Overview

- Local invariant features (C. Schmid)
- Matching and recognition with local features (J. Sivic)
- Efficient visual search (J. Sivic)
- Very large scale indexing (C. Schmid)
- Practical session (J. Sivic)
State-of-the-art: Bag-of-words [Sivic & Zisserman’03]

Two issues:
- Matching approximation by visual words
- Still limited number of images
Bag-of-features as an ANN search algorithm

- Matching function of descriptors: k-nearest neighbors

$$f_{k-\text{NN}}(x, y) = \begin{cases}
1 & \text{if } x \text{ is a } k\text{-NN of } y \\
0 & \text{otherwise}
\end{cases}$$

- Bag-of-features matching function

$$f_q(x, y) = \delta_{q(x), q(y)}$$

where $q(x)$ is a quantizer, i.e., assignment to visual word and $\delta_{a,b}$ is the Kronecker operator ($\delta_{a,b}=1$ iff $a=b$)
Approximate nearest neighbor search evaluation

- ANN algorithms usually returns a short-list of nearest neighbors
 - this short-list is supposed to contain the NN with high probability
 - exact search may be performed to re-order this short-list

- Proposed quality evaluation of ANN search: trade-off between
 - **Accuracy**: NN recall = probability that *the* NN is in this list

 against

 - **Ambiguity removal** = proportion of vectors in the short-list
 - the lower this proportion, the more information we have about the vector
 - the lower this proportion, the lower the complexity if we perform exact search on the short-list

- ANN search algorithms usually have some parameters to handle this trade-off
ANN evaluation of bag-of-features

ANN algorithms returns a list of potential neighbors

Accuracy: NN recall
= probability that the NN is in this list

Ambiguity removal:
= proportion of vectors in the short-list

In BOF, this trade-off is managed by the number of clusters k
Problem with bag-of-features

- The intrinsic matching scheme performed by BOF is weak
 - for a "small" visual dictionary: too many false matches
 - for a "large" visual dictionary: many true matches are missed

- No good trade-off between "small" and "large"!
 - either the Voronoi cells are too big
 - or these cells can’t absorb the descriptor noise
 → intrinsic approximate nearest neighbor search of BOF is not sufficient
20K visual word: false matches
200K visual word: good matches missed
Hamming Embedding

- Representation of a descriptor x
 - Vector-quantized to $q(x)$ as in standard BOF
 + Short binary vector $b(x)$ for an additional localization in the Voronoi cell

- Two descriptors x and y match iif
 $$q(x) = q(y) \text{ and } h(b(x), b(y)) \leq h_t$$
 where $h(a,b)$ is the Hamming distance

- Nearest neighbors for Hamming distance \approx the ones for Euclidean distance

- Efficiency
 - Hamming distance = very few operations
 - Fewer random memory accesses: 3 faster than BOF with same dictionary size!
Hamming Embedding

- **Off-line** (given a quantizer)
 - draw an orthogonal projection matrix P of size $d_b \times d$
 - this defines d_b random projection directions
 - for each Voronoi cell and projection direction, compute the median value from a learning set

- **On-line**: compute the binary signature $b(x)$ of a given descriptor
 - project x onto the projection directions as $z(x) = (z_1, \ldots z_{d_b})$
 - $b_i(x) = 1$ if $z_i(x)$ is above the learned median value, otherwise 0

[H. Jegou et al., Improving bag of features for large scale image search, ICJV’10]
Hamming and Euclidean neighborhood

- trade-off between memory usage and accuracy

→ more bits yield higher accuracy

We used 64 bits (8 bytes)
ANN evaluation of Hamming Embedding

compared to BOW: at least 10 times less points in the short-list for the same level of accuracy

Hamming Embedding provides a much better trade-off between recall and ambiguity removal
Matching points - 20k word vocabulary

201 matches

Many matches with the non-corresponding image!

