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What we would like to be able to do...

* Visual scene understanding
* What is in the image and where
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» Object categories, identities, properties, activities, relations, ...



Recognition Tasks

* Image Classification A

\ -

— Does the image contain an aeroplane? z=#-

* Object Class Detection/Localization
— Where are the aeroplanes (if any)?

e Object Class Segmentation

— Which pixels are part of an aeroplane
(if any)?




Things vS. Stuff Ted Adelson, Forsyth et al. 1996.

Thing (n): An object with a Stuff (n): Material defined by a
specific size and shape. homogeneous or repetitive

pattern of fine-scale properties,
but has no specific or distinctive
spatial extent or shape.

Slide: Geremy Heitz



Recognition Task

* Object Class Detection/Localization
— Where are the aeroplanes (if any)?

* Challenges

— Imaging factors e.g. lighting, pose,
occlusion, clutter

— Intra-class variation

« Compared to Classification
— Detalled prediction e.g. bounding box
— Location usually provided for training




Challenges: Background Clutter




Challenges: Occlusion and truncation




Challenges: Intra-class variation




Object Category Recognition by Learning

e Difficult to define model of a category. Instead, learn from
example images




Level of Supervision for Learning

Image-level label Bounding box



Preview of typical results

aeroplane bicycle

car cow

motorbike



Class of model: Pictorial Structure

e Intuitive model of an object
 Model has two components
1. parts (2D image fragments) LEF |

2. structure (configuration of parts)
 Dates back to Fischler & Elschlager 1973

MOUTH

Is this complexity of representation necessary ?

Which features?



Restrict deformations




Problem of background clutter

» Use a sub-window
— At correct position, no clutter is present
— Slide window to detect object
— Change size of window to search over scale




Outline

. Sliding window detectors

. Features and adding spatial information

. Histogram of Oriented Gradients (HOG)

. Two state of the art algorithms and PASCAL VOC

. The future and challenges
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Outline

Sliding window detectors
o Start: feature/classifier agnostic
« Method

* Problems/limitations

Features and adding spatial information
Histogram of Oriented Gradients (HOG)

Two state of the art algorithms and PASCAL VOC

The future and challenges



Detection by Classification

e Basic component: binary classifier
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Detection by Classification

» Detect objects in clutter by search
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e Sliding window: exhaustive search over position and scale



Detection by Classification

» Detect objects in clutter by search
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e Sliding window: exhaustive search over position and scale



Detection by Classification

» Detect objects in clutter by search
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e Sliding window: exhaustive search over position and scale
(can use same size window over a spatial pyramid of images)



Window (Image) Classification

Training Data

~ ~
Feature

Extraction
_ Y

Classifier

. F(x) )

" |
Car/Non-car
P(c|x) < F(x)

 Features usually engineered
* Classifier learnt from data



Problems with sliding windows ...

e aspect ratio

 granuality (finite grid)

o partial occlusion

e multiple responses

See recent work by

* Christoph Lampert et al CVPR 08, ECCV 08




Outline

. Sliding window detectors

. Features and adding spatial information
 Bag of visual word (BoW) models

« Beyond BoW I: Constellation and ISM models
« Beyond BoW II: Grids and spatial pyramids

. Histogram of Oriented Gradients (HOG)
. Two state of the art algorithms and PASCAL VOC

. The future and challenges



» Detect affine invariant local features (e.g.
affine-Harris)
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* Represent by high-dimensional & L% 80 % 0500
descriptors, e.g. 128-D for SIFT

 How to summarize sliding window content in
a fixed-length vector for classification?

