III – Signatures

David Pointcheval
Ecole normale supérieure, CNRS & INRIA
MPRI – Paris

Outline

1 Basic Security Notions
 - Public-Key Encryption
 - Signatures

2 Advanced Security for Signature
 - Advanced Security Notions
 - Hash-then-Invert Paradigm

3 Forking Lemma
 - Zero-Knowledge Proofs
 - The Forking Lemma

4 Conclusion

Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext
Outline

1. Basic Security Notions
 - Public-Key Encryption
 - Signatures

2. Advanced Security for Signature

3. Forking Lemma

4. Conclusion

Signature

Goal: Authentication of the sender

\[
\text{Succ}^\text{OW}_S(A) = \Pr[(sk, pk) \leftarrow \mathcal{K}(); m \overset{R}{\leftarrow} \mathcal{M}; c = e_{pk}(m) : A(pk, c) \rightarrow m]
\]

\[
(\text{sk}, pk) \leftarrow \mathcal{K}(); (m_b, m_1, \text{state}) \leftarrow A(pk);
\]

\[
b \overset{R}{\leftarrow} \{0, 1\}; c = e_{pk}(m_b); b' \leftarrow A(\text{state}, c)
\]

\[
\text{Adv}^{\text{ind-cpa}}_S(A) = \Pr[b' = 1 | b = 1] - \Pr[b' = 1 | b = 0] = 2 \times \Pr[b' = b] - 1
\]

Outline

1. Basic Security Notions
2. Advanced Security for Signature
 - Advanced Security Notions
 - Hash-then-Invert Paradigm
3. Forking Lemma
4. Conclusion

Signature

EUF − NMA

\[\text{Goal: Authentication of the sender} \]

EUF − NMA

\[\text{The adversary knows the public key only, whereas signatures are not private!} \]
Outline

1 Basic Security Notions
2 Advanced Security for Signature
 - Advanced Security Notions
 - Hash-then-Invert Paradigm
3 Forking Lemma
4 Conclusion

Full-Domain Hash Signature

Signature Scheme

- Key generation: the public key $f \overset{R}{\leftarrow} \mathcal{P}$ is a trapdoor one-way bijection from X onto Y; the private key is the inverse $g : Y \rightarrow X$;
- Signature of $M \in Y$: $\sigma = g(M)$;
- Verification of (M, σ): check $f(\sigma) = M$

Full-Domain Hash (Hash-and-Invert)

- $\mathcal{H} : \{0, 1\}^* \rightarrow Y$
- In order to sign m, one computes $M = \mathcal{H}(m) \in Y$, and $\sigma = g(M)$
- And the verification consists in checking whether $f(\sigma) = H(m)$
Random Oracle Model

Random Oracle
- \mathcal{H} is modelled as a truly random function, from $\{0,1\}^*$ into \mathcal{Y}.
- Formally, \mathcal{H} is chosen at random at the beginning of the game.
- More concretely, for any new query, a random element in \mathcal{Y} is uniformly and independently drawn.

Any security game becomes:

$$\operatorname{Succ}_{S\mathcal{G}}^{\text{euf-cma}}(A) = \Pr_{\mathcal{H} \leftarrow \mathcal{Y}^\infty; (\text{sk}, \text{pk}) \leftarrow \mathcal{K}(); (m, \sigma) \leftarrow \mathcal{A}^S, \mathcal{H}(\text{pk}) : \forall i, m \neq m_i \wedge \forall \text{pk}(m, \sigma) = 1}$$

Security of the FDH Signature

Theorem
The FDH signature achieves EUF – CMA security, under the One-Wayness of \mathcal{P}, in the Random Oracle Model:

$$\operatorname{Succ}_{\text{euf}}$$

Real Attack Game

Simulations

- **Game$_0$**: use of the oracles \mathcal{K}, \mathcal{S} and \mathcal{H}
- **Game$_1$**: use of the simulation of the Random Oracle

Simulation of \mathcal{H}

$\mathcal{H}(m) : m \overset{R}{\leftarrow} \mathcal{X}$, output $M = f(m)$

\Rightarrow **Hop-D-Perfect**: $\Pr_{\text{Game}_1[1]} = \Pr_{\text{Game}_0[1]}$

Simulation of \mathcal{S}

$\mathcal{S}(m)$: find μ such that $M = \mathcal{H}(m) = f(\mu)$, output $\sigma = \mu$

