
Provable Security in the Computational Model

III – Signatures

David Pointcheval

MPRI – Paris

Ecole normale supérieure/PSL, CNRS & INRIA

ENS/CNRS/INRIA Cascade David Pointcheval 1/51

Outline

Basic Security Notions

Advanced Security for Signature

Forking Lemma

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 2/51

Basic Security Notions

Outline

Basic Security Notions

Public-Key Encryption

Signatures

Advanced Security for Signature

Forking Lemma

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 3/51

Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext

ENS/CNRS/INRIA Cascade David Pointcheval 4/51

Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext

ENS/CNRS/INRIA Cascade David Pointcheval 4/51

OW− CPA Security Game

A

ENS/CNRS/INRIA Cascade David Pointcheval 5/51

OW− CPA Security Game

A

kdke G

ENS/CNRS/INRIA Cascade David Pointcheval 5/51

OW− CPA Security Game

A

kdke G
m* random
r* random

ENS/CNRS/INRIA Cascade David Pointcheval 5/51

OW− CPA Security Game

A

kdke G
m* random
r* random

Er*
m* c*

ENS/CNRS/INRIA Cascade David Pointcheval 5/51

OW− CPA Security Game

A

kdke G
m* random
r* random

Er*
m* c*

m

ENS/CNRS/INRIA Cascade David Pointcheval 5/51

OW− CPA Security Game

A

kdke G

m

m* random
r* random

m* = m
?

Er*
m* c*

ENS/CNRS/INRIA Cascade David Pointcheval 5/51

OW− CPA Security Game

A

kdke G

m

m* random
r* random

m* = m
?

Er*
m* c*

Succow
S (A) = Pr[(sk ,pk)← K(); m R←M; c = Epk (m) : A(pk , c)→ m]

ENS/CNRS/INRIA Cascade David Pointcheval 5/51

IND− CPA Security Game

A

ENS/CNRS/INRIA Cascade David Pointcheval 6/51

IND− CPA Security Game

A

kdke G

ENS/CNRS/INRIA Cascade David Pointcheval 6/51

IND− CPA Security Game

A

m1

m0

kdke G

ENS/CNRS/INRIA Cascade David Pointcheval 6/51

IND− CPA Security Game

A

m1

m0

kdke G
b∈{0,1}
r random

ENS/CNRS/INRIA Cascade David Pointcheval 6/51

IND− CPA Security Game

A

m1

m0

kdke G

Er
mb c*

b∈{0,1}
r random

ENS/CNRS/INRIA Cascade David Pointcheval 6/51

IND− CPA Security Game

A

m1

m0

kdke G

Er
mb c*

b’

b∈{0,1}
r random

ENS/CNRS/INRIA Cascade David Pointcheval 6/51

IND− CPA Security Game

A

m1

m0

kdke G

Er
mb c*

b’

b∈{0,1}
r random

b’ = b?

ENS/CNRS/INRIA Cascade David Pointcheval 6/51

IND− CPA Security Game

A

m1

m0

kdke G

Er
mb c*

b’

b∈{0,1}
r random

b’ = b?

(sk ,pk)← K();(m0,m1, state)← A(pk);

b R← {0,1};c = Epk (mb); b′ ← A(state, c)

Advind−cpa
S (A)=

∣∣Pr[b′ = 1|b = 1]−Pr[b′ = 1|b = 0]
∣∣= ∣∣2× Pr[b′ = b]−1

∣∣
ENS/CNRS/INRIA Cascade David Pointcheval 6/51

Outline

Basic Security Notions

Public-Key Encryption

Signatures

Advanced Security for Signature

Forking Lemma

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 7/51

Signature

Goal: Authentication of the sender

ENS/CNRS/INRIA Cascade David Pointcheval 8/51

Signature

Goal: Authentication of the sender

ENS/CNRS/INRIA Cascade David Pointcheval 8/51

EUF− NMA

A

ENS/CNRS/INRIA Cascade David Pointcheval 9/51

EUF− NMA

A

kskv G

ENS/CNRS/INRIA Cascade David Pointcheval 9/51

EUF− NMA

A

kskv G

(m,σ)

ENS/CNRS/INRIA Cascade David Pointcheval 9/51

EUF− NMA

A

kskv G

(m,σ)

V(kv,m,σ)?

ENS/CNRS/INRIA Cascade David Pointcheval 9/51

EUF− NMA

A

kskv G

(m,σ)

V(kv,m,σ)?

Succeuf
SG(A) = Pr[(sk ,pk)← K(); (m, σ)← A(pk) : Vpk (m, σ) = 1]

ENS/CNRS/INRIA Cascade David Pointcheval 9/51

Advanced Security for Signature

Outline

Basic Security Notions

Advanced Security for Signature

Advanced Security Notions

Hash-then-Invert Paradigm

Forking Lemma

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 10/51

Signature

Goal: Authentication of the sender

ENS/CNRS/INRIA Cascade David Pointcheval 11/51

Signature

Goal: Authentication of the sender

ENS/CNRS/INRIA Cascade David Pointcheval 11/51

EUF− NMA

A

ENS/CNRS/INRIA Cascade David Pointcheval 12/51

EUF− NMA

A

kskv G

ENS/CNRS/INRIA Cascade David Pointcheval 12/51

EUF− NMA

A

kskv G

(m,σ)

ENS/CNRS/INRIA Cascade David Pointcheval 12/51

EUF− NMA

A

kskv G

(m,σ)

V(kv,m,σ)?

ENS/CNRS/INRIA Cascade David Pointcheval 12/51

EUF− NMA

A

kskv G

(m,σ)

V(kv,m,σ)?

The adversary knows the public key only,
whereas signatures are not private!

ENS/CNRS/INRIA Cascade David Pointcheval 12/51

EUF− CMA

A

ENS/CNRS/INRIA Cascade David Pointcheval 13/51

EUF− CMA

A

kskv G

ENS/CNRS/INRIA Cascade David Pointcheval 13/51

EUF− CMA

A

kskv G

S
mi

σi

ENS/CNRS/INRIA Cascade David Pointcheval 13/51

EUF− CMA

A

kskv G

(m,σ)

S
mi

σi

ENS/CNRS/INRIA Cascade David Pointcheval 13/51

EUF− CMA

A
∀i, m≠mi

V(kv,m,σ)?

(m,σ)

S
mi

σi

kskv G

ENS/CNRS/INRIA Cascade David Pointcheval 13/51

EUF− CMA

A
∀i, m≠mi

V(kv,m,σ)?

(m,σ)

S
mi

σi

kskv G

The adversary has access to any signature of its choice:
Chosen-Message Attacks (oracle access):

Succeuf−cma
SG (A) = Pr

[
(sk ,pk)← K(); (m, σ)← AS(pk) :

∀i ,m 6= mi ∧ Vpk (m, σ) = 1

]

ENS/CNRS/INRIA Cascade David Pointcheval 13/51

SUF− CMA [Stern-Pointcheval-Malone-Lee-Smart – Crypto ’01]

A

ENS/CNRS/INRIA Cascade David Pointcheval 14/51

SUF− CMA [Stern-Pointcheval-Malone-Lee-Smart – Crypto ’01]

A

kskv G

ENS/CNRS/INRIA Cascade David Pointcheval 14/51

SUF− CMA [Stern-Pointcheval-Malone-Lee-Smart – Crypto ’01]

A
S

mi

σi

kskv G

ENS/CNRS/INRIA Cascade David Pointcheval 14/51

SUF− CMA [Stern-Pointcheval-Malone-Lee-Smart – Crypto ’01]

A(m,σ)

S
mi

σi

kskv G

ENS/CNRS/INRIA Cascade David Pointcheval 14/51

SUF− CMA [Stern-Pointcheval-Malone-Lee-Smart – Crypto ’01]

A
∀i, (m,σ)≠(mi,σi)
V(kv,m,σ)?

(m,σ)

S
mi

σi

kskv G

ENS/CNRS/INRIA Cascade David Pointcheval 14/51

SUF− CMA [Stern-Pointcheval-Malone-Lee-Smart – Crypto ’01]

A
∀i, (m,σ)≠(mi,σi)
V(kv,m,σ)?

(m,σ)

S
mi

σi

kskv G

The notion is even stronger (in case of probabilistic signature):
also known as non-malleability:

Succsuf−cma
SG (A) = Pr

[
(sk ,pk)← K(); (m, σ)← AS(pk) :

∀i , (m, σ) 6= (mi , σi) ∧ Vpk (m, σ) = 1

]

ENS/CNRS/INRIA Cascade David Pointcheval 14/51

Outline

Basic Security Notions

Advanced Security for Signature

Advanced Security Notions

Hash-then-Invert Paradigm

Forking Lemma

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 15/51

Full-Domain Hash Signature [Bellare-Rogaway – Eurocrypt ’94]

Signature Scheme

• Key generation: the public key f R← P is a trapdoor one-way
bijection from X onto Y ; the private key is the inverse g : Y → X ;

• Signature of M ∈ Y : σ = g(M);

• Verification of (M, σ): check f (σ) = M

Full-Domain Hash (Hash-and-Invert)

H : {0,1}? → Y

• in order to sign m, one computes M = H(m) ∈ Y , and σ = g(M)

• and the verification consists in checking whether f (σ) = H(m)

ENS/CNRS/INRIA Cascade David Pointcheval 16/51

Full-Domain Hash Signature [Bellare-Rogaway – Eurocrypt ’94]

Signature Scheme

• Key generation: the public key f R← P is a trapdoor one-way
bijection from X onto Y ; the private key is the inverse g : Y → X ;

• Signature of M ∈ Y : σ = g(M);

• Verification of (M, σ): check f (σ) = M

Full-Domain Hash (Hash-and-Invert)

H : {0,1}? → Y

• in order to sign m, one computes M = H(m) ∈ Y , and σ = g(M)

• and the verification consists in checking whether f (σ) = H(m)

ENS/CNRS/INRIA Cascade David Pointcheval 16/51

Random Oracle Model

Random Oracle

• H is modelled as a truly random function, from {0,1}∗ into Y .

• Formally, H is chosen at random at the beginning of the game.

• More concretely, for any new query, a random element in Y is
uniformly and independently drawn

Any security game becomes:

Succeuf−cma
SG (A)=Pr

[
H R←Y∞; (sk ,pk)←K(); (m, σ)←AS,H(pk) :

∀i ,m 6= mi ∧ Vpk (m, σ) = 1

]

ENS/CNRS/INRIA Cascade David Pointcheval 17/51

Random Oracle Model

Random Oracle

• H is modelled as a truly random function, from {0,1}∗ into Y .

• Formally, H is chosen at random at the beginning of the game.

