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Visual searchVisual search

Particular objects and scenes large databases• Particular objects and scenes, large databases

…



Category recognition

Image classification: assigning a class label to the image

Category recognition

• Image classification: assigning a class label to the image

Car: present
Cow: present
Bike: not present
Horse: not presentHorse: not present
…



TasksCategory recognition

Image classification: assigning a class label to the image

TasksCategory recognition

• Image classification: assigning a class label to the image

Car: present
Cow: present
Bike: not present
Horse: not presentHorse: not present
…

• Object localization: define the location and the categoryObject localization: define the location and the category

L ti

Car Cow
Location

CategoryCategory



Difficulties: within object variationsDifficulties: within object variations

Variability: Camera position, Illumination,Internal parameters

Within-object variations



Difficulties: within-class variationsDifficulties: within class variations



Image classificationImage classification
• GivenGiven 

Positive training images containing an object class

Negative training images that don’t

Classify
A test image as to whether it contains the object class or not

• Classify  

?



Bag-of-features for image classificationBag of features for image classification

• Origin: texture recognitionOrigin: texture recognition
• Texture is characterized by the repetition of basic elements or 

textons

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Texture recognitiong

histogram

Universal texton dictionary

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Bag-of-features for image classificationBag of features for image classification

• Origin: bag-of-wordsOrigin: bag of words
• Orderless document representation: frequencies of words from a 

dictionary
• Classification to determine document categories



Bag-of-features for image classificationBag of features for image classification

SVMSVM

ClassificationExtract regions Compute Find clusters Compute distance ClassificationExtract regions Compute 
descriptors

Find clusters 
and frequencies

Compute distance 
matrix

[Nowak,Jurie&Triggs,ECCV’06],  [Zhang,Marszalek,Lazebnik&Schmid,IJCV’07]



Bag-of-features for image classificationBag of features for image classification

SVMSVM

ClassificationExtract regions Compute Find clusters Compute distance ClassificationExtract regions Compute 
descriptors

Find clusters 
and frequencies

Compute distance 
matrix

Step 1 Step 2 Step 3

[Nowak,Jurie&Triggs,ECCV’06],  [Zhang,Marszalek,Lazebnik&Schmid,IJCV’07]



Step 1: feature extractionStep 1: feature extraction

Scale invariant image regions + SIFT (see lecture 2)• Scale-invariant image regions + SIFT (see lecture 2)
– Affine invariant regions give “too” much invariance
– Rotation invariance for many realistic collections “too” muchRotation invariance for many realistic collections too  much 

invariance

• Dense descriptors 
– Improve results in the context of categories (for most categories)

I t t i t d t il t “ ll” f t– Interest points do not necessarily capture “all” features

• Color based descriptors• Color-based descriptors

• Shape based descriptors• Shape-based descriptors 



Dense featuresDense features 

- Multi-scale dense grid: extraction of small overlapping patches at multiple scales
-Computation of the SIFT descriptor for each grid cellsComputation of  the SIFT descriptor  for each grid cells
-Exp.: Horizontal/vertical step size 6 pixel, scaling factor of 1.2 per level



Bag-of-features for image classificationBag of features for image classification

SVMSVM

ClassificationExtract regions Compute Find clusters Compute distance ClassificationExtract regions Compute 
descriptors

Find clusters 
and frequencies

Compute distance 
matrix

Step 1 Step 2 Step 3



Step 2: QuantizationStep 2: Quantization

…



Step 2:Quantization

Clustering



Step 2: Quantization

Visual vocabularyVisual vocabulary

ClusteringClustering



Examples for visual wordsp

AirplanesAirplanes

Motorbikes

Faces

Wild Cats

Leaves

People

Bikes



Step 2: QuantizationStep 2: Quantization

Cluster descriptors• Cluster descriptors
– K-means 
– Gaussian mixture modelGaussian mixture model

