lll - Signatures

David Pointcheval
MPRI — Paris

Ecole normale supérieure/PSL, CNRS & INRIA

ENS Lt @ lreeia—

| PSL

ENS/CNRS/INRIA Cascade David Pointcheval 1/51




Basic Security Notions
Advanced Security for Signature
Forking Lemma

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 2/51



Basic Security Notions



Basic Security Notions

Public-Key Encryption

ENS/CNRS/INRIA Cascade David Pointcheval 2/51



Public-Key Encryption

m —, c

Y

F—s

kd
|
D
!

ENS/CNRS/INRIA Cascade David Pointcheval 4/51



Public-Key Encryption

m —s c

Y

F—s

kd
|
D
!

Goal: Privacy/Secrecy of the plaintext

ENS/CNRS/INRIA Cascade David Pointcheval 4/51



OW — CPA Security Game

ENS/CNRS/INRIA Cascade David Pointcheval 5/51



OW — CPA Security Game

K, G K,

ENS/CNRS/INRIA Cascade David Pointcheval 5/51



OW — CPA Security Game

K, G K,

m” random l
r* random

ENS/CNRS/INRIA Cascade David Pointcheval 5/51



OW — CPA Security Game

K, G K,

m” random l
r* random

"B A

ro—

ENS/CNRS/INRIA Cascade David Pointcheval 5/51



OW — CPA Security Game

K, G K,

m” random l
r* random

ro—

ENS/CNRS/INRIA Cascade David Pointcheval 5/51



OW — CPA Security Game

K, G K,

m” random l
r* random

ENS/CNRS/INRIA Cascade David Pointcheval 5/51



OW — CPA Security Game

k, G Ky

m” random l
r* random
" {E A
. ? "
m =m

Suce®¥(A) = Pr((sk, pk) + K(); m & M; ¢ = E(m) : A(pk, ¢) — m]

ENS/CNRS/INRIA Cascade David Pointcheval 5/51



IND — CPA Security Game

ENS/CNRS/INRIA Cascade David Pointcheval 6/51



IND — CPA Security Game

3 © K,

ENS/CNRS/INRIA Cascade David Pointcheval 6/51



IND — CPA Security Game

3 © K,

ENS/CNRS/INRIA Cascade David Pointcheval 6/51



IND — CPA Security Game

3 © K,

b0{0,1} |

r random

ENS/CNRS/INRIA Cascade David Pointcheval 6/51



IND — CPA Security Game

3 © K,

b{0,1} l
r random My —
m; .
n, — C*
rb—v E — A

ENS/CNRS/INRIA Cascade David Pointcheval 6/51



IND — CPA Security Game

3 © K,

b{0,1} l
r random My —
m; .
n, — C*
rb—v E — A
b!

ENS/CNRS/INRIA Cascade David Pointcheval 6/51



IND — CPA Security Game

3 © K,

b{0,1} l
r random My —
m,
n, — C*
rb—v E - A
? s
b’=b | °

ENS/CNRS/INRIA Cascade David Pointcheval 6/51



IND — CPA Security Game
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(sk, pk) < K();(mo, mq, state) « A(pk);
bl {0,1};c = Epw(mp); b’ + A(state, c)

Advg® P (A) = |Prlb/ = 1]b = 1}-Pr[b' = 1]b = 0]|= |2 x Pr[t = b] 1|
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Succ2(A) = Pr[(sk, pk) « K(); (m, o) + A(pK) : Vpk(m, o) = 1]
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EUF — NMA

(m,G) D

V(k,m,c)?

The adversary knows the public key only,
whereas signatures are not private!
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EUF — CMA

(m’G) D

Vi, m#m,
V(k,m,oc)?

The adversary has access to any signature of its choice:

Chosen-Message Attacks (oracle access):

Succ‘esugffcma(A) — Pr (S'k,pk) « K(); (m,0) « AS(pk) :
Vi,m# mi AN Vp(m,o) =1
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SUF — CMA [Stern-Pointcheval-Malone-Lee-Smart — Crypto *01]
YP

(m,0) ~——
Vi, (m,0)#(m,0o))
V(k,m,0)?