• More concretely, for any new query, a random element in Y is
uniformly and independently drawn

Any security game becomes:

Succeuf−cma
SG (A)=Pr

[
H R←Y∞; (sk ,pk)←K(); (m, σ)←AS,H(pk) :

∀i ,m 6= mi ∧ Vpk (m, σ) = 1

]

ENS/CNRS/INRIA Cascade David Pointcheval 17/51

Security of the FDH Signature

Theorem
The FDH signature achieves EUF− CMA security, under the
One-Wayness of P, in the Random Oracle Model:

Succeuf−cma
FDH (t) ≤ qH × Succow

P (t + qHτf)

Assumptions:

• any signing query has been first asked to H
• the forgery has been asked to H
• τf is the maximal time to evaluate f ∈ P

ENS/CNRS/INRIA Cascade David Pointcheval 18/51

Security of the FDH Signature

Theorem
The FDH signature achieves EUF− CMA security, under the
One-Wayness of P, in the Random Oracle Model:

Succeuf−cma
FDH (t) ≤ qH × Succow

P (t + qHτf)

Assumptions:

• any signing query has been first asked to H
• the forgery has been asked to H
• τf is the maximal time to evaluate f ∈ P

ENS/CNRS/INRIA Cascade David Pointcheval 18/51

Real Attack Game

 Challenger

● (pk, sk) ← K()
● Checks (m,σ)

● if new and valid: 1
● else 0

Adversary
0 / 1

Game 0

pk

m,σ

Oracles

S HK

Random Oracle

H(m): M R← Y , output M

Key Generation Oracle

K(): (f ,g)
R← P, sk ← g, pk ← f

Signing Oracle
S(m): M = H(m), output σ = g(M)

ENS/CNRS/INRIA Cascade David Pointcheval 19/51

Real Attack Game

 Challenger

● (pk, sk) ← K()
● Checks (m,σ)

● if new and valid: 1
● else 0

Adversary
0 / 1

Game 0

pk

m,σ

Oracles

S HK

Random Oracle

H(m): M R← Y , output M

Key Generation Oracle

K(): (f ,g)
R← P, sk ← g, pk ← f

Signing Oracle
S(m): M = H(m), output σ = g(M)

ENS/CNRS/INRIA Cascade David Pointcheval 19/51

Real Attack Game

 Challenger

● (pk, sk) ← K()
● Checks (m,σ)

● if new and valid: 1
● else 0

Adversary
0 / 1

Game 0

pk

m,σ

Oracles

S HK

Random Oracle

H(m): M R← Y , output M

Key Generation Oracle

K(): (f ,g)
R← P, sk ← g, pk ← f

Signing Oracle
S(m): M = H(m), output σ = g(M)

ENS/CNRS/INRIA Cascade David Pointcheval 19/51

Simulations

• Game0: use of the oracles K, S and H
• Game1: use of the simulation of the Random Oracle

Simulation of H

H(m): µ R← X , output M = f (µ)

=⇒ Hop-D-Perfect: PrGame1 [1] = PrGame0 [1]

• Game2: use of the simulation of the Signing Oracle

Simulation of S
S(m): find µ such that M = H(m) = f (µ), output σ = µ

=⇒ Hop-S-Perfect: PrGame2 [1] = PrGame1 [1]

ENS/CNRS/INRIA Cascade David Pointcheval 20/51

Simulations

• Game0: use of the oracles K, S and H
• Game1: use of the simulation of the Random Oracle

Simulation of H

H(m): µ R← X , output M = f (µ)

=⇒ Hop-D-Perfect: PrGame1 [1] = PrGame0 [1]

• Game2: use of the simulation of the Signing Oracle

Simulation of S
S(m): find µ such that M = H(m) = f (µ), output σ = µ

=⇒ Hop-S-Perfect: PrGame2 [1] = PrGame1 [1]

ENS/CNRS/INRIA Cascade David Pointcheval 20/51

Simulations

• Game0: use of the oracles K, S and H
• Game1: use of the simulation of the Random Oracle

Simulation of H

H(m): µ R← X , output M = f (µ)

=⇒ Hop-D-Perfect: PrGame1 [1] = PrGame0 [1]

• Game2: use of the simulation of the Signing Oracle

Simulation of S
S(m): find µ such that M = H(m) = f (µ), output σ = µ

=⇒ Hop-S-Perfect: PrGame2 [1] = PrGame1 [1]

ENS/CNRS/INRIA Cascade David Pointcheval 20/51

Simulations

• Game0: use of the oracles K, S and H
• Game1: use of the simulation of the Random Oracle

Simulation of H

H(m): µ R← X , output M = f (µ)

=⇒ Hop-D-Perfect: PrGame1 [1] = PrGame0 [1]

• Game2: use of the simulation of the Signing Oracle

Simulation of S
S(m): find µ such that M = H(m) = f (µ), output σ = µ

=⇒ Hop-S-Perfect: PrGame2 [1] = PrGame1 [1]

ENS/CNRS/INRIA Cascade David Pointcheval 20/51

Simulations

• Game0: use of the oracles K, S and H
• Game1: use of the simulation of the Random Oracle

Simulation of H

H(m): µ R← X , output M = f (µ)

=⇒ Hop-D-Perfect: PrGame1 [1] = PrGame0 [1]

• Game2: use of the simulation of the Signing Oracle

Simulation of S
S(m): find µ such that M = H(m) = f (µ), output σ = µ

=⇒ Hop-S-Perfect: PrGame2 [1] = PrGame1 [1]

ENS/CNRS/INRIA Cascade David Pointcheval 20/51

H-Query Selection

• Game3: random index t R← {1, . . . ,qH}

Event Ev
If the t-th query to H is not the output forgery

We terminate the game and output 0 if Ev happens
=⇒ Hop-S-Non-Negl
Then, clearly

Pr
Game3

[1] = Pr
Game2

[1]× Pr[¬Ev] Pr[Ev] = 1− 1/qH

Pr
Game3

[1] = Pr
Game2

[1]× 1
qH

ENS/CNRS/INRIA Cascade David Pointcheval 21/51

H-Query Selection

• Game3: random index t R← {1, . . . ,qH}

Event Ev
If the t-th query to H is not the output forgery

We terminate the game and output 0 if Ev happens
=⇒ Hop-S-Non-Negl
Then, clearly

Pr
Game3

[1] = Pr
Game2

[1]× Pr[¬Ev] Pr[Ev] = 1− 1/qH

Pr
Game3

[1] = Pr
Game2

[1]× 1
qH

ENS/CNRS/INRIA Cascade David Pointcheval 21/51

H-Query Selection

• Game3: random index t R← {1, . . . ,qH}

Event Ev
If the t-th query to H is not the output forgery

We terminate the game and output 0 if Ev happens
=⇒ Hop-S-Non-Negl
Then, clearly

Pr
Game3

[1] = Pr
Game2

[1]× Pr[¬Ev] Pr[Ev] = 1− 1/qH

Pr
Game3

[1] = Pr
Game2

[1]× 1
qH

ENS/CNRS/INRIA Cascade David Pointcheval 21/51

H-Query Selection

• Game3: random index t R← {1, . . . ,qH}

Event Ev
If the t-th query to H is not the output forgery

We terminate the game and output 0 if Ev happens
=⇒ Hop-S-Non-Negl
Then, clearly

Pr
Game3

[1] = Pr
Game2

[1]× Pr[¬Ev] Pr[Ev] = 1− 1/qH

Pr
Game3

[1] = Pr
Game2

[1]× 1
qH

ENS/CNRS/INRIA Cascade David Pointcheval 21/51

OW Instance

• Game4: P −OW instance (f , y) (where f R← P, x R← X , y = f (x))
Use of the simulation of the Key Generation Oracle

Simulation of K
K(): set pk ← f

Modification of the simulation of the Random Oracle
Simulation of H
If this is the t-th query, H(m): M ← y , output M

The unique difference is for the t-th simulation of the random
oracle, for which we cannot compute a signature.
But since it corresponds to the forgery output, it cannot be
queried to the signing oracle:
=⇒ Hop-S-Perfect: PrGame4 [1] = PrGame3 [1]

ENS/CNRS/INRIA Cascade David Pointcheval 22/51

OW Instance

• Game4: P −OW instance (f , y) (where f R← P, x R← X , y = f (x))
Use of the simulation of the Key Generation Oracle

Simulation of K
K(): set pk ← f

Modification of the simulation of the Random Oracle
Simulation of H
If this is the t-th query, H(m): M ← y , output M

The unique difference is for the t-th simulation of the random
oracle, for which we cannot compute a signature.
But since it corresponds to the forgery output, it cannot be
queried to the signing oracle:
=⇒ Hop-S-Perfect: PrGame4 [1] = PrGame3 [1]

ENS/CNRS/INRIA Cascade David Pointcheval 22/51

OW Instance

• Game4: P −OW instance (f , y) (where f R← P, x R← X , y = f (x))
Use of the simulation of the Key Generation Oracle

Simulation of K
K(): set pk ← f

Modification of the simulation of the Random Oracle
Simulation of H
If this is the t-th query, H(m): M ← y , output M

The unique difference is for the t-th simulation of the random
oracle, for which we cannot compute a signature.
But since it corresponds to the forgery output, it cannot be
queried to the signing oracle:
=⇒ Hop-S-Perfect: PrGame4 [1] = PrGame3 [1]

ENS/CNRS/INRIA Cascade David Pointcheval 22/51

OW Instance

• Game4: P −OW instance (f , y) (where f R← P, x R← X , y = f (x))
Use of the simulation of the Key Generation Oracle

Simulation of K
K(): set pk ← f

Modification of the simulation of the Random Oracle
Simulation of H
If this is the t-th query, H(m): M ← y , output M

The unique difference is for the t-th simulation of the random
oracle, for which we cannot compute a signature.
But since it corresponds to the forgery output, it cannot be
queried to the signing oracle:
=⇒ Hop-S-Perfect: PrGame4 [1] = PrGame3 [1]

ENS/CNRS/INRIA Cascade David Pointcheval 22/51

OW Instance

• Game4: P −OW instance (f , y) (where f R← P, x R← X , y = f (x))
Use of the simulation of the Key Generation Oracle

Simulation of K
K(): set pk ← f

Modification of the simulation of the Random Oracle
Simulation of H
If this is the t-th query, H(m): M ← y , output M

The unique difference is for the t-th simulation of the random
oracle, for which we cannot compute a signature.
But since it corresponds to the forgery output, it cannot be
queried to the signing oracle:
=⇒ Hop-S-Perfect: PrGame4 [1] = PrGame3 [1]

ENS/CNRS/INRIA Cascade David Pointcheval 22/51

Summary

In Game4, when the output is 1, σ = g(y) = g(f (x)) = x
and the simulator computes one exponentiation per hashing:

Pr
Game4

[1] ≤ Succow
P (t + qHτf)

ENS/CNRS/INRIA Cascade David Pointcheval 23/51

Summary

In Game4, when the output is 1, σ = g(y) = g(f (x)) = x
and the simulator computes one exponentiation per hashing:

Pr
Game4

[1] ≤ Succow
P (t + qHτf)

Pr
Game4

[1] = Pr
Game3

[1]

ENS/CNRS/INRIA Cascade David Pointcheval 23/51

Summary

In Game4, when the output is 1, σ = g(y) = g(f (x)) = x
and the simulator computes one exponentiation per hashing:

Pr
Game4

[1] ≤ Succow
P (t + qHτf)

Pr
Game4

[1] = Pr
Game3

[1]

Pr
Game3

[1] = Pr
Game2

[1]× 1
qH

ENS/CNRS/INRIA Cascade David Pointcheval 23/51

Summary

In Game4, when the output is 1, σ = g(y) = g(f (x)) = x
and the simulator computes one exponentiation per hashing:

Pr
Game4

[1] ≤ Succow
P (t + qHτf)

Pr
Game4

[1] = Pr
Game3

[1]

Pr
Game3

[1] = Pr
Game2

[1]× 1
qH

Pr
Game2

[1] = Pr
Game1

[1]

ENS/CNRS/INRIA Cascade David Pointcheval 23/51

Summary

In Game4, when the output is 1, σ = g(y) = g(f (x)) = x
and the simulator computes one exponentiation per hashing:

Pr
Game4

[1] ≤ Succow
P (t + qHτf)

Pr
Game4

[1] = Pr
Game3

[1]

Pr
Game3

[1] = Pr
Game2

[1]× 1
qH

Pr
Game2

[1] = Pr
Game1

[1]

Pr
Game1

[1] = Pr
Game0

[1]

ENS/CNRS/INRIA Cascade David Pointcheval 23/51

Summary

In Game4, when the output is 1, σ = g(y) = g(f (x)) = x
and the simulator computes one exponentiation per hashing:

Pr
Game4

[1] ≤ Succow
P (t + qHτf)

Pr
Game4

[1] = Pr
Game3

[1]

