Overview

- Local invariant features (C. Schmid)
- Matching and recognition with local features (J. Sivic)
- Efficient visual search (J. Sivic)
- Very large scale indexing (C. Schmid)
- Practical session (J. Sivic)

State-of-the-art: Bag-of-words [Sivic & Zisserman'03]

Bag-of-features as an ANN search algorithm

• Matching function of descriptors : *k*-nearest neighbors

$$f_{k-\mathrm{NN}}(x,y) = \begin{cases} 1 & \text{if } x \text{ is a } k-\mathrm{NN} \text{ of } y \\ 0 & \text{otherwise} \end{cases}$$

• Bag-of-features matching function $f_q(x,y) = \delta_{q(x),q(y)}$

where q(x) is a quantizer, i.e., assignment to visual word and $\delta_{a,b}$ is the Kronecker operator ($\delta_{a,b}$ =1 iff a=b)

Approximate nearest neighbor search evaluation

- ANN algorithms usually returns a short-list of nearest neighbors
 - this short-list is supposed to contain the NN with high probability
 - exact search may be performed to re-order this short-list
- Proposed quality evaluation of ANN search: trade-off between
 - Accuracy: NN recall = probability that *the* NN is in this list

against

- **Ambiguity removal** = proportion of vectors in the short-list
 - the lower this proportion, the more information we have about the vector
 - the lower this proportion, the lower the complexity if we perform exact search on the short-list
- ANN search algorithms usually have some parameters to handle this trade-off

ANN evaluation of bag-of-features

Problem with bag-of-features

- The intrinsic matching scheme performed by BOF is weak
 - for a "small" visual dictionary: too many false matches
 - for a "large" visual dictionary: many true matches are missed
- No good trade-off between "small" and "large" !
 - either the Voronoi cells are too big
 - or these cells can't absorb the descriptor noise
 - \rightarrow intrinsic approximate nearest neighbor search of BOF is not sufficient

20K visual word: false matchs

200K visual word: good matches missed

Hamming Embedding

- Representation of a descriptor *x*
 - Vector-quantized to q(x) as in standard BOF
 - + short binary vector b(x) for an additional localization in the Voronoi cell
- Two descriptors x and y match iif

$$q(x) = q(y)$$
 and $h(b(x), b(y)) \le h_t$

01

11

00

10

 $\Box \times$

where h(*a*,*b*) is the Hamming distance

- Nearest neighbors for Hammg distance \approx the ones for Euclidean distance
- Efficiency
 - Hamming distance = very few operations
 - Fewer random memory accesses: 3 faster that BOF with same dictionary size!

Hamming Embedding

- **Off-line** (given a quantizer)
 - draw an orthogonal projection matrix P of size $d_b \times d$
 - \rightarrow this defines d_b random projection directions
 - for each Voronoi cell and projection direction, compute the median value from a learning set

01

11

00

10

- **On-line**: compute the binary signature b(x) of a given descriptor
 - project x onto the projection directions as $z(x) = (z_1, \dots z_{db})$
 - $b_i(x) = 1$ if $z_i(x)$ is above the learned median value, otherwise 0

[H. Jegou et al., Improving bag of features for large scale image search, ICJV'10]

Hamming and Euclidean neighborhood

ANN evaluation of Hamming Embedding

compared to BOW: at least 10 times less points in the short-list for the same level of accuracy

Hamming Embedding provides a much better trade-off between recall and ambiguity removal Matching points - 20k word vocabulary

201 matches

240 matches

Many matches with the non-corresponding image!

Matching points - 200k word vocabulary

69 matches

35 matches

Still many matches with the non-corresponding one

Matching points - 20k word vocabulary + HE

83 matches

8 matches

10x more matches with the corresponding image!