The notion is even stronger (in case of probabilistic signature):
also known as non-malleability:
: S :
Succfglg—cma(A) — Pr (Skvpk) A K()' (ma U) — A (pk) .
Vi,(m, o) # (m;,0;) A Vpk(m,o) =1

ENS/CNRS/INRIA Cascade David Pointcheval 14/51



Advanced Security for Signature

Hash-then-Invert Paradigm
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Full-Domain Hash Signatu re [Bellare-Rogaway — Eurocrypt *94]

Signature Scheme

- Key generation: the public key f fpisa trapdoor one-way
bijection from X onto Y the private key is the inverse g : Y — X;

« Signature of M € Y: 0 = g(M);

« Verification of (M, o): check f(o) = M
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Full-Domain Hash Signatu re [Bellare-Rogaway — Eurocrypt *94]

Signature Scheme

- Key generation: the public key f fpisa trapdoor one-way
bijection from X onto Y the private key is the inverse g : Y — X;

« Signature of M € Y: 0 = g(M);
« Verification of (M, o): check f(o) = M

Full-Domain Hash (Hash-and-Invert)

1o {011 =Y

« in order to sign m, one computes M = H(m) € Y, and o = g(M)
« and the verification consists in checking whether f(o) = H(m)
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Random Oracle Model

Random Oracle
« H is modelled as a truly random function, from {0, 1}* into Y.
« Formally, H is chosen at random at the beginning of the game.

« More concretely, for any new query, a random elementin Y is
uniformly and independently drawn
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Random Oracle Model

Random Oracle

« H is modelled as a truly random function, from {0, 1}* into Y.
« Formally, H is chosen at random at the beginning of the game.

« More concretely, for any new query, a random elementin Y is
uniformly and independently drawn

Any security game becomes:

Vi,m# mi AVpk(m, o) =1
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Security of the FDH Signature

Theorem
The FDH signature achieves EUF — CMA security, under the
One-Wayness of P, in the Random Oracle Model:

Succi%;{cma(t) < gy X Succ%"(t + QHTr)
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Security of the FDH Signature

Theorem
The FDH signature achieves EUF — CMA security, under the
One-Wayness of P, in the Random Oracle Model:

Succ?_%}_fma(t) < gy X Succ%"(t + QHTr)
Assumptions:

« any signing query has been first asked to ‘H
« the forgery has been asked to H
7 is the maximal time to evaluate f € P
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Random Oracle

#H(m): M £ Y, output M
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Real Attack Game

Game 0 Oracles

©00®
/ N\

Challenger
k
<= s K0
——— |* Checks (m,0
« if new and valid: 1 |:> 071
« else 0

Random Oracle Key Generation Oracle

#H(m): M £ Y, output M KO: (f,g) & P, sk« g, pk + f
Signing Oracle
S(m): M = #H(m), output o = g(M)
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« Gameg: use of the oracles K, S and H
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« Game: use of the simulation of the Random Oracle

Simulation of #

H(m): u & X, output M = f(u)
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« Gameg: use of the oracles K, S and H
« Game: use of the simulation of the Random Oracle

Simulation of #
H(m): & X, output M = ()

—> Hop-D-Perfect: Prgame, [1] = Prgame,[1]
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- Gamey: use of the oracles ', S and H
« Game: use of the simulation of the Random Oracle
Simulation of #
H(m): u & X, output M = f(u)
= Hop-D-Perfect: Prgame,[1] = Prgame,[1]
« Game:: use of the simulation of the Signing Oracle

Simulation of S
S(m): find p such that M = H(m) = f(u), output o = 1
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« Gamey: use of the oracles K, S and ‘H

« Game: use of the simulation of the Random Oracle
Simulation of #
H(m): & X, output M = ()