240 matches
Matching points - 200k word vocabulary

69 matches

35 matches

Still many matches with the non-corresponding one
Matching points - 20k word vocabulary + HE

83 matches

8 matches

10x more matches with the corresponding image!
Experimental results

• Evaluation for the INRIA holidays dataset, 1491 images
 • 500 query images + 991 annotated true positives
 • Most images are holiday photos of friends and family
• 1 million & 10 million distractor images from Flickr
• Vocabulary construction on a different Flickr set
• Almost real-time search speed

• Evaluation metric: mean average precision (in [0,1], bigger = better)
 • Average over precision/recall curve
Holiday dataset – example queries
Dataset : Venice Channel
Dataset: San Marco square

Query

Base 1

Base 2

Base 3

Base 4

Base 5

Base 6

Base 7

Base 8

Base 9
Example distractors - Flickr
Experimental evaluation

- Evaluation on our holidays dataset, 500 query images, 1 million distracter images
- Metric: mean average precision (in [0,1], bigger = better)
Results – Venice Channel

Demo at http://bigimbaz.inrialpes.fr
Comparison with the state of the art: Oxford dataset [Philbin et al. CVPR’07]

Evaluation measure:
Mean average precision (mAP)
Comparison with the state of the art: Kentucky dataset [Nister et al. CVPR’06]

4 images per object

Evaluation measure: among the 4 best retrieval results how many are correct (ranges from 1 to 4)
Comparison with the state of the art

<table>
<thead>
<tr>
<th>dataset</th>
<th>Oxford</th>
<th>Kentucky</th>
</tr>
</thead>
<tbody>
<tr>
<td>distractors</td>
<td>0</td>
<td>100K</td>
</tr>
<tr>
<td>soft assignment [14]</td>
<td>0.493</td>
<td>0.343</td>
</tr>
<tr>
<td>ours</td>
<td>0.615</td>
<td>0.516</td>
</tr>
<tr>
<td>soft + geometrical re-ranking [14]</td>
<td>0.598</td>
<td>0.480</td>
</tr>
<tr>
<td>ours + geometrical re-ranking</td>
<td>0.667</td>
<td>0.591</td>
</tr>
<tr>
<td>soft + query expansion [14]</td>
<td>0.718</td>
<td>0.605</td>
</tr>
<tr>
<td>ours + query expansion</td>
<td>0.747</td>
<td>0.687</td>
</tr>
<tr>
<td>ours</td>
<td></td>
<td>2.93</td>
</tr>
<tr>
<td>ours + geometrical re-ranking</td>
<td></td>
<td>3.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.40</td>
</tr>
</tbody>
</table>

Extension to videos: video copy detection

- Indexing individual sampled frames
- Addition of a spatio-temporal filter
- Excellent results in the TrecVid video copy detection competition
Towards larger databases?

- BOF can handle up to ~10 M d’images
 - with a limited number of descriptors per image
 - 40 GB of RAM
 - search = 2 s

- Web-scale = billions of images
 - With 100 M per machine
 - search = 20 s, RAM = 400 GB
 - not tractable!
Recent approaches for very large scale indexing

Query image

Hessian-Affine regions + SIFT descriptors

Set of SIFT descriptors

centroids (visual words)

Bag-of-features processing + tf-idf weighting

sparse frequency vector

Vector compression

Vector search

Re-ranked list

Geometric verification

ranked image short-list
Related work on very large scale image search

- Min-hash and geometrical min-hash [Chum et al. 07-09]
- GIST descriptors with Spectral Hashing [Torralba et al.'08]
- Compressing the BoF representation (miniBof) [Jégou et al. 09]
- Aggregating local desc into a compact image representation [Jegou et al. 10]
- Efficient object category recognition using classemes [Torresani et al.’10]
Compact image representation

- Aim: improving the tradeoff between
 - search speed
 - memory usage
 - search quality

- Approach: joint optimization of three stages
 - local descriptor aggregation
 - dimension reduction
 - indexing algorithm

[Image representation: VLAD → PCA + PQ codes → (Non) – exhaustive search]

[H. Jegou et al., Aggregating local desc into a compact image representation, CVPR’10]
Aggregation of local descriptors

- Problem: represent an image by a single fixed-size vector:

 \[\text{set of } n \text{ local descriptors } \rightarrow 1 \text{ vector} \]

- Most popular idea: BoF representation [Sivic & Zisserman 03]
 - sparse vector
 - highly dimensional

 \[\rightarrow \text{high dimensionality reduction introduces loss} \]

- Alternative: Fisher Kernels [Perronnin et al 07]
 - non sparse vector
 - excellent results with a small vector dimensionality

 \[\rightarrow \text{our method (VLAD) the spirit of this representation} \]
VLAD: vector of locally aggregated descriptors

