II – Encryption

David Pointcheval MPRI – Paris

Ecole normale supérieure/PSL, CNRS & INRIA

ENS/CNRS/INRIA Cascade

Game-based Proofs

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade

Public-Key Encryption

Signatures

Game-based Proofs

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade

Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext

ENS/CNRS/INRIA Cascade

Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext

ENS/CNRS/INRIA Cascade

$\mathbf{OW} - \mathbf{CPA}$ Security Game

$\mathbf{OW} - \mathbf{CPA}$ Security Game

 $\mathbf{Succ}^{\mathsf{ow}}_{\mathcal{S}}(\mathcal{A}) = \mathsf{Pr}[(\mathbf{s}k, \mathbf{p}k) \leftarrow \mathcal{K}(); \mathbf{m} \stackrel{R}{\leftarrow} \mathcal{M}; \mathbf{c} = \mathcal{E}_{\mathbf{p}k}(\mathbf{m}) : \mathcal{A}(\mathbf{p}k, \mathbf{c}) \rightarrow \mathbf{m}]$

ENS/CNRS/INRIA Cascade

 $b \in \{0,1\}$ r random

 $b \in \{0,1\}$ r random $m_{0} \leftarrow m_{1} \leftarrow m_{1} \leftarrow m_{1} \leftarrow m_{1} \leftarrow m_{2} \leftarrow m_{1} \leftarrow m_{2} \leftarrow m$

 $b \in \{0,1\}$ r random $m_{0} \leftarrow m_{1} \leftarrow m_{1} \leftarrow m_{1} \leftarrow m_{2} \leftarrow m_{2} \leftarrow m_{1} \leftarrow m_{2} \leftarrow m$

$$(sk, pk) \leftarrow \mathcal{K}(); (m_0, m_1, \text{state}) \leftarrow \mathcal{A}(pk);$$

 $b \stackrel{R}{\leftarrow} \{0, 1\}; c = \mathcal{E}_{pk}(m_b); b' \leftarrow \mathcal{A}(\text{state}, c)$

 $\operatorname{Adv}_{\mathcal{S}}^{\operatorname{ind-cpa}}(\mathcal{A}) = \left| \operatorname{Pr}[b' = 1 | b = 1] - \operatorname{Pr}[b' = 1 | b = 0] \right| = \left| 2 \times \operatorname{Pr}[b' = b] - 1 \right|$

ENS/CNRS/INRIA Cascade

Public-Key Encryption

Signatures

Game-based Proofs

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade

Signature

Goal: Authentication of the sender

ENS/CNRS/INRIA Cascade

Signature

Goal: Authentication of the sender

ENS/CNRS/INRIA Cascade

ENS/CNRS/INRIA Cascade

 $\mathbf{Succ}^{\mathrm{euf}}_{\mathcal{SG}}(\mathcal{A}) = \Pr[(\mathbf{sk}, \mathbf{pk}) \leftarrow \mathcal{K}(); (\mathbf{m}, \sigma) \leftarrow \mathcal{A}(\mathbf{pk}) : \mathcal{V}_{\mathbf{pk}}(\mathbf{m}, \sigma) = 1]$

ENS/CNRS/INRIA Cascade

Game-based Proofs

Game-based Proofs

Provable Security

Game-based Approach

Transition Hops

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade

One can prove that:

- if an adversary is able to break the cryptographic scheme
- then one can break the underlying problem (integer factoring, discrete logarithm, 3-SAT, etc)

One can prove that:

- if an adversary is able to break the cryptographic scheme
- then one can break the underlying problem (integer factoring, discrete logarithm, 3-SAT, etc)

Direct Reduction

Direct Reduction

Unfortunately

- Security may rely on several assumptions
- Proving that the view of the adversary, generated by the simulator, in the reduction is the same as in the real attack game is not easy to do in such a one big step

ENS/CNRS/INRIA Cascade

Direct Reduction

Unfortunately

- · Security may rely on several assumptions
- Proving that the view of the adversary, generated by the simulator, in the reduction is the same as in the real attack game is not easy to do in such a one big step

ENS/CNRS/INRIA Cascade
Direct Reduction

Unfortunately

- Security may rely on several assumptions
- Proving that the view of the adversary, generated by the simulator, in the reduction is the same as in the real attack game is not easy to do in such a one big step

