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Key-Exchange Protocols

A fundamental problem in cryptography:
Enable secure communication over insecure channels

A classical scenario: Users encrypt and authenticate their messages
using a common secret key

How to establish such a common secret?
— Key-exchange protocols
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Diffie-Hellman Key-Exchange

G = (g) a group, of prime order q, in which the CDH problem is hard
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G = (g) a group, of prime order q, in which the CDH problem is hard

Alice Bob
x & Lq y ik Zq
X =g —>X

(L Y:gy

Allows two parties to establish a common secret:

« The session key should only be known to the involved parties

« The session key should be indistinguishable

from a random string for others
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Communication Model
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(C' for the client, and S/ for the server)
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 Users can participate in several executions of the protocol
in parallel: Each user’s instance is associated to an oracle
(C' for the client, and S/ for the server)

« The adversary controls all the communications:
It can create, modify, transfer, alter, delete messages

This is modeled by various oracle accesses given to oracles

« to let it choose when and what to transmit,

- but also the leakage of information
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Security Game: Oracle Accesses

The adversary has access to the oracles:
- Execute(C', )
A gets the transcript of an execution between C and S
It models passive attacks (eavesdropping)
- Send(U', m)
A sends the message m to the instance U’
It models active attacks against U’
- Reveal(U')
A gets the session key established by U’ and its partner
It models the leakage of the session key, due to a misuse
. Test(U) a random bit b is chosen.

« If b= 0, A gets the session key (Reveal(U"))
- If b=1, it gets a random key

Constraint: no Test-query to a partner of a Reveal-query
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Security Game: Some Terminology

Partnership

« two instances are partners
if they have the same sid (session identity)

- the sid is set in such a way that two different sessions
have the same sid with negligible probability

Usually, sid is the (partial) transcript of the protocol
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Partnership

« two instances are partners
if they have the same sid (session identity)

- the sid is set in such a way that two different sessions
have the same sid with negligible probability

Usually, sid is the (partial) transcript of the protocol

Freshness

- a user’s instance is fresh if a key has been established,
and it is not trivially known to the adversary
(a Reveal query has been asked to this instance or its partner)
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Privacy of the key: modeled by a find-then-guess security game
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Security Game: Find-then-Guess

Privacy of the key: modeled by a find-then-guess security game

A has to guess the bit b involved in the Test-query:
is the obtained key real or random?

Find Guess
Send Send
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Semantic Security: Find-then-Guess

The semantic security is characterized by
Adv™9(A) = 2 x Suce(A) — 1
Adetg(ta Qexecute Qsend Qreveal) = max{Adetg(.A)}

« where the adversary wins if it correctly guesses the bit b involved
in the Test-query

* Qexe> Jsend @Nd Qreveq are the numbers of Execute, Send and
Reveal-queries resp.
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« where the adversary wins if it correctly guesses the bit b involved
in the Test-query

* Qexe> Jsend @Nd Qreveq are the numbers of Execute, Send and
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Definition
A Key Exchange Scheme is if

Adv"(t) < negl()
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Privacy of the key: modeled by a real-or-random security game
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Semantic Security: Real-or-Random

The semantic security is characterized by
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Real-or-Random vs. Find-then-Guess

Theorem

Adv"9(t, Qexecute, Gsend, Qrevear) < 2x AdV"® (t, Qexecute; Gsend: Greveal+1)

Let A be a FtG-adversary
We build an adversary 55 against the RoR security game:

« A random bit b is chosen by the RoR challenger
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Let A be a FtG-adversary
We build an adversary 55 against the RoR security game:

« A random bit b is chosen by the RoR challenger
- Execute(C’, &) and Send(U', m) queries are forwarded by B
- Reveal(U') is answered Test(U')

- Test(U') If U’ is not fresh: same answer as for its partner
Otherwise, B chooses a random bit 3
« If 3 = 0, one answers Test(U')
- If 5 =1, one answers a random key

« From A’s answer (', B outputs (8 = /)
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Real-or-Random vs. Find-then-Guess

