Provable Security in the Computational Model

IV - Protocols

David Pointcheval

MPRI - Paris

Ecole normale supérieure/PSL, CNRS & INRIA

Outline

Game-based Security

Simulation-based Security

Encrypted Key Exchange

Conclusion

Game-based Security

Outline

Game-based Security

Key Exchange

Authenticated Key Exchange

Explicit Authentication

Simulation-based Security

Encrypted Key Exchange

Conclusion

A fundamental problem in cryptography:

Enable secure communication over insecure channels

A classical scenario: Users encrypt and authenticate their messages using a common secret key

How to establish such a common secret? → Key-exchange protocols

A fundamental problem in cryptography:

Enable secure communication over insecure channels

A classical scenario: Users encrypt and authenticate their messages using a common secret key

How to establish such a common secret?

→ Key-exchange protocols

A fundamental problem in cryptography:

Enable secure communication over insecure channels

A classical scenario: Users encrypt and authenticate their messages using a common secret key

How to establish such a common secret?

→ Key-exchange protocols

A fundamental problem in cryptography:

Enable secure communication over insecure channels

A classical scenario: Users encrypt and authenticate their messages using a common secret key

How to establish such a common secret?

---- Key-exchange protocols

Diffie-Hellman Key-Exchange

 $\mathbb{G}=\langle g
angle$ a group, of prime order q, in which the **CDH** problem is hard

Alice
$$x \stackrel{R}{\leftarrow} \mathbb{Z}_{q}$$

$$X = g^{x} \xrightarrow{\qquad \qquad \qquad Y}$$

$$\leftarrow \qquad \qquad Y = g^{y}$$

$$Y^{x} = g^{xy} = X^{y}$$

Allows two parties to establish a common secret:

Diffie-Hellman Key-Exchange

 $\mathbb{G}=\langle g
angle$ a group, of prime order q, in which the **CDH** problem is hard

Alice

$$x \stackrel{R}{\leftarrow} \mathbb{Z}_q$$
 $X = g^x \xrightarrow{Y} Y = g^y$
 $Y = g^{xy} = X^y$

Allows two parties to establish a common secret:

- · The session key should only be known to the involved parties
- The session key should be indistinguishable from a random string for others

ENS/CNRS/INRIA Cascade David Pointcheval 5/6

Diffie-Hellman Key-Exchange

 $\mathbb{G}=\langle g
angle$ a group, of prime order q, in which the **CDH** problem is hard

Alice

$$x \stackrel{R}{\leftarrow} \mathbb{Z}_q$$
 $X = g^x \xrightarrow{X} Y = g^y$
 $Y^x = g^{xy} = X^y$

Bob

 $y \stackrel{R}{\leftarrow} \mathbb{Z}_q$
 $Y = g^y$

Allows two parties to establish a common secret:

- · The session key should only be known to the involved parties
- The session key should be indistinguishable from a random string for others

- Users can participate in several executions of the protocol in parallel: Each user's instance is associated to an oracle (Cⁱ for the client, and S^j for the server)
- The adversary controls all the communications:
 It can create, modify, transfer, alter, delete messages

- · to let it choose when and what to transmit,
- but also the leakage of information

- Users can participate in several executions of the protocol in parallel: Each user's instance is associated to an oracle (Cⁱ for the client, and S^j for the server)
- The adversary controls all the communications:
 It can create, modify, transfer, alter, delete messages

- · to let it choose when and what to transmit,
- but also the leakage of information

- Users can participate in several executions of the protocol in parallel: Each user's instance is associated to an oracle (Cⁱ for the client, and S^j for the server)
- The adversary controls all the communications:
 It can create, modify, transfer, alter, delete messages

- · to let it choose when and what to transmit,
- but also the leakage of information

- Users can participate in several executions of the protocol in parallel: Each user's instance is associated to an oracle (Cⁱ for the client, and S^j for the server)
- The adversary controls all the communications:
 It can create, modify, transfer, alter, delete messages

- · to let it choose when and what to transmit,
- but also the leakage of information

The adversary has access to the oracles:

The adversary has access to the oracles:

- Execute(Cⁱ, S^j)
 A gets the transcript of an execution between C and S
 It models passive attacks (eavesdropping)
- Send(U^i, m)

 A sends the message m to the instance U^i It models active attacks against U^i
- A gets the session key established by U^i and its partner lt models the leakage of the session key, due to a misuse
- Test(Uⁱ) a random bit b is chosen

The adversary has access to the oracles:

- Execute(Cⁱ, S^j)
 A gets the transcript of an execution between C and S
 It models passive attacks (eavesdropping)
- Send(Uⁱ, m)
 A sends the message m to the instance Uⁱ
 It models active attacks against Uⁱ
- A gets the session key established by U^i and its partner It models the leakage of the session key, due to a misuse
- Test(U^i) a random bit b is chosen.

The adversary has access to the oracles:

- Execute(C^i, S^j)
 - \mathcal{A} gets the transcript of an execution between \mathcal{C} and \mathcal{S} It models passive attacks (*eavesdropping*)
- Send(Uⁱ, m)
 A sends the message m to the instance Uⁱ
 It models active attacks against Uⁱ
- Reveal(Uⁱ)

 ${\cal A}$ gets the session key established by ${\cal U}^i$ and its partner It models the leakage of the session key, due to a misuse

• $\mathsf{Test}(U^i)$ a random bit b is chosen

The adversary has access to the oracles:

- Execute(Cⁱ, S^j)
 A gets the transcript of an execution between C and S
 It models passive attacks (eavesdropping)
- Send(Uⁱ, m)
 A sends the message m to the instance Uⁱ
 It models active attacks against Uⁱ
- Reveal(Uⁱ)

 ${\cal A}$ gets the session key established by ${\it U}^i$ and its partner It models the leakage of the session key, due to a misuse

- $\mathsf{Test}(U^i)$ a random bit b is chosen.
 - If b = 0, A gets the session key ($Reveal(U^i)$)
 - If b = 1, it gets a random key

The adversary has access to the oracles:

- Execute(Cⁱ, S^j)
 A gets the transcript of an execution between C and S
 It models passive attacks (eavesdropping)
- Send(Uⁱ, m)
 A sends the message m to the instance Uⁱ
 It models active attacks against Uⁱ
- Reveal(Uⁱ)

 ${\cal A}$ gets the session key established by ${\it U}^i$ and its partner lt models the leakage of the session key, due to a misuse

- $\mathsf{Test}(U^i)$ a random bit b is chosen.
 - If b = 0, A gets the session key ($Reveal(U^i)$)
 - If b = 1, it gets a random key

The adversary has access to the oracles:

- Execute(Cⁱ, S^j)
 A gets the transcript of an execution between C and S
 It models passive attacks (eavesdropping)
- Send(Uⁱ, m)
 A sends the message m to the instance Uⁱ
 It models active attacks against Uⁱ
- Reveal(Uⁱ)

 \mathcal{A} gets the session key established by U^i and its partner It models the leakage of the session key, due to a misuse

- Test(U^i) a random bit b is chosen.
 - If b = 0, A gets the session key ($Reveal(U^i)$)
 - If b = 1, it gets a random key

The adversary has access to the oracles:

- Execute(C^i, S^j)
 - \mathcal{A} gets the transcript of an execution between \mathcal{C} and \mathcal{S} It models passive attacks (*eavesdropping*)
- $Send(U^i, m)$

A sends the message m to the instance U^i It models active attacks against U^i

• Reveal(Uⁱ)

 ${\cal A}$ gets the session key established by ${\it U}^i$ and its partner It models the leakage of the session key, due to a misuse

- Test(U^i) a random bit b is chosen.
 - If b = 0, A gets the session key (*Reveal*(U^i))
 - If b = 1, it gets a random key

Constraint: no Test-query to a partner of a Reveal-query

Security Game: Some Terminology

Partnership

- two instances are partners
 if they have the same sid (session identity)
- the sid is set in such a way that two different sessions have the same sid with negligible probability

Usually, sid is the (partial) transcript of the protocol

Freshness

 a user's instance is fresh if a key has been established, and it is not trivially known to the adversary
 (a Reveal query has been asked to this instance or its partner)

Security Game: Some Terminology

Partnership

- two instances are partners
 if they have the same sid (session identity)
- the sid is set in such a way that two different sessions have the same sid with negligible probability

Usually, sid is the (partial) transcript of the protocol

Freshness

 a user's instance is fresh if a key has been established, and it is not trivially known to the adversary
 (a Reveal query has been asked to this instance or its partner)

Security Game: Find-then-Guess

Privacy of the key: modeled by a find-then-guess security game

A has to guess the bit *b* involved in the Test-query is the obtained key real or random?

Security Game: Find-then-Guess

Privacy of the key: modeled by a *find-then-guess* security game

A has to guess the bit *b* involved in the Test-query: is the obtained key real or random?

Security Game: Find-then-Guess

Privacy of the key: modeled by a find-then-guess security game

A has to guess the bit b involved in the Test-query: is the obtained key real or random?

Semantic Security: Find-then-Guess

The semantic security is characterized by

$$\mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A}) = 2 imes \mathbf{Succ}(\mathcal{A}) - 1$$
 $\mathbf{Adv}^{\mathsf{ftg}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}}) = \max\{\mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A})\}$

- where the adversary wins if it correctly guesses the bit b involved in the Test-query
- q_{exe} , q_{send} and q_{reveal} are the numbers of Execute, Send and Reveal-queries resp.

$$\mathbf{Adv}^{\mathsf{ftg}}(t) \leq \mathsf{negl}(t)$$

Semantic Security: Find-then-Guess

The semantic security is characterized by

$$\mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A}) = 2 \times \mathbf{Succ}(\mathcal{A}) - 1$$

$$\mathbf{Adv}^{\mathsf{ftg}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}}) = \max\{\mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A})\}$$

- where the adversary wins if it correctly guesses the bit b involved in the Test-query
- q_{exe}, q_{send} and q_{reveal} are the numbers of Execute, Send and Reveal-queries resp.

Definition

A Key Exchange Scheme is FtG-Semantically Secure if

$$\mathbf{Adv}^{\mathsf{ftg}}(t) \leq \mathsf{negl}()$$

Security Game: Real-or-Random

Privacy of the key: modeled by a real-or-random security game

A has to guess the bit b involved in the Test-queries are they all real or random keys?

Security Game: Real-or-Random

Privacy of the key: modeled by a real-or-random security game

 \mathcal{A} has to guess the bit b involved in the Test-queries: are they all real or random keys?