Basic Security Notions

Game-based Proofs

Provable Security

Game-based Approach

Transition Hops

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade

David Pointcheval

13/68

Real Attack Game

The adversary plays a game, against a challenger (security notion)

Simulation

The adversary plays a game, against a sequence of simulators

Simulation

The adversary plays a game, against a sequence of simulators

Simulation

The adversary plays a game, against a sequence of simulators

Output

- The output of the simulator in Game 1 is related to the output of the challenger in Game 0 (adversary's winning probability)
- The output of the simulator in Game 3 is easy to evaluate (e.g. always zero, always 1, probability of one-half)
- The gaps (Game 1 ↔ Game 2, Game 2 ↔ Game 3, etc) are clearly identified with specific events

Output

- The output of the simulator in Game 1 is related to the output of the challenger in Game 0 (adversary's winning probability)
- The output of the simulator in Game 3 is easy to evaluate (e.g. always zero, always 1, probability of one-half)
- The gaps (Game 1 ↔ Game 2, Game 2 ↔ Game 3, etc) are clearly identified with specific events

Output

- The output of the simulator in Game 1 is related to the output of the challenger in Game 0 (adversary's winning probability)
- The output of the simulator in Game 3 is easy to evaluate (e.g. always zero, always 1, probability of one-half)
- The gaps (Game 1 ↔ Game 2, Game 2 ↔ Game 3, etc) are clearly identified with specific events

Basic Security Notions

Game-based Proofs

Provable Security

Game-based Approach

Transition Hops

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade

David Pointcheval

19/68

· perfectly identical behaviors

[Hop-S-Perfect]

- different behaviors, only if event Ev happens
 - Ev is negligible
 - Ev is non-negligible (but not averwhelming)
 - and independent of the output in Game_A
 - Simulator B terminates in case of event Event

[Hop-S-Negl]

· perfectly identical behaviors

[Hop-S-Perfect]

· different behaviors, only if event Ev happens

- Ev is negligible
- Ev is non-negligible (but not overwhelming) and independent of the output in Game_A
 → Simulator B terminates in case of event F

[Hop-S-Negl] [Hop-S-Non-Negl]

· perfectly identical behaviors

[Hop-S-Perfect]

- different behaviors, only if event Ev happens
 - Ev is negligible
 - Ev is non-negligible (but not overwhelming) and independent of the output in Game_A → Simulator B terminates in case of event Ev

[Hop-S-Negl]

Hop-S-Non-Negl

· perfectly identical behaviors

[Hop-S-Perfect]

- · different behaviors, only if event Ev happens
 - Ev is negligible
 - Ev is non-negligible (but not overwhelming) and independent of the output in Game_A
 - \rightarrow Simulator B terminates in case of event Ev

[Hop-S-Negl]

[Hop-S-Non-Negl]

· perfectly identical input distributions

[Hop-D-Perfect]

- different distributions
 - statistically close
 - computationally close

[Hop-D-Stat] Hop-D-Comp]

- · perfectly identical input distributions
- different distributions
 - statistically close
 - computationally close

[Hop-D-Perfect]

[Hop-D-Stat] [Hop-D-Comp]

- · perfectly identical input distributions
- different distributions
 - · statistically close
 - computationally close

[Hop-D-Perfect]

[Hop-D-Stat]

[Hop-D-Comp]

- · perfectly identical input distributions
- different distributions
 - statistically close
 - · computationally close

[Hop-D-Perfect]

[Hop-D-Stat] [Hop-D-Comp]

- Identical behaviors: $\Pr[Game_A] \Pr[Game_B] = 0$
- The behaviors differ only if **Ev** happens:
 - Ev is negligible, one can ignore it Shoup's Lemma: |Pr[Game_A] − Pr[Game_B]| ≤ Pr[Ev]

|Pr[Game_A] – Pr[Game_B]|

$$= \begin{vmatrix} \Pr[\mathsf{Game}_{A}|\mathsf{Ev}]\Pr[\mathsf{Ev}] + \Pr[\mathsf{Game}_{A}|\neg\mathsf{Ev}]\Pr[\neg\mathsf{Ev}] \\ -\Pr[\mathsf{Game}_{B}|\mathsf{Ev}]\Pr[\mathsf{Ev}] - \Pr[\mathsf{Game}_{B}|\neg\mathsf{Ev}]\Pr[\neg\mathsf{Ev}] \\ + (\Pr[\mathsf{Game}_{A}|\neg\mathsf{Ev}] - \Pr[\mathsf{Game}_{B}|\mathsf{Ev}]) \times \Pr[\neg\mathsf{Ev}] \\ + (\Pr[\mathsf{Game}_{A}|\neg\mathsf{Ev}] - \Pr[\mathsf{Game}_{B}|\neg\mathsf{Ev}]) \times \Pr[\neg\mathsf{Ev}] \\ \le |1 \times \Pr[\mathsf{Ev}] + 0 \times \Pr[\neg\mathsf{Ev}]| \le \Pr[\mathsf{Ev}] \end{vmatrix}$$

