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A gentle intro to Random Fields 

Goal 

Given z and unknown (latent) variables x : 

 
P(x|z) =    P(z|x)     P(x)   / P(z)   ~  P(z|x)  P(x)  
 
 

z = (R,G,B)n x = {0,1}n 

Posterior  
Probability 

Likelihood 
(data- 

dependent) 

Maximium a Posteriori (MAP):  x* = argmax P(x|z) 

Prior 
(data- 

independent) 

x 



                  Likelihood P(x|z) ~ P(z|x) P(x) 
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                  Likelihood P(x|z) ~ P(z|x) P(x) 

Maximum likelihood: 

x* = argmax P(z|x) = 
  
argmax    P(zi|xi) 

P(zi|xi=0) P(zi|xi=1) 

X 

x 
∏ 
xi 



                         Prior P(x|z) ~ P(z|x) P(x) 

P(x) = 1/f  ∏   θij (xi,xj) 
 
f = ∑ ∏  θij (xi,xj)    “partition function” 

 
θij (xi,xj) = exp{-|xi-xj|}    “ising prior” 
 

xi xj 

x 

i,j Є N4 

 i,j Є N 

(exp{-1}=0.36; exp{0}=1) 



Prior 

Solutions with  
highest probability (mode)  

P(x) = 0.012 P(x) = 0.012 P(x) = 0.011 

Pure Prior model: 

Faire Samples 

Smoothness prior needs the likelihood  

P(x) = 1/f  ∏   exp{-|xi-xj|} 
 i,j Є N4 



Posterior distribution  

P(x|z) = 1/f(z,w) exp{-E(x,z,w)} 

E(x,z,w) = ∑ θi (xi,zi) + w∑ θij (xi,xj) 
i i,j Є N 

 

-log P(zi|xi=1) xi -log P(zi|xi=0) (1-xi)  θi (xi,zi) =   

θij (xi,xj) = |xi-xj| 

P(x|z) ~ P(z|x) P(x) 

“Gibbs” distribution:  

Likelihood  

prior 

Energy 

Unary terms Pairwise terms 



Energy minimization 

-log P(x|z) = -log (1/f(z,w)) + E(x,z,w) 

MAP same as minimum Energy 

MAP; Global min E 

x* = argmin E(x,z,w) 

ML 

f(z,w) = ∑ exp{-E(x,z,w)} 
X 

X 

P(x|z) = 1/f(z,w) exp{-E(x,z,w)} 

E(x,z,w) = ∑ θi (xi,zi) + w∑ θij (xi,xj) 
i i,j Є N 

 



Weight prior and likelihood 

w =0 

E(x,z,w) = ∑ θi (xi,zi) + w∑ θij (xi,xj) 

w =10 

w =200 w =40 
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Model : 
 discrete or continuous variables? 
 discrete or continuous space? 
 Dependence between variables? 
 … 

Random Field Models for Computer Vision  

Inference/Optimisation 
 Combinatorial optimization: e.g. Graph 

Cut 

 Message Passing: e.g. BP, TRW 

 Iterated Conditional Modes (ICM) 

 LP-relaxation: e.g. Cutting-plane 

 Problem decomposition + subgradient  

 … 

 

Learning: 
 Exhaustive search (grid search) 

 Pseudo-Likelihood approximation 

 Training in Pieces 

 Max-margin 

 … 

Applications: 
 2D/3D Image segmentation 
 Object Recognition 
 3D reconstruction 
 Stereo matching 
 Image denoising 
 Texture Synthesis 
 Pose estimation 
 Panoramic Stitching 
 … 



Introducing Factor Graphs 

Write probability distributions as Graphical model: 
 
 - Direct graphical model  
 - Undirected graphical model “traditionally used for MRFs” 

 - Factor graphs “best way to visualize the underlying energy” 

  
References:  
 - Pattern Recognition and Machine Learning *Bishop ‘08, book, chapter 8+ 

 - several lectures at the Machine Learning Summer School 2009  

   (see video lectures)  
 



Factor Graphs 

x2 x1 

x4 x3 

x5 

Factor graph  

unobserved 

  

P(x) ~ exp{-E(x)}  
E(x) = θ(x1,x2,x3) + θ(x2,x4) + θ(x3,x4) + θ(x3,x5)   

variables are in same factor.  

“4 factors” 

Gibbs distribution 



Definition “Order” 

Definition “Order”: 
The arity (number of variables) of 
the largest factor 

      E(X) = θ(x1,x2,x3) θ(x2,x4) θ(x3,x4) θ(x3,x5) 

x2 x1 

x4 x3 

x5 

Factor graph  
with order 3 

arity 3 arity 2 

Extras: 
• I will use “factor” and “clique” in the same way 
• Not fully correct since clique may or may not 

decomposable   
• Definition of “order” same for clique and factor 

(not always consistent in literature) 

• Markov Random Field:  Random Field with low-
order factors/cliques.  

x2 x1 

x4 x3 

x5 

Undirected 
model 

Triple 
clique 



Examples - Order 

4-connected; 
pairwise MRF  

Higher-order RF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N4 

higher(8)-connected; 
pairwise MRF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N8 

