of locally aggregated descriptors

Simplification of Fisher kernels

Learning: a vector quantifier (k-means)
► output: k centroids (visual words): c1,…,ci,…ck

► centroid ci has dimension di

For a given image
► assign each descriptor to closest center ci► assign each descriptor to closest center ci

► accumulate (sum) descriptors per cell
vi := vi + (x - ci) x

VLAD (dimension D = k x d)
ci

The vector is L2-normalized

VLADs for corresponding images

v1 v2 v3 ...

SIFT-like representation per centroid (+ components: blue, - components: red)

good coincidence of energy & orientations

VLAD performance and dimensionality reduction

We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%)
Dimension is reduced to from D to D’ dimensions with PCA

Aggregator k D D’=D
(no reduction)

D’=128 D’=64

BoF 1,000 1,000 41.4 44.4 43.4

BoF 20,000 20,000 44.6 45.2 44.5

BoF 200 000 200 000 54 9 43 2 41 6BoF 200,000 200,000 54.9 43.2 41.6

VLAD 16 2,048 49.6 49.5 49.4

VLAD 64 8 192 52 6 51 0 47 7

Observations:

VLAD 64 8,192 52.6 51.0 47.7

VLAD 256 32,768 57.5 50.8 47.6

Observations:
► VLAD better than BoF for a given descriptor size

→ comparable to Fisher kernels for these operating points
Ch ll D if t t di i D’ i ll► Choose a small D if output dimension D’ is small

Product quantization for nearest neighbor search

Vector split into m subvectors:

S b t ti d t l b tiSubvectors are quantized separately by quantizers
where each is learned by k-means with a limited number of centroids

Example: y = 128-dim vector split in 8 subvectors of dimension 16
► each subvector is quantized with 256 centroids -> 8 bit
► very large codebook 256^8 ~ 1 8x10^19► very large codebook 256^8 ~ 1.8x10^19

16 components

y1 y2 y3 y4 y5 y6 y7 y8

q1 q2 q3 q4 q5 q6 q7 q8
256

centroids 1 2 3 4 5 6 7 8

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8)

centroids

8 bits
8 subvectors x 8 bits = 64-bit quantization index

Product quantizer: distance computation

Asymmetric distance computation (ADC)

Sum of square distances with quantization centroids

Product quantizer: asymmetric distance computation (ADC)

Compute the square distance approximation in the compressed domain

To compute distance between query and many codes
► compute for each subvector and all possible centroids

t d i l k t bl→ stored in look-up tables
► for each database code: sum the elementary square distances

Each 8x8=64-bits code requires only m=8 additions per distance!

IVFADC: combination with an inverted file to avoid exhaustive searchIVFADC: combination with an inverted file to avoid exhaustive search

Optimizing the dimension reduction and quantization together

VLAD vectors suffer two approximations
► mean square error from PCA projection: ep(D’)
► mean square error from quantization: eq(D’)

Given k and bytes/image, choose D’ minimizing their sum

Ex, k=16, 16B: D’ ep(D’) eq(D’) ep(D’)+eq(D’)

32 0.0632 0.0164 0.0796

48 0.0508 0.0248 0.0757

64 0.0434 0.0321 0.0755

80 0.0386 0.0458 0.0844

Joint optimization of VLAD and dimension reduction-indexing

For VLAD
► The larger k, the better the raw search performance
► But large k produce large vectors, that are harder to index

Optimization of the vocabulary size
► Fixed output size (in bytes)
► D’ computed from k via the joint optimization of reduction/indexing
► Only k has to be set► Only k has to be set

end-to-end parameter optimization

Results on the Holidays dataset with various quantization parameters

Results on standard datasets

Datasets
► University of Kentucky benchmark score: nb relevant images, max: 4
► INRIA Holidays dataset score: mAP (%)

M th d b t UKB H lidMethod bytes UKB Holidays
BoF, k=20,000 10K 2.92 44.6

BoF k 200 000 12K 3 06 54 9BoF, k=200,000 12K 3.06 54.9

miniBOF 20 2.07 25.5

miniBOF 160 2.72 40.3

VLAD k=16, ADC 16 x 8 16 2.88 46.0

VLAD k=64, ADC 32 x10 40 3.10 49.5

D’ =64 for k=16 and D’ =96 for k=64
ADC (subvectors) x (bits to encode each subvector)

miniBOF: “Packing Bag-of-Features”, ICCV’09

ADC (subvectors) x (bits to encode each subvector)

Comparison BOF / VLAD + ADC

Datasets
► INRIA Holidays dataset , score: mAP (%)

Method Holidays
BOF, k=2048, D’= 64, ADC 16x8 42.5

VLAD k=16,D=2048, D’ = 64, ADC 16 x 8 46.0

BOF, k=8192, D’= 128, AD16x8 41.9

VLAD k=64, D= 8192, D’=128, ADC 16X8 45.8, , ,

► VLAD improves results over BOFp
► Product quantizer gives excellent results for BOF!

Searching with quantization: comparison with spectral Hashing

*** Put Only ADC ***

Large scale experiments (10 million images)

Exhaustive search of VLADs, D’=64
► 4.77s

With the product quantizer
► Exhaustive search with ADC: 0.29s
► Non-exhaustive search with IVFADC: 0.014s

IVFADC -- Combination with an inverted fileIVFADC Combination with an inverted file

Large scale experiments (10 million images)

0 7

0.8

0.6

0.7

0 4

0.5

@
10

0

Timings

0.3

0.4

re
ca

ll@

4.768s

g

0 1

0.2 BOF D=200k
VLAD k=64

VLAD k=64, D'=96

ADC: 0.286s
IVFADC: 0.014s

SH ≈ 0 267s

0

0.1

1000 10k 100k 1M 10M

,
VLAD k=64, ADC 16 bytes

VLAD+Spectral Hashing, 16 bytes

SH ≈ 0.267s

1000 10k 100k 1M 10M
Database size: Holidays+images from Flickr

Conclusion & future work

Excellent search accuracy and speed in 10 million of images

Each image is represented by very few bytes (20 – 40 bytes)

Tested on up to 220 million video frame
► extrapolation for 1 billion images: 20GB RAM, query < 1s on 8 cores

On-line available:
► Matlab source code of ADC

Improved Fisher kernels by Perronnin et al., CVPR’2010p y ,

Extension to video & more “semantic” search

