

Category-level Localization

Andrew Zisserman

Visual Geometry Group University of Oxford http://www.robots.ox.ac.uk/~vgg

Includes slides from: Ondra Chum, Alyosha Efros, Mark Everingham, Pedro Felzenszwalb, Rob Fergus, Kristen Grauman, Bastian Leibe, Ivan Laptev, Fei-Fei Li, Marcin Marszalek, Pietro Perona, Deva Ramanan, Bernt Schiele, Jamie Shotton, Josef Sivic and Andrea Vedaldi

What we would like to be able to do...

- Visual scene understanding
- <u>What</u> is in the image and <u>where</u>

• Object categories, identities, properties, activities, relations, ...

Recognition Tasks

- Image Classification
 - Does the image contain an aeroplane?

Object Class Detection/Localization
Where are the aeroplanes (if any)?

Object Class Segmentation

 Which pixels are part of an aeroplane (if any)?

Things vs. Stuff

Thing (n): An object with a specific size and shape.

Ted Adelson, Forsyth et al. 1996.

Stuff (n): Material defined by a homogeneous or repetitive pattern of fine-scale properties, but has no specific or distinctive spatial extent or shape.

Slide: Geremy Heitz

Recognition Task

Object Class Detection/Localization

- Where are the aeroplanes (if any)?

Challenges

- Imaging factors e.g. lighting, pose, occlusion, clutter
- Intra-class variation

Compared to Classification

- Detailed prediction e.g. bounding box
- Location usually provided for training

Challenges: Background Clutter

Challenges: Occlusion and truncation

Challenges: Intra-class variation

Object Category Recognition by Learning

Difficult to define model of a category. Instead, <u>learn</u> from <u>example images</u>

Level of Supervision for Learning

Image-level label

Bounding box

Pixel-level segmentation

"Parts"

Preview of typical results

bicycle

aeroplane

car

cow

motorbike

horse

Class of model: Pictorial Structure

- Intuitive model of an object
- Model has two components
 - 1. parts (2D image fragments)
 - 2. structure (configuration of parts)
- Dates back to Fischler & Elschlager 1973

Is this complexity of representation necessary? Which features?

Restrict deformations

Problem of background clutter

- Use a sub-window
 - At correct position, no clutter is present
 - Slide window to detect object
 - Change size of window to search over scale

Outline

- 1. Sliding window detectors
- 2. Features and adding spatial information

3. Histogram of Oriented Gradients (HOG)

4. Two state of the art algorithms and PASCAL VOC

5. The future and challenges

Outline

- 1. Sliding window detectors
 - Start: feature/classifier agnostic
 - Method
 - Problems/limitations
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients (HOG)
- 4. Two state of the art algorithms and PASCAL VOC
- 5. The future and challenges

• Basic component: binary classifier

• Detect objects in clutter by search

• Sliding window: exhaustive search over position and scale

• Detect objects in clutter by search

• Sliding window: exhaustive search over position and scale

• Detect objects in clutter by search

• **Sliding window**: exhaustive search over position and scale (can use same size window over a spatial pyramid of images)

Window (Image) Classification

Training Data

Classifier learnt from data

Problems with sliding windows ...

- aspect ratio
- granuality (finite grid)
- partial occlusion
- multiple responses
- See recent work by
- Christoph Lampert et al CVPR 08, ECCV 08

Outline

- 1. Sliding window detectors
- 2. Features and adding spatial information
 - Bag of visual word (BoW) models
 - Beyond BoW I: Constellation and ISM models
 - Beyond BoW II: Grids and spatial pyramids
- 3. Histogram of Oriented Gradients (HOG)
- 4. Two state of the art algorithms and PASCAL VOC
- 5. The future and challenges

Recap: Bag of (visual) Words representation

- Detect affine invariant local features (e.g. affine-Harris)
- Represent by high-dimensional descriptors, e.g. 128-D for SIFT
- How to summarize sliding window content in a fixed-length vector for classification?
- Map descriptors onto a common vocabulary of visual words
- Represent image as a histogram over visual words a bag of words

Local region descriptors and visual words

- Normalize regions to fixed size and shape
- Describe each region by a SIFT descriptor
- Vector quantize into visual words, e.g. using k-means

NB: aff. detectors/SIFT/visual words originally for view point invariant matching

Example Visual Words

Intuition

Visual Vocabulary

- Visual words represent "iconic" image fragments
- Feature detectors and SIFT give invariance to local rotation and scale
- Discarding spatial information gives configuration invariance