Order 2 Order 2 Order n 

E(x) = ∑ θij (xi,xj) 
 

                   +θ(x1,…,xn) 
 i,j Є N4 

“Pairwise energy” “higher-order energy” 



Random field models 

4-connected; 
pairwise MRF  

Higher-order RF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N4 

higher(8)-connected; 
pairwise MRF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N8 

Order 2 Order 2 Order n 

E(x) = ∑ θij (xi,xj) 
 

                   +θ(x1,…,xn) 
 i,j Є N4 

“Pairwise energy” “higher-order energy” 



Example: Image segmentation 
P(x|z) ~ exp{-E(x)} 

E(x) = ∑ θi (xi,zi) + ∑ θij (xi,xj) 
i 

Observed variable 

Unobserved (latent) variable 

xi 

 i,j Є N4 

zi 

Factor graph 

xj 



Segmentation: Conditional Random Field 
E(x) = ∑ θi (xi,zi) + ∑ θij (xi,xj,zi,zj) 

i 

Observed 
variable 

Unobserved 
(latent) variable 

 i,j Є N4 

Conditional Random Field (CRF) no pure prior 

MRF 

xj 

zj 

zi 

xj 

zj 

zi 

xi 

xj 

Factor graph 
CRF 

θij (xi,xj,zi,zj) = |xi-xj| (-exp{-ß||zi-zj||}) 
 

ß=2(Mean(||zi-zj||2) )-1 

||zi-zj|| 

θij  



d=4 

d=0 

Stereo matching 

Ground truth depth Image – left(a) Image – right(b) 

• Images rectified 
• Ignore occlusion for now  

E(d): {0,…,D-1}n → R 

Energy: 

Labels: d (depth/shift) 

di 



Stereo matching - Energy 

θij (di,dj) = g(|di-dj|) 

E(d): {0,…,D-1}n → R 

Energy: 

E(d) = ∑ θi (di) + ∑ θij (di,dj) 

Pairwise: 

i  i,j Є N4 

θi (di) = (lj-ri-di) 
“SAD; Sum of absolute differences” 
(many others possible, NCC,…)  

i 

i-2 
(di=2) 

Unary: 

Left Image 
R

ig
h
t 

Im
ag

e 

left 

right 



Stereo matching - prior 

[Olga Veksler PhD thesis, 
Daniel Cremers et al.]  

|di-dj| 

θij (di,dj) = g(|di-dj|) 

co
st

 

No truncation 
(global min.) 



Stereo matching - prior 

[Olga Veksler PhD thesis, 
Daniel Cremers et al.]  

|di-dj| 

discontinuity preserving potentials 
*Blake&Zisserman’83,’87+ 

θij (di,dj) = g(|di-dj|) 

co
st

 

No truncation 
(global min.) 

with truncation 
(NP hard optimization) 



Stereo matching  
see http://vision.middlebury.edu/stereo/ 
 

No MRF 
Pixel independent (WTA) 

No horizontal links  
Efficient since independent chains 

Ground truth Pairwise MRF 
*Boykov et al. ‘01+ 

http://vision.middlebury.edu/stereo/


Texture synthesis 

Input 

Output 

*Kwatra et. al. Siggraph ‘03 + 

E: {0,1}n → R  

b 

a 

O 

1 
 i,j Є N4 

E(x) = ∑ |xi-xj| [ |ai-bi|+|aj-bj| ] 

a 

b 

a 

b 

i j i j 

Good case: Bad case: 



Video Synthesis 

Output Input 

Video  

Video (duplicated) 



Panoramic stitching 



Panoramic stitching 



Recap: 4-connected MRFs 

• A lot of useful vision systems are based on  
   4-connected pairwise MRFs. 
 
• Possible Reason (see Inference part):  
   a lot of fast and good (globally optimal)  
   inference methods exist 



Random field models 

4-connected; 
pairwise MRF  

Higher-order RF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N4 

higher(8)-connected; 
pairwise MRF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N8 

Order 2 Order 2 Order n 

E(x) = ∑ θij (xi,xj) 
 

                   +θ(x1,…,xn) 
 i,j Є N4 

“Pairwise energy” “higher-order energy” 



Why larger connectivity? 

We have seen… 

• “Knock-on” effect (each pixel influences each other pixel)  

• Many good systems 
 

What is missing: 

1. Modelling real-world texture (images) 

2. Reduce discretization artefacts 

3. Encode complex prior knowledge 

4. Use non-local parameters 

 



Reason 1: Texture modelling  

Test image Test image (60% Noise) Training images 

Result MRF 
9-connected 

(7 attractive; 2 repulsive) 

Result MRF 
4-connected 

Result MRF 
4-connected 
(neighbours) 



Reason2: Discretization artefacts 

*Boykov et al. ‘03, ‘05+ 

Larger connectivity can model true Euclidean 
length  (also other metric possible) 

Eucl. 

Length of the paths: 

4-con. 

5.65 

8 

1 

8-con. 

