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What we would like to be able to do…
• Visual scene understanding
• What is in the image and where

Dog 1: Terrier

Motorbike: Suzuki GSX 750

Ground: Gravel

Plant

Wall

Gate

Dog 2: Sitting on Motorbike

Person: John Smith, holding Dog 2

• Object categories, identities, properties, activities, relations, …



Recognition Tasks
• Image Classification

– Does the image contain an aeroplane?

• Object Class Detection/Localization
– Where are the aeroplanes (if any)?

• Object Class Segmentation
– Which pixels are part of an aeroplane 

(if any)?



Things vs. Stuff

Stuff (n): Material defined by a 
homogeneous or repetitive 
pattern of fine-scale properties, 
but has no specific or distinctive 
spatial extent or shape.

Thing (n): An object with a 
specific size and shape.

Ted Adelson,  Forsyth et al. 1996.

Slide: Geremy Heitz



• Object Class Detection/Localization
– Where are the aeroplanes (if any)?

Recognition Task

• Challenges
– Imaging factors e.g. lighting, pose,

occlusion, clutter
– Intra-class variation

• Compared to Classification
– Detailed prediction e.g. bounding box
– Location usually provided for training



Challenges: Background Clutter



Challenges: Occlusion and truncation



Challenges: Intra-class variation



Object Category Recognition by Learning
• Difficult to define model of a category. Instead, learn from 

example images



Level of Supervision for Learning
Image-level label

Pixel-level segmentation

Bounding box

“Parts”



aeroplane bicycle

car cow

motorbikehorse

Preview of typical results



Class of model: Pictorial Structure

• Intuitive model of an object

• Model has two components

1. parts (2D image fragments)

2. structure (configuration of parts)

• Dates back to Fischler & Elschlager 1973

Is this complexity of representation necessary ?

Which features?



Restrict deformations



• Use a sub-window
– At correct position, no clutter is present
– Slide window to detect object
– Change size of window to search over scale

Problem of background clutter



Outline

1. Sliding window detectors

2. Features and adding spatial information

3. Histogram of Oriented Gradients (HOG)

4. Two state of the art algorithms and PASCAL VOC

5. The future and challenges



Outline

1. Sliding window detectors

• Start: feature/classifier agnostic

• Method 

• Problems/limitations

2. Features and adding spatial information

3. Histogram of Oriented Gradients (HOG)

4. Two state of the art algorithms and PASCAL VOC

5. The future and challenges



Yes,
a car
No,

not a car

Detection by Classification
• Basic component: binary classifier

Car/non-car
Classifier



Detection by Classification
• Detect objects in clutter by search

Car/non-car
Classifier

• Sliding window: exhaustive search over position and scale



Detection by Classification
• Detect objects in clutter by search

Car/non-car
Classifier

• Sliding window: exhaustive search over position and scale



Detection by Classification
• Detect objects in clutter by search

Car/non-car
Classifier

• Sliding window: exhaustive search over position and scale
(can use same size window over a spatial pyramid of images)



Window (Image) Classification

• Features usually engineered
• Classifier learnt from data

Feature
Extraction

•
•
•
•
•

Classifier

Training Data

Car/Non-car



Problems with sliding windows …

• aspect  ratio

• granuality (finite grid)

• partial occlusion

• multiple responses

See recent work  by

• Christoph Lampert et al CVPR 08, ECCV 08



Outline

1. Sliding window detectors

2. Features and adding spatial information
• Bag of visual word (BoW) models

• Beyond BoW I: Constellation and ISM models

• Beyond BoW II: Grids and spatial pyramids

3. Histogram of Oriented Gradients (HOG)

4. Two state of the art algorithms and PASCAL VOC

5. The future and challenges



Recap: Bag of (visual) Words representation

• Detect affine invariant local features (e.g. 
affine-Harris)

• Represent by high-dimensional
descriptors, e.g. 128-D for SIFT

• How to summarize sliding window content in 
a fixed-length vector for classification?