• Assign each visual word to a clusterg
– Hard or soft assignment 

• Build frequency histogram



K-means clusteringK means clustering
• Minimizing sum of squared Euclidean distances g q

between points xi and their nearest cluster centers

• Algorithm: 
– Randomly initialize K cluster centersy
– Iterate until convergence:

• Assign each data point to the nearest center
R t h l t t th f ll i t• Recompute each cluster center as the mean of all points 
assigned to it

• Local minimum, solution dependent on initialization

• Initialization important, run several times, select best 



Gaussian mixture model (GMM)Gaussian mixture model (GMM)

• Mixture of Gaussians: weighted sum of Gaussians• Mixture of Gaussians: weighted sum of Gaussians 

wheree e



Hard or soft assignmentHard or soft assignment

K means hard assignment• K-means hard assignment 
– Assign to the closest cluster center 
– Count number of descriptors assigned to a centerCount number of descriptors assigned to a center

• Gaussian mixture model soft assignmentg
– Estimate distance to all centers
– Sum over number of descriptors 

• Represent image by a frequency histogram 



Image representationImage representation
cy

re
qu

en
c

…..

fr

codewords

• Each image is represented by a vector, typically 1000-4000 dimension,       
normalization with L1 norm
• fine grained – represent model instancesfine grained represent model instances
• coarse grained – represent object categories



Bag-of-features for image classificationBag of features for image classification

SVMSVM

ClassificationExtract regions Compute Find clusters Compute distance ClassificationExtract regions Compute 
descriptors

Find clusters 
and frequencies

Compute distance 
matrix

Step 1 Step 2 Step 3



Step 3: Classification

• Learn a decision rule (classifier) assigning bag-of-Learn a decision rule (classifier) assigning bag of
features representations of images to different classes

Zebra

Non-zebra

Decision
boundary



Training data
Vectors are histograms, one from each training image

Training data

positive negative

Train classifier,e.g.SVM



Linear classifiersLinear classifiers
• Find linear function (hyperplane) to separate positive and 

i lnegative examples

0:positive ≥+⋅ bii wxx
0:negative
0:positive

<+⋅
≥+

b
b

ii

ii

wxx
wxx

Which hyperplane
is best?



Linear classifiers - marginLinear classifiers margin

2x2x

G li ti i t

(color)
2x

(color)
2x

• Generalization is not 
good in this case:

)(roundness1x )(roundness1x

2x2x

• Better if a margin 
(color)

2x
(color)

2x

is introduced: b/| |w

)(roundness1x )(roundness1x



Nonlinear SVMs
• Datasets that are linearly separable work out great:

Nonlinear SVMs

0 x

• But what if the dataset is just too hard? 

• We can map it to a higher-dimensional space:
0 x

We can map it to a higher dimensional space:

x2

0 x



Nonlinear SVMsNonlinear SVMs

• General idea: the original input space can always beGeneral idea: the original input space can always be 
mapped to some higher-dimensional feature space 
where the training set is separable:

Φ:  x→ φ(x)

Slide credit: Andrew Moore



Nonlinear SVMsNonlinear SVMs

• The kernel trick: instead of explicitly computing the lifting 
transformation φ(x), define a kernel function K such that

K(xi,xjj) = φ(xi ) · φ(xj)

• This gives a nonlinear decision boundary in the original 
feature space:eatu e space

∑ bKy
i

iii +∑ ),( xxα



Kernels for bags of featuresKernels for bags of features

Histogram intersection kernel:• Histogram intersection kernel:
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Earth Mover’s DistanceEarth Mover s Distance
• Each image is represented by a signature S consistingEach image is represented by a signature S consisting 

of a set of centers {mi } and weights {wi }
• Centers can be codewords from universal vocabulary, y

clusters of features in the image, or individual features 
(in which case quantization is not required)

• Earth Mover’s Distance has the form
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where the flows fij are given by the solution of a 
transportation problem



Combining features

•SVM with multi-channel chi-square kernel 

● Channel c is a combination of detector, descriptor

● is the chi-square distance between histograms),( jic HHD
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● is the mean value of the distances between all training samplecA

∑=i 12

● Extension: learning of the weights, for example with Multiple 
Kernel Learning (MKL)

J. Zhang, M. Marszalek, S. Lazebnik and C. Schmid. Local features and kernels for 
classification of texture and object categories: a comprehensive study, IJCV 2007. 