Theorem

AdV™'(t, Gexecute: Asend: test) < Grest X AAV"9(t, Gexecute, Gsena, Grest — 1)

Let A be a RoR-adversary
We build an adversary BB against the FtG security game:

« A random bit b is chosen by the FtG challenger
« B chooses a random index J
- Execute(C’, §') and Send(U', m) queries are forwarded by B
- The j-th Test(U') query:
« If j < J, one answers Reveal(U")
. If j = J, one answers Test(U'")
e If j > J, one answers a random key

» From A’s answer b/, B forwards b’
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Real-or-Random vs. Find-then-Guess

This is a sequence of hybrid games G:

« Gy, with b Random, is the RoR game with Random
* Gg,eq» With b Real, is the RoR game with Real
« Gy_1 with b Real is identical to G, with b Random

\F:r[b/ —1|b=1]- qPr [b' =1|b=0]=Adv°(A)
test
||jr[b/ =1|b=0] - |jr[b, =1|b= 1]|§Advﬂg(ta Qexecute, Gsend>J — 1)
SAdetg(t ; Qexecutes Gsend Qtest — 1)

AdVror(ta Qexecutes Gsend: Qtest) < Qtest X Advﬂg(t , Qexecute, Qsend: Qtest — 1)
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Game-based Security

Authenticated Key Exchange
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Man-in-the-Middle Attacks

The Diffie-Hellman key-exchange, without authentication is insecure,
because of the malleability of the CDH problem:

Client C Server S
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Man-in-the-Middle Attacks

The Diffie-Hellman key-exchange, without authentication is insecure,
because of the malleability of the CDH problem:

Client C Server S
Send(C,start)
%

X < ZLgq

Send(S,Xg)
—_—

X+—g|—X Y Zq
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Man-in-the-Middle Attacks

The Diffie-Hellman key-exchange, without authentication is insecure,
because of the malleability of the CDH problem:

Client C Server S
Send(C,start)
%

X < ZLgq
X+—g|—X _Send(5.X6), Y Zq
Skc + YX M Y | Yo
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Man-in-the-Middle Attacks

The Diffie-Hellman key-exchange, without authentication is insecure,
because of the malleability of the CDH problem:

Client C Server S
Send(C,start)
X< ZLq |
X+—g|—X _Send(5.X6), Y Zq
Skc + YX M Y | Yo

Reveal(S)
_
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Man-in-the-Middle Attacks

The Diffie-Hellman key-exchange, without authentication is insecure,
because of the malleability of the CDH problem:

Client C Server S
Send(C,start)
%

X < ZLgq
X+—g|—X _Send(5.X6), Y Zq
skg « yx | S2AGD Y | Y g
Reveal(S) Sks “ (Xg)y
Skg «—
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Man-in-the-Middle Attacks

The Diffie-Hellman key-exchange, without authentication is insecure,
because of the malleability of the CDH problem:

Client C Server S
Send(C,start)
%

X < ZLgq
X+—g|—X —>Send(s’xg) Y Zq
sko « yx | Sden) Yo | Yo
Test(C) Reveal(S)

sks < (Xg)¥

Skg «—
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Man-in-the-Middle Attacks

The Diffie-Hellman key-exchange, without authentication is insecure,
because of the malleability of the CDH problem:

Client C Server S

X 7 Send(C.start)
X+—g|—X _Send(5.X6), Y Zq
sko « yx | Sden) Yo | Yo
Test(C) Reveal(S) , | o (Xg)
— { ;kc skg +—
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Man-in-the-Middle Attacks

The Diffie-Hellman key-exchange, without authentication is insecure,
because of the malleability of the CDH problem:

Client C Server S

X 7 Send(C.start)
X+—g|—X _Send(5.X6), Y Zq
sko « yx | Sden) Yo | Yo
Test(C) Reveal(S) , | o (Xg)
— { ;kc skg +—

sks = sko x Y
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Man-in-the-Middle Attacks

The Diffie-Hellman key-exchange, without authentication is insecure,
because of the malleability of the CDH problem:

Client C Server S

X Zq Send(C,start)
X+—g|—X _Send(5.X6), Y Zq
ske « x| UGN Y |Yegr
Test(C) Reveal(S) Sks “ ( Xg)y
— { ;kc skg +—

sks = sko x Y
No authentication provided!