= Hop-D-Perfect: Prgame,[1] = Prgame,[1]

- Games: use of the simulation of the Signing Oracle
Simulation of S
S(m): find p such that M = H(m) = f(u), output o = 1

—> Hop-S-Perfect: Prgame,[1] = Prgame, [1]
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H-Query Selection

« Games: random index t & {1,...,q4}

Event Ev
If the t-th query to # is not the output forgery
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H-Query Selection

« Games: random index t & {1,...,q4}

Event Ev
If the t-th query to # is not the output forgery

We terminate the game and output 0 if Ev happens

—> Hop-S-Non-Negl

Then, clearly

Pr [1]= Pr [1] x Pr[-Ev] PrlEv]=1—1/qgy
Game,

Games

Pr [1]= Pr [1]><L

Gamej Game, aH
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OW Instance

« Game,: P — OW instance (f, y) (where & P, x & X,y = f(x))
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OW Instance

- Gamey4: P — OW instance (f, y) (where A P, x Yl X,y = f(x))
Use of the simulation of the Key Generation Oracle

Simulation of C
K(): set pk < f
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Use of the simulation of the Key Generation Oracle
Simulation of K
K(): set pk < f

Modification of the simulation of the Random Oracle
Simulation of #

If this is the t-th query, #(m): M «+ y, output M

The unique difference is for the t-th simulation of the random
oracle, for which we cannot compute a signature.

But since it corresponds to the forgery output, it cannot be
queried to the signing oracle:
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Use of the simulation of the Key Generation Oracle
Simulation of K
K(): set pk < f

Modification of the simulation of the Random Oracle
Simulation of #
If this is the t-th query, #(m): M «+ y, output M

The unique difference is for the t-th simulation of the random
oracle, for which we cannot compute a signature.

But since it corresponds to the forgery output, it cannot be
queried to the signing oracle:

—> Hop-S-Perfect: Prgame,[1] = Prgame,[1]
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In Game4, when the output is 1, o = g(y) = g(f(x)) = x
and the simulator computes one exponentiation per hashing:

Pr [1] < Suec®'(t+ qury)

Gamey
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and the simulator computes one exponentiation per hashing:

Pr [1] < Suec®'(t+ qury)

Gamey
Pr 1] = Pr[1
Gan:e4[ ] Gamreg[ ] ’
Pr 1] = Pr [1] x —
Game; Game, aqH
Pr 1] = _Pr [1]
Game, Game;
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In Game4, when the output is 1, o = g(y) = g(f(x)) = x
and the simulator computes one exponentiation per hashing:

Pr [1] < Suec®'(t+ qury)

Gamey
Pr 1] = Pr[1
Gan:e4[ ] Gamreg[ ] ’
Pr 1] = Pr [1]x—
Game; Game, aqH
Pr 1] = Pr[1
Gangeg[ ] Gan:e1[ ]
Pr [1] = Pr [t
Gange1[ ] Gan:eo[ ]
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In Game4, when the output is 1, o = g(y) = g(f(x)) = x
and the simulator computes one exponentiation per hashing:

ENS/CNRS/INRIA Cascade

camel |
came,
Gameq |
Gameql |
came, ||

Pr [1]

Game

Suce (t + quy)
Pr [1]

Gamejy

Pr [1] x L
Game; aH

Pr [1
Gan';e1[ ]
Pr [1
Gan:eo[ ]

Succdf-cma( 4)
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In Game4, when the output is 1, o = g(y) = g(f(x)) = x
and the simulator computes one exponentiation per hashing:

camel |
came,
Gameq |
Gameql |
came, ||

Pr [1]

Game

euf—cma

Succ DU
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euf—cma

Succ%p,; ™ (A) < g x Suce (t + guy)
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Succ-CMa(4) < gy x Suce' (t + quy)

« If one wants Succ$,,SM3(1) < & with /e ~ 280
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Succ-CMa(4) < gy x Suce' (t + quy)