1. Map descriptors onto a common 
vocabulary of visual words

2. Represent image as a histogram over visual 
words – a bag of words



Local region descriptors and visual words

• Normalize regions to fixed size and shape
• Describe each region by a SIFT descriptor
• Vector quantize into visual words, e.g. using k-means
NB: aff. detectors/SIFT/visual words originally for view point invariant matching

Rotate and scale

SIFT descriptors



Example Visual Words



Intuition

Visual Vocabulary

• Visual words represent “iconic” image fragments
• Feature detectors and SIFT give invariance to local rotation and scale
• Discarding spatial information gives configuration invariance



Learning from positive ROI examples

Bag of Words

•
•
•
•
•

•
•
•
•
•

Feature Vector



Sliding window detector
• Classifier: SVM with linear kernel

• BOW representation for ROI

Example detections for dog

Lampert et al CVPR 08



Discussion: ROI as a Bag of Visual Words 

• Advantages
– No explicit modelling of spatial information ⇒

high level of invariance to position and 
orientation in image

– Fixed length vector ⇒ standard machine 
learning methods applicable

• Disadvantages
– No explicit modelling of spatial information ⇒

less discriminative power
– Inferior to state of the art performance



Beyond BOW I: Pictorial Structure

• Intuitive model of an object

• Model has two components

1. parts (2D image fragments)

2. structure (configuration of parts)

• Dates back to Fischler & Elschlager 1973

Two approaches that have investigated this spring like model:
• Constellation model

• Implicit shape model



Spatial Models Considered

x1

x3

x4

x6

x5

x2

“Star” shape model

x1

x3

x4

x6

x5

x2

Fully connected shape 
model

e.g. Constellation Model
Parts fully connected
Recognition complexity: O(NP)
Method: Exhaustive search

e.g. ISM
Parts mutually independent
Recognition complexity: O(NP)
Method: Gen. Hough Transform

Slide credit: Rob Fergus



Constellation model

• Explicit structure model – Joint Gaussian over all 
part positions

• Part detector determines position and scale
• Simultaneous learning of parts and structure
• Learn from images alone using EM algorithm

x1

x3

x4

x6

x5

x2

Given detections: learn a 
six part model by 
optimizing part and 
configuration similarity

Fergus, Perona & Zisserman,CVPR 03



Example – Learnt Motorbike Model
Samples from appearance model



Recognized Motorbikes

position of object determined



Airplanes



Spotted cats



Discussion: Constellation Model
• Advantages

– Works well for many different object categories
– Can adapt well to categories where

• Shape is more important
• Appearance is more important

– Everything is learned from training data
– Weakly-supervised training possible

• Disadvantages
– Model contains many parameters that need to be estimated
– Cost increases exponentially with increasing number of parameters
⇒ Fully connected model restricted to small number of parts.



Implicit Shape Model (ISM)

• Basic ideas
– Learn an appearance codebook
– Learn a star-topology structural model

• Features are considered independent given object centre

• Algorithm: probabilistic Generalized Hough Transform
Good engineering:
– Soft assignment
– Probabilistic voting
– Continuous Hough space

x1

x3

x4

x6

x5

x2

Leibe, Leonardis, Schiele, 03/04



Codebook Representation

• Extraction of local object features
– Interest Points (e.g. Harris detector)
– Sparse representation of the object appearance

• Collect features from whole training set

• Example:

Class specific vocabulary



Leibe & Schiele 03/04: Generalized Hough Transform

• Learning: for every cluster, store possible “occurrences”

• Recognition: for new image, let the matched patches vote for possible object 
positions



Voting Space
(continuous)

Interest Points Matched Codebook 
Entries

Probabilistic 
Voting

Backprojection
of Maximum

Leibe & Schiele 03/04: Generalized Hough Transform



• Mean-Shift formulation for refinement
– Scale-adaptive balloon density estimator

Scale Voting: Efficient Computation

y

s

Binned 
accum. array

y

s

x

Refinement
(MSME)

y

s

x

Candidate
maxima

y

s

Scale votes



Detection Results

• Qualitative Performance
– Recognizes different kinds of cars
– Robust to clutter, occlusion, low contrast, noise



Discussion: ISM and related models
Advantages
• Scale and rotation invariance 

can be built into the 
representation from the start

• Relatively cheap to learn and 
test (inference)

• Works well for many different 
object categories

• Max-margin extensions 
possible, Maji & Malik, CVPR09

Disadvantages
• Requires searching for modes in the Hough space
• Similar to sliding window in this respect
• Is such a degree of invariance required? (many objects are horizontal)