\Rightarrow **Hop-S-Perfect**: $\Pr_{\text{Game}_2[1]} = \Pr_{\text{Game}_1[1]}$
\(\mathcal{H} \)-Query Selection

- **Game_3**: random index \(t \overset{R}{\leftarrow} \{1, \ldots, q_H\} \)

Event Ev

If the \(t \)-th query to \(\mathcal{H} \) is not the output forgery

We terminate the game and output 0 if Ev happens

\(\implies \text{Hop-S-Non-Negl} \)

Then, clearly

\[
\Pr_{\text{Game}_3}[1] = \Pr_{\text{Game}_2}[1] \times \Pr[\neg \text{Ev}] = 1 - 1/q_H
\]

\[
\Pr_{\text{Game}_3}[1] = \Pr_{\text{Game}_2}[1] \times \frac{1}{q_H}
\]

Summary

In \(\text{Game}_4 \), when the output is 1, \(\sigma = g(y) = g(f(x)) = x \)

and the simulator computes one exponentiation per hashing:

\[
\Pr_{\text{Game}_4}[1] \leq \text{Succ}_{FDH}^{\text{euf-cma}}(t + q_H \tau_f)
\]

\[
\Pr_{\text{Game}_4}[1] = \Pr_{\text{Game}_3}[1]
\]

\[
\Pr_{\text{Game}_3}[1] = \Pr_{\text{Game}_2}[1] \times \frac{1}{q_H}
\]

\[
\Pr_{\text{Game}_2}[1] = \Pr_{\text{Game}_1}[1]
\]

\[
\Pr_{\text{Game}_1}[1] = \text{Succ}_{FDH}^{\text{euf-cma}}(A)
\]

\[
\text{Succ}_{FDH}^{\text{euf-cma}}(A) \leq q_H \times \text{Succ}_{\mathcal{P}}^{\text{ow}}(t + q_H \tau_f)
\]

OW Instance

- **Game_4**: \(\mathcal{P} - \text{OW} \) instance \((f, y)\) (where \(f \overset{R}{\leftarrow} \mathcal{P}, x \overset{R}{\leftarrow} \mathcal{X}, y = f(x) \))

Use of the simulation of the Key Generation Oracle

Simulation of \(\mathcal{K} \)

\(\mathcal{K}() \): set \(pk \leftarrow f \)

Modification of the simulation of the Random Oracle

Simulation of \(\mathcal{H} \)

If this is the \(t \)-th query, \(\mathcal{H}(m) \): \(M \leftarrow y \), output \(M \)

The unique difference is for the \(t \)-th simulation of the random oracle, for which we cannot compute a signature.

But since it corresponds to the forgery output, it cannot be queried to the signing oracle:

\(\implies \text{Hop-S-Perfect}: \Pr_{\text{Game}_4}[1] = \Pr_{\text{Game}_3}[1] \)

Key Size

\[
\text{Succ}_{FDH}^{\text{euf-cma}}(\mathcal{A}) \leq q_H \times \text{Succ}_{\mathcal{P}}^{\text{ow}}(t + q_H \tau_f)
\]

- If one wants \(\text{Succ}_{FDH}^{\text{euf-cma}}(t) \leq \varepsilon \) with \(t/\varepsilon \approx 2^{80} \)

- If one allows \(q_H \) up to \(2^{60} \)

Then one needs \(\text{Succ}_{\mathcal{P}}^{\text{ow}}(t) \leq \varepsilon \) with \(t/\varepsilon \geq 2^{140} \).

If one uses FDH-RSA: at least 3072 bit keys are needed.
In the case that f is homomorphic (as RSA): $f(ab) = f(a)f(b)$

- **Game$_0$:** use of the oracles \mathcal{K}, \mathcal{S} and \mathcal{H}
- **Game$_1$:** use of the simulation of the Random Oracle

Simulation of \mathcal{H}

$\mathcal{H}(m)$: $\mu \leftarrow X$, output $M = f(\mu)$

- \implies **Hop-D-Perfect**: $\Pr_{\text{Game}_1}[1] = \Pr_{\text{Game}_0}[1]$
- **Game$_2$:** use of the homomorphic property
 - $\mathcal{P} - \text{OW instance } (f, y)$ (where $f \leftarrow \mathcal{P}, x \leftarrow X, y = f(x)$)