« If one wants Succ$,,SM3(1) < & with /e ~ 280
« If one allows gy up to 260

Then one needs Suce(t) < e with t/e > 2t
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euf—cma

Succ%p,; ™ (A) < g x Suce (t + guy)

« If one wants Succ$,,SM3(1) < & with /e ~ 280

« If one allows gy up to 260

Then one needs Suce(t) < e with t/e > 2t

If one uses FDH-RSA: at least 3072 bit keys are needed.
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Improvement [Coron — Crypto "00]

In the case that f is homomorphic (as RSA): f(ab) = f(a)f(b)

« Gameg: use of the oracles K, S and H
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Improvement [Coron — Crypto "00]

In the case that f is homomorphic (as RSA): f(ab) = f(a)f(b)

« Gameg: use of the oracles K, S and H
« Game;: use of the simulation of the Random Oracle

Simulation of #
H(m): u & X, output M = f(u)
— Hop-D-Perfect: Prgame, [1] = Prame,[1]

« Game;: use of the homomorphic property
P — OW instance (f, y) (where f vl P, x yil X,y = f(x))

Simulation of #

#(m): flip a biased coin b (with Pr[b = 0] = p), u & X.
If b= 0, output M = f(u), otherwise output M = y x f(u)
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Improvement [Coron — Crypto "00]

In the case that f is homomorphic (as RSA): f(ab) = f(a)f(b)
« Game: use of the oracles K, S and ‘H
« Game;: use of the simulation of the Random Oracle
Simulation of H

H(m): p Vi'g output M = f(u)

— Hop-D-Perfect: Prgame,[1] = Prgame,[1]
« Game;: use of the homomorphic property
P — OW instance (f, y) (where f vl P, x yil X,y = f(x))
Simulation of #
#(m): flip a biased coin b (with Pr[b = 0] = p), u & X.
If b= 0, output M = f(u), otherwise output M = y x f(u)

—> Hop-D-Perfect: Prgame,[1] = Prgame, [1]
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Signature Oracle
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Signature Oracle

« Gamej: use of the simulation of the Signing Oracle

Simulation of S
S(m): find p such that M = H(m) = f(u), output o =
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Signature Oracle

« Gamej: use of the simulation of the Signing Oracle
Simulation of S
S(m): find p such that M = H(m) = f(u), output o =

Fails (with output 0) if H(m) =M =y x f(p):
but with probability p9s
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Signature Oracle

« Gamej: use of the simulation of the Signing Oracle
Simulation of S
S(m): find p such that M = H(m) = f(u), output o =

Fails (with output 0) if H(m) =M =y x f(p):
but with probability p9s
—> Hop-S-Non-Negl: Prgame,[1] = Prgame,[1] x p%
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In Games, when the output is 1, with probability 1 — p:

o =9g(M) =gy x f(n)) = 9(y) x 9(f(1)) = g(f(x)) x pp = x x pu
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In Games, when the output is 1, with probability 1 — p:

o =9g(M) =gy x f(n)) = 9(y) x 9(f(1)) = g(f(x)) x pp = x x pu

Pr [1] < Suech'(t+ qure)/(1—p)
Games
Pr 1] = _Pr [1]xp%
Gan:es[ ] Gangeg[ ] *P
Pr [1] = _Pr [
Gangeg[ ] Gan:e1[ ]
Pr 1] = _Pr [1]
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In Games, when the output is 1, with probability 1 — p:

o =9g(M) =gy x f(n)) = 9(y) x 9(f(1)) = g(f(x)) x pp = x x pu

Gaﬂes[ﬂ < Succp (t+ gurr)/(1 — p)

camerl! T e 1P

cameal |~ aamel !

camer ) T G

Gap:':eo[ﬂ = Succlma(4)
Succifugv-?ma(«‘l) < (1_1[W X S“cc%v(t + Qhr)
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W X Succ%v(t + qHTf)