Beyond BOW II: Grids and spatial pyramids

Bag of Words

•
•
•
•
•

•
•
•
•
•

Feature Vector

Start from BoW for ROI
• no spatial information recorded

• sliding window detector



Adding Spatial Information to Bag of Words

Bag of Words

•
•
•
•
•

•
•
•
•
•

Concatenate

Feature Vector
[Fergus et al, 2005]Keeps fixed length feature vector for a window



Tiling defines (records) the spatial correspondence of the words

If codebook  has V visual words, then representation has dimension 4V

Fergus et al ICCV 05

• parameter: number of tiles



Spatial Pyramid – represent correspondence

• As in scene/image classification can use pyramid kernel

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

1 BoW

4 BoW

16 BoW

[Lazebnik et al, 2006][Grauman & Darrell, 2005]



Dense Visual Words
• Why extract only sparse image 

fragments?

• Good where lots of invariance 
is needed, but not relevant to 
sliding window detection?

• Extract dense visual words on an overlapping grid

• More “detail” at the expense of invariance
• Pyramid histogram of visual words (PHOW)

[Luong & Malik, 1999]
[Varma & Zisserman, 2003]

[Vogel & Schiele, 2004]
[Jurie & Triggs, 2005]

[Fei-Fei & Perona, 2005]
[Bosch et al, 2006]

•
•
•
•
•

Patch / SIFT

Quantize
Word



Outline

1. Sliding window detectors

2. Features and adding spatial information

3. Histogram of Oriented Gradients + linear SVM classifier
• Dalal & Triggs pedestrian detector

• HOG and history

• Training an object detector

4. Two state of the art algorithms and PASCAL VOC

5. The future and challenges



Dalal & Triggs CVPR 2005 Pedestrian 
detection

• Objective: detect (localize) standing humans in an image

• sliding window classifier

• train a binary classifier on whether a window contains a 
standing person or not

• Histogram of Oriented Gradients (HOG) feature

• although HOG + SVM originally introduced for pedestrians 
has been used very successfully for many object categories



Feature:  Histogram of Oriented 
Gradients (HOG)

image
dominant 
direction HOG

fre
qu

en
cy

orientation

• tile 64 x 128 pixel window into 8 x 8 pixel cells

• each cell represented by histogram over 8 
orientation bins  (i.e. angles in range 0-180 degrees)



Histogram of Oriented Gradients (HOG) continued

• Adds a second level of overlapping spatial bins re-
normalizing orientation histograms over a larger spatial area

• Feature vector dimension (approx) =  16 x 8 (for tiling) x 8 
(orientations) x 4 (for blocks) = 4096



Window (Image) Classification

• HOG Features
• Linear SVM classifier

Feature
Extraction

•
•
•
•
•

Classifier

Training Data

pedestrian/Non-pedestrian





Averaged examples



Advantages of linear SVM:

• Training (Learning)
• Very efficient packages for the linear case, e.g. LIBLINEAR for batch 
training and Pegasos for on-line training. 

• Complexity O(N) for N training points (cf O(N^3) for general SVM)

• Testing (Detection)

Classifier: linear SVM
f(x) = w>x+ b

f(x) =
SX
i

αik(xi,x) + b

f(x) =
SX
i

αixi
>x+ b

= w>x+ b

S = # of support vectors 

= (worst case ) N

size of training data

Non-linear

linear

Independent of size of training data



Dalal and Triggs, CVPR 2005



Learned model

f(x) = w>x+ b

average over 
positive training data



Slide from Deva Ramanan



Why does HOG + SVM work so well?
• Similar to SIFT, records spatial arrangement of histogram orientations
• Compare to learning only edges:

– Complex junctions can be represented
– Avoids problem of early thresholding
– Represents also soft internal gradients

• Older methods based on edges have become largely obsolete

• HOG gives fixed length vector for window, 
suitable for feature vector for SVM



Chamfer Matching
Input Edges Template • Match points between template 

and image

• Measure mean distance

• Template edgel matches nearest
image edgel

Distance 
Transform

[Gavrila & Philomin, 1999]

• Distance transform reduces min operation 
to array lookup

• Computable in linear time

Best
match

• Localize by sliding window search



Chamfer Matching

• In practice performs poorly in clutter
• Unoriented edges are not discriminative enough

(too easy to find…)
[Gavrila & Philomin, 1999]