• **Ev** is non-negligible and independent of the output in **Game**_{*A*}, Simulator B terminates in case of event **Ev**

- Identical behaviors: $\Pr[\mathbf{Game}_A] \Pr[\mathbf{Game}_B] = 0$
- The behaviors differ only if **Ev** happens:
 - Ev is negligible, one can ignore it Shoup's Lemma: |Pr[Game_A] − Pr[Game_B]| ≤ Pr[Ev]

|Pr[Game_A] – Pr[Game_B]|

$$= \begin{vmatrix} \Pr[\mathbf{Game}_{A} | \mathbf{Ev}] \Pr[\mathbf{Ev}] + \Pr[\mathbf{Game}_{A} | \neg \mathbf{Ev}] \Pr[\neg \mathbf{Ev}] \\ -\Pr[\mathbf{Game}_{B} | \mathbf{Ev}] \Pr[\mathbf{Ev}] - \Pr[\mathbf{Game}_{B} | \neg \mathbf{Ev}] \Pr[\neg \mathbf{Ev}] \\ + (\Pr[\mathbf{Game}_{A} | \neg \mathbf{Ev}] - \Pr[\mathbf{Game}_{B} | \mathbf{Ev}]) \times \Pr[\neg \mathbf{Ev}] \\ + (\Pr[\mathbf{Game}_{A} | \neg \mathbf{Ev}] - \Pr[\mathbf{Game}_{B} | \neg \mathbf{Ev}]) \times \Pr[\neg \mathbf{Ev}] \\ \le |1 \times \Pr[\mathbf{Ev}] + 0 \times \Pr[\neg \mathbf{Ev}]| \le \Pr[\mathbf{Ev}] \end{aligned}$$

• **Ev** is non-negligible and independent of the output in **Game**_{*A*}, Simulator B terminates in case of event **Ev**

- Identical behaviors: $\Pr[\mathbf{Game}_A] \Pr[\mathbf{Game}_B] = 0$
- The behaviors differ only if **Ev** happens:
 - Ev is negligible, one can ignore it Shoup's Lemma: |Pr[Game_A] − Pr[Game_B]| ≤ Pr[Ev]

 $|\Pr[\mathbf{Game}_A] - \Pr[\mathbf{Game}_B]|$

$$= \begin{vmatrix} \Pr[\operatorname{Game}_{A} | \mathbf{E}\mathbf{v}] \Pr[\mathbf{E}\mathbf{v}] + \Pr[\operatorname{Game}_{A} | \neg \mathbf{E}\mathbf{v}] \Pr[\neg \mathbf{E}\mathbf{v}] \\ -\Pr[\operatorname{Game}_{B} | \mathbf{E}\mathbf{v}] \Pr[\mathbf{E}\mathbf{v}] - \Pr[\operatorname{Game}_{B} | \neg \mathbf{E}\mathbf{v}] \Pr[\neg \mathbf{E}\mathbf{v}] \\ = \begin{vmatrix} (\Pr[\operatorname{Game}_{A} | \mathbf{E}\mathbf{v}] - \Pr[\operatorname{Game}_{B} | \mathbf{E}\mathbf{v}]) \times \Pr[\mathbf{E}\mathbf{v}] \\ + (\Pr[\operatorname{Game}_{A} | \neg \mathbf{E}\mathbf{v}] - \Pr[\operatorname{Game}_{B} | \neg \mathbf{E}\mathbf{v}]) \times \Pr[\neg \mathbf{E}\mathbf{v}] \end{vmatrix} \\ \le |1 \times \Pr[\mathbf{E}\mathbf{v}] + 0 \times \Pr[\neg \mathbf{E}\mathbf{v}]| \le \Pr[\mathbf{E}\mathbf{v}] \end{aligned}$$