6.28 

6.28 

5.08 

6.75 



Reason2: Discretization artefacts 

4-connected 
Euclidean 

8-connected 
Euclidean (MRF) 

8-connected 
geodesic (CRF) 

*Boykov et al. ‘03; ‘05+ 



3D reconstruction  

[Slide credits: Daniel Cremers] 



Reason 3: Encode complex prior knowledge:  
Stereo with occlusion 

Each pixel is connected to D pixels in the other image 
 

E(d): {1,…,D}2n → R 

match 
θlr (dl,dr) =   

dl dr 

d=10 (match) 

1 

D 

d 

1 

D 

d 
d=20 (0 cost) 

d=1 (     cost)  ∞ 

Left view right view 



Stereo with occlusion 

Ground truth Stereo with occlusion 
*Kolmogrov et al. ‘02+ 

Stereo without occlusion 
*Boykov et al. ‘01+ 



Reason 4: Use Non-local parameters: 
Interactive Segmentation (GrabCut) 

*Boykov and Jolly ’01+ 

GrabCut *Rother et al. ’04+ 



A meeting with the Queen 



Reason 4: Use Non-local parameters: 
Interactive Segmentation (GrabCut) 

An object is a compact set of colors: 

*Rother et al. Siggraph ’04+ 

E(x,w) = ∑ θi (xi,w) + ∑ θij (xi,xj) 
i  i,j Є N4 

E(x,w): {0,1}n x {GMMs}→ R 

R
ed

 

R
ed

 

w 

Model jointly segmentation and color model:  



Reason 4: Use Non-local parameters: 
Object recognition & segmentation 

E(x,ω) = ∑ θi (ω, xi) +∑ θi (xi) + ∑ θi ( xi) + ∑ θij (xi,xj) 
i,j i (color) (location) 

Building 

Sky 
 

Tree 
Grass 

(class) 

xi ∊ {1,…,K} for K object classes 

(edge aware 
ising prior) 

Class (boosted textons) Location 

sky grass 

*TextonBoost; Shotton et al, ‘06+ 



Class+ 
location 

+ edges + color 

Reason 4: Use Non-local parameters: 
Object recognition & segmentation 

*TextonBoost; Shotton et al, ‘06+ 



Reason 4: Use Non-local parameters: 
Object recognition & segmentation 

*TextonBoost; Shotton et al, ‘06+ 

Good results … 



Reason 4: Use Non-local parameters: 
Object recognition & segmentation 

Failure cases… 



Reason 4: Use Non-local parameters: 
Recognition with Latent/Hidden CRFs 

• Many other examples: ObjCut Kumar et. al. ’05; Deformable Part 
Model Felzenszwalb et al.; CVPR ’08; PoseCut Bray et al. ’06, 
LayoutCRF Winn et al. ’06 
 

• Maximizing over hidden variables 
  

 

“parts” 

“instance 
label” 

“instance” 

*LayoutCRF Winn et al. ’06+ 



Random field models 

4-connected; 
pairwise MRF  

Higher-order RF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N4 

higher(8)-connected; 
pairwise MRF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N8 

Order 2 Order 2 Order n 

E(x) = ∑ θij (xi,xj) 
 

                   +θ(x1,…,xn) 
 i,j Є N4 

“Pairwise energy” “higher-order energy” 



Why Higher-order Functions? 

In general θ(x1,x2,x3) ≠ θ(x1,x2) + θ(x1,x3) + θ(x2,x3)  

Reasons for higher-order MRFs: 
 

1. Even better image(texture) models: 
– Field-of Expert [FoE, Roth et al. ‘05+ 

– Curvature *Woodford et al. ‘08+ 

 

2. Use global Priors: 
– Connectivity *Vicente et al. ‘08, Nowizin et al. ‘09+ 

– Encode better training statistics *Woodford et al. ‘09+ 

– Convert global variables to global factors [Vicente et al. ‘09+  

 

 



Reason1: Better Texture Modelling 

Test Image Test Image (60% Noise) 

Training images 

Result  pairwise MRF 
9-connected 

Higher Order Structure 
not Preserved 

Higher-order MRF 

*Rother et al. CVPR ‘09+ 



Reason 2: Use global Prior 
Foreground object must be connected: 

User input Standard MRF: 
Removes noise (+) 
Shrinks boundary (-) 

with connectivity 

E(x) = P(x) + h(x)       with h(x)= { ∞  if not 4-connected 
0   otherwise 

*Vicente et. al. ’08 
Nowizin et al ‘09+ 



Reason 2: Use global Prior 

*Woodford et. al. ICCV ‘09+ 

Introduce a global term, which controls global statistic: 

Pairwise MRF –  
Increase  Prior strength 

Ground truth 

Noisy input 

Global gradient prior 

P(x) = 0.012 P(x) = 0.011 

Remember: 



Random field models 

4-connected; 
pairwise MRF  

Higher-order RF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N4 

higher(8)-connected; 
pairwise MRF  

E(x) = ∑ θij (xi,xj) 
 i,j Є N8 

Order 2 Order 2 Order n 

E(x) = ∑ θij (xi,xj) 
 

                   +θ(x1,…,xn) 
 i,j Є N4 

“Pairwise energy” “higher-order energy” 

…. all useful models,  
     but how do I optimize them? 