Pr
Game3

[1] = Pr
Game2

[1]× 1
qH

Pr
Game2

[1] = Pr
Game1

[1]

Pr
Game1

[1] = Pr
Game0

[1]

Pr
Game0

[1] = Succeuf−cma
FDH (A)

ENS/CNRS/INRIA Cascade David Pointcheval 23/51

Summary

In Game4, when the output is 1, σ = g(y) = g(f (x)) = x
and the simulator computes one exponentiation per hashing:

Pr
Game4

[1] ≤ Succow
P (t + qHτf)

Pr
Game4

[1] = Pr
Game3

[1]

Pr
Game3

[1] = Pr
Game2

[1]× 1
qH

Pr
Game2

[1] = Pr
Game1

[1]

Pr
Game1

[1] = Pr
Game0

[1]

Pr
Game0

[1] = Succeuf−cma
FDH (A)

Succeuf−cma
FDH (A) ≤ qH × Succow

P (t + qHτf)

ENS/CNRS/INRIA Cascade David Pointcheval 23/51

Key Size

Succeuf−cma
FDH (A) ≤ qH × Succow

P (t + qHτf)

• If one wants Succeuf−cma
FDH (t) ≤ ε with t/ε ≈ 280

• If one allows qH up to 260

ENS/CNRS/INRIA Cascade David Pointcheval 24/51

Key Size

Succeuf−cma
FDH (A) ≤ qH × Succow

P (t + qHτf)

• If one wants Succeuf−cma
FDH (t) ≤ ε with t/ε ≈ 280

• If one allows qH up to 260

ENS/CNRS/INRIA Cascade David Pointcheval 24/51

Key Size

Succeuf−cma
FDH (A) ≤ qH × Succow

P (t + qHτf)

• If one wants Succeuf−cma
FDH (t) ≤ ε with t/ε ≈ 280

• If one allows qH up to 260

ENS/CNRS/INRIA Cascade David Pointcheval 24/51

Key Size

Succeuf−cma
FDH (A) ≤ qH × Succow

P (t + qHτf)

• If one wants Succeuf−cma
FDH (t) ≤ ε with t/ε ≈ 280

• If one allows qH up to 260

Then one needs Succow
P (t) ≤ ε with t/ε ≥ 2140.

ENS/CNRS/INRIA Cascade David Pointcheval 24/51

Key Size

Succeuf−cma
FDH (A) ≤ qH × Succow

P (t + qHτf)

• If one wants Succeuf−cma
FDH (t) ≤ ε with t/ε ≈ 280

• If one allows qH up to 260

Then one needs Succow
P (t) ≤ ε with t/ε ≥ 2140.

If one uses FDH-RSA: at least 3072 bit keys are needed.

ENS/CNRS/INRIA Cascade David Pointcheval 24/51

Improvement [Coron – Crypto ’00]

In the case that f is homomorphic (as RSA): f (ab) = f (a)f (b)

• Game0: use of the oracles K, S and H
• Game1: use of the simulation of the Random Oracle

Simulation of H

H(m): µ R← X , output M = f (µ)

=⇒ Hop-D-Perfect: PrGame1 [1] = PrGame0 [1]

• Game2: use of the homomorphic property
P −OW instance (f , y) (where f R← P, x R← X , y = f (x))

Simulation of H

H(m): flip a biased coin b (with Pr[b = 0] = p), µ R← X .
If b = 0, output M = f (µ), otherwise output M = y × f (µ)

=⇒ Hop-D-Perfect: PrGame2 [1] = PrGame1 [1]
ENS/CNRS/INRIA Cascade David Pointcheval 25/51

Improvement [Coron – Crypto ’00]

In the case that f is homomorphic (as RSA): f (ab) = f (a)f (b)

• Game0: use of the oracles K, S and H
• Game1: use of the simulation of the Random Oracle

Simulation of H

H(m): µ R← X , output M = f (µ)

=⇒ Hop-D-Perfect: PrGame1 [1] = PrGame0 [1]

• Game2: use of the homomorphic property
P −OW instance (f , y) (where f R← P, x R← X , y = f (x))

Simulation of H

H(m): flip a biased coin b (with Pr[b = 0] = p), µ R← X .
If b = 0, output M = f (µ), otherwise output M = y × f (µ)

=⇒ Hop-D-Perfect: PrGame2 [1] = PrGame1 [1]
ENS/CNRS/INRIA Cascade David Pointcheval 25/51

Improvement [Coron – Crypto ’00]

In the case that f is homomorphic (as RSA): f (ab) = f (a)f (b)

• Game0: use of the oracles K, S and H
• Game1: use of the simulation of the Random Oracle

Simulation of H

H(m): µ R← X , output M = f (µ)

=⇒ Hop-D-Perfect: PrGame1 [1] = PrGame0 [1]

• Game2: use of the homomorphic property
P −OW instance (f , y) (where f R← P, x R← X , y = f (x))

Simulation of H

H(m): flip a biased coin b (with Pr[b = 0] = p), µ R← X .
If b = 0, output M = f (µ), otherwise output M = y × f (µ)

=⇒ Hop-D-Perfect: PrGame2 [1] = PrGame1 [1]
ENS/CNRS/INRIA Cascade David Pointcheval 25/51

Improvement [Coron – Crypto ’00]

In the case that f is homomorphic (as RSA): f (ab) = f (a)f (b)

• Game0: use of the oracles K, S and H
• Game1: use of the simulation of the Random Oracle

Simulation of H

H(m): µ R← X , output M = f (µ)

=⇒ Hop-D-Perfect: PrGame1 [1] = PrGame0 [1]

• Game2: use of the homomorphic property
P −OW instance (f , y) (where f R← P, x R← X , y = f (x))

Simulation of H

H(m): flip a biased coin b (with Pr[b = 0] = p), µ R← X .
If b = 0, output M = f (µ), otherwise output M = y × f (µ)

=⇒ Hop-D-Perfect: PrGame2 [1] = PrGame1 [1]
ENS/CNRS/INRIA Cascade David Pointcheval 25/51

Improvement [Coron – Crypto ’00]

In the case that f is homomorphic (as RSA): f (ab) = f (a)f (b)

• Game0: use of the oracles K, S and H
• Game1: use of the simulation of the Random Oracle

Simulation of H

H(m): µ R← X , output M = f (µ)

=⇒ Hop-D-Perfect: PrGame1 [1] = PrGame0 [1]

• Game2: use of the homomorphic property
P −OW instance (f , y) (where f R← P, x R← X , y = f (x))

Simulation of H

H(m): flip a biased coin b (with Pr[b = 0] = p), µ R← X .
If b = 0, output M = f (µ), otherwise output M = y × f (µ)

=⇒ Hop-D-Perfect: PrGame2 [1] = PrGame1 [1]
ENS/CNRS/INRIA Cascade David Pointcheval 25/51

Signature Oracle

• Game3: use of the simulation of the Signing Oracle

Simulation of S
S(m): find µ such that M = H(m) = f (µ), output σ = µ

ENS/CNRS/INRIA Cascade David Pointcheval 26/51

Signature Oracle

• Game3: use of the simulation of the Signing Oracle

Simulation of S
S(m): find µ such that M = H(m) = f (µ), output σ = µ

ENS/CNRS/INRIA Cascade David Pointcheval 26/51

Signature Oracle

• Game3: use of the simulation of the Signing Oracle

Simulation of S
S(m): find µ such that M = H(m) = f (µ), output σ = µ

Fails (with output 0) if H(m) = M = y × f (µ):
but with probability pqS

ENS/CNRS/INRIA Cascade David Pointcheval 26/51

Signature Oracle

• Game3: use of the simulation of the Signing Oracle

Simulation of S
S(m): find µ such that M = H(m) = f (µ), output σ = µ

Fails (with output 0) if H(m) = M = y × f (µ):
but with probability pqS

=⇒ Hop-S-Non-Negl: PrGame3 [1] = PrGame2 [1]× pqS

ENS/CNRS/INRIA Cascade David Pointcheval 26/51

Summary

In Game3, when the output is 1, with probability 1− p:

σ = g(M) = g(y × f (µ)) = g(y)× g(f (µ)) = g(f (x))× µ = x × µ

ENS/CNRS/INRIA Cascade David Pointcheval 27/51

Summary

In Game3, when the output is 1, with probability 1− p:

σ = g(M) = g(y × f (µ)) = g(y)× g(f (µ)) = g(f (x))× µ = x × µ

Pr
Game3

[1] ≤ Succow
P (t + qHτf)/(1− p)

ENS/CNRS/INRIA Cascade David Pointcheval 27/51

Summary

In Game3, when the output is 1, with probability 1− p:

σ = g(M) = g(y × f (µ)) = g(y)× g(f (µ)) = g(f (x))× µ = x × µ

Pr
Game3

[1] ≤ Succow
P (t + qHτf)/(1− p)

Pr
Game3

[1] = Pr
Game2

[1]× pqS

ENS/CNRS/INRIA Cascade David Pointcheval 27/51

Summary

In Game3, when the output is 1, with probability 1− p:

σ = g(M) = g(y × f (µ)) = g(y)× g(f (µ)) = g(f (x))× µ = x × µ

Pr
Game3

[1] ≤ Succow
P (t + qHτf)/(1− p)

Pr
Game3

[1] = Pr
Game2

[1]× pqS

Pr
Game2

[1] = Pr
Game1

[1]

ENS/CNRS/INRIA Cascade David Pointcheval 27/51

Summary

In Game3, when the output is 1, with probability 1− p:

σ = g(M) = g(y × f (µ)) = g(y)× g(f (µ)) = g(f (x))× µ = x × µ

Pr
Game3

[1] ≤ Succow
P (t + qHτf)/(1− p)

Pr
Game3

[1] = Pr
Game2

[1]× pqS

Pr
Game2

[1] = Pr
Game1

[1]

Pr
Game1

[1] = Pr
Game0

[1]

ENS/CNRS/INRIA Cascade David Pointcheval 27/51

Summary

In Game3, when the output is 1, with probability 1− p:

σ = g(M) = g(y × f (µ)) = g(y)× g(f (µ)) = g(f (x))× µ = x × µ

Pr
Game3

[1] ≤ Succow
P (t + qHτf)/(1− p)

Pr
Game3

[1] = Pr
Game2

[1]× pqS

Pr
Game2

[1] = Pr
Game1

[1]

Pr
Game1

[1] = Pr
Game0

[1]

Pr
Game0

[1] = Succeuf−cma
FDH (A)

ENS/CNRS/INRIA Cascade David Pointcheval 27/51

Summary

In Game3, when the output is 1, with probability 1− p:

σ = g(M) = g(y × f (µ)) = g(y)× g(f (µ)) = g(f (x))× µ = x × µ

Pr
Game3

[1] ≤ Succow
P (t + qHτf)/(1− p)

Pr
Game3

[1] = Pr
Game2

[1]× pqS

Pr
Game2

[1] = Pr
Game1

[1]

Pr
Game1

[1] = Pr
Game0

[1]

Pr
Game0

[1] = Succeuf−cma
FDH (A)

Succeuf−cma
FDH (A) ≤ 1

(1− p)pqS
× Succow

P (t + qHτf)

ENS/CNRS/INRIA Cascade David Pointcheval 27/51

Key Size

Succeuf−cma
FDH (A) ≤ 1

(1− p)pqS
× Succow

P (t + qHτf)

The maximal for p 7→ (1− p)pqS is reached for

p = 1− 1
qS + 1

→ 1
qS + 1

×
(

1− 1
qS + 1

)qS

≈ e−1

qS

• If one wants Succeuf−cma
FDH (t) ≤ ε with t/ε ≈ 280

• If one allows qS up to 230

ENS/CNRS/INRIA Cascade David Pointcheval 28/51

Key Size

Succeuf−cma
FDH (A) ≤ 1

(1− p)pqS
× Succow

P (t + qHτf)