Experimental results

- Evaluation for the INRIA holidays dataset, 1491 images
 - 500 query images + 991 annotated true positives
 - Most images are holiday photos of friends and family
- 1 million & 10 million distractor images from Flickr
- Vocabulary construction on a different Flickr set
- Almost real-time search speed
- Evaluation metric: mean average precision (in [0,1], bigger = better)
 - Average over precision/recall curve

Holiday dataset – example queries

Dataset : Venice Channel

Dataset : San Marco square

Example distractors - Flickr

Experimental evaluation

- Evaluation on our holidays dataset, 500 query images, 1 million distracter images
- Metric: mean average precision (in [0,1], bigger = better)

BOF 5890 Ours 4

BOF 43064 Ours 5

Results – Venice Channel

Demo at http://bigimbaz.inrialpes.fr

Comparison with the state of the art: Oxford dataset [Philbin et al. CVPR'07]

Evaluation measure: Mean average precision (mAP)

Comparison with the state of the art: Kentucky dataset [Nister et al. CVPR'06]

4 images per object

Evaluation measure: among the 4 best retrieval results how many are correct (ranges from 1 to 4)

Comparison with the state of the art

dataset	Oxford		Kentucky	
distractors	0	$100 \mathrm{K}$	0	$1\mathrm{M}$
soft assignment [14]	0.493	0.343		
ours	0.615	0.516		
soft + geometrical re-ranking [14]	0.598	0.480		
ours + geometrical re-ranking	0.667	0.591		
soft + query expansion [14]	0.718	0.605		
ours + query expansion	0.747	0.687		
hierarchical vocabulary [6]			3.19	
CDM [11]			3.61	2.93
ours			3.42	3.10
ours + geometrical re-ranking			3.55	3.40

[14] Philbin et al., CVPR'08; [6] Nister et al., CVPR'06; [10] Harzallah et al., CVPR'07]

Extension to videos: video copy detection

- Indexing individual sampled frames
- Addition of a spatio-temporal filter
- Excellent results in the TrecVid video copy detection competiton

Towards larger databases?

- BOF can handle up to ~10 M d'images
 - with a limited number of descriptors per image
 - ▶ 40 GB of RAM
 - ► search = 2 s
- Web-scale = billions of images
 - ▶ With 100 M per machine
 - \rightarrow search = 20 s, RAM = 400 GB
 - \rightarrow not tractable!

Recent approaches for very large scale indexing

Related work on very large scale image search

- Min-hash and geometrical min-hash [Chum et al. 07-09]
- GIST descriptors with Spectral Hashing [Torralba et al.'08]
- Compressing the BoF representation (miniBof) [Jégou et al. 09]
- Aggregating local desc into a compact image representation [Jegou et al. 10]
- Efficient object category recognition using classemes [Torresani et al.'10]

Compact image representation

- Aim: improving the tradeoff between
 - search speed
 - memory usage
 - search quality
- Approach: joint optimization of three stages
 - local descriptor aggregation
 - dimension reduction
 - indexing algorithm

[H. Jegou et al., Aggregating local desc into a compact image representation, CVPR'10]

Aggregation of local descriptors

• Problem: represent an image by a single fixed-size vector:

set of *n* local descriptors \rightarrow 1 vector

- Most popular idea: BoF representation [Sivic & Zisserman 03]
 - sparse vector
 - highly dimensional
- \rightarrow high dimensionality reduction introduces loss
- Alternative: Fisher Kernels [Perronnin et al 07]
 - non sparse vector
 - excellent results with a small vector dimensionality
 - \rightarrow our method (VLAD) the spirit of this representation

VLAD : vector of locally aggregated descriptors

- Simplification of Fisher kernels
- Learning: a vector quantifier (*k*-means)
 - output: *k* centroids (visual words): $c_1, ..., c_i, ..., c_k$
 - centroid c_i has dimension d
- For a given image
 - assign each descriptor to closest center c_i
 - accumulate (sum) descriptors per cell
 v_i := v_i + (x c_i)
- VLAD (dimension $D = k \times d$)
- The vector is L2-normalized

VLADs for corresponding images

SIFT-like representation per centroid (+ components: blue, - components: red)

• good coincidence of energy & orientations

VLAD performance and dimensionality reduction

- We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%)
- Dimension is reduced to from D to D' dimensions with PCA

Aggregator	k	D	D'=D (no reduction)	D'=128	D'=64
BoF	1,000	1,000	41.4	44.4	43.4
BoF	20,000	20,000	44.6	45.2	44.5
BoF	200,000	200,000	54.9	43.2	41.6
VLAD	16	2,048	49.6	49.5	49.4
VLAD	64	8,192	52.6	51.0	47.7
VLAD	256	32,768	57.5	50.8	47.6

- Observations:
 - ► VLAD better than BoF for a given descriptor size → comparable to Fisher kernels for these operating points
 - Choose a small D if output dimension D' is small