Learning from positive ROI examples

Sliding window detector

- Classifier: SVM with linear kernel
- BOW representation for ROI

Example detections for dog

Lampert et al CVPR 08

Discussion: ROI as a Bag of Visual Words

Advantages

- No explicit modelling of spatial information ⇒ high level of invariance to position and orientation in image
- Fixed length vector \Rightarrow standard machine learning methods applicable
- Disadvantages
 - No explicit modelling of spatial information ⇒ less discriminative power
 - Inferior to state of the art performance

Beyond BOW I: Pictorial Structure

- Intuitive model of an object
- Model has two components
 - 1. parts (2D image fragments)
 - 2. structure (configuration of parts)
- Dates back to Fischler & Elschlager 1973

Two approaches that have investigated this spring like model:

- Constellation model
- Implicit shape model

Spatial Models Considered

"Star" shape model

e.g. Constellation Model Parts fully connected Recognition complexity: O(N^P) Method: Exhaustive search e.g. ISM

Parts mutually independent Recognition complexity: O(NP) Method: Gen. Hough Transform

Constellation model

Fergus, Perona & Zisserman, CVPR 03

- Explicit structure model Joint Gaussian over all part positions
- Part detector determines position and scale
- Simultaneous learning of parts and structure
- Learn from images alone using EM algorithm

Given detections: learn a six part model by optimizing part and configuration similarity

Example – Learnt Motorbike Model

position of object determined

Airplanes

INCORRECT

Correct

Correct

Correct

Correct

Spotted cats

Discussion: Constellation Model

- Advantages
 - Works well for many different object categories
 - Can adapt well to categories where
 - Shape is more important
 - Appearance is more important
 - Everything is learned from training data
 - Weakly-supervised training possible

Disadvantages

- Model contains many parameters that need to be estimated
- Cost increases exponentially with increasing number of parameters
- \Rightarrow Fully connected model restricted to small number of parts.

Implicit Shape Model (ISM)

Leibe, Leonardis, Schiele, 03/04

- Basic ideas
 - Learn an appearance codebook
 - Learn a star-topology structural model
 - Features are considered independent given object centre

- X_{1} X_{6} X_{2} X_{3} X_{4}
- Algorithm: probabilistic Generalized Hough Transform Good engineering:
 - Soft assignment
 - Probabilistic voting
 - Continuous Hough space

Codebook Representation

- Extraction of local object features
 - Interest Points (e.g. Harris detector)
 - Sparse representation of the object appearance

- Collect features from whole training set
- Example:

Class specific vocabulary

Leibe & Schiele 03/04: Generalized Hough Transform

• Learning: for every cluster, store possible "occurrences"

Recognition: for new image, let the matched patches vote for possible object positions

Leibe & Schiele 03/04: Generalized Hough Transform

Interest Points

Matched Codebook Entries

Backprojection of Maximum

Scale Voting: Efficient Computation

- Mean-Shift formulation for refinement
 - Scale-adaptive balloon density estimator

$$\hat{p}(o_n, x) = \frac{1}{V_b} \sum_k \sum_j p(o_n, x_j | f_k, \ell_k) K(\frac{x - x_j}{b})$$

Detection Results

- Qualitative Performance
 - Recognizes different kinds of cars
 - Robust to clutter, occlusion, low contrast, noise

Discussion: ISM and related models

Advantages

- Scale and rotation invariance can be built into the representation from the start
- Relatively cheap to learn and test (inference)
- Works well for many different object categories
- Max-margin extensions possible, Maji & Malik, CVPR09

Disadvantages

- Requires searching for modes in the Hough space
- Similar to sliding window in this respect
- Is such a degree of invariance required? (many objects are horizontal)

Beyond BOW II: Grids and spatial pyramids

Start from BoW for ROI

- no spatial information recorded
- sliding window detector

Adding Spatial Information to Bag of Words

Tiling defines (records) the spatial correspondence of the words

If codebook has V visual words, then representation has dimension 4V

Fergus et al ICCV 05

Spatial Pyramid – represent correspondence

• As in scene/image classification can use pyramid kernel

[Grauman & Darrell, 2005] [Lazebnik et al, 2006]

Dense Visual Words

- Why extract only **sparse** image fragments?
- Good where lots of invariance is needed, but not relevant to sliding window detection?