The maximal for p 7→ (1− p)pqS is reached for

p = 1− 1
qS + 1

→ 1
qS + 1

×
(

1− 1
qS + 1

)qS

≈ e−1

qS

• If one wants Succeuf−cma
FDH (t) ≤ ε with t/ε ≈ 280

• If one allows qS up to 230

ENS/CNRS/INRIA Cascade David Pointcheval 28/51

Key Size

Succeuf−cma
FDH (A) ≤ 1

(1− p)pqS
× Succow

P (t + qHτf)

The maximal for p 7→ (1− p)pqS is reached for

p = 1− 1
qS + 1

→ 1
qS + 1

×
(

1− 1
qS + 1

)qS

≈ e−1

qS

• If one wants Succeuf−cma
FDH (t) ≤ ε with t/ε ≈ 280

• If one allows qS up to 230

ENS/CNRS/INRIA Cascade David Pointcheval 28/51

Key Size

Succeuf−cma
FDH (A) ≤ 1

(1− p)pqS
× Succow

P (t + qHτf)

The maximal for p 7→ (1− p)pqS is reached for

p = 1− 1
qS + 1

→ 1
qS + 1

×
(

1− 1
qS + 1

)qS

≈ e−1

qS

• If one wants Succeuf−cma
FDH (t) ≤ ε with t/ε ≈ 280

• If one allows qS up to 230

ENS/CNRS/INRIA Cascade David Pointcheval 28/51

Key Size

Succeuf−cma
FDH (A) ≤ 1

(1− p)pqS
× Succow

P (t + qHτf)

The maximal for p 7→ (1− p)pqS is reached for

p = 1− 1
qS + 1

→ 1
qS + 1

×
(

1− 1
qS + 1

)qS

≈ e−1

qS

• If one wants Succeuf−cma
FDH (t) ≤ ε with t/ε ≈ 280

• If one allows qS up to 230

Then one needs Succow
P (t) ≤ ε with t/ε ≥ 2110.

ENS/CNRS/INRIA Cascade David Pointcheval 28/51

Key Size

Succeuf−cma
FDH (A) ≤ 1

(1− p)pqS
× Succow

P (t + qHτf)

The maximal for p 7→ (1− p)pqS is reached for

p = 1− 1
qS + 1

→ 1
qS + 1

×
(

1− 1
qS + 1

)qS

≈ e−1

qS

• If one wants Succeuf−cma
FDH (t) ≤ ε with t/ε ≈ 280

• If one allows qS up to 230

Then one needs Succow
P (t) ≤ ε with t/ε ≥ 2110.

If one uses FDH-RSA: 2048 bit keys are enough.
ENS/CNRS/INRIA Cascade David Pointcheval 28/51

Forking Lemma

Outline

Basic Security Notions

Advanced Security for Signature

Forking Lemma

Zero-Knowledge Proofs

The Forking Lemma

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 29/51

Proof of Knowledge

How do I prove that I know a solution s to a problem P?

ENS/CNRS/INRIA Cascade David Pointcheval 30/51

Proof of Knowledge

How do I prove that I know a solution s to a problem P?

Polynomial
Size

Public Data P

Prover

A

Verifier

B
communication

ωA

ωB

Polynomial Time

Secret s

ENS/CNRS/INRIA Cascade David Pointcheval 30/51

Proof of Knowledge: Soundness

If I can be accepted, I really know a solution: extractor

ENS/CNRS/INRIA Cascade David Pointcheval 31/51

Proof of Knowledge: Soundness

If I can be accepted, I really know a solution: extractor

Public Data P

Extractor

Ecommunication

ωA s

ωE

Prover

A
ωA

s

ENS/CNRS/INRIA Cascade David Pointcheval 31/51

Proof of Knowledge: Zero-Knowledge

How do I prove that I know a solution s to a problem P?

ENS/CNRS/INRIA Cascade David Pointcheval 32/51

Proof of Knowledge: Zero-Knowledge

How do I prove that I know a solution s to a problem P?

I reveal the solution. . .

ENS/CNRS/INRIA Cascade David Pointcheval 32/51

Proof of Knowledge: Zero-Knowledge

How do I prove that I know a solution s to a problem P?

I reveal the solution. . .

How can do it without revealing any information?

ENS/CNRS/INRIA Cascade David Pointcheval 32/51

Proof of Knowledge: Zero-Knowledge

How do I prove that I know a solution s to a problem P?

I reveal the solution. . .

How can do it without revealing any information?

Zero-knowledge: simulator

ENS/CNRS/INRIA Cascade David Pointcheval 32/51

Proof of Knowledge: Zero-Knowledge

How do I prove that I know a solution s to a problem P?

I reveal the solution. . .

How can do it without revealing any information?

Zero-knowledge: simulator

Public Data P

communication

communication

IndistinguishableIndistinguishable

Verifier

B

ωB

Simulator

S ωS

Prover

A ωA
s

ENS/CNRS/INRIA Cascade David Pointcheval 32/51

Proof of Knowledge

How do I prove that I know a 3-color covering,
without revealing any information?

ENS/CNRS/INRIA Cascade David Pointcheval 33/51

Proof of Knowledge

How do I prove that I know a 3-color covering,
without revealing any information?

I choose a random permutation on the colors

ENS/CNRS/INRIA Cascade David Pointcheval 33/51

Proof of Knowledge

How do I prove that I know a 3-color covering,
without revealing any information?

I choose a random permutation on the colors
and I apply it to the vertices

ENS/CNRS/INRIA Cascade David Pointcheval 33/51

Proof of Knowledge

How do I prove that I know a 3-color covering,
without revealing any information?

I mask the vertices
and send it to the verifier

ENS/CNRS/INRIA Cascade David Pointcheval 33/51

Proof of Knowledge

How do I prove that I know a 3-color covering,
without revealing any information?

(a)

The verifier chooses an edge

ENS/CNRS/INRIA Cascade David Pointcheval 33/51

Proof of Knowledge

How do I prove that I know a 3-color covering,
without revealing any information?

(a)

I open it

ENS/CNRS/INRIA Cascade David Pointcheval 33/51

Proof of Knowledge

How do I prove that I know a 3-color covering,
without revealing any information?

(a)

I open it
The verifier checks the validity: 2 different colors

ENS/CNRS/INRIA Cascade David Pointcheval 33/51

Secure Multiple Proofs of Knowledge: Authentication

If there exists an efficient adversary,
then one can solve the underlying problem:

Public Data P

communication

communication

Hist

Cheater

C1 ω1

Cheater

C2 ω2

Prover

A ωA

Verifier

B
ωB

s

ENS/CNRS/INRIA Cascade David Pointcheval 34/51

Secure Multiple Proofs of Knowledge: Authentication

If there exists an efficient adversary,
then one can solve the underlying problem:

Public Data P

communication

communication

Hist

Cheater

C1 ω1

Cheater

C2 ω2

Verifier

B
ωB

Simulator

S
ωS

ENS/CNRS/INRIA Cascade David Pointcheval 34/51

Secure Multiple Proofs of Knowledge: Authentication

If there exists an efficient adversary,
then one can solve the underlying problem:

Public Data P

communication

communication

Hist

Cheater

C1 ω1

Cheater

C2 ω2

Simulator

S
ωS

Extractor

E ωE

ω2 s

ENS/CNRS/INRIA Cascade David Pointcheval 34/51

Schnorr Proofs [Schnorr – Eurocrypt ’89 - Crypto ’89]

Zero-Knowledge Proof

• Setting: (G = 〈g〉) of order q
P knows x , such thaty = g−x

and wants to prove it to V
• P chooses K R← Z?q

sets and sends r = gK

• V chooses h R← {0,1}k

and sends it to P
• P computes and sends

s = K + xh mod q

• V checks whether r ?
= gsyh

Signature

• (G = 〈g〉) of order q
H: {0,1}? → Zq

• Key Generation→ (y , x)

private key x ∈ Z?q
public key y = g−x

• Signature of m→ (r ,h, s)

K R← Z?q r = gK

h = H(m, r) and
s = K + xh mod q

• Verification of (m, r , s)

compute h = H(m, r)

and check r ?
= gsyh

ENS/CNRS/INRIA Cascade David Pointcheval 35/51

Schnorr Proofs [Schnorr – Eurocrypt ’89 - Crypto ’89]

Zero-Knowledge Proof

• Setting: (G = 〈g〉) of order q
P knows x , such thaty = g−x

and wants to prove it to V
• P chooses K R← Z?q

sets and sends r = gK

• V chooses h R← {0,1}k

and sends it to P
• P computes and sends

s = K + xh mod q

• V checks whether r ?
= gsyh

Signature

• (G = 〈g〉) of order q
H: {0,1}? → Zq

• Key Generation→ (y , x)

private key x ∈ Z?q
public key y = g−x

• Signature of m→ (r ,h, s)

K R← Z?q r = gK

h = H(m, r) and
s = K + xh mod q

• Verification of (m, r , s)

compute h = H(m, r)

and check r ?
= gsyh

ENS/CNRS/INRIA Cascade David Pointcheval 35/51

Schnorr Proofs [Schnorr – Eurocrypt ’89 - Crypto ’89]

Zero-Knowledge Proof

• Setting: (G = 〈g〉) of order q
P knows x , such thaty = g−x

and wants to prove it to V
• P chooses K R← Z?q

sets and sends r = gK

• V chooses h R← {0,1}k

and sends it to P
• P computes and sends

s = K + xh mod q

• V checks whether r ?
= gsyh

Signature

• (G = 〈g〉) of order q
H: {0,1}? → Zq

• Key Generation→ (y , x)

private key x ∈ Z?q
public key y = g−x

• Signature of m→ (r ,h, s)

K R← Z?q r = gK

h = H(m, r) and
s = K + xh mod q

• Verification of (m, r , s)

compute h = H(m, r)

and check r ?
= gsyh

ENS/CNRS/INRIA Cascade David Pointcheval 35/51

Schnorr Proofs [Schnorr – Eurocrypt ’89 - Crypto ’89]

Zero-Knowledge Proof

• Setting: (G = 〈g〉) of order q
P knows x , such thaty = g−x

and wants to prove it to V
• P chooses K R← Z?q

sets and sends r = gK

• V chooses h R← {0,1}k

and sends it to P
• P computes and sends

s = K + xh mod q

• V checks whether r ?
= gsyh

Signature

• (G = 〈g〉) of order q
H: {0,1}? → Zq

• Key Generation→ (y , x)

private key x ∈ Z?q
public key y = g−x

• Signature of m→ (r ,h, s)

K R← Z?q r = gK

h = H(m, r) and
s = K + xh mod q

• Verification of (m, r , s)

compute h = H(m, r)

and check r ?
= gsyh

ENS/CNRS/INRIA Cascade David Pointcheval 35/51

Schnorr Proofs [Schnorr – Eurocrypt ’89 - Crypto ’89]

Zero-Knowledge Proof

• Setting: (G = 〈g〉) of order q
P knows x , such thaty = g−x

and wants to prove it to V
• P chooses K R← Z?q

sets and sends r = gK

• V chooses h R← {0,1}k

and sends it to P
• P computes and sends

s = K + xh mod q

• V checks whether r ?
= gsyh

Signature

• (G = 〈g〉) of order q
H: {0,1}? → Zq

• Key Generation→ (y , x)

private key x ∈ Z?q
public key y = g−x

• Signature of m→ (r ,h, s)

K R← Z?q r = gK

h = H(m, r) and
s = K + xh mod q

• Verification of (m, r , s)

compute h = H(m, r)

and check r ?
= gsyh

ENS/CNRS/INRIA Cascade David Pointcheval 35/51

Schnorr Proofs [Schnorr – Eurocrypt ’89 - Crypto ’89]