• **Ev** is non-negligible and independent of the output in **Game**_A, Simulator B terminates in case of event **Ev**

- Identical behaviors: $\Pr[\mathbf{Game}_A] \Pr[\mathbf{Game}_B] = 0$
- The behaviors differ only if **Ev** happens:
 - Ev is negligible, one can ignore it
 - **Ev** is non-negligible and independent of the output in **Game**_{*A*}, Simulator B terminates and outputs 0, in case of event **Ev**:

 $\begin{aligned} \Pr[\mathbf{Game}_B] &= \Pr[\mathbf{Game}_B | \mathbf{E}\mathbf{v}] \Pr[\mathbf{E}\mathbf{v}] + \Pr[\mathbf{Game}_B | \neg \mathbf{E}\mathbf{v}] \Pr[\neg \mathbf{E}\mathbf{v}] \\ &= \mathbf{0} \times \Pr[\mathbf{E}\mathbf{v}] + \Pr[\mathbf{Game}_A | \neg \mathbf{E}\mathbf{v}] \times \Pr[\neg \mathbf{E}\mathbf{v}] \\ &= \Pr[\mathbf{Game}_A] \times \Pr[\neg \mathbf{E}\mathbf{v}] \end{aligned}$

Simulator B terminates and flips a coin, in case of event Ev:

$$\begin{aligned} \Pr[\mathbf{Game}_B] &= \Pr[\mathbf{Game}_B | \mathbf{Ev}] \Pr[\mathbf{Ev}] + \Pr[\mathbf{Game}_B | \neg \mathbf{Ev}] \Pr[\neg \mathbf{Ev}] \\ &= \frac{1}{2} \times \Pr[\mathbf{Ev}] + \Pr[\mathbf{Game}_A | \neg \mathbf{Ev}] \times \Pr[\neg \mathbf{Ev}] \\ &= \frac{1}{2} + (\Pr[\mathbf{Game}_A] - \frac{1}{2}) \times \Pr[\neg \mathbf{Ev}] \end{aligned}$$

- Identical behaviors: $\Pr[\mathbf{Game}_A] \Pr[\mathbf{Game}_B] = 0$
- The behaviors differ only if **Ev** happens:
 - Ev is negligible, one can ignore it
 - **Ev** is non-negligible and independent of the output in **Game**_A, Simulator B terminates in case of event **Ev**

Event Ev

- Either Ev is negligible, or the output is independent of Ev
- For being able to terminate simulation B in case of event **Ev**, this event must be *efficiently* detectable
- For evaluating Pr[Ev], one re-iterates the above process, with an initial game that outputs 1 when event Ev happens

 $\mathsf{Pr}[\textbf{Game}_{\textit{A}}] - \mathsf{Pr}[\textbf{Game}_{\textit{B}}] \leq \mathbf{Adv}(\mathcal{D}^{\mathsf{oracles}})$

$\mathsf{Pr}[\textbf{Game}_{\mathcal{A}}] - \mathsf{Pr}[\textbf{Game}_{\mathcal{B}}] \leq \mathbf{Adv}(\mathcal{D}^{\mathsf{oracles}})$

• For identical/statistically close distributions, for any oracle:

 $Pr[Game_A] - Pr[Game_B] = Dist(Distrib_A, Distrib_B) = negl()$

• For computationally close distributions, in general, we need to exclude additional oracle access:

 $\Pr[\mathbf{Game}_A] - \Pr[\mathbf{Game}_B] \le \mathbf{Adv}^{\mathbf{Distrib}}(t)$

where t is the computational time of the distinguisheur

 $\mathsf{Pr}[\textbf{Game}_{\mathcal{A}}] - \mathsf{Pr}[\textbf{Game}_{\mathcal{B}}] \leq \mathbf{Adv}(\mathcal{D}^{\mathsf{oracles}})$

· For identical/statistically close distributions, for any oracle:

 $\Pr[Game_A] - \Pr[Game_B] = Dist(Distrib_A, Distrib_B) = negl()$

 For computationally close distributions, in general, we need to exclude additional oracle access:

 $\Pr[\operatorname{Game}_{A}] - \Pr[\operatorname{Game}_{B}] \leq \operatorname{Adv}^{\operatorname{Distrib}}(t)$

where *t* is the computational time of the distinguisheur

 $\mathsf{Pr}[\textbf{Game}_{\mathcal{A}}] - \mathsf{Pr}[\textbf{Game}_{\mathcal{B}}] \leq \mathbf{Adv}(\mathcal{D}^{\mathsf{oracles}})$