Extract dense visual words on an overlapping grid

[Luong & Malik, 1999] [Varma & Zisserman, 2003] [Vogel & Schiele, 2004] [Jurie & Triggs, 2005] [Fei-Fei & Perona, 2005] [Bosch et al, 2006]

- More "detail" at the expense of invariance
- Pyramid histogram of visual words (PHOW)

Outline

- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients + linear SVM classifier
 - Dalal & Triggs pedestrian detector
 - HOG and history
 - Training an object detector
- 4. Two state of the art algorithms and PASCAL VOC
- 5. The future and challenges

Dalal & Triggs CVPR 2005 Pedestrian detection

- Objective: detect (localize) standing humans in an image
- sliding window classifier
- train a binary classifier on whether a window contains a standing person or not
- Histogram of Oriented Gradients (HOG) feature
- although HOG + SVM originally introduced for pedestrians has been used very successfully for many object categories

Feature: Histogram of Oriented Gradients (HOG)

image

dominant direction

HOG

- tile 64 x 128 pixel window into 8 x 8 pixel cells
- each cell represented by histogram over 8 orientation bins (i.e. angles in range 0-180 degrees)

Histogram of Oriented Gradients (HOG) continued

- Adds a second level of overlapping spatial bins renormalizing orientation histograms over a larger spatial area
- Feature vector dimension (approx) = 16 x 8 (for tiling) x 8 (orientations) x 4 (for blocks) = 4096

Window (Image) Classification

Averaged examples

Classifier: linear SVM

Advantages of linear SVM:

$$f(x) = \mathbf{w}^\top \mathbf{x} + b$$

- Training (Learning)
 - Very efficient packages for the linear case, e.g. LIBLINEAR for batch training and Pegasos for on-line training.
 - Complexity O(N) for N training points (cf O(N^3) for general SVM)
- Testing (Detection)

Non-linear
$$f(\mathbf{x}) = \sum_{i}^{S} \alpha_{i} k(\mathbf{x}_{i}, \mathbf{x}) + b$$

linear $f(\mathbf{x}) = \sum_{i}^{S} \alpha_{i} \mathbf{x}_{i}^{\top} \mathbf{x} + b$

S = # of support vectors = (worst case) N

size of training data

$$\vec{\mathbf{x}}_{i}$$
 = $\mathbf{w}^{\top}\mathbf{x} + b$ Independent of size of training data

Dalal and Triggs, CVPR 2005

Learned model

$$f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b$$

average over positive training data

What do negative weights mean? wx > 0 $(w_{+} - w_{-})x > 0$ $w_+ > w_- x$ pedestrian pedestrian background > model model

Complete system should compete pedestrian/pillar/doorway models Discriminative models come equipped with own bg (avoid firing on doorways by penalizing vertical edges)

Slide from Deva Ramanan

Why does HOG + SVM work so well?

- Similar to SIFT, records spatial arrangement of histogram orientations
- Compare to learning only edges:
 - Complex junctions can be represented
 - Avoids problem of early thresholding
 - Represents also soft internal gradients
- Older methods based on edges have become largely obsolete

Chamfer Matching

- Match points between template and image
- Measure mean distance
- Template edgel matches <u>nearest</u> image edgel

$$D(T,I) = \frac{1}{|T|} \sum_{\mathbf{p}\in T} \min_{\mathbf{q}\in I} d(\mathbf{p},\mathbf{q})$$

Distance Transform

- Distance transform reduces min operation to array lookup
- Computable in linear time
- Localize by sliding window search

Best match

[Gavrila & Philomin, 1999]

Chamfer Matching

Hierarchy of Templates

Detections

- In practice performs poorly in clutter
- Unoriented edges are not discriminative enough (too easy to find...)

[Gavrila & Philomin, 1999]

Contour-fragment models

Shotton et al ICCV 05, Opelt et al ECCV 06

- Generalized Hough like representation using contour fragments
- Contour fragments learnt from edges of training images

• Hough like voting for detection

Training a sliding window detector

 Object detection is inherently asymmetric: much more "non-object" than "object" data

- Classifier needs to have very low false positive rate
- Non-object category is very complex need lots of data

Bootstrapping

- 1. Pick negative training set at random
- 2. Train classifier
- 3. Run on training data
- 4. Add false positives to training set
- 5. Repeat from 2
- Collect a finite but diverse set of non-object windows
- Force classifier to concentrate on hard negative examples
- For some classifiers can ensure equivalence to training on entire data set

Example: train an upper body detector

- Training data used for training and validation sets
 - 33 Hollywood2 training movies
 - 1122 frames with upper bodies marked
- First stage training (bootstrapping)
 - 1607 upper body annotations jittered to 32k positive samples
 - 55k negatives sampled from the same set of frames
- Second stage training (retraining)
 - 150k hard negatives found in the training data

Training data – positive annotations

Positive windows

Note: common size and alignment

Jittered positives

Jittered positives

Random negatives

Random negatives

Window (Image) first stage classification

find high scoring false positives detections

- these are the hard negatives for the next round of training
- cost = # training images x inference on each image

Hard negatives

Hard negatives

First stage performance on validation set

Precision – Recall curve

First stage performance on validation set

Performance after retraining

Effects of retraining

Side by side

before retraining

after retraining

Side by side

before retraining

after retraining

Side by side

before retraining

after retraining

Tracked upper body detections

Accelerating Sliding Window Search

• Sliding window search is slow because so many windows are needed e.g. $x \times y \times$ scale \approx 100,000 for a 320 \times 240 image

- Most windows are clearly not the object class of interest
- Can we speed up the search?