Zero-Knowledge Proof

• Setting: (G = 〈g〉) of order q
P knows x , such thaty = g−x

and wants to prove it to V
• P chooses K R← Z?q

sets and sends r = gK

• V chooses h R← {0,1}k

and sends it to P
• P computes and sends

s = K + xh mod q

• V checks whether r ?
= gsyh

Signature

• (G = 〈g〉) of order q
H: {0,1}? → Zq

• Key Generation→ (y , x)

private key x ∈ Z?q
public key y = g−x

• Signature of m→ (r ,h, s)

K R← Z?q r = gK

h = H(m, r) and
s = K + xh mod q

• Verification of (m, r , s)

compute h = H(m, r)

and check r ?
= gsyh

ENS/CNRS/INRIA Cascade David Pointcheval 35/51

Schnorr Proofs [Schnorr – Eurocrypt ’89 - Crypto ’89]

Zero-Knowledge Proof

• Setting: (G = 〈g〉) of order q
P knows x , such thaty = g−x

and wants to prove it to V
• P chooses K R← Z?q

sets and sends r = gK

• V chooses h R← {0,1}k

and sends it to P
• P computes and sends

s = K + xh mod q

• V checks whether r ?
= gsyh

Signature

• (G = 〈g〉) of order q
H: {0,1}? → Zq

• Key Generation→ (y , x)

private key x ∈ Z?q
public key y = g−x

• Signature of m→ (r ,h, s)

K R← Z?q r = gK

h = H(m, r) and
s = K + xh mod q

• Verification of (m, r , s)

compute h = H(m, r)

and check r ?
= gsyh

ENS/CNRS/INRIA Cascade David Pointcheval 35/51

Schnorr Proofs [Schnorr – Eurocrypt ’89 - Crypto ’89]

Zero-Knowledge Proof

• Setting: (G = 〈g〉) of order q
P knows x , such thaty = g−x

and wants to prove it to V
• P chooses K R← Z?q

sets and sends r = gK

• V chooses h R← {0,1}k

and sends it to P
• P computes and sends

s = K + xh mod q

• V checks whether r ?
= gsyh

Signature

• (G = 〈g〉) of order q
H: {0,1}? → Zq

• Key Generation→ (y , x)

private key x ∈ Z?q
public key y = g−x

• Signature of m→ (r ,h, s)

K R← Z?q r = gK

h = H(m, r) and
s = K + xh mod q

• Verification of (m, r , s)

compute h = H(m, r)

and check r ?
= gsyh

ENS/CNRS/INRIA Cascade David Pointcheval 35/51

Schnorr Proofs [Schnorr – Eurocrypt ’89 - Crypto ’89]

Zero-Knowledge Proof

• Setting: (G = 〈g〉) of order q
P knows x , such thaty = g−x

and wants to prove it to V
• P chooses K R← Z?q

sets and sends r = gK

• V chooses h R← {0,1}k

and sends it to P
• P computes and sends

s = K + xh mod q

• V checks whether r ?
= gsyh

Signature

• (G = 〈g〉) of order q
H: {0,1}? → Zq

• Key Generation→ (y , x)

private key x ∈ Z?q
public key y = g−x

• Signature of m→ (r ,h, s)

K R← Z?q r = gK

h = H(m, r) and
s = K + xh mod q

• Verification of (m, r , s)

compute h = H(m, r)

and check r ?
= gsyh

ENS/CNRS/INRIA Cascade David Pointcheval 35/51

Generic Zero-Knowledge Proofs

Zero-Knowledge Proof

• Proof of knowledge of x ,
such that R(x , y)

• P builds a commitment r
and sends it to V

• V chooses a challenge
h R← {0,1}k for P

• P computes and sends
the answer s

• V checks (r ,h, s)

Signature
H viewed as a random oracle

• Key Generation→ (y , x)

private: x public: y

• Signature of m→ (r ,h, s)

Commitment r
Challenge h = H(m, r)

Answer s

• Verification of (m, r , s)

compute h = H(m, r)

and check (r ,h, s)

ENS/CNRS/INRIA Cascade David Pointcheval 36/51

Generic Zero-Knowledge Proofs

Zero-Knowledge Proof

• Proof of knowledge of x ,
such that R(x , y)

• P builds a commitment r
and sends it to V

• V chooses a challenge
h R← {0,1}k for P

• P computes and sends
the answer s

• V checks (r ,h, s)

Signature
H viewed as a random oracle

• Key Generation→ (y , x)

private: x public: y

• Signature of m→ (r ,h, s)

Commitment r
Challenge h = H(m, r)

Answer s

• Verification of (m, r , s)

compute h = H(m, r)

and check (r ,h, s)

ENS/CNRS/INRIA Cascade David Pointcheval 36/51

Generic Zero-Knowledge Proofs

Zero-Knowledge Proof

• Proof of knowledge of x ,
such that R(x , y)

• P builds a commitment r
and sends it to V

• V chooses a challenge
h R← {0,1}k for P

• P computes and sends
the answer s

• V checks (r ,h, s)

Signature
H viewed as a random oracle

• Key Generation→ (y , x)

private: x public: y

• Signature of m→ (r ,h, s)

Commitment r
Challenge h = H(m, r)

Answer s

• Verification of (m, r , s)

compute h = H(m, r)

and check (r ,h, s)

ENS/CNRS/INRIA Cascade David Pointcheval 36/51

Generic Zero-Knowledge Proofs

Zero-Knowledge Proof

• Proof of knowledge of x ,
such that R(x , y)

• P builds a commitment r
and sends it to V

• V chooses a challenge
h R← {0,1}k for P

• P computes and sends
the answer s

• V checks (r ,h, s)

Signature
H viewed as a random oracle

• Key Generation→ (y , x)

private: x public: y

• Signature of m→ (r ,h, s)

Commitment r
Challenge h = H(m, r)

Answer s

• Verification of (m, r , s)

compute h = H(m, r)

and check (r ,h, s)

ENS/CNRS/INRIA Cascade David Pointcheval 36/51

Generic Zero-Knowledge Proofs

Zero-Knowledge Proof

• Proof of knowledge of x ,
such that R(x , y)

• P builds a commitment r
and sends it to V

• V chooses a challenge
h R← {0,1}k for P

• P computes and sends
the answer s

• V checks (r ,h, s)

Signature
H viewed as a random oracle

• Key Generation→ (y , x)

private: x public: y

• Signature of m→ (r ,h, s)

Commitment r
Challenge h = H(m, r)

Answer s

• Verification of (m, r , s)

compute h = H(m, r)

and check (r ,h, s)

ENS/CNRS/INRIA Cascade David Pointcheval 36/51

Generic Zero-Knowledge Proofs

Zero-Knowledge Proof

• Proof of knowledge of x ,
such that R(x , y)

• P builds a commitment r
and sends it to V

• V chooses a challenge
h R← {0,1}k for P

• P computes and sends
the answer s

• V checks (r ,h, s)

Signature
H viewed as a random oracle

• Key Generation→ (y , x)

private: x public: y

• Signature of m→ (r ,h, s)

Commitment r
Challenge h = H(m, r)

Answer s

• Verification of (m, r , s)

compute h = H(m, r)

and check (r ,h, s)

ENS/CNRS/INRIA Cascade David Pointcheval 36/51

Generic Zero-Knowledge Proofs

Zero-Knowledge Proof

• Proof of knowledge of x ,
such that R(x , y)

• P builds a commitment r
and sends it to V

• V chooses a challenge
h R← {0,1}k for P

• P computes and sends
the answer s

• V checks (r ,h, s)

Signature
H viewed as a random oracle

• Key Generation→ (y , x)

private: x public: y

• Signature of m→ (r ,h, s)

Commitment r
Challenge h = H(m, r)

Answer s

• Verification of (m, r , s)

compute h = H(m, r)

and check (r ,h, s)

ENS/CNRS/INRIA Cascade David Pointcheval 36/51

Generic Zero-Knowledge Proofs

Zero-Knowledge Proof

• Proof of knowledge of x ,
such that R(x , y)

• P builds a commitment r
and sends it to V

• V chooses a challenge
h R← {0,1}k for P

• P computes and sends
the answer s

• V checks (r ,h, s)

Signature
H viewed as a random oracle

• Key Generation→ (y , x)

private: x public: y

• Signature of m→ (r ,h, s)

Commitment r
Challenge h = H(m, r)

Answer s

• Verification of (m, r , s)

compute h = H(m, r)

and check (r ,h, s)

ENS/CNRS/INRIA Cascade David Pointcheval 36/51

Σ Protocols

Zero-Knowledge Proof

• Proof of knowledge of x

• P sends a commitment r

• V sends a challenge h

• P sends the answer s

• V checks (r ,h, s)

Signature

• Key Generation→ (y , x)

• Signature of m→ (r ,h, s)

Commitment r
Challenge h = H(m, r)

Answer s

• Verification of (m, r , s)

compute h = H(m, r)

and check (r ,h, s)

Special soundness
If one can answer to two different challenges h 6= h′: s and s′

for a unique commitment r , one can extract x

ENS/CNRS/INRIA Cascade David Pointcheval 37/51

Σ Protocols

Zero-Knowledge Proof

• Proof of knowledge of x

• P sends a commitment r

• V sends a challenge h

• P sends the answer s

• V checks (r ,h, s)

Signature

• Key Generation→ (y , x)

• Signature of m→ (r ,h, s)

Commitment r
Challenge h = H(m, r)

Answer s

• Verification of (m, r , s)

compute h = H(m, r)

and check (r ,h, s)

Special soundness
If one can answer to two different challenges h 6= h′: s and s′

for a unique commitment r , one can extract x

ENS/CNRS/INRIA Cascade David Pointcheval 37/51

Σ Protocols

Zero-Knowledge Proof

• Proof of knowledge of x

• P sends a commitment r

• V sends a challenge h

• P sends the answer s

• V checks (r ,h, s)

Signature

• Key Generation→ (y , x)

• Signature of m→ (r ,h, s)

Commitment r
Challenge h = H(m, r)

Answer s

• Verification of (m, r , s)

compute h = H(m, r)

and check (r ,h, s)

Special soundness
If one can answer to two different challenges h 6= h′: s and s′

for a unique commitment r , one can extract x

ENS/CNRS/INRIA Cascade David Pointcheval 37/51

Σ Protocols

Zero-Knowledge Proof

• Proof of knowledge of x

• P sends a commitment r

• V sends a challenge h

• P sends the answer s

• V checks (r ,h, s)

Signature

• Key Generation→ (y , x)

• Signature of m→ (r ,h, s)

Commitment r
Challenge h = H(m, r)

Answer s

• Verification of (m, r , s)

compute h = H(m, r)

and check (r ,h, s)

Special soundness
If one can answer to two different challenges h 6= h′: s and s′

for a unique commitment r , one can extract x

ENS/CNRS/INRIA Cascade David Pointcheval 37/51

Σ Protocols

Zero-Knowledge Proof

• Proof of knowledge of x

• P sends a commitment r

• V sends a challenge h

• P sends the answer s

• V checks (r ,h, s)

Signature

• Key Generation→ (y , x)

• Signature of m→ (r ,h, s)

Commitment r
Challenge h = H(m, r)

Answer s

• Verification of (m, r , s)

compute h = H(m, r)

and check (r ,h, s)

Special soundness
If one can answer to two different challenges h 6= h′: s and s′

for a unique commitment r , one can extract x

ENS/CNRS/INRIA Cascade David Pointcheval 37/51

Σ Protocols

Zero-Knowledge Proof

• Proof of knowledge of x

• P sends a commitment r

• V sends a challenge h

• P sends the answer s

• V checks (r ,h, s)

Signature

• Key Generation→ (y , x)

• Signature of m→ (r ,h, s)

Commitment r
Challenge h = H(m, r)