Security Game: Real-or-Random

Privacy of the key: modeled by a real-or-random security game

 \mathcal{A} has to guess the bit b involved in the Test-queries: are they all real or random keys?

ENS/CNRS/INRIA Cascade David Pointcheval 11/62

Semantic Security: Real-or-Random

We can even drop the Reveal-Oracle:

Semantic Security: Real-or-Random

We can even drop the Reveal-Oracle:

- A random bit b is chosen
- Execute(Cⁱ, S^j)
 A gets the transcript of an execution between C and S

 It models passive attacks (eavesdropping)
- Send(Uⁱ, m)
 A sends the message m to the instance U
 It models active attacks against Uⁱ
- Test(U^i) If U^i is not fresh: same answer as for its partner Otherwise
 - If b = 0, A gets the session keys
 If b = 1, it gets a random key

Semantic Security: Real-or-Random

We can even drop the Reveal-Oracle:

- A random bit b is chosen
- Execute(C^i, S^j)

 \mathcal{A} gets the transcript of an execution between \mathcal{C} and \mathcal{S} It models passive attacks (*eavesdropping*)

- Send(Uⁱ, m)
 A sends the message m to the instance L
 It models active attacks against Uⁱ
- Test(U^i) If U^i is not fresh: same answer as for its partner Otherwise

We can even drop the Reveal-Oracle:

- A random bit b is chosen
- Execute(C^i, S^j)

 \mathcal{A} gets the transcript of an execution between C and S It models passive attacks (*eavesdropping*)

- Send (U^i, m)
 - A sends the message m to the instance U^i It models active attacks against U^i
- Test(U^i) If U^i is not fresh: same answer as for its partner Otherwise
 - If b=0, $\mathcal A$ gets the session key

We can even drop the Reveal-Oracle:

- A random bit b is chosen
- Execute(C^i, S^j)

 \mathcal{A} gets the transcript of an execution between C and S It models passive attacks (*eavesdropping*)

- $Send(U^i, m)$
 - \mathcal{A} sends the message m to the instance U^i It models active attacks against U^i
- Test(Uⁱ) If Uⁱ is not fresh: same answer as for its partner Otherwise
 - If b = 0, A gets the session key
 - If b = 1, it gets a random key

We can even drop the Reveal-Oracle:

- A random bit b is chosen
- Execute(C^i, S^j)

A gets the transcript of an execution between C and S It models passive attacks (*eavesdropping*)

- $Send(U^i, m)$
 - A sends the message m to the instance U^i It models active attacks against U^i
- Test(Uⁱ) If Uⁱ is not fresh: same answer as for its partner Otherwise
 - If b = 0, A gets the session key
 - If b = 1, it gets a random key

We can even drop the Reveal-Oracle:

- A random bit b is chosen
- Execute(C^i, S^j)

 \mathcal{A} gets the transcript of an execution between C and S It models passive attacks (*eavesdropping*)

- Send(U^i, m)
 - A sends the message m to the instance U^i It models active attacks against U^i
- Test(Uⁱ) If Uⁱ is not fresh: same answer as for its partner Otherwise
 - If b = 0, A gets the session key
 - If b = 1, it gets a random key

The semantic security is characterized by

$$Adv^{ror}(A) = 2 \times Succ(A) - 1$$

$$\mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathit{execute}}, q_{\mathit{send}}, q_{\mathit{test}}) = \max\{\mathbf{Adv}^{\mathsf{ror}}(\mathcal{A})\}$$

Definition

A Key Exchange Scheme is RoR-Semantically Secure if

$$\mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}}) \leq \mathsf{negl}()$$

The semantic security is characterized by

$$Adv^{ror}(A) = 2 \times Succ(A) - 1$$

$$\mathbf{Adv}^{\mathsf{ror}}(t, q_{\textit{execute}}, q_{\textit{send}}, q_{\textit{test}}) = \mathsf{max}\{\mathbf{Adv}^{\mathsf{ror}}(\mathcal{A})\}$$

Definition

A Key Exchange Scheme is RoR-Semantically Secure if

$$\mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}}) \leq \mathsf{negl}()$$

Theorem

 $\mathbf{Adv}^{\mathsf{ftg}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}}) \leq 2 \times \mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}} + 1)$

Let $\mathcal A$ be a FtG-adversary

We build an adversary \mathcal{B} against the RoR security game:

- A random bit b is chosen by the RoR challenger
- Execute(C^i, S^j) and Send(U^i, m) queries are forwarded by \mathcal{B}
- Reveal(Uⁱ) is answered Test(Uⁱ)
- Test(U^i) If U^i is not fresh: same answer as for its partner Otherwise, \mathcal{B} chooses a random bit β

• From \mathcal{A} 's answer β' , \mathcal{B} outputs $(\beta = \beta')$

Theorem

$$\mathbf{Adv}^{\mathsf{ftg}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}}) \leq 2 \times \mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}} + 1)$$

Let $\mathcal A$ be a FtG-adversary

We build an adversary \mathcal{B} against the RoR security game:

- A random bit b is chosen by the RoR challenger
- Execute(C^i, S^j) and Send(U^i, m) queries are forwarded by \mathcal{B}
- Reveal(Uⁱ) is answered Test(Uⁱ)
- Test(U^i) If U^i is not fresh: same answer as for its partner Otherwise, \mathcal{B} chooses a random bit β

• From \mathcal{A} 's answer β' , \mathcal{B} outputs $(\beta = \beta')$

Theorem

$$\mathbf{Adv}^{\mathsf{ftg}}(t,q_{\mathsf{execute}},q_{\mathsf{send}},q_{\mathsf{reveal}}) \leq 2 \times \mathbf{Adv}^{\mathsf{ror}}(t,q_{\mathsf{execute}},q_{\mathsf{send}},q_{\mathsf{reveal}}+1)$$

Let \mathcal{A} be a FtG-adversary

We build an adversary \mathcal{B} against the RoR security game:

- A random bit b is chosen by the RoR challenger
- Execute(C^i, S^j) and Send(U^i, m) queries are forwarded by \mathcal{B}
- Reveal(Uⁱ) is answered Test(Uⁱ)
- Test(U^i) If U^i is not fresh: same answer as for its partner Otherwise, $\mathcal B$ chooses a random bit β

• From \mathcal{A} 's answer β' , \mathcal{B} outputs $(\beta = \beta')$

Theorem

 $\mathbf{Adv}^{\mathsf{ftg}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}}) \leq 2 \times \mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}} + 1)$

Let A be a FtG-adversary

- A random bit b is chosen by the RoR challenger
- Execute(C^i, S^j) and Send(U^i, m) queries are forwarded by $\mathcal B$
- Reveal(U^i) is answered Test(U^i)
- Test(Uⁱ) If Uⁱ is not fresh: same answer as for its partner Otherwise, B chooses a random bit β
 - If $\beta = 0$, one answers Test(U^{i})
 - If $\beta = 1$, one answers a random key
 - rom \mathcal{A} 's answer β' , \mathcal{B} outputs $(\beta = \beta')$

Theorem

$$\mathbf{Adv}^{\mathsf{ftg}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}}) \leq 2 \times \mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}} + 1)$$

Let A be a FtG-adversary

- A random bit b is chosen by the RoR challenger
- Execute(C^i, S^j) and Send(U^i, m) queries are forwarded by \mathcal{B}
- Reveal(U^i) is answered Test(U^i)
- Test(Uⁱ) If Uⁱ is not fresh: same answer as for its partner Otherwise, β chooses a random bit β
 - If $\beta = 0$, one answers Test(U^i)
 - If $\beta = 1$, one answers a random key
 - om ${\mathcal A}$'s answer eta', ${\mathcal B}$ outputs (eta=eta')

Theorem

 $\mathbf{Adv}^{\mathsf{ftg}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}}) \leq 2 \times \mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}} + 1)$

Let A be a FtG-adversary

- A random bit b is chosen by the RoR challenger
- Execute(C^i, S^j) and Send(U^i, m) queries are forwarded by \mathcal{B}
- Reveal(U^i) is answered Test(U^i)
- Test(Uⁱ) If Uⁱ is not fresh: same answer as for its partner Otherwise, B chooses a random bit β
 - If $\beta = 0$, one answers $\text{Test}(U^i)$
 - If $\beta = 1$, one answers a random key
- From \mathcal{A} 's answer β' , \mathcal{B} outputs ($\beta = \beta$

Theorem

 $\mathbf{Adv}^{\mathsf{ftg}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}}) \leq 2 \times \mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}} + 1)$

Let A be a FtG-adversary

- A random bit b is chosen by the RoR challenger
- Execute(C^i, S^j) and Send(U^i, m) queries are forwarded by \mathcal{B}
- Reveal(Uⁱ) is answered Test(Uⁱ)
- Test(Uⁱ) If Uⁱ is not fresh: same answer as for its partner Otherwise, B chooses a random bit β
 - If $\beta = 0$, one answers Test(U^i)
 - If $\beta = 1$, one answers a random key
- From \mathcal{A} 's answer β' , \mathcal{B} outputs ($\beta = \beta'$)

If b is the Real choice, then the view of A is

- Execute(C^i , S^j) and Send(U^i , m) queries: correct
- Reveal(U^i): Test(U^i) with Real
- Test(U^i) If U^i is not fresh: same answer as for its partner Otherwise, a random bit β is drawn

This is the FtG game

$$2 \times \Pr[\beta' = \beta \mid b = 0] - 1 = \mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A})$$

If b is the Real choice, then the view of A is

- Execute(C^i, S^j) and Send(U^i, m) queries: correct
- Reveal(U^i): Test(U^i) with Real
- Test(U^i) If U^i is not fresh: same answer as for its partner Otherwise, a random bit β is drawn

• If
$$\beta=0$$
, one answers $\mathsf{Test}(U')$ with Real

This is the FtG game

$$2 \times \Pr[\beta' = \beta \mid b = 0] - 1 = \mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A})$$

If b is the Real choice, then the view of A is

- Execute(C^i, S^j) and Send(U^i, m) queries: correct
- Reveal(U^i): Test(U^i) with Real
- Test(U^i) If U^i is not fresh: same answer as for its partner Otherwise, a random bit β is drawn
 - If $\beta = 0$, one answers Test(U^i) with Real
 - If $\beta = 1$, one answers a random key

This is the FtG game

$$2 \times \Pr[\beta' = \beta \mid b = 0] - 1 = \mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A})$$