Cascaded Classification

• Build a sequence of classifiers with increasing complexity

• Reject easy non-objects using simpler and faster classifiers

Cascaded Classification

- Slow expensive classifiers only applied to a few windows \Rightarrow significant speed-up
- Controlling classifier complexity/speed:
 - Number of support vectors
 - Number of features
 - Type of SVM kernel

- [Romdhani et al, 2001]
- [Viola & Jones, 2001]
- [Vedaldi et al, 2009]

Summary: Sliding Window Detection

- Can convert any image classifier into an object detector by sliding window. Efficient search methods available.
- Requirements for invariance are reduced by searching over e.g. translation and scale

• Spatial correspondence can be "engineered in" by spatial tiling

Outline

- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. HOG + linear SVM classifier
- 4. Two state of the art algorithms and PASCAL VOC
 - VOC challenge
 - Vedaldi et al multiple kernels and features, cascade
 - Felzenswalb et al multiple parts, latent SVM
- 5. The future and challenges

The PASCAL Visual Object Classes (VOC) Dataset and Challenge

Mark Everingham Luc Van Gool Chris Williams John Winn Andrew Zisserman

The PASCAL VOC Challenge

- Challenge in visual object recognition funded by PASCAL network of excellence
- Publicly available dataset of annotated images

- Main competitions in classification (is there an X in this image), detection (where are the X's), and segmentation (which pixels belong to X)
- "Taster competitions" in 2-D human "pose estimation" (2007present) and static action classes
- Standard evaluation protocol (software supplied)

Dataset Content

- 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, train, TV
- Real images downloaded from flickr, not filtered for "quality"

• Complex scenes, scale, pose, lighting, occlusion, ...

Annotation

- Complete annotation of all objects
- Annotated in one session with written guidelines

Difficult Not scored in evaluation

Pose Facing left

Bus

Chair

Cow

Dining Table

Dog

Motorbike

Train

TV/Monitor

Horse

Sofa

Main Challenge Tasks

Classification

- Is there a dog in this image?
- Evaluation by precision/recall

Detection

- Localize all the people (if any) in this image
- Evaluation by precision/recall based on bounding box overlap

Detection: Evaluation of Bounding Boxes

• Area of Overlap (AO) Measure

True Positives - Bicycle

UoCTTI_LSVM-MDPM

OXFORD_MKL

NECUIUC_CLS-DTCT

False Positives - Bicycle

UoCTTI_LSVM-MDPM

OXFORD_MKL

NECUIUC_CLS-DTCT

True Positives – TV/monitor

OXFORD_MKL

UoCTTI_LSVM-MDPM

LEAR_CHI-SVM-SIFT-HOG-CLS

False Positives – TV/monitor

OXFORD_MKL

UoCTTI_LSVM-MDPM

LEAR_CHI-SVM-SIFT-HOG-CLS

Precision/Recall - Aeroplane

Precision/Recall - Car

Precision/Recall – Potted plant

AP by Class Detection

Wide variety of methods: sliding window, combination with whole image classifiers, segmentation based

Multiple Kernels for Object Detection

Andrea Vedaldi, Varun Gulshan, Manik Varma, Andrew Zisserman ICCV 2009

- Three stage cascade
 - Each stage uses a more powerful and more expensive classifier
- Multiple kernel learning for the classifiers over multiple features
- Jumping window first stage

Multiple Kernel Classification

Multiple Kernel Detection: Challenges

• Goal: sliding window MK classifier

- Inference space is huge
- #windows = 100 millions
- TMK = seconds

Excruciatingly slow (days per image)

Cascade

Architecture

Cascade

Non-linear sliding SVM

Cascade

Quasi-linear SVM

Quasi-linear (or additive) kernel decompose as:

$$K(x,y) = \sum_{j=1}^{d} k(x_j, y_j)$$

Thus SVM score rewrites:

Pre-compute look-up table.