Hierarchy of Templates Detections



Contour-fragment models

• Generalized Hough like representation using contour 
fragments

• Contour fragments learnt from edges of training images

• Hough like voting for detection

Shotton et al ICCV 05, Opelt et al ECCV 06

pσ
T x1

x3

x4

x6

x5

x2



Training a sliding window detector
• Object detection is inherently asymmetric: much more

“non-object” than “object” data

• Classifier needs to have very low false positive rate
• Non-object category is very complex – need lots of data



Bootstrapping

1. Pick negative training 
set at random

2. Train classifier
3. Run on training data
4. Add false positives to 

training set
5. Repeat from 2

• Collect a finite but diverse set of non-object windows
• Force classifier to concentrate on hard negative examples

• For some classifiers can ensure equivalence to training on 
entire data set



Example: train an upper body detector
– Training data – used for training and validation sets

• 33 Hollywood2 training movies
• 1122 frames with upper bodies marked

– First stage training (bootstrapping)
• 1607 upper body annotations jittered to 32k positive samples
• 55k negatives sampled from the same set of frames

– Second stage training (retraining)
• 150k hard negatives found in the training data



Training data – positive annotations



Positive windows

Note: common size and alignment



Jittered positives



Jittered positives



Random negatives



Random negatives



Window (Image) first stage classification

HOG Feature
Extraction

•
•
•
•
•

Linear SVM
Classifier

Jittered positives 

random negatives f(x) = w>x+ b

• find high scoring  false positives detections

• these are the hard negatives for the next round of training

• cost = # training images x inference on each image



Hard negatives



Hard negatives



First stage performance on validation set



Precision – Recall curve

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

recall

pr
ec
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io

n

all windows

returned 
windows

correct 
windows

• Precision: % of returned windows that 
are correct

• Recall: % of correct windows that are 
returned

classifier score decreasing



First stage performance on validation set



Performance after retraining



Effects of retraining



Side by side

before retraining after retraining



Side by side

before retraining after retraining



Side by side
before retraining after retraining



Tracked upper  body detections



Accelerating Sliding Window Search
• Sliding window search is slow because so many windows are 

needed e.g. x × y × scale ≈ 100,000 for a 320×240 image

• Most windows are clearly not the object class of interest

• Can we speed up the search?



Cascaded Classification
• Build a sequence of classifiers with increasing complexity

Classifier
N

Face

Non-face

Classifier
2

Non-face

Classifier
1

Non-face

Window

More complex, slower, lower false positive rate

• Reject easy non-objects using simpler and faster classifiers

Possibly a 
face

Possibly a 
face



Cascaded Classification

• Slow expensive classifiers only applied to a few windows ⇒
significant speed-up

• Controlling classifier complexity/speed:
– Number of support vectors [Romdhani et al, 2001]
– Number of features [Viola & Jones, 2001]
– Type of SVM kernel [Vedaldi et al, 2009]



Summary: Sliding Window Detection
• Can convert any image classifier into an 

object detector by sliding window. Efficient 
search methods available.

• Requirements for invariance are reduced by 
searching over e.g. translation and scale

• Spatial correspondence can be 
“engineered in” by spatial tiling



Outline

1. Sliding window detectors

2. Features and adding spatial information

3. HOG + linear SVM classifier

4. Two state of the art algorithms and PASCAL VOC
• VOC challenge

• Vedaldi et al – multiple kernels and features, cascade

• Felzenswalb et al – multiple parts, latent SVM

5. The future and challenges



The PASCAL Visual Object Classes 
(VOC) Dataset and Challenge

Mark Everingham
Luc Van Gool
Chris Williams

John Winn
Andrew Zisserman



The PASCAL VOC Challenge

• Challenge in visual object
recognition funded by
PASCAL network of
excellence

• Publicly available dataset of
annotated images

• Main competitions in classification (is there an X in this 
image), detection (where are the X’s), and segmentation 
(which pixels belong to X)

• “Taster competitions” in 2-D human “pose estimation” (2007-
present) and static action classes

• Standard evaluation protocol (software supplied)



Dataset Content

• 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, 
chair, cow, dining table, dog, horse, motorbike, person, 
potted plant, sheep, train, TV

• Real images downloaded from flickr, not filtered for “quality”

• Complex scenes, scale, pose, lighting, occlusion, ...