Simulation of \mathcal{H}

$\mathcal{H}(m)$: flip a biased coin b (with $\Pr[b = 0] = p$), $\mu \leftarrow X$.
If $b = 0$, output $M = f(\mu)$, otherwise output $M = y \times f(\mu)$

- \implies **Hop-D-Perfect**: $\Pr_{\text{Game}_2}[1] = \Pr_{\text{Game}_1}[1]$

Summary

In **Game$_3$**, when the output is 1, with probability $1 - p$:

$$\sigma = g(M) = g(y \times f(\mu)) = g(y) \times g(f(\mu)) = g(f(x)) \times \mu = x \times \mu$$

$$\Pr_{\text{Game}_3}[1] \leq \frac{\text{Succ}^{\text{P}}_\mathcal{H}(t + q_H \tau_f)}{(1 - p)}$$

$$\Pr_{\text{Game}_3}[1] = \Pr_{\text{Game}_2}[1] \times p^{q_S}$$

$$\Pr_{\text{Game}_2}[1] = \Pr_{\text{Game}_1}[1]$$

$$\Pr_{\text{Game}_1}[1] = \Pr_{\text{Game}_0}[1]$$

$$\Pr_{\text{Game}_0}[1] = \text{Succ}^{\text{euf-cma}}_{FDH}(A)$$

$$\text{Succ}^{\text{euf-cma}}_{FDH}(A) \leq \frac{1}{(1 - p)p^{q_S}} \times \text{Succ}^{\text{P}}_\mathcal{H}(t + q_H \tau_f)$$

Key Size

The maximal for $p \mapsto (1 - p)p^{q_S}$ is reached for

$$p = 1 - \frac{1}{q_S + 1} \implies \frac{1}{q_S + 1} \times 1 - \frac{1}{q_S + 1} \approx e^{-1}$$

- If one wants $\text{Succ}^{\text{euf-cma}}_{FDH}(t) \leq \varepsilon$ with $t/\varepsilon \approx 2^{80}$
- If one allows q_S up to 2^{30}

Then one needs $\text{Succ}^{\text{P}}_\mathcal{H}(t) \leq \varepsilon$ with $t/\varepsilon \geq 2^{110}$.

If one uses FDH-RSA: 2048 bit keys are enough.
Outline

1. Basic Security Notions
2. Advanced Security for Signature
3. Forking Lemma
 - Zero-Knowledge Proofs
 - The Forking Lemma
4. Conclusion

Proof of Knowledge: Soundness

If I can be accepted, I really know a solution: extractor

Proof of Knowledge: Zero-Knowledge

How do I prove that I know a solution s to a problem P?

I reveal the solution...

How can I do it without revealing any information?

Zero-knowledge: simulator
Proof of Knowledge

How do I prove that I know a 3-color covering, without revealing any information?

I choose a random permutation on the colors and I apply it to the vertices I mask the vertices and send it to the verifier. The verifier chooses an edge I open it. The verifier checks the validity: 2 different colors.

Secure Multiple Proofs of Knowledge: Authentication

If there exists an efficient adversary, then one can solve the underlying problem:

Schnorr Proofs

[Schon – Eurocrypt ’89 - Crypto ’89]

Signature

- \((G = \langle g \rangle) \) of order \(q \)
- \(\mathcal{P} \) knows \(x \), such that \(y = g^{-x} \)
- \(\mathcal{P} \) chooses \(K \overset{R}{\leftarrow} \mathbb{Z}_q^* \)
- \(\mathcal{V} \) chooses \(h \overset{R}{\leftarrow} \{0,1\}^k \)
- \(\mathcal{P} \) computes and sends \(s = K + xh \mod q \)
- \(\mathcal{V} \) checks whether \(r \overset{?}{=} g^s y^h \)

Zero-Knowledge Proof

- Setting: \((G = \langle g \rangle) \) of order \(q \)
- \(\mathcal{P} \) knows \(x \), such that \(y = g^{-x} \)
- \(\mathcal{P} \) chooses \(K \overset{R}{\leftarrow} \mathbb{Z}_q^* \)
- \(\mathcal{V} \) chooses \(h \overset{R}{\leftarrow} \{0,1\}^k \)
- \(\mathcal{P} \) computes and sends \(s = K + xh \mod q \)
- \(\mathcal{V} \) checks whether \(r \overset{?}{=} g^s y^h \)
Splitting Lemma

Idea

When a subset A is “large” in a product space $X \times Y$, it has many “large” sections.