If b is the Real choice, then the view of A is

- Execute(C^i, S^j) and Send(U^i, m) queries: correct
- Reveal(U^i): Test(U^i) with Real
- Test(U^i) If U^i is not fresh: same answer as for its partner Otherwise, a random bit β is drawn
 - If $\beta = 0$, one answers $\text{Test}(U^i)$ with Real
 - If $\beta = 1$, one answers a random key

This is the FtG game

$$2 \times \Pr[\beta' = \beta \mid b = 0] - 1 = \mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A})$$

If b is the Real choice, then the view of A is

- Execute(C^i, S^j) and Send(U^i, m) queries: correct
- Reveal(U^i): Test(U^i) with Real
- Test(Uⁱ) If Uⁱ is not fresh: same answer as for its partner Otherwise, a random bit β is drawn
 - If $\beta = 0$, one answers $\text{Test}(U^i)$ with Real
 - If $\beta = 1$, one answers a random key

This is the FtG game

$$2 \times \Pr[\beta' = \beta \,|\, b = 0] - 1 = \mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A})$$

If b is the Real choice, then the view of A is

- Execute(C^i , S^j) and Send(U^i , m) queries: correct
- Reveal(U^i): Test(U^i) with Real
- Test(U^i) If U^i is not fresh: same answer as for its partner Otherwise, a random bit β is drawn
 - If $\beta = 0$, one answers $\text{Test}(U^i)$ with Real
 - If $\beta = 1$, one answers a random key

This is the FtG game

$$2 \times \Pr[\beta' = \beta \mid b = 0] - 1 = \mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A})$$

If b is the Real choice, then the view of A is

- Execute(C^i , S^j) and Send(U^i , m) queries: correct
- Reveal(U^i): Test(U^i) with Real
- Test(U^i) If U^i is not fresh: same answer as for its partner Otherwise, a random bit β is drawn
 - If $\beta = 0$, one answers $\text{Test}(U^i)$ with Real
 - If $\beta = 1$, one answers a random key

This is the FtG game

$$2 \times \Pr[\beta' = \beta \mid b = 0] - 1 = \mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A})$$

- Execute(C^i , S^j) and Send(U^i , m) queries: correct
- Reveal(U^i): Test(U^i) with Real
- Test(U^i) If U^i is not fresh: same answer as for its partner Otherwise, a random bit β is drawn
 - If $\beta = 0$, one answers $\text{Test}(U^i)$ with Real
 - If $\beta = 1$, one answers a random key

This is the FtG game

$$2 \times \Pr[\beta' = \beta \mid b = 0] - 1 = \mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A})$$

- Execute(C^i, S^j) and Send(U^i, m) queries: correct
- Reveal(Uⁱ): Test(Uⁱ) with Random
- Test(Uⁱ) If Uⁱ is not fresh: same answer as for its partner Otherwise, one answers a random key

The view is independent of eta

$$\begin{aligned} 2 \times \Pr[\beta' = \beta \mid b = 1] - 1 &= 0 \\ \mathbf{Adv}^{\mathsf{ror}}(\mathcal{B}) &= 2 \times \Pr[\beta' = \beta] - 1 &= \mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A})/2 \\ &\leq \mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}} + 1) \end{aligned}$$

 $\mathbf{Adv}^{\text{reg}}(t, q_{\text{execute}}, q_{\text{send}}, q_{\text{reveal}}) \le 2 \times \mathbf{Adv}^{\text{reg}}(t, q_{\text{execute}}, q_{\text{send}}, q_{\text{reveal}} + 1)$

- Execute(C^i, S^j) and Send(U^i, m) queries: correct
- Reveal(Uⁱ): Test(Uⁱ) with Random
- Test(Uⁱ) If Uⁱ is not fresh: same answer as for its partner Otherwise, one answers a random key

The view is independent of β

$$\begin{aligned} 2 \times \Pr[\beta' = \beta \mid b = 1] - 1 &= 0 \\ \mathbf{Adv}^{\mathsf{ror}}(\mathcal{B}) &= 2 \times \Pr[\beta' = \beta] - 1 &= \mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A}) / 2 \\ &\leq \mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}} + 1) \end{aligned}$$

 $\mathbf{Adv}^{\mathsf{rtg}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}}) \leq 2 \times \mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}} + 1)$

- Execute(C^i, S^j) and Send(U^i, m) queries: correct
- Reveal(Uⁱ): Test(Uⁱ) with Random
- Test(Uⁱ) If Uⁱ is not fresh: same answer as for its partner Otherwise, one answers a random key

The view is independent of β

$$\begin{aligned} 2 \times \Pr[\beta' = \beta \mid b = 1] - 1 &= 0 \\ \mathbf{Adv}^{\mathsf{ror}}(\mathcal{B}) &= 2 \times \Pr[\beta' = \beta] - 1 &= \mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A})/2 \\ &\leq \mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}} + 1) \end{aligned}$$

FNS/CNRS/INRIA Cascade David Pointcheval 16

- Execute(C^i, S^j) and Send(U^i, m) queries: correct
- Reveal(Uⁱ): Test(Uⁱ) with Random
- Test(Uⁱ) If Uⁱ is not fresh: same answer as for its partner Otherwise, one answers a random key

The view is independent of β

$$\begin{aligned} \mathbf{2} \times \Pr[\beta' = \beta \mid b = 1] - \mathbf{1} &= \mathbf{0} \\ \mathbf{Adv}^{\mathsf{ror}}(\mathcal{B}) &= 2 \times \Pr[\beta' = \beta] - \mathbf{1} &= \mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A})/2 \\ &\leq \mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}} + 1) \end{aligned}$$

FNS/CNRS/INRIA Cascade David Pointcheval 1

- Execute(C^i, S^j) and Send(U^i, m) queries: correct
- Reveal(Uⁱ): Test(Uⁱ) with Random
- Test(Uⁱ) If Uⁱ is not fresh: same answer as for its partner Otherwise, one answers a random key

The view is independent of β

$$\begin{aligned} 2 \times \Pr[\beta' = \beta \,|\, b = 1] - 1 &= 0 \\ \mathbf{Adv}^{\mathsf{ror}}(\mathcal{B}) &= 2 \times \Pr[\beta' = \beta] - 1 &= \mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A})/2 \\ &\leq \mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}} + 1) \end{aligned}$$

 $\mathbf{Adv}^{\mathrm{tg}}(t, q_{\mathrm{execute}}, q_{\mathrm{send}}, q_{\mathrm{reveal}}) \leq 2 \times \mathbf{Adv}^{\mathrm{ror}}(t, q_{\mathrm{execute}}, q_{\mathrm{send}}, q_{\mathrm{reveal}} + 1)$

- Execute(C^i, S^j) and Send(U^i, m) queries: correct
- Reveal(Uⁱ): Test(Uⁱ) with Random
- Test(Uⁱ) If Uⁱ is not fresh: same answer as for its partner Otherwise, one answers a random key

The view is independent of β

$$2 \times \Pr[\beta' = \beta \mid b = 1] - 1 = 0$$

$$\mathbf{Adv}^{\text{ror}}(\beta) = 2 \times \Pr[\beta' = \beta] - 1 = \mathbf{Adv}^{\text{ftg}}(A)/2$$

$$\leq \mathbf{Adv}^{\text{ror}}(t, q_{\text{execute}}, q_{\text{send}}, q_{\text{reveal}} + 1)$$

 $\mathbf{Adv}^{\text{rig}}(t, q_{\text{execute}}, q_{\text{send}}, q_{\text{reveal}}) \le 2 \times \mathbf{Adv}^{\text{ror}}(t, q_{\text{execute}}, q_{\text{send}}, q_{\text{reveal}} + 1)$

- Execute(C^i, S^j) and Send(U^i, m) queries: correct
- Reveal(Uⁱ): Test(Uⁱ) with Random
- Test(Uⁱ) If Uⁱ is not fresh: same answer as for its partner Otherwise, one answers a random key

The view is independent of β

$$\begin{aligned} 2 \times \Pr[\beta' = \beta \mid b = 1] - 1 &= 0 \\ \mathbf{Adv}^{\mathsf{ror}}(\mathcal{B}) &= 2 \times \Pr[\beta' = \beta] - 1 &= \mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A})/2 \\ &\leq \mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}} + 1) \end{aligned}$$

 $\mathbf{Adv}^{\mathsf{rig}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}}) \leq 2 \times \mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}} + 1)$

If b is the Random choice, then the view of A is

- Execute(C^i, S^j) and Send(U^i, m) queries: correct
- Reveal(Uⁱ): Test(Uⁱ) with Random
- Test(U^i) If U^i is not fresh: same answer as for its partner Otherwise, one answers a random key

The view is independent of β

$$2 \times \Pr[\beta' = \beta \mid b = 1] - 1 = 0$$

$$\mathbf{Adv}^{\mathsf{ror}}(\mathcal{B}) = 2 \times \Pr[\beta' = \beta] - 1 = \mathbf{Adv}^{\mathsf{ftg}}(\mathcal{A})/2$$

$$< \mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}} + 1)$$

 $\mathbf{Adv}^{\mathsf{ttg}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}}) \leq 2 \times \mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{reveal}} + 1)$

Theorem

$$\mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}}) \leq q_{\mathsf{test}} imes \mathbf{Adv}^{\mathsf{ftg}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}} - 1)$$

Let $\ensuremath{\mathcal{A}}$ be a RoR-adversary

- A random bit b is chosen by the FtG challenger
- B chooses a random index J
- Execute(C^i, S^i) and Send(U^i, m) queries are forwarded by \mathcal{B}
- The j-th Test(Uⁱ) query

Theorem

$$\mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}}) \leq q_{\mathsf{test}} imes \mathbf{Adv}^{\mathsf{ftg}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}} - 1)$$

Let \mathcal{A} be a RoR-adversary

We build an adversary ${\cal B}$ against the FtG security game:

- A random bit b is chosen by the FtG challenger
- B chooses a random index J
- Execute(C^i, S^j) and Send(U^i, m) queries are forwarded by \mathcal{B}
- The j-th Test(U') query

Theorem

$$\mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}}) \leq q_{\mathsf{test}} imes \mathbf{Adv}^{\mathsf{ftg}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}} - 1)$$

Let A be a RoR-adversary

- A random bit b is chosen by the FtG challenger
- B chooses a random index J
- Execute(C^i, S^j) and Send(U^i, m) queries are forwarded by \mathcal{B}
- The j-th Test(Uⁱ) query:

Theorem

$$\mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}}) \leq q_{\mathsf{test}} imes \mathbf{Adv}^{\mathsf{ftg}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}} - 1)$$

Let A be a RoR-adversary

We build an adversary \mathcal{B} against the FtG security game:

- A random bit b is chosen by the FtG challenger
- B chooses a random index J
- Execute(C^i, S^j) and Send(U^i, m) queries are forwarded by \mathcal{B}
- The *j*-th Test(*U*^{*i*}) query:

FNS/CNRS/INRIA Cascade David Pointcheval

Theorem

$$\mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}}) \leq q_{\mathsf{test}} imes \mathbf{Adv}^{\mathsf{ftg}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}} - 1)$$

Let A be a RoR-adversary

We build an adversary ${\cal B}$ against the FtG security game:

- A random bit b is chosen by the FtG challenger
- B chooses a random index J
- Execute (C^i,S^j) and Send (U^i,m) queries are forwarded by ${\cal B}$
- The j-th Test(Uⁱ) query:
 - If j < J, one answers Reveal(U^i)
 - If j = J, one answers $Test(U^i)$
 - If j > J, one answers a random key

Theorem

$$\mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}}) \leq q_{\mathsf{test}} imes \mathbf{Adv}^{\mathsf{ftg}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}} - 1)$$

Let A be a RoR-adversary

We build an adversary ${\cal B}$ against the FtG security game:

- A random bit b is chosen by the FtG challenger
- B chooses a random index J
- Execute(C^i, S^j) and Send(U^i, m) queries are forwarded by \mathcal{B}
- The j-th Test(Uⁱ) query:
 - If j < J, one answers Reveal(U^i)
 - If j = J, one answers $Test(U^i)$
 - If j > J, one answers a random key
- FIOTH AS allswel D, D

Theorem

$$\mathbf{Adv}^\mathsf{ror}(t, q_\mathsf{execute}, q_\mathsf{send}, q_\mathsf{test}) \leq q_\mathsf{test} imes \mathbf{Adv}^\mathsf{ftg}(t, q_\mathsf{execute}, q_\mathsf{send}, q_\mathsf{test} - 1)$$

Let A be a RoR-adversary

We build an adversary ${\cal B}$ against the FtG security game:

- A random bit b is chosen by the FtG challenger
- B chooses a random index J
- Execute(C^i, S^j) and Send(U^i, m) queries are forwarded by \mathcal{B}
- The j-th Test(Uⁱ) query:
 - If j < J, one answers Reveal(U^i)
 - If j = J, one answers $\text{Test}(U^i)$
 - If j > J, one answers a random key

Real-or-Random vs. Find-then-Guess

Theorem

FNS/CNRS/INRIA Cascade

 $\mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}}) \leq q_{\mathsf{test}} \times \mathbf{Adv}^{\mathsf{ftg}}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}} - 1)$

Let A be a RoR-adversary

We build an adversary ${\cal B}$ against the FtG security game:

- A random bit b is chosen by the FtG challenger
- B chooses a random index J
- Execute(C^i, S^j) and Send(U^i, m) queries are forwarded by \mathcal{B}

David Pointcheval

- The *j*-th Test(*U*^{*i*}) query:
- If j < J, one answers Reveal(U^i)
 - If j = J, one answers $\mathsf{Test}(U^i)$
 - If j > J, one answers a random key

Real-or-Random vs. Find-then-Guess

This is a sequence of hybrid games G_J :

- G₁, with b Random, is the RoR game with Random
- G_{Gleet} , with b Real, is the RoR game with Real
- G_{J-1} with b Real is identical to G_J with b Random

$$\begin{aligned} |\Pr_{1}[b' = 1 \mid b = 1] - \Pr_{q_{test}}[b' = 1 \mid b = 0] &= \mathbf{Adv}^{ror}(\mathcal{A}) \\ |\Pr_{J}[b' = 1 \mid b = 0] - \Pr_{J}[b' = 1 \mid b = 1] &\leq \mathbf{Adv}^{ftg}(t, q_{execute}, q_{send}, J - 1) \\ &\leq \mathbf{Adv}^{ftg}(t, q_{execute}, q_{send}, q_{test} - 1) \end{aligned}$$

 $\mathbf{Adv}^\mathsf{ror}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}}) \leq q_{\mathsf{test}} \times \mathbf{Adv}^\mathsf{ftg}(t, q_{\mathsf{execute}}, q_{\mathsf{send}}, q_{\mathsf{test}} - 1)$

Outline

Game-based Security

Key Exchange

Authenticated Key Exchange

Explicit Authentication

Simulation-based Security

Encrypted Key Exchange

Conclusion

Client C	Server S

$$sk_S \stackrel{?}{=} sk_C \times Y$$

The Diffie-Hellman key-exchange, without authentication is insecure, because of the malleability of the CDH problem:

Client
$$C$$
 Server S
 $X \leftarrow \mathbb{Z}_q$
 $X \leftarrow g^X$
 $Sk_C \leftarrow Y^X$
 $Send(C, start)$
 $Send(S, Xg)$
 $Y \leftarrow \mathbb{Z}_q$
 $Y \leftarrow g^Y$
 $Send(C, Y)$
 $Test(C)$
 $Send(S, Xg)$
 $Y \leftarrow g^Y$
 $Sk_S \leftarrow (Xg)^Y$
 $Sk_S \leftarrow (Xg)^Y$

No authentication provided!

 $sk_{s} \stackrel{?}{=} sk_{c} \times Y$

Authenticated Key-Exchange

Allow two parties to establish a common secret in an authenticated way

Authenticated Key-Exchange

Allow two parties to establish a common secret in an authenticated way

- The session key should only be known to the involved parties
- The session key should be indistinguishable from a random string for others

Authenticated Key-Exchange

Allow two parties to establish a common secret in an authenticated way

- The session key should only be known to the involved parties
- The session key should be indistinguishable from a random string for others

If one assumes a PKI (*public-key infrastructure*), any user owns a pair of keys, certified by a CA.

By simply signing the flows, one gets an authenticated key-exchange $\mathbb{G}=\langle g \rangle$ a group, of prime order q, in which the **DDH** problem is hard

Alice Bob
$$x \overset{R}{\leftarrow} \mathbb{Z}_{q} \qquad y \overset{R}{\leftarrow} \mathbb{Z}_{q}$$

$$X = g^{x} \qquad \underbrace{Sign_{A}(B, X)}_{Sign_{B}(A, X, Y)} \qquad Y = g^{y}$$

$$Y^{x} = g^{xy} = X^{y}$$

If one assumes a PKI (*public-key infrastructure*), any user owns a pair of keys, certified by a CA.

By simply signing the flows, one gets an authenticated key-exchange:

 $\mathbb{G}=\langle g
angle$ a group, of prime order q, in which the **DDH** problem is hard

Alice Bob

$$x \overset{R}{\leftarrow} \mathbb{Z}_q$$
 $y \overset{R}{\leftarrow} \mathbb{Z}_q$
 $X = g^x \xrightarrow{Sign_B(A, X, Y)}$ $Y = g^y$
 $Y^x = g^{xy} = X^y$

If one assumes a PKI (*public-key infrastructure*), any user owns a pair of keys, certified by a CA.

By simply signing the flows, one gets an authenticated key-exchange: $\mathbb{G}=\langle g \rangle$ a group, of prime order q, in which the **DDH** problem is hard

Alice
$$x \overset{R}{\leftarrow} \mathbb{Z}_{q} \qquad y \overset{R}{\leftarrow} \mathbb{Z}_{q}$$

$$X = g^{x} \qquad \underbrace{Sign_{A}(B, X)}_{Sign_{B}(A, X, Y)} \qquad Y = g^{y}$$

$$Y^{x} = g^{xy} = X^{y}$$

If one assumes a PKI (public-key infrastructure), any user owns a pair of keys, certified by a CA.

By simply signing the flows, one gets an authenticated key-exchange: $\mathbb{G} = \langle q \rangle$ a group, of prime order q, in which the **DDH** problem is hard

Alice
$$x \stackrel{R}{\leftarrow} \mathbb{Z}_{q}$$

$$X = g^{x} \xrightarrow{Sign_{A}(B, X)} Y = g^{y}$$

$$X = g^{xy} = X^{y}$$

$$Y^{x} = g^{xy} = X^{y}$$

Theorem

The Signed Diffie-Hellman key exchange is secure under the **DDH** assumption and the security of the signature scheme

$$\begin{split} \mathbf{Adv}^{\mathsf{ror}}(t, q_{\mathit{user}}, q_{\mathit{execute}}, q_{\mathit{send}}, q_{\mathit{test}}) \\ & \leq q_{\mathit{user}} \times \mathbf{Succ}^{\mathsf{euf-cma}} \left(\begin{array}{c} t + (3q_{\mathit{execute}} + q_{\mathit{send}} + q_{\mathit{test}}) \tau_{\mathit{exp}}, \\ q_{\mathit{send}} + q_{\mathit{execute}} & (\mathit{signing queries}) \end{array} \right) \\ & + \mathbf{Adv}^{\mathsf{ddh}}(t + (7q_{\mathit{execute}} + 2q_{\mathit{send}} + 4q_{\mathit{test}}) \tau_{\mathit{exp}}) \end{split}$$

Let A be a RoR-adversary, we use it to break either the signature scheme or the **DDH**.