- Simplification of Fisher kernels

- Learning: a vector quantifier (k-means)
 - output: k centroids (visual words): $c_1, \ldots, c_i, \ldots c_k$
 - centroid c_i has dimension d

- For a given image
 - assign each descriptor to closest center c_i
 - accumulate (sum) descriptors per cell
 $$v_i := v_i + (x - c_i)$$

- VLAD (dimension $D = k \times d$)

- The vector is L2-normalized
VLADs for corresponding images

SIFT-like representation per centroid (+ components: blue, - components: red)

- good coincidence of energy & orientations
VLAD performance and dimensionality reduction

- We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%)
- Dimension is reduced to from D to D’ dimensions with PCA

<table>
<thead>
<tr>
<th>Aggregator</th>
<th>k</th>
<th>D</th>
<th>D’=D (no reduction)</th>
<th>D’=128</th>
<th>D’=64</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoF</td>
<td>1,000</td>
<td>1,000</td>
<td>41.4</td>
<td>44.4</td>
<td>43.4</td>
</tr>
<tr>
<td>BoF</td>
<td>20,000</td>
<td>20,000</td>
<td>44.6</td>
<td>45.2</td>
<td>44.5</td>
</tr>
<tr>
<td>BoF</td>
<td>200,000</td>
<td>200,000</td>
<td>54.9</td>
<td>43.2</td>
<td>41.6</td>
</tr>
<tr>
<td>VLAD</td>
<td>16</td>
<td>2,048</td>
<td>49.6</td>
<td>49.5</td>
<td>49.4</td>
</tr>
<tr>
<td>VLAD</td>
<td>64</td>
<td>8,192</td>
<td>52.6</td>
<td>51.0</td>
<td>47.7</td>
</tr>
<tr>
<td>VLAD</td>
<td>256</td>
<td>32,768</td>
<td>57.5</td>
<td>50.8</td>
<td>47.6</td>
</tr>
</tbody>
</table>

- Observations:
 - VLAD better than BoF for a given descriptor size
 → comparable to Fisher kernels for these operating points
 - Choose a small D if output dimension D’ is small
Product quantization for nearest neighbor search

- Vector split into m subvectors: $y \rightarrow [y_1 \ldots y_m]$

- Subvectors are quantized separately by quantizers $q(y) = [q_1(y_1) \ldots q_m(y_m)]$
 where each q_i is learned by k-means with a limited number of centroids

- Example: $y = 128$-dim vector split in 8 subvectors of dimension 16
 - each subvector is quantized with 256 centroids -> 8 bit
 - very large codebook $256^8 \sim 1.8 \times 10^{19}$

\[
\begin{array}{cccccccc}
 y_1 & y_2 & y_3 & y_4 & y_5 & y_6 & y_7 & y_8 \\
\end{array}
\]

- 16 components

- 256 centroids

- 8 bits

$\Rightarrow 8$ subvectors x 8 bits = 64-bit quantization index
Product quantizer: distance computation

- Asymmetric distance computation (ADC)

- Sum of square distances with quantization centroids
Product quantizer: asymmetric distance computation (ADC)

- Compute the square distance approximation in the compressed domain
 \[d(x, y)^2 \approx \sum_{i=1}^{m} d(x_i, q_i(y_i))^2 \]

- To compute distance between query \(x \) and many codes
 - compute \(d(x_i, c_{i,j})^2 \) for each subvector \(x_i \) and all possible centroids
 → stored in look-up tables
 - for each database code: sum the elementary square distances

- Each 8x8=64-bits code requires only \(m=8 \) additions per distance!

- IVFADC: combination with an inverted file to avoid exhaustive search
Optimizing the dimension reduction and quantization together

- VLAD vectors suffer two approximations
 - mean square error from PCA projection: $e_p(D')$
 - mean square error from quantization: $e_q(D')$