The Splitting Lemma

Let $A \subseteq X \times Y$ such that $\Pr[(x, y) \in A] \geq \varepsilon$. For any $\alpha < \varepsilon$, define

$$B_\alpha = \{(x, y) \in X \times Y \mid \Pr_{y' \in Y}[(x, y') \in A] \geq \varepsilon - \alpha\},$$

then

(i) $\Pr[B_\alpha] \geq \alpha$

(ii) $\forall (x, y) \in B_\alpha$, $\Pr_{y' \in Y}[(x, y') \in A] \geq \varepsilon - \alpha$.

(iii) $\Pr[B_\alpha \mid A] \geq \alpha / \varepsilon$.

(i) we argue by contradiction, using the notation \tilde{B} for the complement of B in $X \times Y$. Assume that $\Pr[B_\alpha] < \alpha$. Then,

$$\varepsilon \leq \Pr[B] \cdot \Pr[A \mid B] + \Pr[\tilde{B}] \cdot \Pr[A \mid \tilde{B}] < \alpha \cdot 1 + 1 \cdot (\varepsilon - \alpha) = \varepsilon.$$
Theorem (The Forking Lemma)

Let (k, S, V) be a digital signature scheme with security parameter k, with a signature as above, of the form (m, r, h, s), where $h = H(m, r)$ and s depends on r and h only.

Let A be a probabilistic polynomial time Turing machine whose input only consists of public data and which can ask q_H queries to the random oracle, with $q_H > 0$.

We assume that, within the time bound T, A produces, with probability $\varepsilon \geq 7q_H/2^k$, a valid signature (m, r, h, s).

Then, within time $T' \leq 16q_H T/\varepsilon$, and with probability $\varepsilon' \geq 1/9$, a replay of this machine outputs two valid signatures (m, r, h, s) and (m, r, h', s') such that $h \neq h'$.

A is a PPTM with random tape ω.

During the attack, A asks a polynomial number of queries to H.

We may assume that these questions are distinct:

- Q_1, \ldots, Q_{q_H} are the q_H distinct questions
- and let $H = (h_1, \ldots, h_{q_H})$ be the list of the q_H answers of H.

Note: a random choice of $H = \text{a random choice of } H$.

For a random choice of (ω, H), with probability ε, A outputs a valid signature (m, r, h, s).

Since H is a random oracle, the probability for h to be equal to $H(m, r)$ is less than $1/2^k$, unless it has been asked during the attack.

Accordingly, we define $\text{Ind}_H(\omega)$ to be the index of this question:

$(m, r) = Q_{\text{Ind}_H(\omega)}$ \quad $(\text{Ind}_H(\omega) = \infty$ if the question is never asked).

We then define the sets

\[S = (\omega, H) \mid A^H(\omega) \text{ succeeds & } \text{Ind}_H(\omega) \neq \infty, \]
\[S_i = (\omega, H) \mid A^H(\omega) \text{ succeeds & } \text{Ind}_H(\omega) = i \quad i \in \{1, \ldots, q_H\}. \]

Note: the set $\{S_i\}$ is a partition of S.

\[\nu = \text{Pr}[S] \geq \varepsilon - 1/2^k. \]

Since $\varepsilon \geq 7q_H/2^k \geq 7/2^k$,

\[\nu \geq 6\varepsilon/7. \]

Let I be the set consisting of the most likely indices i,

\[I = \{i \mid \text{Pr}[S_i \mid S] \geq 1/2q_H\}. \]

Lemma

\[\text{Pr}[\text{Ind}_H(\omega) \in I \mid S] \geq \frac{1}{2}. \]

By definition of S_i,

\[\text{Pr}[\text{Ind}_H(\omega) \in I \mid S] = \frac{X}{i \in I} \text{Pr}[S_i \mid S] = 1 - \frac{X}{i \notin I} \text{Pr}[S_i \mid S]. \]

Since the complement of I contains fewer than q_H elements, X

\[\text{Pr}[S_i \mid S] \leq q_H \times 1/2q_H \leq 1/2. \]
Forking Lemma – Proof

We run $2/\varepsilon$ times A, with independent random ω and random \mathcal{H}. Since $\nu = \Pr[S] \geq 6\varepsilon/7$, with probability greater than $1 - (1 - \nu)^2/\varepsilon \geq 4/5$, we get at least one pair (ω, \mathcal{H}) in S.