Multi-class SVMsMulti class SVMs

Various direct formulations exist but they are not widely• Various direct formulations exist, but they are not widely 
used in practice. It is more common to obtain multi-class 
SVMs by combining two-class SVMs in various ways.SVMs by combining two class SVMs in various ways. 

• One versus all:One versus all:  
– Training: learn an SVM for each class versus the others 
– Testing:  apply each SVM to test example and assign to it the 

class of the SVM that returns the highest decision value

O• One versus one:
– Training: learn an SVM for each pair of classes 
– Testing: each learned SVM “votes” for a class to assign to the test– Testing: each learned SVM votes   for a class to assign to the test 

example 



Why does SVM learning work?Why does SVM learning work?

• Learns foreground and background visual words

foreground words high weightforeground words – high weight

background words – low weight



Illustration

Localization according to visual word probability

Illustration

Localization according to visual word probability
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foreground word more probable 

background word more probable 



IllustrationIllustration
A linear SVM trained from positive and negative window descriptors 

A few of the highest weighed descriptor vector dimensions (= 'PAS + tile')

+  lie on object boundary (= local shape structures common to many training exemplars)



Bag-of-features for image classificationBag of features for image classification

• Excellent results in the presence of background clutter• Excellent results in the presence of background clutter

bikes books building cars people phones trees



Examples for misclassified imagesExamples for misclassified images

Books- misclassified into faces, faces, buildings

Buildings- misclassified into faces, trees, trees

Cars- misclassified into buildings, phones, phones



Bag of visual words summaryBag of visual words summary 

• Advantages:
largely unaffected by position and orientation of object in image– largely unaffected by position and orientation of object in image

– fixed length vector irrespective of number of detections
– very successful in classifying images according to the objects they y y g g g j y

contain

• Disadvantages:
no explicit use of configuration of visual word positions– no explicit use of configuration of visual word positions

– poor at localizing objects within an image



Evaluation of image classificationEvaluation of image classification

• PASCAL VOC [05 10] datasets• PASCAL VOC  [05-10] datasets

PASCAL VOC 2007• PASCAL VOC 2007
– Training and test dataset available
– Used to report state-of-the-art resultsUsed to report state of the art results 
– Collected January 2007 from Flickr
– 500 000 images downloaded and random subset selected
– 20 classes
– Class labels per image + bounding boxes

5011 t i i i 4952 t t i– 5011 training images, 4952 test images 

• Evaluation measure: average precision• Evaluation measure: average precision 



PASCAL 2007 datasetPASCAL 2007 dataset



PASCAL 2007 datasetPASCAL 2007 dataset



EvaluationEvaluation



Results for PASCAL 2007Results for PASCAL 2007

Winner of PASCAL 2007 [Marszalek et al ] : mAP 59 4• Winner of PASCAL 2007 [Marszalek et al.] : mAP 59.4
– Combination of several different channels (dense + interest points, 

SIFT + color descriptors, spatial grids)p , p g )
– Non-linear SVM with Gaussian kernel 

• Multiple kernel learning [Yang et al. 2009] : mAP 62.2
– Combination of several features

G b d MKL h– Group-based MKL approach

• Combining object localization and classification [Harzallah• Combining object localization and classification [Harzallah 
et al.’09] : mAP 63.5
– Use detection results to improve classificationp



Comparison interest point - denseComparison interest point dense

Image classification results on PASCAL’07 train/val set

AP

(SHarris + Lap) x SIFT 0.452

MSDense x SIFT 0.489

(SHarris + Lap + MSDense) x SIFT 0.515( p )

Method: bag-of-features + SVM classifier



Comparison interest point - denseComparison interest point dense

Image classification results on PASCAL’07 train/val set

AP

(SHarris + Lap) x SIFT 0.452

MSDense x SIFT 0.489

(SHarris + Lap + MSDense) x SIFT 0.515( p )

Dense is on average a bit better!
IP and dense are complementary, combination 
improves results. 