1. Map descriptors onto a common
vocabulary of visual words

2. Represent image as a histogram over visual
words — a bag of words




Local region descriptors and visual words

4 ol B R4 x|~

' | *| ¥ - ]| | -

k R N -] &) ¢
\ v| - |l 7| 7

Y| 8] S v]sa] 4

¢ Y| |~ 1| ~# ||

<[--| SIFT descriptors [~ -

o Bl K ' ARRAI R

* Normalize regions to fixed size and shape

» Describe each region by a SIFT descriptor

» Vector gquantize into visual words, e.g. using k-means

NB: aff. detectors/SIFT/visual words originally for view point invariant matching



Example Visual Words




Intuition
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Visual Vocabulary

 Visual words represent “iconic” image fragments
» Feature detectors and SIFT give invariance to local rotation and scale
 Discarding spatial information gives configuration invariance




Learning from positive ROl examples

| Bagofwords |
Illll I|||I
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Sliding window detector

e Classifier: SVM with linear kernel

« BOW representation for ROI

mple detections for dog

——

Exa

Lampert et al CVPR 08



Discussion: ROl as a Bag of Visual Words

e Advantages

— No explicit modelling of spatial information =
high level of invariance to position and
orientation in image

— Fixed length vector = standard machine
learning methods applicable

e Disadvantages

— No explicit modelling of spatial information =
less discriminative power

— Inferior to state of the art performance




Beyond BOW I: Pictorial Structure

e Intuitive model of an object
 Model has two components
1. parts (2D image fragments) LEFT [V

2. structure (configuration of parts)
 Dates back to Fischler & Elschlager 1973

MOUTH

Two approaches that have investigated this spring like model.
» Constellation model

 Implicit shape model



Spatial Models Considered

Fully connected shape

e.g. Constellation Model

Parts fully connected
Recognition complexity: O(NP)
Method: Exhaustive search

“Star” shape model

e.g. ISM

Parts mutually independent
Recognition complexity: O(NP)
Method: Gen. Hough Transform



Constellation model

Fergus, Perona & Zisserman,CVPR 03

 Explicit structure model — Joint Gaussian over all
part positions

 Part detector determines position and scale
» Simultaneous learning of parts and structure
e Learn from images alone using EM algorithm

Given detections: learn a
six part model by
optimizing part and
configuration similarity




Example — Learnt Motorbike Model

Samples from appearance model Shape model

Part 1 Det: 5x10-18
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Recognized Motorbikes
Shape model
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Airplanes

Airplane shape model
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Spotted cats

Spotted cat shape model
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Discussion: Constellation Model

* Advantages
— Works well for many different object categories

— Can adapt well to categories where
« Shape is more important
» Appearance is more important

— Everything is learned from training data
— Weakly-supervised training possible

 Disadvantages
— Model contains many parameters that need to be estimated
— Cost increases exponentially with increasing number of parameters
= Fully connected model restricted to small number of parts.



Implicit Shape Model (ISM)

Leibe, Leonardis, Schiele, 03/04

e Basic ideas @
— Learn an appearance codebook () &)
— Learn a star-topology structural model ) ® &)

» Features are considered independent given object centre

« Algorithm: probabilistic Generalized Hough Transform
Good engineering:
— Soft assignment
— Probabilistic voting
— Continuous Hough space



Codebook Representation

 Extraction of local object features

— Interest Points (e.g. Harris detector)
— Sparse representation of the object appearance

e Collect features from whole training set

« Example:

Class specific vocabulary
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Leibe & Schiele 03/04: Generalized Hough Transform

» Learning: for every cluster, store possible “occurrences”

* Recognition: for new image, let the matched patches vote for possible object
positions




Leibe & Schiele 03/04: Generalized Hough Transform

Interest Points Matched Codebook
Entries




Scale Voting: Efficient Computation

0' (]
s . .°. S . S
;,';o o e
e ", . ®
@ se ° . o
y . y q y .
X X
Scale votes Binned Candidate Refinement
accum. array maxima (MSME)

» Mean-Shift formulation for refinement
— Scale-adaptive balloon density estimator
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Detection Results

e Qualitative Performance
— Recognizes different kinds of cars
— Robust to clutter, occlusion, low contrast, noise