Advanced CRF system 

[Unwrap Mosaic, Rav-Acha  et al. Siggraph ’08+ 
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Why is good optimization important? 

[Data courtesy from Oliver Woodford] 

Problem:  Minimize a binary 4-connected pair-wise MRF  
       (choose a colour-mode at each pixel) 

Input: Image sequence 

Output: New view 

*Fitzgibbon et al. ‘03+  



Why is good optimization important? 

Belief  Propagation ICM, Simulated 
Annealing 

Ground Truth 

QPBOP *Boros et al. ’06, Rother et al. ‘07+ 

Global Minimum 

Graph Cut with truncation 
*Rother et al. ‘05+ 



Recap 

E(x) =  ∑ fi (xi) + ∑ gij (xi,xj) + ∑ hc(xc)  
i ij c 

Unary Pairwise Higher Order 

Label-space: 
 
Binary: xi ϵ {0,1} 
Multi-label: xi ϵ {0,…,K} 
 



Inference – Big Picture  
 

• Combinatorial Optimization (main part) 
– Binary, pairwise MRF: Graph cut, BHS (QPBO) 
– Multiple label, pairwise: move-making; transformation 
– Binary, higher-order factors: transformation 
– Multi-label, higher-order factors:  

move-making + transformation 
 

• Dual/Problem Decomposition  
– Decompose (NP-)hard problem into tractable once. 

Solve with e.g. sub-gradient technique 
 

• Local search / Genetic algorithms  
– ICM, simulated annealing 

 



Inference – Big Picture 

• Message Passing Techniques  
– Methods can be applied to any model in theory 

(higher order, multi-label, etc.) 
– BP, TRW, TRW-S 
 

• LP-relaxation (not covered) 
– Relax original problem (e.g. {0,1} to [0,1])  

and solve with existing techniques (e.g. sub-gradient)   
– Can be applied any model (dep. on solver used) 
– Connections to message passing (TRW) and 

combinatorial optimization (QPBO) 



Inference – Big Picture:  
Higher-order models 

• Arbitrary potentials are only tractable for order <7 
(memory, computation time) 
 

• For ≥7 potentials need some structure to be 
exploited in order to make them tractable 
(e.g. cost over number of labels) 

 



Function Minimization: The Problems 

• Which functions are exactly solvable? 
 

 

 

 

• Approximate solutions of NP-hard problems 
 

 

 

 

 
  



Function Minimization: The Problems 

• Which functions are exactly solvable? 
 Boros Hammer [1965], Kolmogorov Zabih [ECCV 2002, PAMI 2004] , Ishikawa [PAMI 2003], 

Schlesinger [EMMCVPR 2007], Kohli Kumar Torr  [CVPR2007, PAMI 2008] , Ramalingam Kohli 
Alahari  Torr [CVPR 2008] , Kohli Ladicky Torr [CVPR 2008, IJCV 2009] , Zivny Jeavons [CP 2008] 

 

• Approximate solutions of NP-hard problems 
 Schlesinger [1976 ], Kleinberg and Tardos [FOCS 99], Chekuri et al. [2001], Boykov et al. [PAMI 

2001], Wainwright et al. [NIPS 2001], Werner [PAMI 2007], Komodakis [PAMI 2005], Lempitsky et 
al. [ICCV 2007], Kumar et al. [NIPS 2007], Kumar et al. [ICML 2008], Sontag and Jakkola [NIPS 
2007],  Kohli et al. [ICML 2008], Kohli et al. [CVPR 2008, IJCV 2009], Rother et al. [2009] 

 



Message Passing Chain:  
Dynamic Programming 

q p r 

f (xp) + gpq (xp,xq) 

Mp->q(L1) = min f (xp) + gpq (xp, L1)  
xp 

= min (5+0, 1+2, 2+2) 

5 

1 

2 

Mp->q(L1,L2,L3)  = (3,1,2) 

L1 

with Potts model gpq =2 ( xp ≠xq ) 



Message Passing Chain:  
Dynamic Programming 

q p r 

f (xp) + gpq (xp,xq) 

5 

1 

2 

L1 

with Potts model gpq =2 ( xp ≠xq ) 



Message Passing Chain:  
Dynamic Programming 

q p r 

Mq->r (Li) = min Mp->q + f (xq) + gqr (xq,Li) 

Global minimum in linear time  

Get optimal labeling for xr :   

Trace back path to get minimum 
cost labeling x 

min Mq->r + f (xr) 

This gives min E 

xr 

xq 



Message Passing Techniques 

• Exact on Trees, e.g. chain  
 

 
 
• Loopy graphs: many techniques: BP, TRW, TRW-S, Diffusion: 

– Message update rules differ 
– Compute (approximate) MAP or marginals P(xi | xV\{i} ) 

– Connections to LP-relaxation (TRW tries to solve MAP LP) 

 
 
 

• Higher-order MRFs: Factor graph BP 
 
 