If the adversary can generate a flow in the name of a user, we can break the signature scheme:

- We are given a verification key for a user A
- Execute(A, B^i) or Execute(B^i, A): we use the signing oracle
- Send(A, m): we use the signing oracle
- Send(B, $Sign_A(m)$): if not signed by the signing oracle, we reject
- Test(U): as usual

If we reject a valid signature, this signature is a forgery: all the signatures are oracle generated but with probability less than

$$q_{user} imes \mathbf{Succ}^{\mathsf{euf}-\mathsf{cma}} \left(egin{array}{c} t + (3q_{\mathsf{execute}} + q_{\mathsf{send}} + q_{\mathsf{test}}) au_{\mathsf{exp}}, \ q_{\mathsf{send}} + q_{\mathsf{execute}} & (\mathsf{signing} \; \mathsf{queries}) \end{array}
ight)$$

If the adversary can generate a flow in the name of a user, we can break the signature scheme:

- We are given a verification key for a user A
- Execute(A, B^{j}) or Execute(B^{i}, A): we use the signing oracle
- Send(A, m): we use the signing oracle
- Send(B, $Sign_A(m)$): if not signed by the signing oracle, we reject
- Test(U): as usual

If we reject a valid signature, this signature is a forgery: all the signatures are oracle generated but with probability less than

$$q_{user} imes \mathbf{Succ}^{ ext{euf}- ext{cma}} \left(egin{array}{c} t + (3q_{ ext{execute}} + q_{ ext{send}} + q_{ ext{test}})_{ au_{ ext{exp}}}, \ q_{ ext{send}} + q_{ ext{execute}} & (ext{signing queries}) \end{array}
ight)$$

If the adversary can generate a flow in the name of a user, we can break the signature scheme:

- We are given a verification key for a user A
- Execute(A, B^{j}) or Execute(B^{i}, A): we use the signing oracle
- Send(A, m): we use the signing oracle
- Send(B, $Sign_A(m)$): if not signed by the signing oracle, we reject
- Test(U): as usual

If we reject a valid signature, this signature is a forgery: all the signatures are oracle generated but with probability less than

$$q_{user} imes \mathbf{Succ}^{\mathrm{euf-cma}} \left(egin{array}{l} t + (3q_{\mathit{execute}} + q_{\mathit{send}} + q_{\mathit{test}})_{\mathit{Texp}}, \\ q_{\mathit{send}} + q_{\mathit{execute}} & (\mathit{signing queries}) \end{array}
ight)$$

If the adversary can generate a flow in the name of a user, we can break the signature scheme:

- We are given a verification key for a user A
- Execute(A, B^{j}) or Execute(B^{i}, A): we use the signing oracle
- Send(A, m): we use the signing oracle
- Send(B, $Sign_A(m)$): if not signed by the signing oracle, we reject
- Test(U): as usual

If we reject a valid signature, this signature is a forgery: all the signatures are oracle generated but with probability less than

$$q_{user} imes \mathbf{Succ}^{\mathrm{euf-cma}} \left(egin{array}{c} t + (3q_{\mathrm{execute}} + q_{\mathrm{send}} + q_{\mathrm{test}})_{ au_{\mathrm{exp}}}, \ q_{\mathrm{send}} + q_{\mathrm{execute}} & (\mathrm{signing} \; \mathrm{queries}) \end{array}
ight)$$

If the adversary can generate a flow in the name of a user, we can break the signature scheme:

- We are given a verification key for a user A
- Execute(A, B^{j}) or Execute(B^{i}, A): we use the signing oracle
- Send(A, m): we use the signing oracle
- Send(B, $Sign_A(m)$): if not signed by the signing oracle, we reject
- Test(U): as usual

If we reject a valid signature, this signature is a forgery: all the signatures are oracle generated but with probability less than

$$q_{user} imes \mathbf{Succ}^{ ext{euf}- ext{cma}} \left(egin{array}{c} t + (3q_{ ext{execute}} + q_{ ext{send}} + q_{ ext{test}}) au_{ ext{exp}}, \ q_{ ext{send}} + q_{ ext{execute}} & (ext{signing queries}) \end{array}
ight)$$

If the adversary can generate a flow in the name of a user, we can break the signature scheme:

- We are given a verification key for a user A
- Execute(A, B^{j}) or Execute(B^{i}, A): we use the signing oracle
- Send(A, m): we use the signing oracle
- Send(B, $Sign_A(m)$): if not signed by the signing oracle, we reject
- Test(U): as usual

If we reject a valid signature, this signature is a forgery: all the signatures are oracle generated but with probability less than

$$q_{user} imes \mathbf{Succ}^{ ext{euf}- ext{cma}} \left(egin{array}{c} t + (3q_{ ext{execute}} + q_{ ext{send}} + q_{ ext{test}}) au_{ ext{exp}}, \ q_{ ext{send}} + q_{ ext{execute}} & (ext{signing queries}) \end{array}
ight)$$

If the adversary can generate a flow in the name of a user, we can break the signature scheme:

- We are given a verification key for a user A
- Execute(A, B^{i}) or Execute(B^{i}, A): we use the signing oracle
- Send(A, m): we use the signing oracle
- Send $(B, Sign_A(m))$: if not signed by the signing oracle, we reject
- Test(U): as usual

If we reject a valid signature, this signature is a forgery: all the signatures are oracle generated but with probability less than

$$q_{user} imes \mathbf{Succ}^{\mathsf{euf-cma}} \left(egin{array}{c} t + (3q_{\mathsf{execute}} + q_{\mathsf{send}} + q_{\mathsf{test}}) au_{\mathsf{exp}}, \ q_{\mathsf{send}} + q_{\mathsf{execute}} & (\mathit{signing queries}) \end{array}
ight)$$

Signed Diffie-Hellman: DDH

Given a triple $(X = g^x, Y = g^y, Z = g^z)$, we can derive a list of triples:

$$X_i = g^{x_i} = X \cdot g^{\alpha_i}$$
 $Z_{i,j} = g^{z_{i,j}} = Z^{\beta_{i,j}} \cdot X^{\gamma_{i,j}} \cdot Y^{\alpha_i \beta_{i,j}} \cdot g^{\alpha_i \gamma_{i,j}}$
 $Y_{i,j} = g^{y_{i,j}} = Y^{\beta_{i,j}} \cdot g^{\gamma_{i,j}}$

We thus have

$$x_i = x + \alpha_i$$
 $y_{i,j} = y\beta_{i,j} + \gamma_{i,j}$ $z_{i,j} = x_iy_i + (z - xy)\beta_{i,j}$

If (X, Y, Z) is a Diffie-Hellman triple (i.e., z = xy), all the triples are random and independent Diffie-Hellman triples

Signed Diffie-Hellman: DDH

Given a triple $(X = g^x, Y = g^y, Z = g^z)$, we can derive a list of triples:

$$X_i = g^{x_i} = X \cdot g^{\alpha_i}$$
 $Z_{i,j} = g^{z_{i,j}} = Z^{\beta_{i,j}} \cdot X^{\gamma_{i,j}} \cdot Y^{\alpha_i \beta_{i,j}} \cdot g^{\alpha_i \gamma_{i,j}}$
 $Y_{i,j} = g^{y_{i,j}} = Y^{\beta_{i,j}} \cdot g^{\gamma_{i,j}}$

We thus have

$$\mathbf{x}_i = \mathbf{x} + \alpha_i \quad \mathbf{y}_{i,j} = \mathbf{y}\beta_{i,j} + \gamma_{i,j} \quad \mathbf{z}_{i,j} = \mathbf{x}_i\mathbf{y}_i + (\mathbf{z} - \mathbf{x}\mathbf{y})\beta_{i,j}$$

If (X, Y, Z) is a Diffie-Hellman triple (i.e., z = xy), all the triples are random and independent Diffie-Hellman triples

Given a triple $(X = g^x, Y = g^y, Z = g^z)$, we can derive a list of triples:

$$X_i = g^{x_i} = X \cdot g^{\alpha_i}$$
 $Z_{i,j} = g^{z_{i,j}} \cdot Z^{\beta_{i,j}} \cdot Y^{\alpha_i \beta_{i,j}} \cdot g^{\alpha_i \gamma_{i,j}}$
 $Y_{i,j} = g^{y_{i,j}} = Y^{\beta_{i,j}} \cdot g^{\gamma_{i,j}}$

We thus have

$$x_i = x + \alpha_i$$
 $y_{i,j} = y\beta_{i,j} + \gamma_{i,j}$ $z_{i,j} = x_iy_i + (z - xy)\beta_{i,j}$

If (X, Y, Z) is a Diffie-Hellman triple (*i.e.*, z = xy), all the triples are random and independent Diffie-Hellman triples

Signed Diffie-Hellman and DDH

Given a triple $(X = g^x, Y = g^y, Z = g^z)$

$$x_i = x + \alpha_i$$
 $y_{i,j} = y\beta_{i,j} + \gamma_{i,j}$ $z_{i,j} = x_iy_i + (z - xy)\beta_{i,j}$

For any random list of triples $(X_i = g^{x_i}, Y_{i,j} = g^{y_{i,j}}, Z_{i,j} = g^{z_{i,j}})$, if $d = z - xy \neq 0$, we can define

$$\alpha_i = x_i - x$$
 $\beta_{i,j} = (z_{i,j} - x_i y_{i,j})/d$ $\gamma_{i,j} = y_{i,j} - y \beta_{i,j}$

If (X, Y, Z) is not a Diffie-Hellman triple (i.e., $z \neq xy$) all the triples are independent random triples

Given a triple $(X = g^x, Y = g^y, Z = g^z)$

$$x_i = x + \alpha_i$$
 $y_{i,j} = y\beta_{i,j} + \gamma_{i,j}$ $z_{i,j} = x_iy_i + (z - xy)\beta_{i,j}$

For any random list of triples $(X_i = g^{x_i}, Y_{i,j} = g^{y_{i,j}}, Z_{i,j} = g^{z_{i,j}})$, if $d = z - xy \neq 0$, we can define

$$\alpha_i = x_i - x$$
 $\beta_{i,j} = (z_{i,j} - x_i y_{i,j})/d$ $\gamma_{i,j} = y_{i,j} - y \beta_{i,j}$

If (X, Y, Z) is not a Diffie-Hellman triple (*i.e.*, $z \neq xy$), all the triples are independent random triples

We now assume that all the flows are oracle generated

- We are given a triple (X, Y, Z)
- Execute(A^i , B^j): we use a fresh X_i but $Y' = g^{y'}$ for a known y' We can compute Z'
- Send(A, Start): we use a fresh X_i
- Send(B, $Sign_A(B, X)$): if valid, we look for $X_i = X$, use a fresh $Y_{i,j}$ The associated key is $Z_{i,j}$
- Send(A, $Sign_B(A, X, Y)$): if valid, we look for $X_i = X$, $Y_{i,j} = Y$. The associated key is $Z_{i,j}$
- Test(U): the associated key is outputted

We now assume that all the flows are oracle generated

- We are given a triple (X, Y, Z)
- Execute(A^i , B^j): we use a fresh X_i but $Y' = g^{y'}$ for a known y' We can compute Z'
- Send(A, Start): we use a fresh X_i
- Send(B, $Sign_A(B, X)$): if valid, we look for $X_i = X$, use a fresh $Y_{i,j}$ The associated key is $Z_{i,j}$
- Send(A, $Sign_B(A, X, Y)$): if valid, we look for $X_i = X$, $Y_{i,j} = Y$. The associated key is $Z_{i,j}$
- Test(U): the associated key is outputted