The maximal for p — (1 — p)p9 is reached for
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=1- X = ~
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1
W X Succ%v(t + qHTf)

The maximal for p — (1 — p)p9 is reached for

SuccSl-Ma(4) <

p=1 L] (1 ! >qs e’
=1- X = ~
gs +1 gs +1 gs +1 gs

« If one wants SuccSL-S™3(t) < ¢ with ¢/ ~ 280
« If one allows gs up to 2%°

Then one needs Succ$ (1) < e with t/e > 2110,

If one uses FDH-RSA: 2048 bit keys are enough.
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Zero-Knowledge Proofs
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Proof of Knowledge

How do | prove that | know a solution s to a problem P?
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Proof of Knowledge

How do | prove that | know a solution s to a problem P?

—I Public Data P Ii

Prover Verifier
communication
A B l_
Wy
W, Secret s
Polynomial
Size Polynomial Time
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Proof of Knowledge: Soundness

If I can be accepted, | really know a solution: extractor
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If | can be accepted, | really know a solution: extractor

4| Public Data P }—l

Prover Extractor
communication E

-] A= o,
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Proof of Knowledge: Zero-Knowledge

How do | prove that | know a solution s to a problem P?

| reveal the solution. ..

How can do it without revealing any information?

Zero-knowledge: simulator

l_l Public Data P I—‘

Prover

A communication
S w .gpn
_| I 2 ‘ Verifier

Indistinguishable

' B

Simulator

S communication
| W, | W,
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Proof of Knowledge

How do | prove that | know a 3-color covering,
without revealing any information?
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O —-0
O -0
® -0

| choose a random permutation on the colors

ENS/CNRS/INRIA Cascade David Pointcheval 21/51



Proof of Knowledge

How do | prove that | know a 3-color covering,
without revealing any information?

O —-0
O -0
® -0

| choose a random permutation on the colors
and | apply it to the vertices
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Proof of Knowledge

How do | prove that | know a 3-color covering,
without revealing any information?

| mask the vertices
and send it to the verifier
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Proof of Knowledge

How do | prove that | know a 3-color covering,
without revealing any information?

@

The verifier chooses an edge
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Proof of Knowledge

How do | prove that | know a 3-color covering,
without revealing any information?

@

| open it
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Proof of Knowledge

How do | prove that | know a 3-color covering,
without revealing any information?

@

| open it
The verifier checks the validity: 2 different colors
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Secure Multiple Proofs of Knowledge: Authentication

If there exists an efficient adversary,
then one can solve the underlying problem:

Cheater Prover

communication

C o HEdrn

Hist l | Public Data P |
Cheater Verifier
C2 m communication B | .
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Secure Multiple Proofs of Knowledge: Authentication

If there exists an efficient adversary,
then one can solve the underlying problem:

Cheater
communication

C
Hist l | Public Data P

Cheater
C2 w communication

ENS/CNRS/INRIA Cascade David Pointcheval

Simulator

S

[

Verifier

Wg

B
|




Secure Multiple Proofs of Knowledge: Authentication

If there exists an efficient adversary,
then one can solve the underlying problem:

Cheater Simulator
communication
C S
1 W, | Wg
Hist l | Public Data P |
Cheater Extractor
C2 w, communication W,
w, s
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Schnorr Proofs [Schnorr — Eurocrypt *89 - Crypto *89]

Zero-Knowledge Proof Signature

« Setting: (G = (g)) of order g
P knows x, such thaty = g=*
and wants to prove it to V
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« Setting: (G = (g)) of order g « (G=(g)) of order q
P knows x, such thaty = g=* H:{0,1} = Zg
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Schnorr Proofs [Schnorr — Eurocrypt *89 - Crypto *89]

Zero-Knowledge Proof Signature
« Setting: (G = (g)) of order g « (G=(g)) of order q
P knows x, such thaty = g=* H:{0,1} = Zg

and wants to prove it to V « Key Generation — (y, x)