ENS/CNRS/INRIA Cascade David Pointcheval 20/62



Authenticated Key-Exchange

Allow two parties to establish a common secret
in an authenticated way
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Authenticated Key-Exchange

Allow two parties to establish a common secret
in an authenticated way

« The session key should only be known to the involved parties

« The session key should be indistinguishable
from a random string for others
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Authentication Techniques: PKI

If one assumes a PKI (public-key infrastructure),
any user owns a pair of keys, certified by a CA.

ENS/CNRS/INRIA Cascade David Pointcheval 29/62



Authentication Techniques: PKI

If one assumes a PKI (public-key infrastructure),
any user owns a pair of keys, certified by a CA.

By simply signing the flows, one gets an authenticated key-exchange:

ENS/CNRS/INRIA Cascade David Pointcheval 29/62



Authentication Techniques: PKI

If one assumes a PKI (public-key infrastructure),
any user owns a pair of keys, certified by a CA.

By simply signing the flows, one gets an authenticated key-exchange:
G = (g) a group, of prime order q, in which the DDH problem is hard

ENS/CNRS/INRIA Cascade David Pointcheval 29/62



Authentication Techniques: PKI

If one assumes a PKI (public-key infrastructure),
any user owns a pair of keys, certified by a CA.

By simply signing the flows, one gets an authenticated key-exchange:

G = (g) a group, of prime order q, in which the DDH problem is hard

Alice Bob
x& Lq y & Zq
X = g~ Signa(B, X

Sgns(AX.Y)

YX:ng:Xy
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Signed Diffie-Hellman and DDH

Theorem

The Signed Diffie-Hellman key exchange is secure under the DDH
assumption and the security of the signature scheme

Adv'™'(t, Quser, Qexecutes Qsend Qtest)

<q % Succeuf—cma I+ (3Qexecute -+ Gsend +- qtest)Texp,
< Quser d + '
Qsend + Qexecute  (SIgning queries)

4F AdVddh(t + (7 Qexecute + 2Qsend + 4Qtest) Texp)

Let A be a RoR-adversary, we use it to break
either the signature scheme or the DDH.

ENS/CNRS/INRIA Cascade David Pointcheval 23/62



Signed Diffie-Hellman: Signature

If the adversary can generate a flow in the name of a user,
we can break the signature scheme:

« We are given a verification key for a user A
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If the adversary can generate a flow in the name of a user,
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Signed Diffie-Hellman: Signature

If the adversary can generate a flow in the name of a user,
we can break the signature scheme:

« We are given a verification key for a user A

- Execute(A, B) or Execute(B', A): we use the signing oracle

« Send(A, m): we use the signing oracle

« Send(B, Signa(m)): if not signed by the signing oracle, we reject
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Signed Diffie-Hellman: Signature

If the adversary can generate a flow in the name of a user,
we can break the signature scheme:

« We are given a verification key for a user A

- Execute(A, B) or Execute(B', A): we use the signing oracle

« Send(A, m): we use the signing oracle

« Send(B, Signa(m)): if not signed by the signing oracle, we reject
« Test(U): as usual

If we reject a valid signature, this signature is a forgery:
all the signatures are oracle generated but with probability less than

q « Succeuf—cma t + (3Gexecute + Gsend + Qtest) Texp,
user d+ .
Qsend + Qexecute  (Signing queries)
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Signed Diffie-Hellman: DDH

Given atriple (X = g*, Y = ¢¥,Z = g#), we can derive a list of triples:

Xi=9g%=X.g% Zj = g% = ZPi . X . Yoibii . g
Y= gV = ybBij . g
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Signed Diffie-Hellman: DDH

Given atriple (X = g*, Y = ¢¥,Z = g#), we can derive a list of triples:

Xi=9g%=X.g% Zj = g% = ZPi . X . Yoibii . g
Y= gV = ybBij . g

We thus have
Xi=X+ai Yij=YyBij+ij Zij=Xi+(Z—xy)Bi,

If (X,Y,Z2) is a Diffie-Hellman triple (i.e., z = xy),
all the triples are random and independent Diffie-Hellman triples
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Signed Diffie-Hellman and DDH

Given atriple (X =g*, Y =9¥,Z = g%)
Xi=X+ai Yij=YyBij+ij Zij=Xi+(Z—Xxy)Bi,

For any random list of triples (X; = g%, Y;; = 9%/, Z;; = g%),
if d =z — xy # 0, we can define

o = Xj — X Bij = (2ij — xiyij)/d Vij = Yij = YBij
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Signed Diffie-Hellman and DDH

Given atriple (X =g*, Y =9¥,Z = g%)
Xi=X+ai Yij=YyBij+ij Zij=Xi+(Z—Xxy)Bi,

For any random list of triples (X; = g%, Y;; = 9%/, Z;; = g%),
if d =z — xy # 0, we can define

o = Xj — X Bij = (2ij — xiyij)/d Vij = Yij = YBij

If (X, Y,Z)is not a Diffie-Hellman triple (i.e., z # xy),
all the triples are independent random triples
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Signed Diffie-Hellman: DDH

We now assume that all the flows are oracle generated

« We are given a triple (X, Y, 2)
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We can compute Z’
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Signed Diffie-Hellman: DDH

We now assume that all the flows are oracle generated

« We are given a triple (X, Y, 2)

- Execute(A’, B/): we use a fresh X; but Y’ = g¥’ for a known y’
We can compute Z’

« Send(A, Start): we use a fresh X;
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We now assume that all the flows are oracle generated

« We are given a triple (X, Y, 2)

- Execute(A’, B/): we use a fresh X; but Y’ = g¥’ for a known y’
We can compute Z’

« Send(A, Start): we use a fresh X;
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The associated key is Zj
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Signed Diffie-Hellman: DDH

We now assume that all the flows are oracle generated

« We are given a triple (X, Y, 2)

- Execute(A’, B/): we use a fresh X; but Y’ = g¥’ for a known y’
We can compute Z’

« Send(A, Start): we use a fresh X;

« Send(B, Signa(B, X)) if valid, we look for X; = X, use a fresh Y ;
The associated key is Zj

« Send(A, Signg(A, X, Y)): if valid, we look for X; = X, Y;; =Y.
The associated key is Zj
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Signed Diffie-Hellman: DDH

We now assume that all the flows are oracle generated

We are given a triple (X, Y, 2)

Execute(A', B/): we use a fresh X; but Y’ = g¥' for a known y’
We can compute Z’

Send(A, Start): we use a fresh X;

Send(B, Signa(B, X)): if valid, we look for X; = X, use a fresh Y;;
The associated key is Zj

Send(A, Signg(A, X, Y)): if valid, we look for X; = X, Y;; =Y.
The associated key is Zj

Test(U): the associated key is outputted
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Signed Diffie-Hellman: DDH

If the triple (X, Y, Z) is a DDH triple, we are in the Real case
since all the keys are correctly computed
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Signed Diffie-Hellman: DDH

If the triple (X, Y, Z) is a DDH triple, we are in the Real case
since all the keys are correctly computed

If the triple (X, Y, Z) is not a DDH triple, we are in the Random case
since all the keys are independent random values
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Authentication Techniques: Symmetric

Users share a common secret k of high entropy
A MAC can be used for authenticating the flows.
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Authentication Techniques: Symmetric

Users share a common secret k of high entropy
A MAC can be used for authenticating the flows.

Alice Bob
x& Zq y £ Zq

X g MACK(A, B.X)

MACK(B, A, X, Y)

Y=9
YX:ng:Xy
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Authentication Techniques: Symmetric

Users share a common secret k of high entropy
A MAC can be used for authenticating the flows.