Product quantization for nearest neighbor search

- Vector split into *m* subvectors: $y \rightarrow [y_1| \dots |y_m]$
- Subvectors are quantized separately by quantizers $q(y) = [q_1(y_1)| \dots |q_m(y_m)]$ where each q_i is learned by *k*-means with a limited number of centroids
- Example: y = 128-dim vector split in 8 subvectors of dimension 16
 - each subvector is quantized with 256 centroids -> 8 bit
 - very large codebook 256^8 ~ 1.8x10^19

Product quantizer: distance computation

• Asymmetric distance computation (ADC)

• Sum of square distances with quantization centroids

Product quantizer: asymmetric distance computation (ADC)

• Compute the square distance approximation in the compressed domain

$$d(x,y)^2 \approx \sum_{i=1}^m d(x_i, q_i(y_i))^2$$

- To compute distance between query x and many codes
 - compute $d(x_i, c_{i,j})^2$ for each subvector x_i and all possible centroids
 - \rightarrow stored in look-up tables
 - for each database code: sum the elementary square distances
- Each 8x8=64-bits code requires only **m=8 additions per distance**!
- IVFADC: combination with an inverted file to avoid exhaustive search

Optimizing the dimension reduction and quantization together

- VLAD vectors suffer two approximations
 - mean square error from PCA projection: $e_p(D')$
 - mean square error from quantization: $e_q(D')$
- Given k and bytes/image, choose D' minimizing their sum

Ex, k=16, 16B:	D'	e _p (D')	e _q (D')	$e_p(D')+e_q(D')$
	32	0.0632	0.0164	0.0796
	48	0.0508	0.0248	0.0757
	64	0.0434	0.0321	0.0755
	80	0.0386	0.0458	0.0844

Joint optimization of VLAD and dimension reduction-indexing

- For VLAD
 - ► The larger *k*, the better the raw search performance
 - ▶ But large *k* produce large vectors, that are harder to index
- Optimization of the vocabulary size
 - Fixed output size (in bytes)
 - ► *D*' computed from *k* via the joint optimization of reduction/indexing
 - Only *k* has to be set
 - ➔ end-to-end parameter optimization

Results on the Holidays dataset with various quantization parameters

Results on standard datasets

- Datasets
 - University of Kentucky benchmark
 - INRIA Holidays dataset

score: nb relevant images, max: 4 score: mAP (%)

Method	bytes	UKB	Holidays
BoF, k=20,000	10K	2.92	44.6
BoF, k=200,000	12K	3.06	54.9
miniBOF	20	2.07	25.5
miniBOF	160	2.72	40.3
VLAD k=16, ADC 16 x 8	16	2.88	46.0
VLAD k=64, ADC 32 x10	40	3.10	49.5

D'=64 for *k*=16 and *D*'=96 for *k*=64

ADC (subvectors) x (bits to encode each subvector)

miniBOF: "Packing Bag-of-Features", ICCV'09

Comparison BOF / VLAD + ADC

- Datasets
 - ▶ INRIA Holidays dataset , score: mAP (%)

Method	Holidays
BOF, k=2048, D'= 64, ADC 16x8	42.5
VLAD k=16,D=2048, D' = 64, ADC 16 x 8	46.0
BOF, k=8192, D'= 128, AD16x8	41.9
VLAD k=64, D= 8192, D'=128, ADC 16X8	45.8

- VLAD improves results over BOF
- Product quantizer gives excellent results for BOF!

Searching with quantization: comparison with spectral Hashing

R

Large scale experiments (10 million images)

- Exhaustive search of VLADs, D'=64
 - ▶ 4.77s
- With the product quantizer
 - Exhaustive search with ADC: 0.29s
 - ▶ Non-exhaustive search with IVFADC: 0.014s

IVFADC -- Combination with an inverted file

Large scale experiments (10 million images)

Conclusion & future work

- Excellent search accuracy and speed in 10 million of images
- Each image is represented by very few bytes (20 40 bytes)
- Tested on up to 220 million video frame
 - extrapolation for 1 billion images: 20GB RAM, query < 1s on 8 cores</p>
- On-line available:
 - Matlab source code of ADC
- Improved Fisher kernels by Perronnin et al., CVPR'2010
- Extension to video & more "semantic" search