*Felzenschwalb et al  ‘01+ 

node to 
factor 

factor to 
node 

*See details in tutorial ICCV ’09, CVPR ‘10+ 



Combinatorial Optimization 

• Binary, pairwise  
– Solvable problems 

– NP-hard 

• Multi-label, pairwise  
– Transformation to binary 

– move-making 

• Binary, higher-order 
– Transformation to pairwise 

– Problem decomposition 

 



Example: n = 2, A = [1,0] , B = [0,1] 

f([1,0]) + f([0,1])   f([1,1]) + f([0,0]) 

Property : Sum of submodular functions is submodular 

E(x) = ∑ ci xi + ∑ dij |xi-xj| 
i i,j 

Binary Image Segmentation Energy is submodular 

Binary functions that can be solved exactly 

for all A,B ϵ {0,1}n  f(A) + f(B)    f(A˅B) + f(A˄B) 
(AND) (OR) 

Pseudo-boolean function f{0,1}n  ℝ  is submodular if 



Submodular binary, pairwise MRFs:  
Maxflow-MinCut or GraphCut algorithm *Hammer et al. ‘65+ 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
1 

2 

Graph (V, E, C) 
 

Vertices V = {v1, v2 ... vn} 
 

Edges E = {(v1, v2) ....} 
 

Costs C = {c(1, 2) ....} 



The st-Mincut Problem 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
1 

2 

What is a st-cut? 



The st-Mincut Problem 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
1 

2 

What is a st-cut? 

An st-cut (S,T) divides the nodes 
between source and sink. 

What is the cost of a st-cut? 

Sum of cost of all edges going 
from S to T 

5 + 1 + 9 = 15 



The st-Mincut Problem 
What is a st-cut? 

An st-cut (S,T) divides the nodes 
between source and sink. 

What is the cost of a st-cut? 

Sum of cost of all edges going 
from S to T 

What is the st-mincut? 

st-cut with the 
minimum cost 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
1 

2 

2 + 2 + 4 = 8 



So how does this work?  
Construct a graph such that: 

1. Any st-cut corresponds to an assignment of x  

2. The cost of the cut is equal to the energy of x : E(x) 

3. Find min E, min st-cut 

Solution 
T 

S st-mincut 

E(x) 

[Hammer, 1965] [Kolmogorov and  Zabih, 2002] 



E(x) =  ∑ θi (xi) + ∑ θij (xi,xj) 
i,j i 

st-mincut and Energy Minimization 

θij(0,1) + θij
 (1,0)   θij

 (0,0) + θij
 (1,1) For all ij 

E(x) = ∑ cixi + c’i(1-xi) + ∑ cij xi(1-xj) 
i,j i 

Equivalent (transform to 
“normal form”) 

cij≥0 ci, c’i ϵ {0,p}  
with p≥0 

*Kolmogorov and  Rother ‘07+ 



Example 
Source 

Sink 

v1 v2 

2 

5 

9 

4 
2 

1 

E(v1,v2) = 2v1 + 5(1-v1)+ 9v2 + 4(1-v2)+ 2v1(1-v2)+ (1-v1)v2 



Example 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
2 

1 

E(v1,v2) = 2v1 + 5(1-v1)+ 9v2 + 4(1-v2)+ 2v1(1-v2)+ (1-v1)v2 

v1 = 1  v2 = 0 

E (1,0) = 8 

optimal st-mincut: 8 



How to compute the st-mincut? 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
2 

1 Solve the maximum flow problem 

Compute the maximum flow between 
Source and Sink s.t. 

Edges: Flow < Capacity 

 Nodes: Flow in = Flow out 

Assuming non-negative capacity 

In every network, the maximum flow 
equals the cost of the st-mincut 

Min-cut\Max-flow Theorem 



Augmenting Path Based Algorithms 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
2 

1 

Flow = 0 



Augmenting Path Based Algorithms 

1. Find path from source to sink 
with positive capacity 

 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
2 

1 

Flow = 0 



Augmenting Path Based Algorithms 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 

Source 

Sink 

v1 v2 

2-2 

5-2 

9 

4 
2 

1 

Flow = 0 + 2 



Augmenting Path Based Algorithms 

Source 

Sink 

v1 v2 

0 

3 

9 

4 
2 

1 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 

Flow = 2 



Augmenting Path Based Algorithms 

Source 

Sink 

v1 v2 

0 

3 

9 

4 
2 

1 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 2 



Augmenting Path Based Algorithms 

Source 

Sink 

v1 v2 

0 

3 

9 

4 
2 

1 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
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found 
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Augmenting Path Based Algorithms 

Source 

Sink 

v1 v2 

0 

2 

4 

0 
3 

0 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 8 

Saturated edges give the minimum cut. Also flow is min E.   



History of Maxflow Algorithms 

[Slide credit: Andrew Goldberg] 

Augmenting Path and Push-Relabel n: #nodes 
 

m: #edges 
 

U: maximum edge 
weight 

Computer Vision problems: efficient dual search tree augmenting path algorithm 
[Boykov and Kolmogorov PAMI 04] O(mn2|C|) … but fast in practice: 1.5MPixel per sec.  



Minimizing Non-Submodular Functions 

• Minimizing general non-submodular functions is NP-
hard.  
 