We now assume that all the flows are oracle generated

- We are given a triple (X, Y, Z)
- Execute(A^i , B^j): we use a fresh X_i but $Y' = g^{y'}$ for a known y' We can compute Z'
- Send(A, Start): we use a fresh X_i
- Send(B, $Sign_A(B, X)$): if valid, we look for $X_i = X$, use a fresh $Y_{i,j}$ The associated key is $Z_{i,j}$
- Send(A, $Sign_B(A, X, Y)$): if valid, we look for $X_i = X$, $Y_{i,j} = Y$. The associated key is $Z_{i,j}$
- Test(U): the associated key is outputted

We now assume that all the flows are oracle generated

- We are given a triple (X, Y, Z)
- Execute(A^i , B^j): we use a fresh X_i but $Y' = g^{y'}$ for a known y' We can compute Z'
- Send(A, Start): we use a fresh X_i
- Send(B, $Sign_A(B, X)$): if valid, we look for $X_i = X$, use a fresh $Y_{i,j}$ The associated key is $Z_{i,j}$
- Send(A, $Sign_B(A, X, Y)$): if valid, we look for $X_i = X$, $Y_{i,j} = Y$. The associated key is $Z_{i,j}$
- Test(U): the associated key is outputted

We now assume that all the flows are oracle generated

- We are given a triple (X, Y, Z)
- Execute(A^i, B^j): we use a fresh X_i but $Y' = g^{y'}$ for a known y' We can compute Z'
- Send(A, Start): we use a fresh X_i
- Send(B, $Sign_A(B, X)$): if valid, we look for $X_i = X$, use a fresh $Y_{i,j}$ The associated key is $Z_{i,j}$
- Send(A, Sign_B(A, X, Y)): if valid, we look for X_i = X, Y_{i,j} = Y.
 The associated key is Z_{i,j}
- Test(U): the associated key is outputted

We now assume that all the flows are oracle generated

- We are given a triple (X, Y, Z)
- Execute(A^i , B^j): we use a fresh X_i but $Y' = g^{y'}$ for a known y' We can compute Z'
- Send(A, Start): we use a fresh X_i
- Send(B, $Sign_A(B, X)$): if valid, we look for $X_i = X$, use a fresh $Y_{i,j}$ The associated key is $Z_{i,j}$
- Send(A, Sign_B(A, X, Y)): if valid, we look for X_i = X, Y_{i,j} = Y.
 The associated key is Z_{i,j}
- Test(U): the associated key is outputted

Signed Diffie-Hellman: DDH

If the triple (X, Y, Z) is a DDH triple, we are in the Real case since all the keys are correctly computed

If the triple (X, Y, Z) is not a DDH triple, we are in the Random case since all the keys are independent random values

Signed Diffie-Hellman: DDH

If the triple (X,Y,Z) is a DDH triple, we are in the Real case since all the keys are correctly computed

If the triple (X, Y, Z) is not a DDH triple, we are in the Random case since all the keys are independent random values

Authentication Techniques: Symmetric

Users share a common secret k of high entropy A MAC can be used for authenticating the flows.

Alice
$$x \overset{R}{\leftarrow} \mathbb{Z}_{q}$$

$$X = g^{x}$$

$$Y^{x} = g^{xy} = X^{y}$$

$$Y = g^{y}$$

The same security result holds

Authentication Techniques: Symmetric

Users share a common secret k of high entropy A MAC can be used for authenticating the flows.

Alice
$$x \stackrel{R}{\leftarrow} \mathbb{Z}_{q}$$

$$X = g^{x}$$

$$\stackrel{MAC_{k}(A, B, X)}{\leftarrow}$$

$$\stackrel{MAC_{k}(B, A, X, Y)}{\leftarrow}$$

$$Y^{x} = g^{xy} = X^{y}$$

$$Y = g^{y}$$

The same security result holds

Authentication Techniques: Symmetric

Users share a common secret k of high entropy A MAC can be used for authenticating the flows.

Alice
$$x \stackrel{R}{\leftarrow} \mathbb{Z}_{q}$$

$$X = g^{x}$$

$$\xrightarrow{MAC_{k}(A, B, X)}$$

$$\xrightarrow{MAC_{k}(B, A, X, Y)}$$

$$Y^{x} = g^{xy} = X^{y}$$

$$Y = g^{y}$$

The same security result holds

Realistic: Real-life applications usually rely on weak passwords

Convenient to use: Users do not need to store a long secret

Subject to on-line dictionary attacks:

Non-negligible probability of success due to the small dictionary

Realistic: Real-life applications usually rely on weak passwords

Convenient to use: Users do not need to store a long secret

Subject to on-line dictionary attacks:

Non-negligible probability of success due to the small dictionary

Realistic: Real-life applications usually rely on weak passwords

Convenient to use: Users do not need to store a long secret

Subject to on-line dictionary attacks:

Non-negligible probability of success due to the small dictionary

- the adversary chooses a password pw
- tries to authenticate to the server
- in case of failure, it starts over

Realistic: Real-life applications usually rely on weak passwords

Convenient to use: Users do not need to store a long secret

Subject to on-line dictionary attacks:

Non-negligible probability of success due to the small dictionary

- the adversary chooses a password pw
- · tries to authenticate to the server
- in case of failure, it starts over

Realistic: Real-life applications usually rely on weak passwords

Convenient to use: Users do not need to store a long secret

Subject to on-line dictionary attacks:

Non-negligible probability of success due to the small dictionary

- · the adversary chooses a password pw
- · tries to authenticate to the server
- in case of failure, it starts over

Find-then-Guess vs. Real-or-Random

Definition

A PAKE scheme is Semantically Secure if the best attack is the *online dictionary attack*:

$$\mathbf{Adv}^{\mathsf{ftg}}(t) \leq q_{\mathsf{send}}/|D| + \mathsf{negl}()$$

or even better

$$\mathbf{Adv}^{\mathsf{ror}}(t) \leq q_{\mathsf{send}}/|D| + \mathsf{negl}()$$

We cannot get better than the former, but we can expect the latter.

Find-then-Guess vs. Real-or-Random

Definition

A PAKE scheme is Semantically Secure if the best attack is the online dictionary attack:

$$\mathbf{Adv}^{\mathsf{ftg}}(t) \leq q_{\mathsf{send}}/|D| + \mathsf{negl}()$$

or even better

$$\mathbf{Adv}^{\mathsf{ror}}(t) \leq q_{\mathsf{send}}/|D| + \mathsf{negl}()$$

Definition

A PAKE scheme is Semantically Secure if the best attack is the *online dictionary attack*:

$$\mathbf{Adv}^{\mathsf{ftg}}(t) \leq q_{\mathsf{send}}/|\mathcal{D}| + \mathsf{negl}()$$

or even better

$$\mathbf{Adv}^{\mathsf{ror}}(t) \leq q_{\mathsf{send}}/|D| + \mathsf{negl}()$$

We cannot get better than the former, but we can expect the latter.

Outline

Game-based Security

Key Exchange

Authenticated Key Exchange

Explicit Authentication

Simulation-based Security

Encrypted Key Exchange

Conclusion

The Semantic Security tells that the session key should be indistinguishable from a random string for others

What about the case where the key is random for everybody and then, no key is shared at all!

Client Authentication

If the server accepts a key, then a client has the material to compute the same key.

Mutual Authentication

The Semantic Security tells that the session key should be indistinguishable from a random string for others

What about the case where the key is random for everybody, and then, no key is shared at all!

Client Authentication

If the server accepts a key, then a client has the material to compute the same key.

Mutual Authentication

The Semantic Security tells that the session key should be indistinguishable from a random string for others

What about the case where the key is random for everybody, and then, no key is shared at all!

Client Authentication

If the server accepts a key, then a client has the material to compute the same key.

Mutual Authentication

The Semantic Security tells that the session key should be indistinguishable from a random string for others

What about the case where the key is random for everybody, and then, no key is shared at all!

Client Authentication

If the server accepts a key, then a client has the material to compute the same key.

Mutual Authentication

The session-ID should determine the session-key (not in a computable way): this formally determines partnership.

Definition (Client Authentication)

The attacker wins the client authentication game if a server instance terminates, without exactly one accepting client partner.

Flags

the flag Accept means that

the player has enough material to compute the I

The session-ID should determine the session-key (not in a computable way): this formally determines partnership.

Definition (Client Authentication)

The attacker wins the client authentication game if a server instance terminates, without exactly one accepting client partner.

Flags

The session-ID should determine the session-key (not in a computable way): this formally determines partnership.

Definition (Client Authentication)

The attacker wins the client authentication game if a server instance terminates, without exactly one accepting client partner.

Flags

- the flag Accept means that the player has enough material to compute the key
- the flag Terminate means that the player thinks that its partners has accepted

The session-ID should determine the session-key (not in a computable way): this formally determines partnership.

Definition (Client Authentication)

The attacker wins the client authentication game if a server instance terminates, without exactly one accepting client partner.

Flags

- the flag Accept means that the player has enough material to compute the key
- the flag Terminate means that the player thinks that its partners has accepted

Corruption

In the previous model, all the players are honest, and the adversary is not registered (no signing keys)

Wa can add a Corrupt query, which gives the long-term secret to the adversary

language was even in the current session means) are even sed in the future second in the futu

long-term secrets (authentication means) are exposed in the future

Corruption

In the previous model, all the players are honest, and the adversary is not registered (no signing keys)

Wa can add a Corrupt query, which gives the long-term secret to the adversary

Forward-Secrecy

The security of the current session key is preserved even if the long-term secrets (authentication means) are exposed in the future

Simulation-based Security

Outline

Game-based Security

Simulation-based Security

Simulation-based Security

Universal Composability

Password-based Key Exchange

Encrypted Key Exchange

Conclusion

Ideal Functionality - Real Protocol

Real Protocol

The real protocol \mathcal{P} is run by players P_1, \ldots, P_n , with their own private inputs x_1, \ldots, x_n . After interactions, they get outputs y_1, \ldots, y_n .

Ideal Functionality

An ideal function \mathcal{F} is defined:

- it takes as input x_1, \ldots, x_n , the private information of each players,
- and outputs y_1, \ldots, y_n , given privately to each player.

The players get their results, without interacting: this is a "by definition" secure primitive.