Comparison interest point - denseComparison interest point dense

Image classification results on PASCAL’07 train/val set
for individual categories

(SHarris + Lap) x SIFT MSDense x SIFT 

g

Bicycle 0.534 0.443

PottedPlant 0.234 0.167

Bird 0.342 0.497

Boat 0.482 0.622

Results are category dependent!g y p



Evaluation BoF – spatialEvaluation BoF spatial 

Image classification results on PASCAL’07 train/val set

(SH, Lap, MSD) x (SIFT,SIFTC) AP

Image classification results on PASCAL 07 train/val set

spatial layout
1 0.53

2x2 0.52

3x1 0.52

1,2x2,3x1 0.54

Spatial layout not dominant for PASCAL’07 dataset
C bi i i l i i i i fCombination improves average results, i.e., it is appropriate for 
some classes 



Evaluation BoF - spatialEvaluation BoF spatial

Image classification results on PASCAL’07 train/val set
for individual categories

1 3x1

g

Sheep 0.339 0.256

Bird 0.539 0.484

DiningTable 0.455 0.502

Train 0.724 0.745

Results are category dependent!g y p
Combination helps somewhat



Spatial pyramid matchingSpatial pyramid matching

Add spatial information to the bag of features• Add spatial information to the bag-of-features

P f t hi i 2D i• Perform matching in 2D image space

[Lazebnik, Schmid & Ponce, CVPR 2006]



Related workRelated work 
Similar approaches:Similar approaches:

Subblock description [Szummer & Picard, 1997]
SIFT [Lowe, 1999]

GistSIFT

GIST [Torralba et al., 2003]

GistSIFT

Szummer & Picard (1997) Lowe (1999 2004) Torralba et al (2003)Szummer & Picard (1997) Lowe (1999, 2004) Torralba et al. (2003)



Spatial pyramid representationSpatial pyramid representation

Locally orderless 
irepresentation at 

several levels of 
spatial resolution

level 0



Spatial pyramid representationSpatial pyramid representation

Locally orderless 
irepresentation at 

several levels of 
spatial resolution

level 0 level 1



Spatial pyramid representationSpatial pyramid representation

Locally orderless 
irepresentation at 

several levels of 
spatial resolution

level 0 level 1 level 2



Pyramid match kernely a d atc e e

Weighted sum of histogram intersections at multiple• Weighted sum of histogram intersections at multiple 
resolutions (linear in the number of features instead of 
cubic)cubic)

optimal partial 
matching between sets 

of features



Spatial pyramid matchingSpatial pyramid matching

Combination of spatial levels with pyramid match kernel• Combination of spatial levels with pyramid match kernel 
[Grauman & Darell’05]

• Intersect histograms, more weight to finer gridsIntersect histograms, more weight to finer grids



Scene dataset [Labzenik et al.’06]

Coast Forest Mountain Open country Highway Inside city Tall building Street

Suburb Bedroom Kitchen Living room Office

Store Industrial

4385 images
15 categories5 c ego es



Scene classificationScene classification

L Single-level PyramidL Single level Pyramid

0(1x1) 72.2±0.6
1(2x2) 77.9±0.6 79.0 ±0.5
2(4x4) 79.4±0.3 81.1 ±0.3
3(8x8) 77.2±0.4 80.7 ±0.3