• For identical/statistically close distributions, for any oracle:

 $\Pr[Game_A] - \Pr[Game_B] = Dist(Distrib_A, Distrib_B) = negl()$

 For computationally close distributions, in general, we need to exclude additional oracle access:

```
\Pr[\mathbf{Game}_{A}] - \Pr[\mathbf{Game}_{B}] \leq \mathbf{Adv}^{\mathbf{Distrib}}(t)
```

where t is the computational time of the distinguisheur

Advanced Security for Encryption

Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Advanced Security Notions

Cramer-Shoup Encryption Scheme

Generic Conversion

Conclusion

Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext

ENS/CNRS/INRIA Cascade

David Pointcheval

Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext

ENS/CNRS/INRIA Cascade

David Pointcheval

IND – CPA Security Game

IND – CPA Security Game

IND – **CPA** Security Game

$b \in \{0,1\}$ *r* random

 $b \in \{0,1\}$ r random $m_{0} \leftarrow m_{1} \leftarrow m_{1} \leftarrow m_{1} \leftarrow m_{1} \leftarrow m_{2} \leftarrow m_{1} \leftarrow m_{2} \leftarrow m$

The adversary cannot get any information about a plaintext of a specific ciphertext (validity, partial value, etc)

But it may be possible to derive a ciphertext c' such that the plaintext m' is related to m in a meaningful way:

- ElGamal ciphertext: $c_1 = g^r$ and $c_2 = m \times y^r$
- Malleability: $c'_1 = c_1 = g^r$ and $c'_2 = 2 \times c_2 = (2m) \times y^r$

But it may be possible to derive a ciphertext c' such that the plaintext m' is related to m in a meaningful way:

• ElGamal ciphertext: $c_1 = g^r$ and $c_2 = m \times y^r$

• Malleability: $c'_1 = c_1 = g^r$ and $c'_2 = 2 \times c_2 = (2m) \times y^r$

But it may be possible to derive a ciphertext c' such that the plaintext m' is related to m in a meaningful way:

- ElGamal ciphertext: $c_1 = g^r$ and $c_2 = m \times y^r$
- Malleability: $c_1' = c_1 = g^r$ and $c_2' = 2 \times c_2 = (2m) \times y^r$

But it may be possible to derive a ciphertext c' such that the plaintext m' is related to m in a meaningful way:

- ElGamal ciphertext: $c_1 = g^r$ and $c_2 = m \times y^r$
- Malleability: $c_1' = c_1 = g^r$ and $c_2' = 2 \times c_2 = (2m) \times y^r$

ENS/CNRS/INRIA Cascade

David Pointcheval

31/68

 $\operatorname{Adv}_{\mathcal{S}}^{\operatorname{nm-cpa}}(\mathcal{A}) = \left| \operatorname{Pr}[\mathcal{R}(m^*, m)] - \operatorname{Pr}[\mathcal{R}(m', m)] \right|$

ENS/CNRS/INRIA Cascade

David Pointcheval

Additional Information

More information modelled by oracle access

- reaction attacks: oracle which answers, on *c*, whether the ciphertext *c* is valid or not
- plaintext-checking attacks: oracle which answers,
 on a pair (m, c), whether the plaintext m is really encrypted in c
 or not (whether m = D_{sk}(c))
- chosen-ciphertext attacks (CCA): decryption oracle (with the restriction not to use it on the challenge ciphertext)
 the adversary can obtain the plaintext of any ciphertext of its choice (excepted the challenge)
 - non-adaptive (CCA 1)
 only balance accelulate the dealerance

Rackoff-Simon – Crypto '91]

- reaction attacks: oracle which answers, on *c*, whether the ciphertext *c* is valid or not
- plaintext-checking attacks: oracle which answers,
 on a pair (m, c), whether the plaintext m is really encrypted in c
 or not (whether m = D_{sk}(c))
- chosen-ciphertext attacks (CCA): decryption oracle (with the restriction not to use it on the challenge ciphertext)
 the adversary can obtain the plaintext of any ciphertext of its choice (excepted the challenge)

Simon - Crypto '91]