Simulator

For any environment \mathcal{Z} , for any adversary \mathcal{A} , there exists a simulator \mathcal{S} so that, the view of \mathcal{Z} is the same for

- ${\cal A}$ attacking the real protocol
- ullet ${\cal S}$ attacking the ideal functionality

- for any adversary A
- there exists a simulator $\mathcal S$
- such that no environment $\mathcal Z$ can make the difference between the ideal process and the protocol execution

- for any adversary \mathcal{A}
- there exists a simulator S
- such that no environment $\mathcal Z$ can make the difference between the ideal process and the protocol execution

Emulation

Protocol \mathcal{P} emulates the ideal process for \mathcal{F} if

- for any adversary A
- there exists a simulator S
- such that for every environment \mathcal{Z}

the views are indistinguishable:

$$\forall \mathcal{A}, \exists \mathcal{S}, \forall \mathcal{Z}, \textit{EXEC}_{\mathcal{F}, \mathcal{S}, \mathcal{Z}} \approx \textit{EXEC}_{\mathcal{P}, \mathcal{A}, \mathcal{Z}}$$

Equivalent Formulations

$$\forall \mathcal{A}, \exists \mathcal{S}, \forall \mathcal{Z}, \textit{EXEC}_{\mathcal{F}, \mathcal{S}, \mathcal{Z}} \approx \textit{EXEC}_{\mathcal{P}, \mathcal{A}, \mathcal{Z}}$$

$$\forall \mathcal{A}, \forall \mathcal{Z}, \exists \mathcal{S}, \textit{EXEC}_{\mathcal{F},\mathcal{S},\mathcal{Z}} \approx \textit{EXEC}_{\mathcal{P},\mathcal{A},\mathcal{Z}}$$

$$\exists \mathcal{S}, orall \mathcal{Z}, extit{EXEC}_{\mathcal{F},\mathcal{S},\mathcal{Z}} pprox extit{EXEC}_{\mathcal{P},\mathcal{A}_d,\mathcal{Z}}$$

where A_d is the dummy adversary: under the control of the environment (forwards every input/output).

Equivalent Formulations

$$\forall \mathcal{A}, \exists \mathcal{S}, \forall \mathcal{Z}, \textit{EXEC}_{\mathcal{F}, \mathcal{S}, \mathcal{Z}} \approx \textit{EXEC}_{\mathcal{P}, \mathcal{A}, \mathcal{Z}}$$

$$\forall \mathcal{A}, \forall \mathcal{Z}, \exists \mathcal{S}, \textit{EXEC}_{\mathcal{F}, \mathcal{S}, \mathcal{Z}} \approx \textit{EXEC}_{\mathcal{P}, \mathcal{A}, \mathcal{Z}}$$

$$\exists \mathcal{S}, \forall \mathcal{Z}, \textit{EXEC}_{\mathcal{F},\mathcal{S},\mathcal{Z}} pprox \textit{EXEC}_{\mathcal{P},\mathcal{A}_{d},\mathcal{Z}}$$

where A_d is the dummy adversary: under the control of the environment (forwards every input/output).

$$\forall \mathcal{A}, \exists \mathcal{S}, \forall \mathcal{Z}, \textit{EXEC}_{\mathcal{F}, \mathcal{S}, \mathcal{Z}} \approx \textit{EXEC}_{\mathcal{P}, \mathcal{A}, \mathcal{Z}}$$

$$\forall \mathcal{A}, \forall \mathcal{Z}, \exists \mathcal{S}, \textit{EXEC}_{\mathcal{F},\mathcal{S},\mathcal{Z}} \approx \textit{EXEC}_{\mathcal{P},\mathcal{A},\mathcal{Z}}$$

$$\exists \mathcal{S}, \forall \mathcal{Z}, \textit{EXEC}_{\mathcal{F}, \mathcal{S}, \mathcal{Z}} \approx \textit{EXEC}_{\mathcal{P}, \mathcal{A}_d, \mathcal{Z}}$$

where A_d is the dummy adversary: under the control of the environment (forwards every input/output).

$$\forall \mathcal{A}, \exists \mathcal{S}, \forall \mathcal{Z}, \textit{EXEC}_{\mathcal{F}, \mathcal{S}, \mathcal{Z}} \approx \textit{EXEC}_{\mathcal{D}_{-\mathcal{A}, \mathcal{Z}}}$$

$$\forall \mathcal{A}, \forall \mathcal{Z}, \exists \mathcal{S}, \textit{EXEC}_{\mathcal{F},\mathcal{S},\mathcal{Z}} \approx \textit{EXEC}_{\mathcal{P},\mathcal{A},\mathcal{Z}}$$

$$\exists \mathcal{S}, \forall \mathcal{Z}, \textit{EXEC}_{\mathcal{F}, \mathcal{S}, \mathcal{Z}} \approx \textit{EXEC}_{\mathcal{P}, \mathcal{A}_d, \mathcal{Z}}$$

where A_d is the dummy adversary: under the control of the environment (forwards every input/output).

Security

- Everything that the adversary $\mathcal A$ can do against $\mathcal P$ can be done by the simulator $\mathcal S$ against $\mathcal F$
- But the ideal functionality $\mathcal F$ is perfectly secure: nothing can be done against $\mathcal F$

Then, nothing can be done against \mathcal{P}

Game-based Security

Simulation-based Security

Simulation-based Security

Universal Composability

Password-based Key Exchange

Encrypted Key Exchange

Conclusion

Implications of UC

- Divide a given task F into sub-tasks F₁,...,F_n
 F is equivalent to F₁ ∪ F₂ ∪ F₃ ∪ F₄
- Construct protocols π_1, \ldots, π_n emulating $\mathcal{F}_1, \ldots, \mathcal{F}_n$
- Combine them into a protocol π
- Composition theorem: π emulates \mathcal{F}

Implications of UC

- Divide a given task F into sub-tasks F₁,...,F_n
 F is equivalent to F₁ ∪ F₂ ∪ F₃ ∪ F₄
- Construct protocols π_1, \ldots, π_n emulating $\mathcal{F}_1, \ldots, \mathcal{F}_n$
- Combine them into a protocol π
- Composition theorem: π emulates \mathcal{F}

Implications of UC

- Divide a given task F into sub-tasks F₁,...,F_n
 F is equivalent to F₁ ∪ F₂ ∪ F₃ ∪ F₄
- Construct protocols π_1, \ldots, π_n emulating $\mathcal{F}_1, \ldots, \mathcal{F}_n$
- Combine them into a protocol π
- Composition theorem: π emulates $\mathcal F$

- Divide a given task F into sub-tasks F₁,...,F_n
 F is equivalent to F₁ ∪ F₂ ∪ F₃ ∪ F₄
- Construct protocols π_1, \ldots, π_n emulating $\mathcal{F}_1, \ldots, \mathcal{F}_n$
- Combine them into a protocol π
- Composition theorem: π emulates $\mathcal F$

Can design and analyze protocols in a modular way:

- Divide a given task F into sub-tasks F₁,...,F_n
 F is equivalent to F₁ ∪ F₂ ∪ F₃ ∪ F₄
- Construct protocols π_1, \ldots, π_n emulating $\mathcal{F}_1, \ldots, \mathcal{F}_n$
- Combine them into a protocol π
- Composition theorem: π emulates $\mathcal F$

Can be done concurrently and in parallel

Composition of Ideal Functionalities

Composition of Real Protocols

46/62

Theorem (Universal Composition)

If each ideal functionality \mathcal{F}_i is emulated by π_i , then the composition of the π_i 's emulates the composition of the \mathcal{F}_i 's

Outline

Game-based Security

Simulation-based Security

Password-based Key Exchange

Encrypted Key Exchange

- no corrupted players, same passwords
 ⇒ same key sk uniformly chosen
- no corrupted players, different passwords
 independent keys uniformly chosen
- a corrupted player
 ⇒ key chosen by the adversary
- correct password guess
 ⇒ key chosen by the adversary
- incorrect password guess
 ⇒ independent keys uniformly chosen

- no corrupted players, same passwords
 ⇒ same key sk uniformly chosen
- no corrupted players, different passwords
 ⇒ independent keys uniformly chosen
- a corrupted player
 ⇒ key chosen by the adversary
- correct password guess
 ⇒ key chosen by the adversary
- incorrect password guess
 ⇒ independent keys uniformly chosen

- no corrupted players, same passwords
 ⇒ same key sk uniformly chosen
- no corrupted players, different passwords
 independent keys uniformly chosen
- a corrupted player
 - \Rightarrow key chosen by the adversary
- correct password guess
 ⇒ key chosen by the adversary
- incorrect password guess
 - ⇒ independent keys uniformly chosen

- no corrupted players, same passwords
 - \Rightarrow same key sk uniformly chosen
- no corrupted players, different passwords
 - ⇒ independent keys uniformly chosen
- · a corrupted player
 - ⇒ key chosen by the adversary
- · correct password guess
 - ⇒ key chosen by the adversary
- incorrect password guess
 - ⇒ independent keys uniformly chosen

- no corrupted players, same passwords
 - \Rightarrow same key *sk* uniformly chosen
- · no corrupted players, different passwords
 - ⇒ independent keys uniformly chosen
- · a corrupted player
 - ⇒ key chosen by the adversary
- correct password guess
 - ⇒ key chosen by the adversary
- incorrect password guess
 - ⇒ independent keys uniformly chosen

Queries

- NewSession = a player initializes the protocol
 The passwords are chosen by the environment.
- TestPwd = A attempts to guess a password (one per session)
 In case of correct guess, the adversary is allowed to choose the session key.
 - ⇒ models the on-line dictionary attacks
- NewKey = A asks for the key sk to be delivered to a player
 The key sk is ignored except in case of corruption or correct password guess.

Queries

- NewSession = a player initializes the protocol
 The passwords are chosen by the environment.
- TestPwd = A attempts to guess a password (one per session)
 In case of correct guess, the adversary is allowed to choose the session key.
 - ⇒ models the on-line dictionary attacks
- NewKey = A asks for the key sk to be delivered to a player
 The key sk is ignored except in case of corruption or correct password guess.

Queries

- NewSession = a player initializes the protocol
 The passwords are chosen by the environment.
- TestPwd = A attempts to guess a password (one per session)
 In case of correct guess, the adversary is allowed to choose the session key.
 - ⇒ models the on-line dictionary attacks
- NewKey = A asks for the key sk to be delivered to a player
 The key sk is ignored except in case of corruption or correct password guess.