Answer s

• Verification of (m, r , s)

compute h = H(m, r)

and check (r ,h, s)

Special soundness
If one can answer to two different challenges h 6= h′: s and s′

for a unique commitment r , one can extract x

ENS/CNRS/INRIA Cascade David Pointcheval 37/51

Σ Protocols

Zero-Knowledge Proof

• Proof of knowledge of x

• P sends a commitment r

• V sends a challenge h

• P sends the answer s

• V checks (r ,h, s)

Signature

• Key Generation→ (y , x)

• Signature of m→ (r ,h, s)

Commitment r
Challenge h = H(m, r)

Answer s

• Verification of (m, r , s)

compute h = H(m, r)

and check (r ,h, s)

Special soundness
If one can answer to two different challenges h 6= h′: s and s′

for a unique commitment r , one can extract x

ENS/CNRS/INRIA Cascade David Pointcheval 37/51

Σ Protocols

Zero-Knowledge Proof

• Proof of knowledge of x

• P sends a commitment r

• V sends a challenge h

• P sends the answer s

• V checks (r ,h, s)

Signature

• Key Generation→ (y , x)

• Signature of m→ (r ,h, s)

Commitment r
Challenge h = H(m, r)

Answer s

• Verification of (m, r , s)

compute h = H(m, r)

and check (r ,h, s)

Special soundness
If one can answer to two different challenges h 6= h′: s and s′

for a unique commitment r , one can extract x

ENS/CNRS/INRIA Cascade David Pointcheval 37/51

Σ Protocols

Zero-Knowledge Proof

• Proof of knowledge of x

• P sends a commitment r

• V sends a challenge h

• P sends the answer s

• V checks (r ,h, s)

Signature

• Key Generation→ (y , x)

• Signature of m→ (r ,h, s)

Commitment r
Challenge h = H(m, r)

Answer s

• Verification of (m, r , s)

compute h = H(m, r)

and check (r ,h, s)

Special soundness
If one can answer to two different challenges h 6= h′: s and s′

for a unique commitment r , one can extract x

ENS/CNRS/INRIA Cascade David Pointcheval 37/51

Outline

Basic Security Notions

Advanced Security for Signature

Forking Lemma

Zero-Knowledge Proofs

The Forking Lemma

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 38/51

Splitting Lemma

Idea
When a subset A is “large” in a product space X × Y ,
it has many “large” sections.

The Splitting Lemma
Let A ⊂ X × Y such that Pr[(x , y) ∈ A] ≥ ε. For any α < ε, define

Bα =

{
(x , y) ∈ X × Y | Pr

y ′∈Y
[(x , y ′) ∈ A] ≥ ε− α

}
, then

(i) Pr[Bα] ≥ α
(ii) ∀(x , y) ∈ Bα,Pry ′∈Y [(x , y ′) ∈ A] ≥ ε− α.
(iii) Pr[Bα |A] ≥ α/ε.

ENS/CNRS/INRIA Cascade David Pointcheval 39/51

Splitting Lemma

Idea
When a subset A is “large” in a product space X × Y ,
it has many “large” sections.

The Splitting Lemma
Let A ⊂ X × Y such that Pr[(x , y) ∈ A] ≥ ε. For any α < ε, define

Bα =

{
(x , y) ∈ X × Y | Pr

y ′∈Y
[(x , y ′) ∈ A] ≥ ε− α

}
, then

(i) Pr[Bα] ≥ α
(ii) ∀(x , y) ∈ Bα,Pry ′∈Y [(x , y ′) ∈ A] ≥ ε− α.
(iii) Pr[Bα |A] ≥ α/ε.

ENS/CNRS/INRIA Cascade David Pointcheval 39/51

Splitting Lemma

Idea
When a subset A is “large” in a product space X × Y ,
it has many “large” sections.

The Splitting Lemma
Let A ⊂ X × Y such that Pr[(x , y) ∈ A] ≥ ε. For any α < ε, define

Bα =

{
(x , y) ∈ X × Y | Pr

y ′∈Y
[(x , y ′) ∈ A] ≥ ε− α

}
, then

(i) Pr[Bα] ≥ α
(ii) ∀(x , y) ∈ Bα,Pry ′∈Y [(x , y ′) ∈ A] ≥ ε− α.
(iii) Pr[Bα |A] ≥ α/ε.

ENS/CNRS/INRIA Cascade David Pointcheval 39/51

Splitting Lemma

Idea
When a subset A is “large” in a product space X × Y ,
it has many “large” sections.

The Splitting Lemma
Let A ⊂ X × Y such that Pr[(x , y) ∈ A] ≥ ε. For any α < ε, define

Bα =

{
(x , y) ∈ X × Y | Pr

y ′∈Y
[(x , y ′) ∈ A] ≥ ε− α

}
, then

(i) Pr[Bα] ≥ α
(ii) ∀(x , y) ∈ Bα,Pry ′∈Y [(x , y ′) ∈ A] ≥ ε− α.
(iii) Pr[Bα |A] ≥ α/ε.

ENS/CNRS/INRIA Cascade David Pointcheval 39/51

Splitting Lemma

Idea
When a subset A is “large” in a product space X × Y ,
it has many “large” sections.

The Splitting Lemma
Let A ⊂ X × Y such that Pr[(x , y) ∈ A] ≥ ε. For any α < ε, define

Bα =

{
(x , y) ∈ X × Y | Pr

y ′∈Y
[(x , y ′) ∈ A] ≥ ε− α

}
, then

(i) Pr[Bα] ≥ α
(ii) ∀(x , y) ∈ Bα,Pry ′∈Y [(x , y ′) ∈ A] ≥ ε− α.
(iii) Pr[Bα |A] ≥ α/ε.

ENS/CNRS/INRIA Cascade David Pointcheval 39/51

Splitting Lemma – Proof

(i) we argue by contradiction, using the notation B̄ for the
complement of B in X × Y . Assume that Pr[Bα] < α. Then,

ε ≤ Pr[B] · Pr[A |B] + Pr[B̄] · Pr[A | B̄] < α · 1 + 1 · (ε− α) = ε.

(ii) straightforward.

(iii) using Bayes’ law:

Pr[B |A] = 1− Pr[B̄ |A]

= 1− Pr[A | B̄] · Pr[B̄]/Pr[A] ≥ 1− (ε− α)/ε = α/ε.

ENS/CNRS/INRIA Cascade David Pointcheval 40/51

Splitting Lemma – Proof

(i) we argue by contradiction, using the notation B̄ for the
complement of B in X × Y . Assume that Pr[Bα] < α. Then,

ε ≤ Pr[B] · Pr[A |B] + Pr[B̄] · Pr[A | B̄] < α · 1 + 1 · (ε− α) = ε.

(ii) straightforward.

(iii) using Bayes’ law:

Pr[B |A] = 1− Pr[B̄ |A]

= 1− Pr[A | B̄] · Pr[B̄]/Pr[A] ≥ 1− (ε− α)/ε = α/ε.

ENS/CNRS/INRIA Cascade David Pointcheval 40/51

Splitting Lemma – Proof

(i) we argue by contradiction, using the notation B̄ for the
complement of B in X × Y . Assume that Pr[Bα] < α. Then,

ε ≤ Pr[B] · Pr[A |B] + Pr[B̄] · Pr[A | B̄] < α · 1 + 1 · (ε− α) = ε.

(ii) straightforward.

(iii) using Bayes’ law:

Pr[B |A] = 1− Pr[B̄ |A]

= 1− Pr[A | B̄] · Pr[B̄]/Pr[A] ≥ 1− (ε− α)/ε = α/ε.

ENS/CNRS/INRIA Cascade David Pointcheval 40/51

Splitting Lemma – Proof

(i) we argue by contradiction, using the notation B̄ for the
complement of B in X × Y . Assume that Pr[Bα] < α. Then,

ε ≤ Pr[B] · Pr[A |B] + Pr[B̄] · Pr[A | B̄] < α · 1 + 1 · (ε− α) = ε.

(ii) straightforward.

(iii) using Bayes’ law:

Pr[B |A] = 1− Pr[B̄ |A]

= 1− Pr[A | B̄] · Pr[B̄]/Pr[A] ≥ 1− (ε− α)/ε = α/ε.

ENS/CNRS/INRIA Cascade David Pointcheval 40/51

Forking Lemma [Pointcheval-Stern – Eurocrypt ’96]

Theorem (The Forking Lemma)
Let (K,S,V) be a digital signature scheme with security
parameter k, with a signature as above, of the form (m, r ,h, s),
where h = H(m, r) and s depends on r and h only.

Let A be a probabilistic polynomial time Turing machine whose
input only consists of public data and which can ask qH queries to
the random oracle, with qH > 0.

We assume that, within the time bound T , A produces, with
probability ε ≥ 7qH/2k , a valid signature (m, r ,h, s).

Then, within time T ′ ≤ 16qHT/ε, and with probability ε′ ≥ 1/9, a
replay of this machine outputs two valid signatures (m, r ,h, s)

and (m, r ,h′, s′) such that h 6= h′.

ENS/CNRS/INRIA Cascade David Pointcheval 41/51

Forking Lemma – Proof

• A is a PPTM with random tape ω.

• During the attack, A asks a polynomial number of queries to H.
• We may assume that these questions are distinct:

• Q1, . . . ,QqH are the qH distinct questions
• and let H = (h1, . . . ,hqH) be the list of the qH answers of H.

Note: a random choice of H = a random choice of H.

• For a random choice of (ω,H), with probability ε, A outputs a
valid signature (m, r ,h, s).

• Since H is a random oracle, the probability for h to be equal to
H(m, r) is less than 1/2k , unless it has been asked during the
attack.

Accordingly, we define IndH(ω) to be the index of this question:
(m, r) = QIndH(ω) (IndH(ω) =∞ if the question is never asked).

ENS/CNRS/INRIA Cascade David Pointcheval 42/51

Forking Lemma – Proof

• A is a PPTM with random tape ω.

• During the attack, A asks a polynomial number of queries to H.
• We may assume that these questions are distinct:

• Q1, . . . ,QqH are the qH distinct questions
• and let H = (h1, . . . ,hqH) be the list of the qH answers of H.

Note: a random choice of H = a random choice of H.

• For a random choice of (ω,H), with probability ε, A outputs a
valid signature (m, r ,h, s).

• Since H is a random oracle, the probability for h to be equal to
H(m, r) is less than 1/2k , unless it has been asked during the
attack.

Accordingly, we define IndH(ω) to be the index of this question:
(m, r) = QIndH(ω) (IndH(ω) =∞ if the question is never asked).

ENS/CNRS/INRIA Cascade David Pointcheval 42/51

Forking Lemma – Proof

• A is a PPTM with random tape ω.

• During the attack, A asks a polynomial number of queries to H.
• We may assume that these questions are distinct:

• Q1, . . . ,QqH are the qH distinct questions
• and let H = (h1, . . . ,hqH) be the list of the qH answers of H.

Note: a random choice of H = a random choice of H.

• For a random choice of (ω,H), with probability ε, A outputs a
valid signature (m, r ,h, s).

• Since H is a random oracle, the probability for h to be equal to
H(m, r) is less than 1/2k , unless it has been asked during the
attack.

Accordingly, we define IndH(ω) to be the index of this question:
(m, r) = QIndH(ω) (IndH(ω) =∞ if the question is never asked).

ENS/CNRS/INRIA Cascade David Pointcheval 42/51

Forking Lemma – Proof

• A is a PPTM with random tape ω.

• During the attack, A asks a polynomial number of queries to H.
• We may assume that these questions are distinct:

• Q1, . . . ,QqH are the qH distinct questions
• and let H = (h1, . . . ,hqH) be the list of the qH answers of H.

Note: a random choice of H = a random choice of H.

• For a random choice of (ω,H), with probability ε, A outputs a
valid signature (m, r ,h, s).