- reaction attacks: oracle which answers, on *c*, whether the ciphertext *c* is valid or not
- plaintext-checking attacks: oracle which answers, on a pair (m, c), whether the plaintext m is really encrypted in c or not (whether m = D_{sk}(c))
- chosen-ciphertext attacks (CCA): decryption oracle (with the restriction not to use it on the challenge ciphertext)
 the adversary can obtain the plaintext of any ciphertext of its choice (excepted the challenge)
 - non-adaptive (CCA 1)
 [Nasr-Yung STOC '90]
 only before receiving the challence

Rackoff-Simon - Crypto 291]

- reaction attacks: oracle which answers, on *c*, whether the ciphertext *c* is valid or not
- plaintext-checking attacks: oracle which answers,
 on a pair (m, c), whether the plaintext m is really encrypted in c
 or not (whether m = D_{sk}(c))
- chosen-ciphertext attacks (CCA): decryption oracle (with the restriction not to use it on the challenge ciphertext) the adversary can obtain the plaintext of any ciphertext of its choice (excepted the challenge)
 - non-adaptive (CCA 1) only before receiving the challenge
 - adaptive (CCA 2) unlimited oracle access

[Naor-Yung – STOC '90]

[Rackoff-Simon – Crypto '91]

ENS/CNRS/INRIA Cascade

David Pointcheval

- reaction attacks: oracle which answers, on *c*, whether the ciphertext *c* is valid or not
- plaintext-checking attacks: oracle which answers,
 on a pair (m, c), whether the plaintext m is really encrypted in c
 or not (whether m = D_{sk}(c))
- chosen-ciphertext attacks (CCA): decryption oracle (with the restriction not to use it on the challenge ciphertext)
 the adversary can obtain the plaintext of any ciphertext of its choice (excepted the challenge)
 - non-adaptive (CCA 1) only before receiving the challenge
 - adaptive (CCA 2) unlimited oracle access

[Naor-Yung - STOC '90]

[Rackoff-Simon - Crypto '91]

David Pointcheval

- reaction attacks: oracle which answers, on *c*, whether the ciphertext *c* is valid or not
- plaintext-checking attacks: oracle which answers,
 on a pair (m, c), whether the plaintext m is really encrypted in c
 or not (whether m = D_{sk}(c))
- chosen-ciphertext attacks (CCA): decryption oracle (with the restriction not to use it on the challenge ciphertext) the adversary can obtain the plaintext of any ciphertext of its choice (excepted the challenge)
 - non-adaptive (CCA 1) only before receiving the challenge
 - adaptive (CCA 2) unlimited oracle access

ENS/CNRS/INRIA Cascade

David Pointcheval

[Naor-Yung – STOC '90]

[Rackoff-Simon - Crypto '91]

 $b \in \{0,1\}$ r random

 $b \in \{0,1\}$ *r* random

 $b \in \{0,1\}$ *r* random

 $b \in \{0,1\}$ *r* random

The adversary can ask any decryption of its choice: Chosen-Ciphertext Attacks (oracle access)

$$(sk, pk) \leftarrow \mathcal{K}(); (m_0, m_1, ext{state}) \leftarrow \mathcal{A}^\mathcal{D}(pk); \ b \stackrel{R}{\leftarrow} \{0, 1\}; c = \mathcal{E}_{pk}(m_b); b' \leftarrow \mathcal{A}^\mathcal{D}(ext{state}, c)$$

 $Adv_{S}^{ind-cca}(\mathcal{A}) = |\Pr[b' = 1|b = 1] - \Pr[b' = 1|b = 0]| = |2 \times \Pr[b' = b] - 1|$

Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Advanced Security Notions

Cramer-Shoup Encryption Scheme

Generic Conversion

Conclusion

ENS/CNRS/INRIA Cascade

David Pointcheval
Key Generation

- $\mathbb{G} = (\langle g
 angle, imes)$ group of order q
- $sk = (x_1, x_2, y_1, y_2, z)$, where $x_1, x_2, y_1, y_2, z \stackrel{R}{\leftarrow} \mathbb{Z}_q$
- $pk = (g_1, g_2, H, c, d, h)$, where
 - g_1, g_2 are independent elements in \mathbb{G}
 - *H* a hash function (second-preimage resistant)
 - $c = g_1^{x_1}g_2^{x_2}, d = g_1^{y_1}g_2^{y_2}$, and $h = g_1^z$

Encryption $u_1 = g_1^r, u_2 = g_2^r, e = m \times h^r, v = c^r d^{r\alpha}$ where $\alpha = \mathcal{H}(u_1, u_2, e)$