. P chooses K & Zg private key  x € Zj
sets and sends r = gk publickey y=g*

. V chooses h & {0, 1}k - Signature of m — (r, h, s)
and sends it to P K& zy r=g~

h = H(m, r) and
s =K+ xhmod q

P computes and sends
s =K+ xhmod q

V checks whether r = gSyh
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Schnorr Proofs

[Schnorr — Eurocrypt *89 - Crypto ’89]

Zero-Knowledge Proof

ENS/CNRS/INRIA Cascade

Setting: (G = (g)) of order q
P knows x, such thaty = g=*
and wants to prove it to V

P chooses K & Zg
setsandsends r = g

V chooses h & {0, 1}
and sends it to P

K

P computes and sends
s =K+ xhmod q

V checks whether r = gSyh

Signature

« (G=(g)) of order q
H: {0,1} — Zg
« Key Generation — (y, x)
private key  x € Zj
publickey y=9g7*
« Signature of m — (r, h, s)
R 7«
Ke<zy r=gk
h = H(m, r) and
s =K+ xhmod q
« Verification of (m, r, s)
compute h = H(m,r)
and check r = gy"

David Pointcheval 25/51



Generic Zero-Knowledge Proofs

Zero-Knowledge Proof Signature
« Proof of knowledge of x, H viewed as a random oracle

such that R(x, y)
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Generic Zero-Knowledge Proofs

Zero-Knowledge Proof Signature
« Proof of knowledge of x, H viewed as a random oracle
such that R(x, y) « Key Generation — (y, x)
« P builds a commitment r private: x  public: y

and sends it to V

V chooses a challenge
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Generic Zero-Knowledge Proofs

Zero-Knowledge Proof

« Proof of knowledge of x,
such that R(x, y)

‘P builds a commitment r
and sends it to V

V chooses a challenge
h & {0,131k for P

P computes and sends
the answer s

V checks (r, h, s)

ENS/CNRS/INRIA Cascade

Signature
H viewed as a random oracle
« Key Generation — (y, x)
private: x  public: y
« Signature of m — (r, h, s)
Commitment r
Challenge h = H(m,r)
Answer s
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Generic Zero-Knowledge Proofs

Zero-Knowledge Proof Signature
« Proof of knowledge of x, H viewed as a random oracle
such that R(x, y) « Key Generation — (y, x)
« P builds a commitment r private: x  public: y
and sends it to V - Signature of m — (r, h, s)
« V chooses a challenge Commitment r
h & {0, 1} for P Challenge h = H(m, r)

Answer s

P computes and sends
the answer s « Verification of (m, r, s)

compute h = H(m,r)
and check (r, h, s)

V checks (r, h, s)
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Y Protocols

Zero-Knowledge Proof
« Proof of knowledge of x
« P sends a commitment r
« V sends a challenge h

‘P sends the answer s
V checks (r, h, s)
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 Key Generation — (y, x)

« Signature of m — (r, h, s)
Commitment r
Challenge h = H(m,r)
Answer s

« Verification of (m, r, s)
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and check (r, h, s)

David Pointcheval 27/51



Y Protocols

Zero-Knowledge Proof Signature
« Proof of knowledge of x » Key Generation — (y, x)
« P sends a commitment r « Signature of m — (r, h, s)
- V sends a challenge h Commitment r
« P sends the answer s Challenge h = #(m, )
Answer s

V checks (r, h, s
( ) - Verification of (m, r, s)

compute h = H(m,r)
and check (r, h, s)

Special soundness
If one can answer to two different challenges h # H: s and &’
for a unique commitment r, one can extract x
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Forking Lemma

The Forking Lemma
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Splitting Lemma

Idea
When a subset A is “large” in a product space X x Y,
it has many “large” sections.
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Splitting Lemma

Idea
When a subset A is “large” in a product space X x Y,
it has many “large” sections.