Alice Bob
x& Zq y £ Zq

X =gt MACK(A, B.X)

MACK(B, A, X, Y)

Y=9
YX:ng:Xy

The same security result holds
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Password-Based AKE

Realistic: Real-life applications User Server
usually rely on weak passwords ;4 |y |[mZ——=| s |pw
Convenient to use: Users do not l i

need to store a long secret sk sk
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Password-Based AKE

Realistic: Real-life applications User Server
usually rely on weak passwords ;4 |y |[mZ——=| s |pw
Convenient to use: Users do not l i

need to store a long secret sk sk

Subject to on-line dictionary attacks:
Non-negligible probability of success due to the small dictionary

On-line Dictionary Attacks
- the adversary chooses a password pw
- tries to authenticate to the server

« in case of failure, it starts over
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Find-then-Guess vs. Real-or-Random

Definition
A PAKE scheme is if the best attack is the
online dictionary attack:

Advftg(t) < Qsena/|D| + negl()
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Find-then-Guess vs. Real-or-Random

Definition
A PAKE scheme is if the best attack is the
online dictionary attack:

Advftg(t) < Qsena/|D| + negl()

or even better
Adv"'(t) < Qsena/|D| + negl()

We cannot get better than the former, but we can expect the latter.
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Game-based Security

Explicit Authentication

ENS/CNRS/INRIA Cascade David Pointcheval 29/62



Mutual Authentication

The Semantic Security tells that the session key should be
indistinguishable from a random string for others
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Mutual Authentication

The tells that the session key should be
indistinguishable from a random string for others

What about the case where the key is random for everybody,
and then, no key is shared at all!

Client Authentication

If the server accepts a key, then a client has the material to compute
the same key.
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Mutual Authentication

The tells that the session key should be
indistinguishable from a random string for others

What about the case where the key is random for everybody,
and then, no key is shared at all!

Client Authentication

If the server accepts a key, then a client has the material to compute
the same key.

Mutual Authentication

If a party accepts a key, then its partner has the material to compute
the same key.
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Explicit Authentication: Game-based Definition

The session-ID should determine the session-key (not in a
computable way): this formally determines partnership.
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Explicit Authentication: Game-based Definition

The session-ID should determine the session-key (not in a
computable way): this formally determines partnership.

Definition (Client Authentication)
The attacker wins the client authentication game if a server instance
terminates, without exactly one accepting client partner.

Flags
« the flag means that
the player has enough material to compute the key

- the flag means that
the player thinks that its partners has accepted

ENS/CNRS/INRIA Cascade David Pointcheval 24/62



In the previous model, all the players are honest,
and the adversary is not registered (no signing keys)
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In the previous model, all the players are honest,
and the adversary is not registered (no signing keys)

Wa can add a Corrupt query,
which gives the long-term secret to the adversary

Forward-Secrecy
The security of the current session key is preserved even if the
long-term secrets (authentication means) are exposed in the future
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Simulation-based Security




Simulation-based Security

Simulation-based Security
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Ideal Functionality — Real Protocol

Real Protocol

The real protocol P is run by players P4, ..., P, with their own
private inputs xi, ..., X,. After interactions, they get outputs
Yi,-- ., Vn-

Ideal Functionality
An ideal function F is defined:

- it takes as input xq, ..., Xp, the private information of each
players,
- and outputs y1, ..., ¥n, given privately to each player.

The players get their results, without interacting:
this is a “by definition” secure primitive.
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For any environment Z, for any adversary A,
there exists a simulator S so that, the view of Z is the same for

- A attacking the real protocol
« § attacking the ideal functionality

|
3

i

!
|
P, P, - P, [l P,
!
!

- {J
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Ideal process:

Protocol execution
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Protocol execution:

el

= ()

Protocol P emulates
[] ’ the ideal process for F if
- for any adversary A
 there exists a simulator S

« such that no environment Z can make the difference between
the ideal process and the protocol execution
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Protocol P emulates the ideal process for F if

- for any adversary A
« there exists a simulator S
« such that for every environment Z

the views are indistinguishable:

VA,35,VZ,EXECF 5.z ~ EXECp , ,
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Equivalent Formulations

VA,38,VZ,EXECr s,z ~ EXECp 4 ;
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Equivalent Formulations

VA,38,VZ,EXECr s,z ~ EXECp 4 ;