Key Generation

- $\mathbb{G} = (\langle g
 angle, imes)$ group of order q
- $sk = (x_1, x_2, y_1, y_2, z)$, where $x_1, x_2, y_1, y_2, z \stackrel{R}{\leftarrow} \mathbb{Z}_q$
- $pk = (g_1, g_2, H, c, d, h)$, where
 - g_1, g_2 are independent elements in \mathbb{G}
 - *H* a hash function (second-preimage resistant)
 - $c = g_1^{x_1}g_2^{x_2}, d = g_1^{y_1}g_2^{y_2},$ and $h = g_1^z$

Encryption

 $u_1 = g_1^r, \ u_2 = g_2^r, \ e = m \times h^r, \ v = c^r d^{r\alpha}$ where $\alpha = \mathcal{H}(u_1, u_2, e)$

$$u_1 = g_1^r, \ u_2 = g_2^r, \ e = m \times h^r, \ v = c^r d^{r\alpha}$$
 where $\alpha = \mathcal{H}(u_1, u_2, e)$

 (u_1, e) is an ElGamal ciphertext, with public key $h = g_1^z$

Decryption

• since $h = g_1^z$, $h^r = u_1^z$, thus $m = e/u_1^z$

• since
$$c=g_1^{x_1}g_2^{x_2}$$
 and $d=g_1^{y_1}g_2^{y_2}$

$$c^{r} = g_{1}^{rx_{1}}g_{2}^{rx_{2}} = u_{1}^{x_{1}}u_{2}^{x_{2}}$$
 $d^{r} = u_{1}^{y_{1}}u_{2}^{y_{2}}$

One thus first checks whether

$$m{v} = m{u}_1^{x_1 + lpha m{y}_1} m{u}_2^{x_2 + lpha m{y}_2}$$
 where $lpha = \mathcal{H}(m{u}_1, m{u}_2, m{e})$

ENS/CNRS/INRIA Cascade

Theorem

The Cramer-Shoup encryption scheme achieves IND - CCA security, under the **DDH** assumption, and the second-preimage resistance of \mathcal{H} :

$$\mathrm{Adv}^{\mathsf{ind}-\mathsf{cca}}_{\mathcal{CS}}(t) \leq 2 imes \mathrm{Adv}^{\mathsf{ddh}}_{\mathbb{G}}(t) + \mathrm{Succ}^{\mathcal{H}}(t) + 3q_D/q$$

Let us prove this theorem, with a sequence of games, in which \mathcal{A} is an IND – CCA adversary against the Cramer-Shoup encryption scheme.

Theorem

The Cramer-Shoup encryption scheme achieves IND - CCA security, under the **DDH** assumption, and the second-preimage resistance of \mathcal{H} :

$$\operatorname{Adv}_{\mathcal{CS}}^{\operatorname{ind-cca}}(t) \leq 2 imes \operatorname{Adv}_{\mathbb{G}}^{\operatorname{ddh}}(t) + \operatorname{Succ}^{\mathcal{H}}(t) + 3q_D/q$$

Let us prove this theorem, with a sequence of games, in which \mathcal{A} is an IND – CCA adversary against the Cramer-Shoup encryption scheme.

Real Attack Game

Key Generation Oracle

$$x_1, x_2, y_1, y_2, z \stackrel{R}{\leftarrow} \mathbb{Z}_q, g_1, g_2 \stackrel{R}{\leftarrow} \mathbb{G}$$
: $sk = (x_1, x_2, y_1, y_2, z)$
 $c = g_1^{x_1} g_2^{x_2}, d = g_1^{y_1} g_2^{y_2}$, and $h = g_1^z$: $pk = (g_1, g_2, \mathcal{H}, c, d, h)$

Decryption Oracle

If
$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$
 where $\alpha = \mathcal{H}(u_1, u_2, e)$: $m = e/u_1^z$

ENS/CNRS/INRIA Cascade

- **Game**₀: use of the oracles \mathcal{K}, \mathcal{D}
- Game₁: we abort (with a random output b') in case of bad (invalid) accepted ciphertext, where invalid ciphertext means log_{g1} u₁ ≠ log_{g2} u₂

Event F

A submits a bad accepted ciphertext (note: this is not computationally detectable)