Improvements

- No assumption on the relations between the passwords of the different players (can be different, identical, or the same for different protocols)
- It provides forward secrecy, since corruption of players is available

Improvements

- No assumption on the relations between the passwords of the different players (can be different, identical, or the same for different protocols)
- It provides forward secrecy, since corruption of players is available

Encrypted Key Exchange

Outline

Game-based Security

Simulation-based Security

Encrypted Key Exchange

Description

Semantic Security

Simulation-based Security

Conclusion

- The arithmetic is in a finite cyclic group $\mathbb{G}=\langle g
 angle$
- of order a ℓ -bit prime number q
- Hash functions

$$\mathcal{H}_0: \{0,1\}^\star \to \{0,1\}^{\ell_0} \qquad \mathcal{H}_1: \{0,1\}^\star \to \{0,1\}^{\ell_1}$$

- A block cipher $(\mathcal{E}_k, \mathcal{D}_k)$ where $k \in \mathsf{Password}$, onto \mathbb{G} .
- $\bar{\mathbb{G}} = \mathbb{G} \setminus \{1\}$, thus $\bar{\mathbb{G}} = \{g^x \mid x \in \mathbb{Z}_q^*\}$.

Client and server initially share a low-quality password *pw*, uniformly drawn from the dictionary Password.

- The arithmetic is in a finite cyclic group $\mathbb{G}=\langle g
 angle$
- of order a ℓ -bit prime number q
- Hash functions

$$\mathcal{H}_0: \{0,1\}^{\star} \to \{0,1\}^{\ell_0} \qquad \mathcal{H}_1: \{0,1\}^{\star} \to \{0,1\}^{\ell_1}$$

- A block cipher $(\mathcal{E}_k, \mathcal{D}_k)$ where $k \in \mathsf{Password}$, onto \mathbb{G} .
- $\bar{\mathbb{G}} = \mathbb{G} \setminus \{1\}$, thus $\bar{\mathbb{G}} = \{g^x \mid x \in \mathbb{Z}_{\sigma}^*\}$.

Client and server initially share a low-quality password *pw*, uniformly drawn from the dictionary Password.

- The arithmetic is in a finite cyclic group $\mathbb{G}=\langle g
 angle$
- of order a ℓ -bit prime number q
- · Hash functions

$$\mathcal{H}_0: \{0,1\}^\star \to \{0,1\}^{\ell_0} \qquad \mathcal{H}_1: \{0,1\}^\star \to \{0,1\}^{\ell_1}$$

- A block cipher $(\mathcal{E}_k, \mathcal{D}_k)$ where $k \in \mathsf{Password}$, onto \mathbb{G} .
- $\bar{\mathbb{G}} = \mathbb{G} \setminus \{1\}$, thus $\bar{\mathbb{G}} = \{g^x \mid x \in \mathbb{Z}_{\sigma}^*\}$.

Client and server initially share a low-quality password *pw*, uniformly drawn from the dictionary Password.

- The arithmetic is in a finite cyclic group $\mathbb{G}=\langle g
 angle$
- of order a ℓ -bit prime number q
- · Hash functions

$$\mathcal{H}_0: \{0,1\}^\star \to \{0,1\}^{\ell_0} \qquad \mathcal{H}_1: \{0,1\}^\star \to \{0,1\}^{\ell_1}$$

- A block cipher $(\mathcal{E}_k, \mathcal{D}_k)$ where $k \in \mathsf{Password}$, onto \mathbb{G} .
- $\bar{\mathbb{G}} = \mathbb{G} \setminus \{1\}$, thus $\bar{\mathbb{G}} = \{g^x \mid x \in \mathbb{Z}_{\sigma}^*\}$.

Client and server initially share a low-quality password *pw*, uniformly drawn from the dictionary Password.

- The arithmetic is in a finite cyclic group $\mathbb{G}=\langle g
 angle$
- of order a ℓ -bit prime number q
- · Hash functions

$$\mathcal{H}_0: \{0,1\}^\star \to \{0,1\}^{\ell_0} \qquad \mathcal{H}_1: \{0,1\}^\star \to \{0,1\}^{\ell_1}$$

- A block cipher $(\mathcal{E}_k, \mathcal{D}_k)$ where $k \in \mathsf{Password}$, onto \mathbb{G} .
- $\bar{\mathbb{G}} = \mathbb{G} \setminus \{1\}$, thus $\bar{\mathbb{G}} = \{g^{x} \mid x \in \mathbb{Z}_q^{\star}\}$.

Client and server initially share a low-quality password *pw*, uniformly drawn from the dictionary Password.

- The arithmetic is in a finite cyclic group $\mathbb{G}=\langle g
 angle$
- of order a ℓ-bit prime number q
- · Hash functions

$$\mathcal{H}_0: \{0,1\}^\star \to \{0,1\}^{\ell_0} \qquad \mathcal{H}_1: \{0,1\}^\star \to \{0,1\}^{\ell_1}$$

- A block cipher $(\mathcal{E}_k, \mathcal{D}_k)$ where $k \in \mathsf{Password}$, onto \mathbb{G} .
- $\bar{\mathbb{G}} = \mathbb{G} \setminus \{1\}$, thus $\bar{\mathbb{G}} = \{g^{x} \mid x \in \mathbb{Z}_q^{\star}\}$.

Client and server initially share a low-quality password *pw*, uniformly drawn from the dictionary Password.

- The arithmetic is in a finite cyclic group $\mathbb{G}=\langle g
 angle$
- of order a ℓ-bit prime number q
- · Hash functions

$$\mathcal{H}_0: \{0,1\}^\star \to \{0,1\}^{\ell_0} \qquad \mathcal{H}_1: \{0,1\}^\star \to \{0,1\}^{\ell_1}$$

- A block cipher $(\mathcal{E}_k, \mathcal{D}_k)$ where $k \in \mathsf{Password}$, onto \mathbb{G} .
- $\bar{\mathbb{G}} = \mathbb{G} \setminus \{1\}$, thus $\bar{\mathbb{G}} = \{g^x \mid x \in \mathbb{Z}_q^{\star}\}$.

Client and server initially share a low-quality password *pw*, uniformly drawn from the dictionary Password.

- The arithmetic is in a finite cyclic group $\mathbb{G}=\langle g
 angle$
- of order a ℓ-bit prime number q
- · Hash functions

$$\mathcal{H}_0: \{0,1\}^\star \to \{0,1\}^{\ell_0} \qquad \mathcal{H}_1: \{0,1\}^\star \to \{0,1\}^{\ell_1}$$

- A block cipher $(\mathcal{E}_k, \mathcal{D}_k)$ where $k \in \mathsf{Password}$, onto \mathbb{G} .
- $\bar{\mathbb{G}} = \mathbb{G} \setminus \{1\}$, thus $\bar{\mathbb{G}} = \{g^{x} \mid x \in \mathbb{Z}_q^{\star}\}$.

Client and server initially share a low-quality password *pw*, uniformly drawn from the dictionary Password.

(One) Encrypted Key Exchange

Outline

Game-based Security

Simulation-based Security

Encrypted Key Exchange

Description

Semantic Security

Simulation-based Security

Conclusion

Theorem

Let \mathcal{A} be an adversary against the RoR security within a time bound t, with less than q_s interactions with the parties and q_p passive eavesdroppings, and, asking q_h hash-queries and q_e encryption/decryption queries. Then we have

$$\begin{array}{lcl} \mathsf{Adv}^{ror}(\mathcal{A}) & \leq & 3 \times \frac{q_s}{N} + 8q_h \times \mathsf{Succ}^{\mathsf{cdh}}_{\mathbb{G}}(t') \\ & & + \frac{(2q_e + 3q_s + 3q_p)^2}{q - 1} + \frac{q_h^2 + 4q_s}{2^{\ell_1}}. \end{array}$$

where $t' \leq t + (q_s + q_p + q_e + 1) \cdot \tau_e$, with τ_e the computational time for an exponentiation in \mathbb{G} .

Outline

Game-based Security

Simulation-based Security

Encrypted Key Exchange

Description

Semantic Security

Simulation-based Security

Conclusion

(One) Encrypted Key Exchange

Client U

Server S

$$x \overset{\mathcal{H}}{\leftarrow} \mathbb{Z}_{q}^{\star} \qquad \qquad y \overset{\mathcal{H}}{\leftarrow} \mathbb{Z}_{q}^{\star}$$

$$(U1) \ X \leftarrow g^{x} \qquad \qquad \qquad U,X \qquad (S2) \ Y \leftarrow g^{y} \qquad \qquad Y^{*} \leftarrow \mathcal{E}_{ssid\parallel pw}(Y)$$

$$(U3) \ Y = \mathcal{D}_{ssid\parallel pw}(Y^{*}) \qquad \qquad \overset{S,Y^{*}}{\leftarrow} \qquad K_{S} \leftarrow X^{y}$$

$$K_{U} \leftarrow Y^{x} \qquad \qquad Auth \leftarrow \mathcal{H}_{1}(ssid\parallel U\parallel S\parallel X\parallel Y\parallel K_{U}) \qquad \qquad K_{U} \leftarrow \mathcal{H}_{0}(ssid\parallel U\parallel S\parallel X\parallel Y\parallel K_{U})$$

$$completed \qquad \qquad \xrightarrow{Auth} \qquad (S4) \text{ if } (Auth = \mathcal{H}_{1}(ssid\parallel U\parallel S\parallel X\parallel Y\parallel K_{S})) \qquad \qquad \text{then } completed$$

$$sk_{S} \leftarrow \mathcal{H}_{0}(ssid\parallel U\parallel S\parallel X\parallel Y\parallel K_{S})$$

else error

Theorem

The above protocol securely realizes \mathcal{F} in the random oracle and ideal cipher models (in the presence of adaptive adversaries).

In order to show that the protocol UC-realizes the functionality \mathcal{F} , we need to show that for all environments and all adversaries, we can construct a simulator such that the interactions,

- between the environment, the players (say, Alice and Bob) and the adversary (the real world);
- and between the environment, the ideal functionality and the simulator (the ideal world)

are indistinguishable for the environment.

Security Proof

- G₀: real game
- G_1 : S simulates the ideal cipher and the random oracle
- G₂: we get rid off such a situation in which the adversary wins by chance
- G₃: passive case, in which no corruption occurs before the end of the protocol
- G₄: complete simulation of the client, whatever corruption may occur
- **G**₅: simulation of the server, in the last step of the protocol
- G₆: complete simulation of the server

These games are sequential and built on each other

Conclusion

Outline

Game-based Security

Simulation-based Security

Encrypted Key Exchange

Conclusion

Conclusion

Simulation-based Methodology:

Conclusion

Simulation-based Methodology:

Universal Composability introduced by

- [Canetti FOCS 2001]
- allows to define the security properties of one functionality
- · a unique proof is enough
- the protocol can then be composed