Discussion: ISM and related models

Advantages

» Scale and rotation invariance
can be built into the
representation from the start

» Relatively cheap to learn and
test (inference)

» Works well for many different
object categories

* Max-margin extensions
possible, Maji & Malik, CVPRO09

Disadvantages

* Requires searching for modes in the Hough space

« Similar to sliding window in this respect

* Is such a degree of invariance required? (many objects are horizontal)



Beyond BOW II: Grids and spatial pyramids

Start from BoW for ROI

 no spatial information recorded

» sliding window detector

| Bagofwords |
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Adding Spatial Information to Bag of Words
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Keeps fixed length feature vector for a window [Fergus et al, 2003]



Tiling defines (records) the spatial correspondence of the words

e parameter: number of tiles
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If codebook has V visual words, then representation has dimension 4V
Fergus et al ICCV 05



Spatial Pyramid — represent correspondence

* | 1 BoW

4 BoW

S
= =
T —

 As in scene/image classification can use pyramid kernel

] o

[Grauman & Darrell, 2005] [Lazebnik et al, 2006]



Dense Visual Words

« Why extract only sparse image
fragments?

 Good where lots of invariance
IS needed, but not relevant to
sliding window detection?

» Extract dense visual words on an overlapping grid

[Luong & Malik, 1999]

: Quantize [Varma & Zisserman, 2003]
- | ——» Word [Vogel & Schiele, 2004]
. [Jurie & Triggs, 2005]

[Fei-Fei & Perona, 2005]
Patch / SIFT [Bosch et al, 2006]

* More “detail” at the expense of invariance
e Pyramid histogram of visual words (PHOW)



Outline

. Sliding window detectors
. Features and adding spatial information

. Histogram of Oriented Gradients + linear SVM classifier
 Dalal & Triggs pedestrian detector
« HOG and history

 Training an object detector

. Two state of the art algorithms and PASCAL VOC

. The future and challenges



Dalal & Triggs CVPR 2005 Pedestrian
detection

* Objective: detect (localize) standing humans in an image
* sliding window classifier

e train a binary classifier on whether a window contains a
standing person or not

» Histogram of Oriented Gradients (HOG) feature

e although HOG + SVM originally introduced for pedestrians
has been used very successfully for many object categories



Feature: Histogram of Oriented
Gradients (HOG)

_ dominant
Image direction

o tile 64 x 128 pixel window into 8 x 8 pixel cells

» each cell represented by histogram over 8
orientation bins (i.e. angles in range 0-180 degrees) orientation

frequency



Histogram of Oriented Gradients (HOG) continued

Orientation Voting
~ ~ ~

e .

-

\\ . .

—— Local Normalization

» Adds a second level of overlapping spatial bins re-
normalizing orientation histograms over a larger spatial area

* Feature vector dimension (approx) = 16 x 8 (for tiling) x 8
(orientations) x 4 (for blocks) = 4096



Window (Image) Classification

Tralnlng Data

3 =
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Feature | ___ : _, | Classifier
Extraction : F(x)
- y - y
: !
« HOG Eeatures pedestrian/Non-pedestrian

e Linear SVM classifier P(c|x) o< F(x)






Averaged examples
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Classifier: linear SVM

Advantages of linear SVM: f(:I;‘) —w'x + b

e Training (Learning)

 Very efficient packages for the linear case, e.g. LIBLINEAR for batch
training and Pegasos for on-line training.

o Complexity O(N) for N training points (cf O(N~3) for general SVM)
- Testing (Detection)

S = # of support vectors

= (worst case ) N

S
Non-linear f(x) = »  a;k(x;,x) + b
! size of training data

S
linear f(x) = Z a;X; ' x4+ b

w!x + b  Independent of size of training data



CVPR 2005

Dalal and Triggs




Learned model

f(x)
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What do negative weights mean?

wx > 0
(w+-w)x>0
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Complete system should compete pedestrian/pillar/doorway models
Discriminative models come equipped with own bg
(avoid firing on doorways by penalizing vertical edges)

Slide from Deva Ramanan




Why does HOG + SVM work so well?