• Since H is a random oracle, the probability for h to be equal to
H(m, r) is less than 1/2k , unless it has been asked during the
attack.

Accordingly, we define IndH(ω) to be the index of this question:
(m, r) = QIndH(ω) (IndH(ω) =∞ if the question is never asked).

ENS/CNRS/INRIA Cascade David Pointcheval 42/51

Forking Lemma – Proof

• A is a PPTM with random tape ω.

• During the attack, A asks a polynomial number of queries to H.
• We may assume that these questions are distinct:

• Q1, . . . ,QqH are the qH distinct questions
• and let H = (h1, . . . ,hqH) be the list of the qH answers of H.

Note: a random choice of H = a random choice of H.

• For a random choice of (ω,H), with probability ε, A outputs a
valid signature (m, r ,h, s).

• Since H is a random oracle, the probability for h to be equal to
H(m, r) is less than 1/2k , unless it has been asked during the
attack.

Accordingly, we define IndH(ω) to be the index of this question:
(m, r) = QIndH(ω) (IndH(ω) =∞ if the question is never asked).

ENS/CNRS/INRIA Cascade David Pointcheval 42/51

Forking Lemma – Proof

• A is a PPTM with random tape ω.

• During the attack, A asks a polynomial number of queries to H.
• We may assume that these questions are distinct:

• Q1, . . . ,QqH are the qH distinct questions
• and let H = (h1, . . . ,hqH) be the list of the qH answers of H.

Note: a random choice of H = a random choice of H.

• For a random choice of (ω,H), with probability ε, A outputs a
valid signature (m, r ,h, s).

• Since H is a random oracle, the probability for h to be equal to
H(m, r) is less than 1/2k , unless it has been asked during the
attack.

Accordingly, we define IndH(ω) to be the index of this question:
(m, r) = QIndH(ω) (IndH(ω) =∞ if the question is never asked).

ENS/CNRS/INRIA Cascade David Pointcheval 42/51

Forking Lemma – Proof

• A is a PPTM with random tape ω.

• During the attack, A asks a polynomial number of queries to H.
• We may assume that these questions are distinct:

• Q1, . . . ,QqH are the qH distinct questions
• and let H = (h1, . . . ,hqH) be the list of the qH answers of H.

Note: a random choice of H = a random choice of H.

• For a random choice of (ω,H), with probability ε, A outputs a
valid signature (m, r ,h, s).

• Since H is a random oracle, the probability for h to be equal to
H(m, r) is less than 1/2k , unless it has been asked during the
attack.

Accordingly, we define IndH(ω) to be the index of this question:
(m, r) = QIndH(ω) (IndH(ω) =∞ if the question is never asked).

ENS/CNRS/INRIA Cascade David Pointcheval 42/51

Forking Lemma – Proof

• A is a PPTM with random tape ω.

• During the attack, A asks a polynomial number of queries to H.
• We may assume that these questions are distinct:

• Q1, . . . ,QqH are the qH distinct questions
• and let H = (h1, . . . ,hqH) be the list of the qH answers of H.

Note: a random choice of H = a random choice of H.

• For a random choice of (ω,H), with probability ε, A outputs a
valid signature (m, r ,h, s).

• Since H is a random oracle, the probability for h to be equal to
H(m, r) is less than 1/2k , unless it has been asked during the
attack.

Accordingly, we define IndH(ω) to be the index of this question:
(m, r) = QIndH(ω) (IndH(ω) =∞ if the question is never asked).

ENS/CNRS/INRIA Cascade David Pointcheval 42/51

Forking Lemma – Proof

We then define the sets

S =
{

(ω,H) | AH(ω) succeeds & IndH(ω) 6=∞
}
,

Si =
{

(ω,H) | AH(ω) succeeds & IndH(ω) = i
}

i ∈ {1, . . . ,qH}.

Note: the set {Si} is a partition of S.

ν = Pr[S] ≥ ε− 1/2k .

Since ε ≥ 7qH/2k ≥ 7/2k , then

ν ≥ 6ε/7.

ENS/CNRS/INRIA Cascade David Pointcheval 43/51

Forking Lemma – Proof

We then define the sets

S =
{

(ω,H) | AH(ω) succeeds & IndH(ω) 6=∞
}
,

Si =
{

(ω,H) | AH(ω) succeeds & IndH(ω) = i
}

i ∈ {1, . . . ,qH}.

Note: the set {Si} is a partition of S.

ν = Pr[S] ≥ ε− 1/2k .

Since ε ≥ 7qH/2k ≥ 7/2k , then

ν ≥ 6ε/7.

ENS/CNRS/INRIA Cascade David Pointcheval 43/51

Forking Lemma – Proof

We then define the sets

S =
{

(ω,H) | AH(ω) succeeds & IndH(ω) 6=∞
}
,

Si =
{

(ω,H) | AH(ω) succeeds & IndH(ω) = i
}

i ∈ {1, . . . ,qH}.

Note: the set {Si} is a partition of S.

ν = Pr[S] ≥ ε− 1/2k .

Since ε ≥ 7qH/2k ≥ 7/2k , then

ν ≥ 6ε/7.

ENS/CNRS/INRIA Cascade David Pointcheval 43/51

Forking Lemma – Proof

We then define the sets

S =
{

(ω,H) | AH(ω) succeeds & IndH(ω) 6=∞
}
,

Si =
{

(ω,H) | AH(ω) succeeds & IndH(ω) = i
}

i ∈ {1, . . . ,qH}.

Note: the set {Si} is a partition of S.

ν = Pr[S] ≥ ε− 1/2k .

Since ε ≥ 7qH/2k ≥ 7/2k , then

ν ≥ 6ε/7.

ENS/CNRS/INRIA Cascade David Pointcheval 43/51

Forking Lemma – Proof

We then define the sets

S =
{

(ω,H) | AH(ω) succeeds & IndH(ω) 6=∞
}
,

Si =
{

(ω,H) | AH(ω) succeeds & IndH(ω) = i
}

i ∈ {1, . . . ,qH}.

Note: the set {Si} is a partition of S.

ν = Pr[S] ≥ ε− 1/2k .

Since ε ≥ 7qH/2k ≥ 7/2k , then

ν ≥ 6ε/7.

ENS/CNRS/INRIA Cascade David Pointcheval 43/51

Forking Lemma – Proof

Let I be the set consisting of the most likely indices i ,

I = {i | Pr[Si | S] ≥ 1/2qH} .

Lemma

Pr[IndH(ω) ∈ I | S] ≥ 1
2
.

By definition of Si ,

Pr[IndH(ω) ∈ I | S] =
∑
i∈I

Pr[Si | S] = 1−
∑
i 6∈I

Pr[Si | S].

Since the complement of I contains fewer than qH elements,∑
i 6∈I

Pr[Si | S] ≤ qH × 1/2qH ≤ 1/2.

ENS/CNRS/INRIA Cascade David Pointcheval 44/51

Forking Lemma – Proof

Let I be the set consisting of the most likely indices i ,

I = {i | Pr[Si | S] ≥ 1/2qH} .

Lemma

Pr[IndH(ω) ∈ I | S] ≥ 1
2
.

By definition of Si ,

Pr[IndH(ω) ∈ I | S] =
∑
i∈I

Pr[Si | S] = 1−
∑
i 6∈I

Pr[Si | S].

Since the complement of I contains fewer than qH elements,∑
i 6∈I

Pr[Si | S] ≤ qH × 1/2qH ≤ 1/2.

ENS/CNRS/INRIA Cascade David Pointcheval 44/51

Forking Lemma – Proof

Let I be the set consisting of the most likely indices i ,

I = {i | Pr[Si | S] ≥ 1/2qH} .

Lemma

Pr[IndH(ω) ∈ I | S] ≥ 1
2
.

By definition of Si ,

Pr[IndH(ω) ∈ I | S] =
∑
i∈I

Pr[Si | S] = 1−
∑
i 6∈I

Pr[Si | S].

Since the complement of I contains fewer than qH elements,∑
i 6∈I

Pr[Si | S] ≤ qH × 1/2qH ≤ 1/2.

ENS/CNRS/INRIA Cascade David Pointcheval 44/51

Forking Lemma – Proof

Let I be the set consisting of the most likely indices i ,

I = {i | Pr[Si | S] ≥ 1/2qH} .

Lemma

Pr[IndH(ω) ∈ I | S] ≥ 1
2
.

By definition of Si ,

Pr[IndH(ω) ∈ I | S] =
∑
i∈I

Pr[Si | S] = 1−
∑
i 6∈I

Pr[Si | S].

Since the complement of I contains fewer than qH elements,∑
i 6∈I

Pr[Si | S] ≤ qH × 1/2qH ≤ 1/2.

ENS/CNRS/INRIA Cascade David Pointcheval 44/51

Forking Lemma – Proof

• Run 2/ε times A, with independent random ω and random H.
Since ν = Pr[S] ≥ 6ε/7, with probability greater than
1− (1− ν)2/ε ≥ 4/5, we get at least one pair (ω,H) in S.

• Apply the Splitting Lemma, with ε = ν/2qh and α = ε/2, for i ∈ I.
We denote by H|i the restriction of H to queries of index < i .
Since Pr[Si] ≥ ν/2qH , there exists a subset Ωi such that,

∀(ω,H) ∈ Ωi , Pr
H′

[(ω,H′) ∈ Si |H′|i = H|i] ≥
ν

4qH

Pr[Ωi | Si] ≥
1
2
.

ENS/CNRS/INRIA Cascade David Pointcheval 45/51

Forking Lemma – Proof

• Run 2/ε times A, with independent random ω and random H.
Since ν = Pr[S] ≥ 6ε/7, with probability greater than
1− (1− ν)2/ε ≥ 4/5, we get at least one pair (ω,H) in S.

• Apply the Splitting Lemma, with ε = ν/2qh and α = ε/2, for i ∈ I.
We denote by H|i the restriction of H to queries of index < i .
Since Pr[Si] ≥ ν/2qH , there exists a subset Ωi such that,

∀(ω,H) ∈ Ωi , Pr
H′

[(ω,H′) ∈ Si |H′|i = H|i] ≥
ν

4qH

Pr[Ωi | Si] ≥
1
2
.

ENS/CNRS/INRIA Cascade David Pointcheval 45/51

Forking Lemma – Proof

• Run 2/ε times A, with independent random ω and random H.
Since ν = Pr[S] ≥ 6ε/7, with probability greater than
1− (1− ν)2/ε ≥ 4/5, we get at least one pair (ω,H) in S.

• Apply the Splitting Lemma, with ε = ν/2qh and α = ε/2, for i ∈ I.
We denote by H|i the restriction of H to queries of index < i .
Since Pr[Si] ≥ ν/2qH , there exists a subset Ωi such that,

∀(ω,H) ∈ Ωi , Pr
H′

[(ω,H′) ∈ Si |H′|i = H|i] ≥
ν

4qH

Pr[Ωi | Si] ≥
1
2
.

ENS/CNRS/INRIA Cascade David Pointcheval 45/51

Forking Lemma – Proof

• Run 2/ε times A, with independent random ω and random H.
Since ν = Pr[S] ≥ 6ε/7, with probability greater than
1− (1− ν)2/ε ≥ 4/5, we get at least one pair (ω,H) in S.

• Apply the Splitting Lemma, with ε = ν/2qh and α = ε/2, for i ∈ I.
We denote by H|i the restriction of H to queries of index < i .
Since Pr[Si] ≥ ν/2qH , there exists a subset Ωi such that,

∀(ω,H) ∈ Ωi , Pr
H′

[(ω,H′) ∈ Si |H′|i = H|i] ≥
ν

4qH

Pr[Ωi | Si] ≥
1
2
.