VA,VZ,3S,EXECF 5.z ~ EXECp , ,
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Equivalent Formulations

VA, 3S,VZ,EXECF sz ~ EXECp ,
VA,VZ,38, EXECF 5.z ~ EXECp ,

35,2, EXECF.5,z ~ EXECp ,
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Equivalent Formulations

VA, 3S,VZ,EXECF sz ~ EXECp ,
VA,VZ,38, EXECF 5.z ~ EXECp ,
35,2, EXECF.5,z ~ EXECp ,

where A is the dummy adversary: under the control of the
environment (forwards every input/output).
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Z

« Everything that the adversary A
/H\ can do against P can be done by
the simulator S against F

F » But the ideal functionality F is

\
\

1 perfectly secure: nothing can be
\

done against F

Then, nothing can be done against P
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Simulation-based Security

Universal Composability
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Implications of UC

Can design and analyze protocols in a modular way:

- Divide a given task F into sub-tasks Fy, ..., Fn
F is equivalent to 1 U Fo U F3 U Fy
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Implications of UC

Can design and analyze protocols in a modular way:

- Divide a given task F into sub-tasks Fy, ..., Fn
F is equivalent to 1 U Fo U F3 U Fy

 Construct protocols 4, ..., 7, emulating Fi,..., Fn
« Combine them into a protocol 7
« Composition theorem: = emulates F

Can be done concurrently and in parallel
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Composition of Ideal Functionalities
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Composition of Real Protocols

T2
A A
Y Y
Y 7 > T3
Py Py e Py,
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UC Security

(s)
. S

2] (2] 2] 2]

T4

Theorem (Universal Composition)
If each ideal functionality F; is emulated by 7;, then the composition
of the w;’'s emulates the composition of the F;’s
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Simulation-based Security

Password-based Key Exchange

ENS/CNRS/INRIA Cascade David Pointcheval 48/62



Ideal Functionality of PAKE

Session key:

 no corrupted players, same passwords
= same key sk uniformly chosen
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Ideal Functionality of PAKE

Session key:

no corrupted players, same passwords
= same key sk uniformly chosen

no corrupted players, different passwords
= independent keys uniformly chosen

a corrupted player

= key chosen by the adversary

correct password guess

= key chosen by the adversary

incorrect password guess
= independent keys uniformly chosen
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Ideal Functionality of PAKE

Queries

« NewSession = a player initializes the protocol
The passwords are chosen by the environment.
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« NewSession = a player initializes the protocol
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e TestPwd = A attempts to guess a password (one per session)
In case of correct guess, the adversary is allowed to choose the
session key.
= models the on-line dictionary attacks
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Ideal Functionality of PAKE

Queries

« NewSession = a player initializes the protocol
The passwords are chosen by the environment.

e TestPwd = A attempts to guess a password (one per session)
In case of correct guess, the adversary is allowed to choose the
session key.
= models the on-line dictionary attacks

- NewKey = A asks for the key sk to be delivered to a player
The key sk is ignored except in case of corruption or correct
password guess.
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Ideal Functionality of PAKE

Improvements

« No assumption on the relations between the passwords of the
different players (can be different, identical, or the same for
different protocols)
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Ideal Functionality of PAKE

Improvements

« No assumption on the relations between the passwords of the
different players (can be different, identical, or the same for
different protocols)

« It provides forward secrecy, since corruption of players is
available

ENS/CNRS/INRIA Cascade David Pointcheval 51/62



Encrypted Key Exchange



Encrypted Key Exchange

Description
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ENS/CNRS/INRIA Cascade David Pointcheval 53/62



 The arithmetic is in a finite cyclic group G = (g)
« of order a ¢-bit prime number q

ENS/CNRS/INRIA Cascade David Pointcheval 53/62



 The arithmetic is in a finite cyclic group G = (g)
« of order a ¢-bit prime number q
« Hash functions

Ho: {0,1}* = {0,1}0  #;:{0,1}* — {0,1}"

ENS/CNRS/INRIA Cascade David Pointcheval 53/62



 The arithmetic is in a finite cyclic group G = (g)
« of order a ¢-bit prime number q
« Hash functions

Ho: {0,1}* = {0,1}0  #;:{0,1}* — {0,1}"

« A block cipher (&, D) where k € Password, onto G.