- Given k and bytes/image, choose D' minimizing their sum

<table>
<thead>
<tr>
<th>D'</th>
<th>$e_p(D')$</th>
<th>$e_q(D')$</th>
<th>$e_p(D')+e_q(D')$</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>0.0632</td>
<td>0.0164</td>
<td>0.0796</td>
</tr>
<tr>
<td>48</td>
<td>0.0508</td>
<td>0.0248</td>
<td>0.0757</td>
</tr>
<tr>
<td>64</td>
<td>0.0434</td>
<td>0.0321</td>
<td>0.0755</td>
</tr>
<tr>
<td>80</td>
<td>0.0386</td>
<td>0.0458</td>
<td>0.0844</td>
</tr>
</tbody>
</table>
Joint optimization of VLAD and dimension reduction-indexing

- For VLAD
 - The larger k, the better the raw search performance
 - But large k produce large vectors, that are harder to index

- Optimization of the vocabulary size
 - Fixed output size (in bytes)
 - D' computed from k via the joint optimization of reduction/indexing
 - Only k has to be set

 ➔ end-to-end parameter optimization
Results on the Holidays dataset with various quantization parameters

![Graph showing mAP vs. number of bytes with different ADC parameters.](image)
Results on standard datasets

- Datasets
 - University of Kentucky benchmark score: nb relevant images, max: 4
 - INRIA Holidays dataset score: mAP (%)

<table>
<thead>
<tr>
<th>Method</th>
<th>bytes</th>
<th>UKB</th>
<th>Holidays</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoF, k=20,000</td>
<td>10K</td>
<td>2.92</td>
<td>44.6</td>
</tr>
<tr>
<td>BoF, k=200,000</td>
<td>12K</td>
<td>3.06</td>
<td>54.9</td>
</tr>
<tr>
<td>miniBOF</td>
<td>20</td>
<td>2.07</td>
<td>25.5</td>
</tr>
<tr>
<td>miniBOF</td>
<td>160</td>
<td>2.72</td>
<td>40.3</td>
</tr>
<tr>
<td>VLAD k=16, ADC 16 x 8</td>
<td>16</td>
<td>2.88</td>
<td>46.0</td>
</tr>
<tr>
<td>VLAD k=64, ADC 32 x10</td>
<td>40</td>
<td>3.10</td>
<td>49.5</td>
</tr>
</tbody>
</table>

\[D' = 64 \text{ for } k=16 \text{ and } D' = 96 \text{ for } k=64 \]

ADC (subvectors) x (bits to encode each subvector)

miniBOF: “Packing Bag-of-Features”, ICCV’09
Comparison BOF / VLAD + ADC

- Datasets
 - INRIA Holidays dataset, score: mAP (%)

<table>
<thead>
<tr>
<th>Method</th>
<th>Holidays</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOF, k=2048, D’= 64, ADC 16x8</td>
<td>42.5</td>
</tr>
<tr>
<td>VLAD k=16, D=2048, D’= 64, ADC 16x8</td>
<td>46.0</td>
</tr>
<tr>
<td>BOF, k=8192, D’= 128, AD16x8</td>
<td>41.9</td>
</tr>
<tr>
<td>VLAD k=64, D= 8192, D’=128, ADC 16X8</td>
<td>45.8</td>
</tr>
</tbody>
</table>

- VLAD improves results over BOF
- Product quantizer gives excellent results for BOF!
Searching with quantization: comparison with spectral Hashing

GIST, 64-bit codes

- SDC
- ADC
- IVFADC w=1
- IVFADC w=8
- IVFADC w=64
- spectral hashing

Recall@R vs. R
Large scale experiments (10 million images)

- Exhaustive search of VLADs, D’=64
 - 4.77s

- With the product quantizer
 - Exhaustive search with ADC: 0.29s
 - Non-exhaustive search with IVFADC: 0.014s

IVFADC -- Combination with an inverted file
Large scale experiments (10 million images)

Database size: Holidays+images from Flickr

- BOF D=200k
- VLAD k=64
- VLAD k=64, D'=96
- VLAD k=64, ADC 16 bytes
- VLAD+Spectral Hashing, 16 bytes

Timings:
- ADC: 0.286s
- IVFADC: 0.014s
- SH ≈ 0.267s
Conclusion & future work

- Excellent search accuracy and speed in 10 million of images
- Each image is represented by very few bytes (20 – 40 bytes)
- Tested on up to 220 million video frame
 - extrapolation for 1 billion images: 20GB RAM, query < 1s on 8 cores
- On-line available:
 - Matlab source code of ADC
- Improved Fisher kernels by Perronnin et al., CVPR’2010
- Extension to video & more “semantic” search