• Commonly used method is to solve a relaxation of the 
problem 

E(x) =  ∑ θi (xi) + ∑ θij (xi,xj) 
i,j i 

θij(0,1) + θij
 (1,0)  < θij

 (0,0) + θij
 (1,1) for some ij 



pairwise nonsubmodular 

unary 

pairwise submodular 

Minimization using Roof-dual Relaxation 

)0,1()1,0()1,1()0,0( pqpqpqpq  

)0,1(
~

)1,0(
~

)1,1(
~

)0,0(
~

pqpqpqpq  

[Boros, Hammer, Sun ’91; Kolmogorov, Rother ‘07] 



Minimization using Roof-dual Relaxation 
(QPBO, BHS-algorithm) 

Double number of variables: ppp xxx ,

• E’ is submodular 
• Ignore constraint and solve anyway 

[Boros, Hammer, Sun ’91; Kolmogorov, Rother ‘07] 



Minimization using Roof-dual Relaxation 
(QPBO, BHS-algorithm) 

• Output: original xp ϵ {0,1,?} (partial optimality)  

 

 

• Solves the LP relaxation for binary pairwise MRFs 

• Extensions possible QPBO-P/I *Rother et al. ‘07+ 



Combinatorial Optimization 

• Binary, pairwise  
– Solvable problems 

– NP-hard 

• Multi-label, pairwise  
– Transformation to binary 

– move-making 

• Binary, higher-order 
– Transformation to pairwise 

– Problem decomposition 

 



Transform exactly: multi-label to binary 

Labels: l1  …. lk   

variables: x1  …. xn 

 
New nodes: n * k  

x1 = l3  x2 = l2 

x3 = l2  x4 = l1 

Example: transformation approach 

[Ishikawa PAMI ‘03] 



Example transformation approach 

other encoding scheme:  
 

[Roy and Cox ’98, Schlesinger & Flach ’06] 

E(y) =  ∑ θi (yi) + ∑ g (|yi-yj|) 
 i,j i 

g(|yi-yj|) 

|yi-yj| 

Problem: not discontinuity 
preserving  

Exact if g convex: 



Move Making Algorithms 

Solution Space 

En
er

gy
 



Move Making Algorithms 

Search 
Neighbourhood 

Current Solution 

Optimal Move 

Solution Space 

En
er

gy
 



Iterative Conditional Mode (ICM) 

x2 

x1 x4 

x5 

x3 

E(x) = θ12 (x1,x2)+ θ13 (x1,x3)+ 
          θ14 (x1,x4)+ θ15 (x1,x5)+… 

ICM: Very local moves get stuck in local 
minima 
 
 
 
 

Simulated Annealing: accept move even if 
energy increases (with certain probability) 

ICM Global min. 



Graph Cut-based Move Making Algorithms
  

Space of Solutions (x) : Ln  

Move Space (t) : 2n  
Search Neighbourhood 

Current Solution 

n Number of Variables 

L Number of  Labels 

[Boykov , Veksler and Zabih 2001] 

A series of globally optimal large moves  



Expansion Move 

Sky 

House 

Tree 

Ground 

Initialize with Tree Status: Expand Ground Expand House Expand Sky 

[Boykov, Veksler, Zabih] 

• Variables take label a  or retain current label 

[Boykov , Veksler and Zabih 2001] 



Expansion Move 

• Move energy is submodular if: 

– Unary Potentials: Arbitrary 

– Pairwise potentials: Metric 

[Boykov, Veksler, Zabih] 

θij (la,lb) = 0 iff la=lb  

Examples: Potts model, Truncated linear 
(not truncated quadratic)  

[Boykov , Veksler and Zabih 2001] 

Other moves: alpha-beta swap, range move, etc. 

θij (la,lb) + θij (lb,lc) ≥ θij (la,lc) 

θij (la,lb) = θij (lb,la) ≥ 0 



Fusion Move:  
Solving Continuous Problems using 

x =  t x1 + (1-t) x2 

x1, x2 can be continuous 

F 
x1 

x2 

x 

Optical Flow  
Example 

Final 
Solution 

Solution 
from 

Method 1 

Solution 
from 

Method 2 

[Woodford, Fitzgibbon, Reid, Torr, 2008] [Lempitsky, Rother, Blake, 2008]   



Combinatorial Optimization 

• Binary, pairwise  
– Solvable problems 

– NP-hard 

• Multi-label, pairwise  
– Transformation to binary 

– move-making 

• Binary, higher-order 
– Transformation to pairwise  

(arbitrary < 7, and special potentials) 

– Problem decomposition 

 



Example: Transformation with factor size 3 

f(x1,x2,x3) = θ111x1x2x3 + θ110x1x2(1-x3) + θ101x1(1-x2)x3 + … 

f(x1,x2,x3) =  ax1x2x3 + bx1x2 + cx2x3… + 1 

Quadratic polynomial can be done 

Idea: transform 2+ order terms into 2nd order terms 

Many Methods for exact transformation: 
Worst case exponential number of auxiliary nodes 
(e.g. factor size 5 gives 15 new variables  
 -see *Ishikawa PAMI ‘09+) 