Maji, Berg, Malik, CVPR 08

Cascade

Fast linear SVM

Jumping window

Position of visual word with respect to the object

learn the position/scale/aspect ratio of the ROI with respect to the visual word

Hypothesis

Handles change of aspect ratio

SVMs overview

• First stage

- linear SVM
- (or jumping window)
- time: #windows

Second stage

- quasi-linear SVM
- $-\chi^2$ kernel
- time: #windows × #dimensions

• Third stage

- non-linear SVM
- χ^2 -RBF kernel
- time:

#windows × #dimensions × #SVs

Results

Results

Results

Single Kernel vs. Multiple Kernels

- Multiple Kernels gives substantial boost
- Multiple Kernel Learning:
 - small improvement over averaging
 - sparse feature selection

Precision/Recall: VOC2009 Aeroplane

Object Detection with Discriminatively Trained Part Based Models

Pedro F. Felzenszwalb, David Mcallester, Deva Ramanan, Ross Girshick PAMI 2010

Approach

- Mixture of deformable part-based models
 - One component per "aspect" e.g. front/side view
- Each component has global template + deformable parts
- Discriminative training from bounding boxes alone

Example Model

• One component of person model

root filters coarse resolution part filters finer resolution

deformation models

Starting Point: HOG Filter

Score of *F* at position *p* is $F \cdot \varphi(p, H)$

 $\varphi(p, H)$ = concatenation of HOG features from subwindow specified by p

- Search: sliding window over position and scale
- Feature extraction: HOG Descriptor
- Classifier: Linear SVM

Dalal & Triggs [2005]

Object Hypothesis

- Position of root + each part
- Each part: HOG filter (at higher resolution)

Score of a Hypothesis

Appearance term Spatial prior

$$score(p_0, \dots, p_n) = \sum_{i=0}^{n} F_i \cdot \phi(H, p_i) - \sum_{i=1}^{n} d_i \cdot (dx_i^2, dy_i^2)$$

$$filters \qquad filters \qquad filte$$

• Linear classifier applied to feature subset defined by hypothesis

Training

- Training data = images + bounding boxes
- Need to learn: model structure, filters, deformation costs

Latent SVM (MI-SVM)

Classifiers that score an example *x* using

$$f_{\beta}(x) = \max_{s \in Z(x)} \beta \cdot \Phi(x, z)$$

 β are model parameters
z are latent values

$$\bullet$$
 Which component?

$$\bullet$$
 Where are the parts?

Training data $D = (\langle x_1, y_1 \rangle, \dots, \langle x_n, y_n \rangle)$ $y_i \in \{-1, 1\}$ We would like to find β such that: $y_i f_\beta(x_i) > 0$

Minimize

$$L_D(\beta) = \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^n \max(0, 1 - y_i f_\beta(x_i))$$

SVM objective

Latent SVM Training

$$L_D(eta) = rac{1}{2} ||eta||^2 + C \sum_{i=1}^n \max(0, 1 - y_i f_eta(x_i))$$

- Convex if we fix z for positive examples
- Optimization:
 - Initialize β and iterate:
 - Pick best *z* for each positive example
 Optimize *R* with *z* fixed
 Alternation strategy
 - Optimize β with z fixed
- Local minimum: needs good initialization
 - Parts initialized heuristically from root

Person Model

root filters part filters deformation coarse resolution finer resolution models

Handles partial occlusion/truncation

Car Model

root filters coarse resolution

part filters finer resolution

deformation models

Car Detections

high scoring true positives

high scoring false positives

Person Detections

high scoring true positives

high scoring false positives (not enough overlap)

Precision/Recall: VOC2008 Person

Precision/Recall: VOC2008 Bicycle

Comparison of Models

Summary

- Multiple features and multiple kernels boost performance
- Discriminative learning of model with latent variables for single feature (HOG):
 - Latent variables can learn best alignment in the ROI training annotation
 - Parts can be thought of as local SIFT vectors
 - Some similarities to Implicit Shape Model/Constellation models but with discriminative/careful training throughout

NB: Code available for latent model !

Outline

1. Sliding window detectors

- 2. Features and adding spatial information
- 3. HOG + linear SVM classifier
- 4. Two state of the art algorithms and PASCAL VOC
- 5. The future and challenges
Current Research Challenges

- Context
 - from scene properties: GIST, BoW, stuff
 - from other objects
 - from geometry of scene, e.g. Hoiem et al CVPR 06
- Occlusion/truncation
 - Winn & Shotton, Layout Consistent Random Field, CVPR 06
 - Vedaldi & Zisserman, NIPS 09
 - Yang et al, Layered Object Detection, CVPR 10

• 3D

- Scaling up thousands of classes
 - Torralba et al, Feature sharing
 - ImageNet
- Weak and noisy supervision