ENS/CNRS/INRIA Cascade David Pointcheval 53/62



 The arithmetic is in a finite cyclic group G = (g)
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« The arithmetic is in a finite cyclic group G = (g)
« of order a ¢-bit prime number q
« Hash functions

Ho: {0,1}* = {0,1}0  #;:{0,1}* — {0,1}"

« A block cipher (&, D) where k € Password, onto G.
« G =G\{1}, thus G = {g*| x € Z}}.

Client and server initially share a low-quality password pw,
uniformly drawn from the dictionary Password.

The session-key space SK is {0, 1}%
equipped with a uniform distribution.
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(One) Encrypted Key Exchange

Client U (pw)

accept + false
terminate <« false

x&11,g-1]
X<+ g
Y < Dpw(Y™*)
Ky + Y~

Auth « Hy (U||S|I X[ Y[|Ku)
sky < Ho(UIISIX[IYIIKy)

accept < true

terminate <+ true

ENS/CNRS/INRIA Cascade

U, X
S, v*

Auth

Server S (pw)

accept «+ false
terminate <« false

R
y+[1,9-1]
Y+ oY
Y* — Epm(Y)
Kg + XY

,

Auth = H1(U|| S| X||Y||Ks)
if true, accept «+ true

sks « Ho(U||S|| X Y|Ks)

terminate < true
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Encrypted Key Exchange

Semantic Security
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Secu rlty Result [Bresson—Chevassut—Pointcheval - ACM CCS 2003]

Theorem
Let A be an adversary against the RoR security within a time bound
t, with less than qs interactions with the parties and q, passive
eavesdroppings, and, asking qn hash-queries and qe
encryption/decryption queries. Then we have
AdV(4) < 3x % + 8qh x SuccSN(t))
(29e +3gs + SQp)z QE +4Qs
+ + :
qg-—1 24

where t! <t+(gs+Qqp+ Qe+ 1) 7e,
with 7o the computational time for an exponentiation in G.
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Encrypted Key Exchange

Simulation-based Security
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(One) Encrypted Key Exchange

Client U Server S
x& Vs y& Zg
(U1) X « g~ UX (s2)y « o
Y* < Essia)pw(Y)
S,v*
(U3) Y = Desigjjow(Y™*) —— Ks + XY
KU «— YX

Auth « H1(ssid|| US| X|| Y]IKy)
SKy < Ho(ssid||U|| S| X Y||Ku)

completed Auth,

(S4) if (Auth = H4(ssid||U|| S| X]|| Y| Ks))
then completed
sks « Ho(ssid||U||S||X| Y[|Ks)
else error
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Security Result [ Abdalla—Catalano-Chevalier—Pointcheval — CT-RSA 2008]

Theorem
The above protocol securely realizes F in the random oracle and
ideal cipher models (in the presence of adaptive adversaries).

In order to show that the protocol UC-realizes the functionality 7, we
need to show that for all environments and all adversaries, we can
construct a simulator such that the interactions,

- between the environment, the players (say, Alice and Bob) and
the adversary (the real world);

 and between the environment, the ideal functionality and the
simulator (the ideal world)

are indistinguishable for the environment.
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Security Proof

Gy: real game
G;: S simulates the ideal cipher and the random oracle

G.: we get rid off such a situation in which the adversary wins by
chance

Gg3: passive case, in which no corruption occurs before the end
of the protocol

G,4: complete simulation of the client, whatever corruption may
occur

Gs: simulation of the server, in the last step of the protocol

Gg: complete simulation of the server

These games are sequential and built on each other
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Conclusion




Game-based Security

Simulation-based Security
Encrypted Key Exchange

Conclusion
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Conclusion

Simulation-based Methodology:
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Conclusion

Simulation-based Methodology:

 Universal Composability introduced by [Canetti — FOCS 2001]
« allows to define the security properties of one functionality

 a unique proof is enough

» the protocol can then be composed
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