Problem: often non-submodular pairwise MRF  

  



Special Potential: Label-Cost Potential 
[Hoiem et al. ’07, Delong et al. ’10, Bleyer et al. ‘10+ 

E(x)  =   P(x) +  

From *Delong et al.  ’10+ 

Image Grabcut-style result With cost for each new label 
*Delong et al. ’10+ 
(Same function as *Zhu and Yuille ‘96+)  

“pairwise 
MRF” 

∑ cl [   p: xp= l ] 
l Є L 

E 

“Label cost” 

Label cost = 4c  
Label cost = 10c  

E: {1,…,L}n → R 

Basic idea: penalize the complexity of the model 
• Minimum description length (MDL)  
• Bayesian information criterion (BIC)  

Transform to pairwise MRF with one extra node  (use alpha-expansion) 

[Many more special higher-order potentials in tutorial CVPR ’10+ 



Problem decomposition: 
Segmentation and Connectivity 

Foreground object must be connected: 

User input Standard MRF Standard MRF 
+h 

Zoom in 

E(x) = ∑ θi (xi) + ∑ θij (xi,xj) + h(x) 
 

h(x)= { ∞ if x not 4-connected 
0 otherwise 

*Vicente et al ’08+ 



E(x) = ∑ θi (xi) + ∑ θij (xi,xj) + h(x) 
 

{ ∞ if x not 4-connected 
0 otherwise 

Problem decomposition: 
Segmentation and Connectivity 

E1(x)  

min E(x) = min [ E1(x) + θTx  + h(x) – θTx ]  
  

          ≥ min [E1(x1) + θTx1] + min [h(x2) + θTx2] = L(θ) 
x1 x2 

x x 

Derive Lower bound: 

Subproblem 1: 

Unary terms + 
pairwise terms 

Global minimum: 
GraphCut 

Subproblem 2: 

Unary terms + Connectivity 
constraint 

Global minimum: Dijkstra 

h(x)= 

Goal: - maximize concave function L(θ)  
             using sub-gradient  
           - no guarantees on E (NP-hard) L(θ)  

E(x)  



Problem decomposition approach:  
Tree-reweighted message passing (TRW-S) 

• Each chain provides a global optimum 
 

• Combine these solutions to solve the original problem 
(different messages update from sub-gradient) 
 

• Try to solve a LP relaxation of the MAP problem 
 

+ 

*Kolmogorov, Wainwright et al.; Komodiakis et al ‘07+ 



MRF with global potential 
GrabCut model *Rother et. al. ‘04+ 

Fi = -log Pr(zi|θF) Bi= -log Pr(zi|θB) 

Background 

Foreground G 

R 

θF/B Gaussian  
Mixture models 

E(x,θF,θB) = 

Problem: for unknown x,θF,θB the optimization is NP-hard! [Vicente et al. ‘09]  

Image z Output x 

∑ Fi(θF)xi+ Bi(θB)(1-xi)  + ∑ |xi-xj| 
i,j Є N  i 

θF/B 



 MRF with global potential: 
GrabCut - Iterated Graph Cuts 

Learning of the  
 colour distributions  

Graph cut to infer  
segmentation 

F 

x 
min E(x, θF, θB)  
θF,θB 

min E(x, θF, θB)  

B 

Most systems with global variables work like that   
e.g. *ObjCut Kumar et. al. ‘05, PoseCut Bray et al. ’06, LayoutCRF Winn et al. ’06+ 

θF/B 

More sophisticated methods: *Lempitsky et al ‘08, Vicente et al ‘09+ 



1 2 3 4 

   MRF with global potential: 
GrabCut - Iterated Graph Cuts 

Energy after each Iteration Result 



Outline 

• Introduction 

• MRFs and CRFs in Vision 

• Optimisation techniques and Comparison 



Comparison papers 
• Binary, highly-connected MRFs *Rother et al. ‘07+  

 
 

 

• Multi-label, 4-connected MRFs *Szeliski et al. ‘06,‘08+ 
all online: http://vision.middlebury.edu/MRF/ 
  

 
• Multi-label, highly-connected MRFs *Kolmogorov et al. ‘06+ 

 
 

http://vision.middlebury.edu/MRF/results/denoise/penguin/index.html


Comparison papers 
• Binary, highly-connected MRFs *Rother et al. ‘07+  

 
 

 

• Multi-label, 4-connected MRFs *Szeliski et al. ‘06,‘08+ 
all online: http://vision.middlebury.edu/MRF/ 
  

 
• Multi-label, highly-connected MRFs *Kolmogorov et al. ‘06+ 

 
 

http://vision.middlebury.edu/MRF/results/denoise/penguin/index.html


Random MRFs 

o Three important factors:  

o Unary strength: 

o Connectivity (av. degree of a node) 

o Percentage of non-submodular terms (NS) 

E(x) = w ∑ θi (xi) + ∑ θij (xi,xj)  



Computer Vision Problems 

perc. unlabeled (sec) Energy                  (sec) 

Conclusions:  
• Connectivity is a crucial factor 
• Simple methods like Simulated 

Annealing sometimes best  



Diagram Recognition [Szummer et al ‘04] 