Retrieval examplesRetrieval examples



Category classification – CalTech101Category classification CalTech101

L Single-level Pyramid

0(1x1) 41.2±1.2
1(2x2) 55.9±0.9 57.0 ±0.8
2(4x4) 63.6±0.9 64.6 ±0.8
3(8x8) 60 3±0 9 64 6 ±0 73(8x8) 60.3±0.9 64.6 ±0.7

Bag-of-features approach by Zhang et al.’07: 54 %g pp y g



CalTech101CalTech101

Easiest and hardest classesEasiest and hardest classes

• Sources of difficulty:
– Lack of texture
– Camouflage
– Thin, articulated limbs
– Highly deformable shape– Highly deformable shape



DiscussionDiscussion

• Summary
– Spatial pyramid representation: appearance of local 

i t h + l b l iti i f tiimage patches + coarse global position information
– Substantial improvement over bag of features

Depends on the similarity of image layout– Depends on the similarity of  image layout

• ExtensionsExtensions
– Flexible, object-centered grid



MotivationMotivation

Evaluating the influence of background features• Evaluating the influence of background features [J. Zhang et al.,  
IJCV’07]

– Train and test on different combinations of foreground and 
background by separating features based on bounding boxes

Training: original training set 

Testing: different combinations 
foreground + background features

Best results when testing with foreground features only



ApproachApproach

• Better to train on a “harder” dataset with background clutter• Better to train on a harder  dataset with background clutter 
and test on an easier one without background clutter

• Spatial weighting for bag-of-features [Marszalek & Schmid, CVPR’06]

– weight features by the likelihood of belonging to the object 
– determine likelihood based on shape masks 



Masks for spatial weightingMasks for spatial weighting 
For each test feature:

- Select closest training features + corresponding masks
(training requires segmented images or bounding boxes) 

Align mask based on local co ordinates system- Align mask based on local co-ordinates system 
(transformation between training and test co-ordinate systems) 

Sum masks weighted by matching distance 

three features agree on object localization, 
the object has higher weightsj g g

Weight histogram features with the strength of the final mask



Example masks for spatial weightingExample masks for spatial weighting



Classification for PASCAL datasetClassification for PASCAL dataset

Zhang et al. Spatial weighting Gain

bikes 74.8 76.8 +2.0

cars 75.8 76.8 +1.0

motorbikes 78.8 79.3 +0.5

people 76.9 77.9 +1.0

Equal error rates for PASCAL test set 2Equal error rates for PASCAL test set 2



Extension to localizationExtension to localization

• Cast hypothesis
– Aligning the mask based on matching featuresAligning the mask based on matching features

• Evaluate each hypothesisEvaluate each hypothesis 
– SVM for local features

• Merge hypothesis to produce localization decisions
– Online clustering of similar hypothesis, rejection of weak ones

[Marszalek & Schmid CVPR 2007][Marszalek & Schmid, CVPR 2007]



Localization resultsLocalization results



DiscussionDiscussion

• Including spatial information improves results

• Importance of flexible modeling of spatial information
– coarse global position information
– object based models 



Recent extensionsRecent extensions

• Linear Spatial Pyramid Matching Using Sparse Coding for 
Image Classification. J. Yang et al., CVPR’09.
– Local coordinate coding,  linear SVM, excellent results in last year’s 

PASCAL challengePASCAL challenge 

• Learning Mid level features for recognition Y Boureau et al• Learning Mid-level features for recognition, Y. Boureau et al., 
CVPR’10. 
– Use of sparse coding techniques and max poolingp g q p g



Recent extensionsRecent extensions

• Efficient Additive Kernels via Explicit Feature Maps, A. 
Vedaldi and Zisserman CVPR’10Vedaldi and Zisserman, CVPR 10.
– approximation by linear kernels 

• Improving the Fisher Kernel for Large-Scale ImageImproving the Fisher Kernel for Large-Scale Image 
Classification, Perronnin et al., ECCV’10  
– More discriminative descriptor, power normalization, linear SVM p p