ENS/CNRS/INRIA Cascade David Pointcheval 45/51

Forking Lemma – Proof

Since all the subsets Si are disjoint,

Pr
ω,H

[(∃i ∈ I) (ω,H) ∈ Ωi ∩ Si | S]

= Pr

[⋃
i∈I

(Ωi ∩ Si) | S

]
=
∑
i∈I

Pr[Ωi ∩ Si | S]

=
∑
i∈I

Pr[Ωi | Si] · Pr[Si | S] ≥

(∑
i∈I

Pr[Si | S]

)
/2 ≥ 1

4
.

Let β denote the index IndH(ω) of to the successful pair.

With prob. at least 1/4, β ∈ I and (ω,H) ∈ Sβ ∩ Ωβ.

With prob. greater than 4/5× 1/4 = 1/5, the 2/ε attacks provided a
successful pair (ω,H), with β = IndH(ω) ∈ I and (ω,H) ∈ Sβ.

ENS/CNRS/INRIA Cascade David Pointcheval 46/51

Forking Lemma – Proof

Since all the subsets Si are disjoint,

Pr
ω,H

[(∃i ∈ I) (ω,H) ∈ Ωi ∩ Si | S]

= Pr

[⋃
i∈I

(Ωi ∩ Si) | S

]
=
∑
i∈I

Pr[Ωi ∩ Si | S]

=
∑
i∈I

Pr[Ωi | Si] · Pr[Si | S] ≥

(∑
i∈I

Pr[Si | S]

)
/2 ≥ 1

4
.

Let β denote the index IndH(ω) of to the successful pair.

With prob. at least 1/4, β ∈ I and (ω,H) ∈ Sβ ∩ Ωβ.

With prob. greater than 4/5× 1/4 = 1/5, the 2/ε attacks provided a
successful pair (ω,H), with β = IndH(ω) ∈ I and (ω,H) ∈ Sβ.

ENS/CNRS/INRIA Cascade David Pointcheval 46/51

Forking Lemma – Proof

Since all the subsets Si are disjoint,

Pr
ω,H

[(∃i ∈ I) (ω,H) ∈ Ωi ∩ Si | S]

= Pr

[⋃
i∈I

(Ωi ∩ Si) | S

]
=
∑
i∈I

Pr[Ωi ∩ Si | S]

=
∑
i∈I

Pr[Ωi | Si] · Pr[Si | S] ≥

(∑
i∈I

Pr[Si | S]

)
/2 ≥ 1

4
.

Let β denote the index IndH(ω) of to the successful pair.

With prob. at least 1/4, β ∈ I and (ω,H) ∈ Sβ ∩ Ωβ.

With prob. greater than 4/5× 1/4 = 1/5, the 2/ε attacks provided a
successful pair (ω,H), with β = IndH(ω) ∈ I and (ω,H) ∈ Sβ.

ENS/CNRS/INRIA Cascade David Pointcheval 46/51

Forking Lemma – Proof

Since all the subsets Si are disjoint,

Pr
ω,H

[(∃i ∈ I) (ω,H) ∈ Ωi ∩ Si | S]

= Pr

[⋃
i∈I

(Ωi ∩ Si) | S

]
=
∑
i∈I

Pr[Ωi ∩ Si | S]

=
∑
i∈I

Pr[Ωi | Si] · Pr[Si | S] ≥

(∑
i∈I

Pr[Si | S]

)
/2 ≥ 1

4
.

Let β denote the index IndH(ω) of to the successful pair.

With prob. at least 1/4, β ∈ I and (ω,H) ∈ Sβ ∩ Ωβ.

With prob. greater than 4/5× 1/4 = 1/5, the 2/ε attacks provided a
successful pair (ω,H), with β = IndH(ω) ∈ I and (ω,H) ∈ Sβ.

ENS/CNRS/INRIA Cascade David Pointcheval 46/51

Forking Lemma – Proof

We know that PrH′ [(ω,H′) ∈ Sβ |H′|β = H|β] ≥ ν/4qH . Then

Pr
H′

[(ω,H′) ∈ Sβ and hβ 6= h′β |H′|β = H|β]

≥ Pr
H′

[(ω,H′) ∈ Sβ |H′|β = H|β]− Pr
H′

[h′β = hβ] ≥ ν/4qH − 1/2k ,

where hβ = H(Qβ) and h′β = H′(Qβ).

Using the assumption that ε ≥ 7qH/2k , the above prob. is ≥ ε/14qH .

Replay the attack 14qH/ε times with a new random oracle H′ such
that H′|β = H|β, and get another success with probability greater than

1− (1− ε/14qH)14qH/ε ≥ 3/5.

ENS/CNRS/INRIA Cascade David Pointcheval 47/51

Forking Lemma – Proof

We know that PrH′ [(ω,H′) ∈ Sβ |H′|β = H|β] ≥ ν/4qH . Then

Pr
H′

[(ω,H′) ∈ Sβ and hβ 6= h′β |H′|β = H|β]

≥ Pr
H′

[(ω,H′) ∈ Sβ |H′|β = H|β]− Pr
H′

[h′β = hβ] ≥ ν/4qH − 1/2k ,

where hβ = H(Qβ) and h′β = H′(Qβ).

Using the assumption that ε ≥ 7qH/2k , the above prob. is ≥ ε/14qH .

Replay the attack 14qH/ε times with a new random oracle H′ such
that H′|β = H|β, and get another success with probability greater than

1− (1− ε/14qH)14qH/ε ≥ 3/5.

ENS/CNRS/INRIA Cascade David Pointcheval 47/51

Forking Lemma – Proof

We know that PrH′ [(ω,H′) ∈ Sβ |H′|β = H|β] ≥ ν/4qH . Then

Pr
H′

[(ω,H′) ∈ Sβ and hβ 6= h′β |H′|β = H|β]

≥ Pr
H′

[(ω,H′) ∈ Sβ |H′|β = H|β]− Pr
H′

[h′β = hβ] ≥ ν/4qH − 1/2k ,

where hβ = H(Qβ) and h′β = H′(Qβ).

Using the assumption that ε ≥ 7qH/2k , the above prob. is ≥ ε/14qH .

Replay the attack 14qH/ε times with a new random oracle H′ such
that H′|β = H|β, and get another success with probability greater than

1− (1− ε/14qH)14qH/ε ≥ 3/5.

ENS/CNRS/INRIA Cascade David Pointcheval 47/51

Forking Lemma – Proof

We know that PrH′ [(ω,H′) ∈ Sβ |H′|β = H|β] ≥ ν/4qH . Then

Pr
H′

[(ω,H′) ∈ Sβ and hβ 6= h′β |H′|β = H|β]

≥ Pr
H′

[(ω,H′) ∈ Sβ |H′|β = H|β]− Pr
H′

[h′β = hβ] ≥ ν/4qH − 1/2k ,

where hβ = H(Qβ) and h′β = H′(Qβ).

Using the assumption that ε ≥ 7qH/2k , the above prob. is ≥ ε/14qH .

Replay the attack 14qH/ε times with a new random oracle H′ such
that H′|β = H|β, and get another success with probability greater than

1− (1− ε/14qH)14qH/ε ≥ 3/5.

ENS/CNRS/INRIA Cascade David Pointcheval 47/51

Forking Lemma – Proof

-

-

A
H

H′

Q1 · · · Qi−1 Qi

(m, r)

· · · Qj . . .

hi

h′i

· · · hj
· · ·

· · · h′j · · ·

(m, r ,hi , s)

(m, r ,h′i , s
′)

h1 · · · hi−1

Finally, after less than 2/ε+ 14qH/ε repetitions of the attack, with
probability greater than 1/5× 3/5 ≥ 1/9, we have obtained two
signatures (m, r ,h, s) and (m, r ,h′, s′), both valid w.r.t. their specific
random oracle H or H′:

Qβ = (m, r) and h = H(Qβ) 6= H′(Qβ) = h′.

ENS/CNRS/INRIA Cascade David Pointcheval 48/51

Forking Lemma – Proof

-

-

A
H

H′

Q1 · · · Qi−1 Qi

(m, r)

· · · Qj . . .

hi

h′i

· · · hj
· · ·

· · · h′j · · ·

(m, r ,hi , s)

(m, r ,h′i , s
′)

h1 · · · hi−1

Finally, after less than 2/ε+ 14qH/ε repetitions of the attack, with
probability greater than 1/5× 3/5 ≥ 1/9, we have obtained two
signatures (m, r ,h, s) and (m, r ,h′, s′), both valid w.r.t. their specific
random oracle H or H′:

Qβ = (m, r) and h = H(Qβ) 6= H′(Qβ) = h′.

ENS/CNRS/INRIA Cascade David Pointcheval 48/51

Forking Lemma – Proof

-

-

A
H

H′

Q1 · · · Qi−1 Qi

(m, r)

· · · Qj . . .

hi

h′i

· · · hj
· · ·

· · · h′j · · ·

(m, r ,hi , s)

(m, r ,h′i , s
′)

h1 · · · hi−1

Finally, after less than 2/ε+ 14qH/ε repetitions of the attack, with
probability greater than 1/5× 3/5 ≥ 1/9, we have obtained two
signatures (m, r ,h, s) and (m, r ,h′, s′), both valid w.r.t. their specific
random oracle H or H′:

Qβ = (m, r) and h = H(Qβ) 6= H′(Qβ) = h′.

ENS/CNRS/INRIA Cascade David Pointcheval 48/51

Chosen-Message Attacks

In order to answer signing queries, one simply uses the simulator of
the zero-knowledge proof: (r ,h, s), and we set H(m, r)← h.

The random oracle programming may fail, but with negligible
probability.

ENS/CNRS/INRIA Cascade David Pointcheval 49/51

Conclusion

Outline

Basic Security Notions

Advanced Security for Signature

Forking Lemma

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 50/51

Conclusion

Two generic methodologies for signatures

• Cramer-Shoup: based on the flexible RSA problem

• Based on Pairings

• etc

ENS/CNRS/INRIA Cascade David Pointcheval 51/51

Conclusion

Two generic methodologies for signatures

• hash and invert

• the Forking Lemma

• Cramer-Shoup: based on the flexible RSA problem

• Based on Pairings

• etc

ENS/CNRS/INRIA Cascade David Pointcheval 51/51

Conclusion

Two generic methodologies for signatures

• hash and invert

• the Forking Lemma

• Cramer-Shoup: based on the flexible RSA problem

• Based on Pairings

• etc

ENS/CNRS/INRIA Cascade David Pointcheval 51/51

Conclusion

Two generic methodologies for signatures

• hash and invert

• the Forking Lemma

Both in the random-oracle model

• Cramer-Shoup: based on the flexible RSA problem

• Based on Pairings

• etc

ENS/CNRS/INRIA Cascade David Pointcheval 51/51

Conclusion

Two generic methodologies for signatures

• hash and invert

• the Forking Lemma

Both in the random-oracle model

• Cramer-Shoup: based on the flexible RSA problem

• Based on Pairings

• etc

ENS/CNRS/INRIA Cascade David Pointcheval 51/51

Conclusion

Two generic methodologies for signatures

• hash and invert

• the Forking Lemma

Both in the random-oracle model

• Cramer-Shoup: based on the flexible RSA problem

• Based on Pairings

• etc

ENS/CNRS/INRIA Cascade David Pointcheval 51/51

Conclusion

Two generic methodologies for signatures

• hash and invert

• the Forking Lemma

Both in the random-oracle model

• Cramer-Shoup: based on the flexible RSA problem

• Based on Pairings

• etc

ENS/CNRS/INRIA Cascade David Pointcheval 51/51

	Main Part
	Basic Security Notions
	Public-Key Encryption
	Signatures

	Advanced Security for Signature
	Advanced Security Notions
	Hash-then-Invert Paradigm

	Forking Lemma
	Zero-Knowledge Proofs
	The Forking Lemma

	Conclusion
	Conclusion