71 nodes; 4.8 con.; 28% non-sub; 0.5 unary strength 

Ground truth 

GrapCut  E= 119 (0 sec) ICM E=999 (0 sec) BP  E=25 (0 sec) 

QPBO: 56.3% unlabeled (0 sec) 
QPBOP (0sec) - Global Min. 
Sim. Ann. E=0 (0.28sec) 

•   2700 test cases: QPBO solved nearly all 

   (QPBOP solves all) 



Binary Image Deconvolution 
 50x20 nodes; 80con; 100% non-sub; 109 unary strength  

Ground Truth Input 

0.2 0.2 0.2 0.2 0.2 

0.2 0.2 0.2 0.2 0.2 

0.2 0.2 0.2 0.2 0.2 

0.2 0.2 0.2 0.2 0.2 

0.2 0.2 0.2 0.2 0.2 

MRF: 80 connectivity  - illustration  

5x5 blur kernel 



Binary Image Deconvolution 
 50x20 nodes; 80con; 100% non-sub; 109 unary strength  

Ground Truth QPBO 80% unlab.  (0.1sec) Input 

ICM E=6 (0.03sec) QPBOP 80% unlab. (0.9sec) GC E=999 (0sec) 

BP E=71 (0.9sec) QPBOP+BP+I, E=8.1 (31sec) Sim. Ann. E=0 (1.3sec) 



Comparison papers 
• Binary, highly-connected MRFs *Rother et al. ‘07+  

Conclusion: low-connectivity tractable: QPBO(P) 
 

 

• Multi-label, 4-connected MRFs *Szeliski et al ‘06,‘08+ 
all online: http://vision.middlebury.edu/MRF/ 
 

 
• Multi-label, highly-connected MRFs *Kolmogorov et al ‘06+ 

 
 

http://vision.middlebury.edu/MRF/results/denoise/penguin/index.html


Multiple labels – 4 connected 

*Szelsiki et al ’06,08+ 

stereo 

Panoramic 
stitching 

Image 
Segmentation; 
de-noising;  
in-painting 

“Attractive  Potentials” 



Stereo 

Conclusions:  
– Solved by alpha-exp. and TRW-S  

(within 0.01%-0.9% of lower bound – true for all tests!) 

image Ground 
truth 

TRW-S image Ground 
truth 

TRW-S 



Panoramic stitching 

• Unordered labels are (slightly) more challenging 



Comparison papers 
• Binary, highly-connected MRFs *Rother et al. ‘07+  

Conclusion: low-connectivity tractable (QPBO) 
 

 

• Multi-label, 4-connected MRFs *Szeliski et al ‘06,‘08+ 
all online: http://vision.middlebury.edu/MRF/ 
Conclusion: solved by expansion-move; TRW-S 
             (within 0.01 - 0.9% of lower bound) 

 
• Multi-label, highly-connected MRFs *Kolmogorov et al ‘06+ 

 
 

http://vision.middlebury.edu/MRF/results/denoise/penguin/index.html


Multiple labels – highly connected 

  Stereo with occlusion: 

Each pixel is connected to D pixels in the other image 
 

E(d): {1,…,D}2n → R 

*Kolmogorov et al. ‘06+ 



Multiple labels – highly connected 

• Alpha-exp. considerably better than message passing 

Tsukuba: 16 labels  Cones: 56 labels  

Potential reason: smaller connectivity in one expansion-move  



Comparison papers 
• binary, highly-connected MRFs *Rother et al. ‘07+  

Conclusion: low-connectivity tractable (QPBO) 
 

 

• Multi-label, 4-connected MRFs *Szeliski et al ‘06,‘08+ 
all online: http://vision.middlebury.edu/MRF/ 
 Conclusion: solved by alpha-exp.; TRW 
    (within 0.9% to lower bound) 

 
• Multi-label, highly-connected MRFs *Kolmogorov et al ‘06+ 

 Conclusion: challenging optimization (alpha-exp. best) 
    
 
 How to efficiently optimize general highly-connected  

(higher-order) MRFs is still an open question  

http://vision.middlebury.edu/MRF/results/denoise/penguin/index.html


Forthcoming book! 

• MIT Press (Spring 2011) 

• Most topics of this tutorial and much, much more 

• Contributors: usual suspects: Editors + Boykov, Kolmogorov, 

Weiss, Freeman, Komodiakis,  .... 

Advances in Markov Random Fields for Computer Vision 
(Blake, Kohli, Rother) 

Other sources of references:  
Tutorials at recent conferences: CVPR ‘10, ICCV 09, ECCV ’08, ICCV ‘07, etc. 



IMPORTANT 

Tea break! 



unused slides 



What is the LP relaxation approach? 

• Write MAP as Integer Program (IP) 

• Relax to Liner Program (LP relaxation) 

• Solve LP (polynomial time algorithms) 

• Round LP to get best IP solution (no guarantees) 



MAP Inference as an IP 

Integer Program 



Relax to LP  

Linear Program 

• Solve it: Simplex, Interior Point methods, Message Passing, QPBO, etc.  
• Round continuous solution 