« Similar to SIFT, records spatial arrangement of histogram orientations

« Compare to learning only edges:

— Complex junctions can be represented
— Avoids problem of early thresholding
— Represents also soft internal gradients
» Older methods based on edges have become largely obsolete
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 HOG gives fixed length vector for window,
suitable for feature vector for SVM



Chamfer Matching

Input Edges Template ¢ Match points between template
and image

» Measure mean distance

 Template edgel matches nearest
Image edgel

[

D(T, 1) =

~

> mind(p,q)
peT A€l

» Distance transform reduces min operation

Distance to array lookup
Transform o _
e Computable in linear time
 Localize by sliding window search
Best
match

[Gavrila & Philomin, 1999]



Chamfer Matching
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Hierarchy of Templates Detections
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e In practice performs poorly in clutter

e Unoriented edges are not discriminative enough

(too easy to find...)
[Gavrila & Philomin, 1999]



Contour-fragment models
Shotton et al ICCV 05, Opelt et al ECCV 06

» Generalized Hough like representation using contour
fragments

» Contour fragments learnt from edges of training images

e B el BB

« Hough like voting for detection




Training a sliding window detector

* Object detection Is inherently asymmetric: much more
“non-object” than “object” data

 Classifier needs to have very low false positive rate
* Non-object category is very complex — need lots of data



Bootstrapping

1. Pick negative training
set at random

2. Train classifier
3. Run on training data

4. Add false positives to
training set

5. Repeat from 2

* Collect a finite but diverse set of non-object windows
 Force classifier to concentrate on hard negative examples

* For some classifiers can ensure equivalence to training on
entire data set



Example: train an upper body detector

— Training data — used for training and validation sets
« 33 Hollywood?2 training movies
o 1122 frames with upper bodies marked

— First stage training (bootstrapping)
« 1607 upper body annotations jittered to 32k positive samples

» 55k negatives sampled from the same set of frames

— Second stage training (retraining)
« 150k hard negatives found in the training data

G i




Training data — positive annotations




Positive windows

Note: common size and alignment



Jittered positives




Jittered positives




Random negatives




Random negatives
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Window (Image) first stage classification

. y 4 ) : (" Linear SVM
Jittered positives HOG Fegture [ ] Classifier
random negatives Extraction :  f@) =w x+b

. J

« find high scoring false positives detections

 these are the hard negatives for the next round of training

 cost = # training images x inference on each image



Hard negatives
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Hard negatives
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First stage performance on validation set
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Recall curve
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First stage performance on validation set
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Performance after retraining
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Effects of retraining
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Side by side

before retraining after retraining




Side by side

before retraining after retraining




Side by side




Tracked upper body detections




Accelerating Sliding Window Search

e Sliding window search is slow because so many windows are
needed e.g. X x y x scale ~ 100,000 for a 320x240 image

* Most windows are clearly not the object class of interest

e Can we speed up the search?



Cascaded Classification

 Build a sequence of classifiers with increasing complexity

More complex, slower, lower false positive rate

_____________________________ _>
[Classifier] [réﬂas'fb'f;ea] © e [ré‘das'&if;ea] Face
1 fage fage
Window l l l -
Non-face Non-face Non-face

* Reject easy non-objects using simpler and faster classifiers



Cascaded Classification

e Slow expensive classifiers only applied to a few windows =
significant speed-up

 Controlling classifier complexity/speed:

— Number of support vectors '[Romdhani et al, 2001]
— Number of features Viola & Jones, 2001]
— Type of SVM kernel Vedaldi et al, 2009]




Summary: Sliding Window Detection

e Can convert any image classifier into an

object detector by sliding window. Efficient

search methods available.

e Requirements for invariance are reduced by
searching over e.g. translation and scale