Let A C X x Y such that Pr[(x, y) € A] > . For any a < ¢, define
B, = {(xy) e Xx Y| pritxy)eAze—a}.  then
y'e
Pr[B.] > «

Y(x,y) € By, Pryfey[(X,y’) cAl>e—a.
Pr[B. | A] > a/e.
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Splitting Lemma — Proof
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Splitting Lemma — Proof

(/) we argue by contradiction, using the notation B for the
complement of Biin X x Y. Assume that Pr[B,] < a. Then,

e < Pr[B]-Pr[A|B] +Pr[B]-PrlA|B] < a-14+1-(c —a) =e.
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Splitting Lemma — Proof

(/) we argue by contradiction, using the notation B for the
complement of Biin X x Y. Assume that Pr[B,] < a. Then,

e < Pr[B]-Pr[A|B] +Pr[B]-PrlA|B] < a-14+1-(c —a) =e.

(i) straightforward.
(i) using Bayes’ law:

Pr[B|A] = 1—Pr[B|A|
= 1—Pr[A|B]-Pr[B]/PrlA] > 1 — (¢ — a)/e = a/e.
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Forkin g Lemma [Pointcheval-Stern — Eurocrypt *96]

Theorem (The Forking Lemma)

Let (K,S,V) be a digital signature scheme with security
parameter k, with a signature as above, of the form (m,r, h, s),
where h = H(m, r) and s depends on r and h only.

Let A be a probabilistic polynomial time Turing machine whose
input only consists of public data and which can ask qy queries to
the random oracle, with qy > 0.

We assume that, within the time bound T, A produces, with
probability e > 7qy/2X, a valid signature (m, r, h, s).

Then, within time T' < 16qy T /<, and with probability ' > 1/9, a
replay of this machine outputs two valid signatures (m,r, h, s)
and (m,r,h s") such thath #+ K.
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Forking Lemma — Proof

« Ais a PPTM with random tape w.
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Forking Lemma — Proof

« Ais a PPTM with random tape w.
 During the attack, A asks a polynomial number of queries to H.
« We may assume that these questions are distinct:
« Q1,...,Qq, are the gy distinct questions
« andlet H= (hy,..., hg,) be the list of the gy answers of #.
Note: a random choice of H = a random choice of H.

« For a random choice of (w, H), with probability ¢, .4 outputs a
valid signature (m, r, h, s).

« Since H is a random oracle, the probability for h to be equal to
H(m, r) is less than 1/2¥, unless it has been asked during the
attack.

Accordingly, we define Ind;;(w) to be the index of this question:

(m,r) = Qingy ) (INdy(w) = oo if the question is never asked).
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Forking Lemma — Proof

We then define the sets

S = {(w,H)|A"(w) succeeds & Indy(w) # oo},
Si = {(w,H)|A™(w) succeeds & Indy(w) =i} i€{1,...,qu}.
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S = {(w,H)|A"(w) succeeds & Indy(w) # oo},
Si = {(w,H)|A™(w) succeeds & Indy(w) =i} i€{1,...,qu}.

Note: the set {S;} is a partition of S.

v =Pr[S] >e—1/2k

Since £ > 7qy/2k > 7/2k, then

v > 6e/7.
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Forking Lemma — Proof

Let / be the set consisting of the most likely indices /,
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Forking Lemma — Proof

Let / be the set consisting of the most likely indices /,
I ={i| Pr[S;|S] = 1/2q4} -
Lemma

Pr{indy(w) € I|S] > §
By definition of S;,

Priindy(w) € 1|S] = Pr[S;|S]=1-> Pr[S;|S].
iel il
Since the complement of / contains fewer than qy elements,
> PSS < g x 1/2qy < 1/2.
izl
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Forking Lemma — Proof

« Run 2/¢ times A, with independent random w and random .
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« Run 2/¢ times A, with independent random w and random .
Since v = Pr[S] > 6¢/7, with probability greater than
1 — (1 —v)?/¢ > 4/5, we get at least one pair (w,#) in S.