We apply the Splitting Lemma, with $\varepsilon = \nu/2q_{\mathcal{H}}$ and $\alpha = \varepsilon/2$, for $i \in I$. We denote by \mathcal{H}_{ij} the restriction of \mathcal{H} to queries of index $< i$.

Since $\Pr[S_i] \geq \nu/2q_{\mathcal{H}}$, there exists a subset Ω_i such that
\[
\forall (\omega, \mathcal{H}) \in \Omega_i, \quad \Pr[(\omega, \mathcal{H}') \in S_i | \mathcal{H}'_{ij} = \mathcal{H}_{ij}] \geq \frac{\nu}{4q_{\mathcal{H}}},
\]
\[
\Pr[\Omega_i | S_i] \geq \frac{1}{2}.
\]

Since all the subsets S_i are disjoint,
\[
\Pr[(\exists i \in I) (\omega, \mathcal{H}) \in \Omega_i \cap S_i | S] = \left[\text{\# \Omega_i} \cap S_i \right] \Pr[\Omega_i \cap S_i | S] = \prod_{i \in I} \Pr[\Omega_i] \cdot \Pr[S_i | S] \geq \prod_{i \in I} \Pr[S_i | S] / 2 \geq \frac{1}{4}.
\]

We let β denote the index $\text{Ind}_\mathcal{H}(\omega)$ of the successful pair. With prob. at least $1/4$, $\beta \in I$ and $(\omega, \mathcal{H}) \in S_\beta \cap \Omega_\beta$.

With prob. greater than $4/5 \times 1/4 = 1/5$, the $2/\varepsilon$ attacks provided a successful pair (ω, \mathcal{H}), with $\beta = \text{Ind}_\mathcal{H}(\omega) \in I$ and $(\omega, \mathcal{H}) \in S_\beta$.

Forking Lemma – Proof

We know that $\Pr_{\mathcal{H}'}[(\omega, \mathcal{H}') \in S_\beta | \mathcal{H}'_{\beta} = \mathcal{H}_{\beta}] \geq \nu/4q_{\mathcal{H}}$. Then
\[
\Pr[(\omega, \mathcal{H}') \in S_\beta \text{ and } h_\beta \neq h'_\beta] \leq \Pr_{\mathcal{H}'}[(\omega, \mathcal{H}') \in S_\beta | \mathcal{H}'_{\beta} = \mathcal{H}_{\beta}] - \Pr_{\mathcal{H}'}[h'_\beta = h_\beta] \geq \nu/4q_{\mathcal{H}} - 1/2^k,
\]
where $h_\beta = \mathcal{H}(Q_\beta)$ and $h'_\beta = \mathcal{H}'(Q_\beta)$.

Using the assumption that $\varepsilon \geq 7q_{\mathcal{H}}/2^k$, the above prob. is $\geq \varepsilon/14q_{\mathcal{H}}$.

We replay the attack $14q_{\mathcal{H}}/\varepsilon$ times with a new random oracle \mathcal{H}' such that $\mathcal{H}'_{\beta} = \mathcal{H}_{\beta}$, and get another success with probability greater than $1 - (1 - \varepsilon/14q_{\mathcal{H}})^{14q_{\mathcal{H}}/\varepsilon} \geq 3/5$.

Finally, after less than $2/\varepsilon + 14q_{\mathcal{H}}/\varepsilon$ repetitions of the attack, with probability greater than $1/5 \times 3/5 \geq 1/9$, we have obtained two signatures (m, r, h, s) and (m, r, h', s'), both valid w.r.t. their specific random oracle \mathcal{H} or \mathcal{H}':
\[
Q_\beta = (m, r) \text{ and } h = \mathcal{H}(Q_\beta) \neq \mathcal{H}'(Q_\beta) = h'.
\]
In order to answer signing queries, one simply uses the simulator of the zero-knowledge proof: \((r, h, s) \), and we set \(?(m, r) \leftarrow h \). The random oracle programming may fail, but with negligible probability.

Conclusion

Two generic methodologies for signatures

- hash and invert
- the Forking Lemma

Both in the random-oracle model

- Cramer-Shoup: based on the flexible RSA problem
- Based on Pairings
- etc