« Spatial correspondence can be
“engineered In” by spatial tiling

e
P —
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Outline

Sliding window detectors
Features and adding spatial information
HOG + linear SVM classifier

Two state of the art algorithms and PASCAL VOC
e VOC challenge

 Vedaldi et al — multiple kernels and features, cascade

 Felzenswalb et al — multiple parts, latent SVM

. The future and challenges



The PASCAL Visual Object Classes
(VOC) Dataset and Challenge

Mark Everingham
Luc Van Gool
Chris Williams

John Winn
Andrew Zisserman

PASCAL

‘ Pattern Analysis, Statistical Modelling and
Computational Learning



The PASCAL VOC Challenge

« Challenge in visual object
recognition funded by
PASCAL network of
excellence

* Publicly available dataset of
annotated images

* Main competitions in classification (is there an X in this
Image), detection (where are the X’s), and segmentation
(which pixels belong to X)

* “Taster competitions” in 2-D human “pose estimation” (2007-
present) and static action classes

« Standard evaluation protocol (software supplied)



Dataset Content

» 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat,
chair, cow, dining table, dog, horse, motorbike, person,
potted plant, sheep, train, TV

* Real images downloaded from flickr, not filtered for “quality”

« Complex scenes, scale, pose, lighting, occlusion, ...



Annotation

« Complete annotation of all objects

« Annotated in one session with written guidelines

personFrortal TrunchDiff

e
Occluded personOce
Obiject is
significantly Soagm, |
occluded within BB
Truncated

Object extends
beyond BB

Difficult
Not scored
In evaluation

Pose
Facing left



Examples

Aeroplane Bicycle Bottle




Examples

Motorbike

Person

hhhhh



Main Challenge Tasks

e Classification
— |Is there a dog In this image®?
— Evaluation by precision/recall

e Detection

— Localize all the people (if any) in
this image

— Evaluation by precision/recall
based on bounding box overlap




Detection: Evaluation of Bounding Boxes

» Area of Overlap (AO) Measure

Ground truth B,

_ |Bgt[1Bp
By N B, AO(Bgt’Bp) Bt U Byl

g

Predicted Bp

> Threshold

e
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True Positives - Bicycle

UoCTTI_LSVM-MDPM




False Positives - Bicycle

UoCTTI_LSVM-MDPM
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True Positives — TV /monitor
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False Positives — TV /monitor
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Precision/Recall - Aeroplane
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Precision/Recall - Car
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Precision/Recall — Potted plant
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AP by Class Detection
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Wide variety of methods: sliding window, combination with whole
Image classifiers, segmentation based



Multiple Kernels for Object Detection

Andrea Vedaldi, Varun Gulshan,
Manik Varma, Andrew Zisserman

ICCV 2009



Approach

* Three stage cascade

10128A ainjesa

Fast Linear SVM

Quasi-linear SVM

Non-linear SVM

\. J

-------------------
Od S

----------------------

— Each stage uses a more powerful and more expensive classifier
* Multiple kernel learning for the classifiers over multiple features

« Jumping window first stage



Multiple Kernel Classification

hi h
[ PHOW Gray

MK SVM
[ PHOW Color }
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combine one kernel per histogram

F
K(h,W) =" d;K(h;,h})
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Multiple Kernel Detection: Challenges

» Goal: sliding window MK classifier

— Inference space is huge
— #windows = 100 millions

— TMK = seconds

Image

Candidate region |

10]39A alnjea

MK SVM

Tvik

Time required:
Tmk % #windows

Excruciatingly slow (days per image)



Cascade

J10129A ainjesa

Fast Linear SVM

Y

Quasi-linear
SVM

b

Non-linear SVM

e all full MK SVMs

* all look at all features

* trade-off speed and power by
choosing the kernel structure



Architecture
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Fast Linear SVM

Quasi-linear SVM

Non-linear SVM
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Post Processing