Annotation
• Complete annotation of all objects

• Annotated in one session with written guidelines

Truncated
Object extends 
beyond BB

Occluded
Object is 
significantly 
occluded within BB

Pose
Facing left

Difficult
Not scored 
in evaluation



Examples

Aeroplane

Bus

Bicycle Bird Boat Bottle

Car Cat Chair Cow



Examples

Dining Table

Potted Plant

Dog Horse Motorbike Person

Sheep Sofa Train TV/Monitor



Main Challenge Tasks

• Classification
– Is there a dog in this image?
– Evaluation by precision/recall

• Detection
– Localize all the people (if any) in 

this image
– Evaluation by precision/recall 

based on bounding box overlap



Detection: Evaluation of Bounding Boxes

• Area of Overlap (AO) Measure
Ground truth Bgt

Predicted Bp

Bgt ∩ Bp

> ThresholdDetection if
50%

















Detection

Wide variety of methods: sliding window, combination with whole 
image classifiers, segmentation based



Multiple Kernels for Object Detection

Andrea Vedaldi, Varun Gulshan,
Manik Varma, Andrew Zisserman

ICCV 2009



Approach

• Three stage cascade
– Each stage uses a more powerful and more expensive classifier

• Multiple kernel learning for the classifiers over multiple features
• Jumping window first stage

Feature vector

Fast Linear SVM

Quasi-linear SVM

Jumping Window

Non-linear SVM



Multiple Kernel Classification

PHOW Gray

Visual Words

PHOG

SSIM

PHOW Color

PHOG Sym

MK SVM

combine one kernel per histogram

[Varma & Rai, 2007]
[Gehler & Nowozin, 2009]

Feature vector



Multiple Kernel Detection: Challenges
• Goal: sliding window MK classifier

– Inference space is huge
– #windows = 100 millions
– TMK = seconds

Candidate region

Image

Feature vector

MK SVM
Time required:

TMK × #windows

TMK

Excruciatingly slow (days per image)



Cascade

Feature vector

Fast Linear SVM

Quasi-linear 
SVM

Non-linear SVM

• all full MK SVMs
• all look at all features
• trade-off speed and power by 

choosing the kernel structure



Architecture

PHOW Gray

Visual Words

PHOG

SSIM

PHOW Color

PHOG Sym

Feature vector

Fast Linear SVM

Quasi-linear SVM

Jumping Window

Non-linear SVM Post Processing



Cascade

Feature vector

Fast Linear SVM

Quasi-linear 
SVM

Non-linear SVM



Non-linear sliding SVM

Feature Vector

i-th
Support Vector

Candidate region

Image

Support Vectors (SVs)

Training DataTime required:
#dimensions × #windows × #SVs



Cascade

Feature vector

Fast Linear SVM

Quasi-linear 
SVM

Non-linear SVM



Quasi-linear  SVM

Feature Vector

i-th
Support Vector

Time required:
#dimensions × #windows × #SVs

Candidate region

Image Quasi-linear (or additive) kernel
decompose as:

Thus SVM score rewrites:

#dimensions × #windows

Pre-compute look-up table.

Maji, Berg, Malik, CVPR 08



Cascade

Feature vector

Fast Linear SVM

Quasi-linear 
SVM

Non-linear SVM



Fast linear SVM

Feature vector

Candidate region

Linear SVM score
Image

Score map

Pre-compute 
scores

for each pixel.

Compute sum with
integral images

Feature vector
Image

Pixel

Time required:
#dimensions × #windows × #SVs

#windows



Jumping window

Hypothesis

Position of visual word with respect to the object

learn the position/scale/aspect ratio of the ROI with respect to the visual word

Tr
ai

ni
ng

D
et

ec
tio

n

Handles change of aspect ratio



132

SVMs overview
• First stage

– linear SVM
– (or jumping window)
– time: #windows

• Second stage
– quasi-linear SVM
– χ2 kernel
– time: #windows × #dimensions

• Third stage
– non-linear SVM
– χ2-RBF kernel
– time: 

#windows × #dimensions × #SVs

132

Feature vector

Fast Linear SVM

Quasi-linear SVM

Jumping Window

Non-linear SVM



Results



Results



Results



Single Kernel vs. Multiple Kernels
• Multiple Kernels gives substantial boost
• Multiple Kernel Learning:

– small improvement over averaging
– sparse feature selection



Precision/Recall: VOC2009 Aeroplane
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OXFORD_MKL (47.8)
NECUIUC_CLS-DTCT (44.9)
MPI_STRUCT (41.0)
UVA_BOWSEG (40.2)
UoCTTI_LSVM-MDPM (39.5)
CVC_HOG-BOW (35.8)
CVC_HOG-BOW-ESS-FLAT (35.5)
UVA_BAGOFWINDOWS (32.5)
LEAR_CHI-SVM-SIFT-HOG-CLS (28.4)
LEAR_CHI-SVM-SIFT-HOG (27.1)
CASIA_SVM-PHOG+COLOR (26.7)
MIZZOU_DEF-HOG-LBP-WOCONTEXT (25.0)
TTIWEIZ_NNHOUGH (23.8)
UC3M_GEN-DIS (22.4)
CASIA_SVM-PHOG (19.0)
MIZZOU_DEF-HOG-LBP (11.4)
TSINGHUA_SVM-SEG-HOG (9.1)



Object Detection with Discriminatively 
Trained Part Based Models

Pedro F. Felzenszwalb, David Mcallester, 
Deva Ramanan, Ross Girshick

PAMI 2010



Approach

• Mixture of deformable part-based models
– One component per “aspect” e.g. front/side view

• Each component has global template + deformable parts
• Discriminative training from bounding boxes alone



Example Model
• One component of person model

root filters
coarse resolution

part filters
finer resolution

deformation
models

x1

x3

x4

x6

x5

x2



Starting Point: HOG Filter

• Search: sliding window over position and scale
• Feature extraction: HOG Descriptor
• Classifier: Linear SVM

HOG pyramid H

Score of F at position p is 
F · φ(p, H)

Filter F

φ(p, H) = concatenation of 
HOG features from 

subwindow specified by p

p

Dalal & Triggs [2005]



Object Hypothesis
• Position of root + each part
• Each part: HOG filter (at higher resolution)

Score is sum of filter 
scores minus 

deformation costs

p0 : location of root
p1,..., pn : location of parts

z = (p0,..., pn)



Score of a Hypothesis

• Linear classifier applied to feature subset defined by hypothesis

filters deformation parameters

displacements

Appearance term Spatial prior

concatenation of 
HOG features and 
part displacement 

features

concatenation of filters 
and deformation 

parameters



Training
• Training data = images + bounding boxes
• Need to learn: model structure, filters, deformation costs

Training



Latent SVM (MI-SVM)

Minimize

Training data

We would like to find β such that:

Classifiers that score an example x using

β are model parameters
z are latent values

• Which component?
• Where are the parts?

SVM objective



Latent SVM Training

• Convex if we fix z for positive examples

• Optimization:
– Initialize β and iterate:

• Pick best z for each positive example
• Optimize β with z fixed

• Local minimum: needs good initialization
– Parts initialized heuristically from root

Alternation 
strategy



Person Model

root filters
coarse resolution

part filters
finer resolution

deformation
models

Handles partial occlusion/truncation



Car Model

root filters
coarse resolution

part filters
finer resolution

deformation
models



Car Detections

high scoring false positiveshigh scoring true positives



Person Detections

high scoring true positives
high scoring false positives 

(not enough overlap)
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Precision/Recall: VOC2008 Person
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Precision/Recall: VOC2008 Bicycle



Comparison of Models



Summary
• Multiple features and multiple kernels boost 

performance
• Discriminative learning of model with latent 

variables for single feature (HOG):
– Latent variables can learn best alignment in the 

ROI  training annotation
– Parts can be thought of as local SIFT vectors
– Some similarities to Implicit Shape 

Model/Constellation models but with 
discriminative/careful training throughout

NB: Code available for latent model !



Outline

1. Sliding window detectors

2. Features and adding spatial information

3. HOG + linear SVM classifier

4. Two state of the art algorithms and PASCAL VOC

5. The future and challenges



Current  Research Challenges
• Context

– from scene properties: GIST, BoW, stuff 
– from other objects
– from geometry of scene, e.g.  Hoiem et al CVPR 06

• Occlusion/truncation
– Winn & Shotton, Layout Consistent Random Field, CVPR 06
– Vedaldi & Zisserman, NIPS 09
– Yang et al, Layered Object Detection, CVPR 10

• 3D

• Scaling up – thousands of classes
– Torralba et al, Feature sharing
– ImageNet

• Weak and noisy supervision