« Apply the Splitting Lemma, with e = v/2qp and a = ¢/2, for i € .
We denote by #,; the restriction of H to queries of index < i.
Since Pr[S;] > v/2qgy, there exists a subset ; such that,

B

V(W,H) € Q;, ZI[’[(W,IHI) €S | H|/I = /H‘,] >

N —= B

Pr[Q,' ’ 8,‘] >
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Forking Lemma — Proof

Since all the subsets S; are disjoint,
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PL[(HI' el)(w,H) e QnS;|S]

= Pr

U@ins)|s

i€l

=> PrQ;iNS;|S]

iel

Z Pr[Q;| S]] - Pr[S;i| S] > (Z Pr[S; |S]>

i€l i€l

& \

Let 5 denote the index Indy(w) of to the successful pair.

With prob. at least 1/4, 5 € I and (w,H) € Sz N Q3.
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Forking Lemma — Proof

Since all the subsets S; are disjoint,

PL[(HI' el)(w,H) e QnS;|S]

= [Py

U@ins)|s

i€l

=> PrQ;iNS;|S]

iel

Z Pr[Q;| S]] - Pr[S;i| S] > (Z Pr[S; |S]>

i€l il

& \

Let 5 denote the index Indy(w) of to the successful pair.
With prob. at least 1/4, 5 € I and (w, ) € Sg N Q5.

With prob. greater than 4/5 x 1/4 = 1/5, the 2/¢ attacks provided a
successful pair (w, #), with 5 = Indy(w) € and (w, H) € Sg.
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Forking Lemma — Proof

We know that Pryy[(w, 1) € Sg| H|; = H|g] > v/4qn. Then

Z;[(w,%’) € Sgand hg # hz | M|z = Hg]
> Prl(w, H') € Sg | Hig = Hy5] — Prifs = hs] > v/4qu — 1/2",

where hg = H(Qp) and hjy; = H'(Qp).
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Forking Lemma — Proof

We know that Pryy[(w, 1) € Sg| H|; = H|g] > v/4qn. Then
P ! hs # h; | H{z =
Pri(w, 1) € Sg and hg # Hg | H)5 = Hg]
> Prl(w, H') € Sg | Hig = Hy5] — Prifs = hs] > v/4qu — 1/2",

where hg = H(Qp) and hjy; = H'(Qp).
Using the assumption that ¢ > 7qy/2%, the above prob. is > ¢/14qy.

Replay the attack 14qy /= times with a new random oracle H’ such
that Hfﬁ = H,3, and get another success with probability greater than

1— (1 —¢e/14qy)'49/ > 3/5.
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Forking Lemma — Proof
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Forking Lemma — Proof

()
A Q1 ...Q919Q; ... Q ..
H h1 .”hj_1 h/ h]

b

‘(mv r, h,’,S)

/ h. ..
H ’ (m,r,h.s)

Finally, after less than 2/ 4+ 14qy/< repetitions of the attack, with
probability greater than 1/5 x 3/5 > 1/9, we have obtained two
signatures (m, r,h,s) and (m, r,H,s"), both valid w.r.t. their specific
random oracle H or H’:
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()
A Q1 ...Q919Q; ... Q ..
H h1 .”hj_1 h/ h]

b

~(m,r, h;,s)

ey hi. ..

(m,r ks

Finally, after less than 2/ 4+ 14qy/< repetitions of the attack, with
probability greater than 1/5 x 3/5 > 1/9, we have obtained two
signatures (m, r,h,s) and (m, r,H,s"), both valid w.r.t. their specific
random oracle H or H’:

Qs = (m,r) and h=H(Qs) # H/(Qs) = H.
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Chosen-Message Attacks

In order to answer signing queries, one simply uses the simulator of
the zero-knowledge proof: (r, h, s), and we set H(m, r) < h.

The random oracle programming may fail, but with negligible
probability.
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