Cascade

J10129A ainjesa

Fast Linear SVM

. J
4 N
Quasi-linear
SVM
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Non-linear sliding SVM

Image

4 p
Candidate region ~
- l|=
212
c ©
: s 1|32
< =
P 2P| <
s |8
e 118
\_ ........................ Y,

Time required:
#dimensions x #windows x #SVs

Support Vectors (SVs)



Cascade

J10129A ainjesa

Fast Linear SVM

Y

b

Non-linear SVM




Quasi-linear SVM

Image Quasi-linear (or additive) kernel
decompose as:

Candidate region

el
K(z,y) =) k(z;,75)
j=1

Thus SVM score rewrites:

10109\ ainyead
=
10109 110ddns yi-i
po—

Time required:
#dimensions x #windows x @K ¥i(yi)

\/ Pre-compute look-up table.

#dimensions x #windows Maji, Berg, Malik, CVPR 08




Cascade

Y
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< SVM
(9%
(2]
S
\. J/
( )

Non-linear SVM




Fast linear SVM

Image

Linear SVM score

Candidate region "

(

, W)

101J9A ainjes

Time required:
#dimegsions x #windows X @K

~_

#windows

Image

Pixel

o
10109A alnjeaH

Score map

Compute sum with
integral images

, W)

Pre-compute
scores
for each pixel.



Jumping window

Position of visual word with respect to the object

Training

learn the position/scale/aspect ratio of the ROI with respect to the visual word

Handles change of aspect ratio

Detection

Hypothesis



SVMs overview

First stage

— linear SVM

—  (or jJumping window)

— time: #windows

Second stage

— quasi-linear SVM

—  x?kernel

— time: #windows x #dimensions

Third stage
— non-linear SVM
—  X*-RBF kernel

—  time:
#windows x #dimensions x #SVs

J10109A 3lnjesaH

( )

Fast Linear SVM

Quasi-linear SVM

\. J

N

Non-linear SVM

-------------------
o* S

llllllllllllllllllllll

132



Results
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Results




Single Kernel vs. Multiple Kernels

e Multiple Kernels gives substantial boost

e Multiple Kernel Learning:
— small improvement over averaging

— sparse feature selection

KL 50.4%
oo g@yg 49.9%

— * —s33imJ9.1%

] — & — phog180 39.8%
"1 — & —pnogs0 40.9%
— ¥ — phowColor 42.6%
"1 — + — phowGray 44 4%




VOC2009 Aeroplane

/Recall:

1SIoN

Prec

(@7.8)

OXFORD_MKL
NECUIUC_CLS-DTCT

(44.9)

MPI_STRUCT

(41.0)
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(40.2)
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(39.5)
(35.8)
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UVA_BAGOFWINDOWS

(28.4)

(27.1)

LEAR_CHI-SVM-SIFT-HOG

—— CASIA_SVM-PHOG+COLOR

(26.7)
——— MIZZOU_DEF-HOG-LBP-WOCONTEXT

(25.0)

'I'I'IWEIZiNNHOUGH

(23.8)

(22.4)

UC3M_GEN-DIS

— — CASIA_SVM-PHOG

(19.0)

— — MIZZOU_DEF-HOG-LBP
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Object Detection with Discriminatively
Trained Part Based Models

Pedro F. Felzenszwalb, David Mcallester,
Deva Ramanan, Ross Girshick

PAMI 2010



Approach

* Mixture of deformable part-based models
— One component per “aspect” e.g. front/side view

 Each component has global template + deformable parts
 Discriminative training from bounding boxes alone



Example Model

 One component of person model

AN
¥t
L
e
£y
f o\

root filters part filters
coarse resolution finer resolution

deformation
models



Starting Point: HOG Filter

Filter F

Score of F at position p is

F'(p(p,H)

¢@(p, H) = concatenation of
PR HOG features from
HOG pyramid H subwindow specified by p

e Search: sliding window over position and scale
 Feature extraction: HOG Descriptor
 Classifier: Linear SVM Dalal & Triggs [2005]



Object Hypothesis

 Position of root + each part
« Each part: HOG filter (at higher resolution)
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Z= (po,..., pn)
po . location of root
p1,..., pn . location of parts

Score is sum of filter
scores minus
deformation costs



Score of a Hypothesis

Appearance term Spatial prior

score(z) = B U(H, z)

/ \
concatenation of filters concatenation of
and deformation HOG features and
parameters part displacement
features

 Linear classifier applied to feature subset defined by hypothesis



Training

 Training data = images + bounding boxes
 Need to learn: model structure, filters, deformation costs




Latent SVM (MI-SVM)

Classifiers that score an example x using

%) = Imnax . @ T, :‘; ¢ (pisgssiaRAy c
.fﬂ( ) jEz(ﬂj'ﬂ ( IA)/ ,": AL
B are model parameters

| | - * Which component?
z are latent values « Where are the parts?

Training data D = ({z1, %1}, ., {Tns¥a)) w € {—1,1}
We would like to find 8 such that: #Jfs{z:) >0

Minimize

Lo(8) = JlIAI + €'Y max(0,1 - wfazd)
=1 SVM obijective



Latent SVM Training

Lo(8) = HllI2 +C'" max(0, 1 - yifalz)

i=1

» Convex If we fix z for positive examples

» Optimization:
— Initialize g and iterate:
* Pick best z for each positive example
e Optimize p with z fixed

 Local minimum: needs good initialization
— Parts initialized heuristically from root

Alternation
strategy



Person Model
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root filters part filters deformation
coarse resolution finer resolution models

Handles partial occlusion/truncation




Car Model
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root filters part filters deformation
coarse resolution finer resolution models



Car Detections

high scoring true positives high scoring false positives
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Person Detections

high scoring false positives
(not enough overlap)

high scoring true positives




Precision/Recall: VOC2008 Person

UoCTTIUCI (42.0)
LEAR_PlusClass (19.7)
CASIA_Det (11.2)
XRCE_Det (9.0)
MPI_struct (2.5)

Jena (2.0)

precision

0 01 02 03 04 05 06 07 08 09 1
recall



Precision/Recall

precision

: VOC2008 Bicycle

——————————————————————————————————————————————————————————————

********************************************************

*******************************************************

UoCTTIUCI (42.0)
LEAR_PlusClass (34.3)
Oxford (24.6)
CASIA_Det (14.6)
~— XRCE_Det (10.5)
MPI_struct (8.0)

Jena (1.4)

0.5
recall




Comparison of Models

class: car, year 2006

0311 —+—1 Root (0.48)
02l 2 Root (0.58)
“—1 Root+Parts (0.55)
| —e—2 Root+Parts (0.62)
—v— 2 Root+Parts+BB (0.64)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
recall

L=
=
I




Summary

* Multiple features and multiple kernels boost
performance

 Discriminative learning of model with latent
variables for single feature (HOG):

— Latent variables can learn best alignment in the
ROI training annotation

— Parts can be thought of as local SIFT vectors

— Some similarities to Implicit Shape
Model/Constellation models but with
discriminative/careful training throughout

t

NB: Code available for latent model !



Outline

. Sliding window detectors

. Features and adding spatial information

. HOG + linear SVM classifier

. Two state of the art algorithms and PASCAL VOC

. The future and challenges



Current Research Challenges

e Context
— from scene properties: GIST, BoW, stuff
— from other objects
— from geometry of scene, e.g. Hoiem et al CVPR 06

 Occlusion/truncation
— Winn & Shotton, Layout Consistent Random Field, CVPR 06
— Vedaldi & Zisserman, NIPS 09
— Yang et al, Layered Object Detection, CVPR 10

3D

» Scaling up — thousands of classes
— Torralba et al, Feature sharing
— ImageNet

« Weak and noisy supervision