The advantage in **Game**₁ is: $Pr_1[b' = b|\mathbf{F}] = 1/2$

 $\Pr_{\mathsf{Game}_0}[\mathsf{F}] = \Pr_{\mathsf{Game}_1}[\mathsf{F}] \quad \Pr_{\mathsf{Game}_1}[b' = b | \neg \mathsf{F}] = \Pr_{\mathsf{Game}_0}[b' = b | \neg \mathsf{F}]$

 \implies Hop-S-Negl: $Adv_{Game_1} \ge Adv_{Game_0} - Pr[F]$

ENS/CNRS/INRIA Cascade

- **Game**₀: use of the oracles \mathcal{K} , \mathcal{D}
- Game₁: we abort (with a random output b') in case of bad (invalid) accepted ciphertext, where invalid ciphertext means log_{q1} u₁ ≠ log_{q2} u₂

Event F

 $\mathcal A$ submits a bad accepted ciphertext (note: this is not computationally detectable

The advantage in **Game**₁ is: $Pr_1[b' = b|\mathbf{F}] = 1/2$

 $\Pr_{\mathbf{Game}_0}[\mathbf{F}] = \Pr_{\mathbf{Game}_1}[\mathbf{F}] \qquad \Pr_{\mathbf{Game}_1}[b' = b|\neg \mathbf{F}] = \Pr_{\mathbf{Game}_0}[b' = b|\neg \mathbf{F}]$

 \implies Hop-S-Negl: $Adv_{Game_1} \ge Adv_{Game_0} - Pr[F]$

ENS/CNRS/INRIA Cascade

- **Game**₀: use of the oracles \mathcal{K} , \mathcal{D}
- Game₁: we abort (with a random output b') in case of bad (invalid) accepted ciphertext, where invalid ciphertext means log_{q1} u₁ ≠ log_{q2} u₂

Event F

A submits a bad accepted ciphertext (note: this is not computationally detectable)

 $\Pr_{\mathbf{Game}_0}[\mathbf{F}] = \Pr_{\mathbf{Game}_1}[\mathbf{F}] \qquad \Pr_{\mathbf{Game}_1}[b' = b | \neg \mathbf{F}] = \Pr_{\mathbf{Game}_0}[b' = b | \neg \mathbf{F}]$

 $\implies \mathsf{Hop-S-Negl: } \operatorname{Adv}_{\mathsf{Game}_1} \geq \operatorname{Adv}_{\mathsf{Game}_0} - \mathsf{Pr}[\mathbf{F}]$

ENS/CNRS/INRIA Cascade

- **Game**₀: use of the oracles \mathcal{K} , \mathcal{D}
- **Game**₁: we abort (with a random output b') in case of bad (invalid) accepted ciphertext, where invalid ciphertext means $\log_{a_1} u_1 \neq \log_{a_2} u_2$

Event F

 \mathcal{A} submits a bad accepted ciphertext (note: this is not computationally detectable)

The advantage in **Game**₁ is: $Pr_1[b' = b|\mathbf{F}] = 1/2$

 $\Pr_{\mathsf{Game}_0}[\mathsf{F}] = \Pr_{\mathsf{Game}_1}[\mathsf{F}] \qquad \Pr_{\mathsf{Game}_1}[b' = b | \neg \mathsf{F}] = \Pr_{\mathsf{Game}_0}[b' = b | \neg \mathsf{F}]$ $\implies \textbf{Hop-S-Negl:} \ \mathbf{Adv}_{\textbf{Game}_1} \geq \mathbf{Adv}_{\textbf{Game}_0} - \mathsf{Pr}[\textbf{F}]$ ENS/CNRS/INRIA Cascade

David Pointcheval

40/68

$$\operatorname{Adv}_{\operatorname{Game}_1} = 2 \times \Pr_{\operatorname{Game}_1}[b'=b] - 1$$

$$\begin{aligned} \mathbf{Adv}_{\mathbf{Game}_1} &= & 2 \times \Pr_{\mathbf{Game}_1}[b' = b] - 1 \\ &= & 2 \times \Pr_{\mathbf{Game}_1}[b' = b | \neg \mathbf{F}] \Pr_{\mathbf{Game}_1}[\neg \mathbf{F}] \\ &+ 2 \times \Pr_{\mathbf{Game}_1}[b' = b | \mathbf{F}] \Pr_{\mathbf{Game}_1}[\mathbf{F}] - 1 \end{aligned}$$

$$\begin{aligned} \mathbf{Adv}_{\mathbf{Game}_{1}} &= 2 \times \Pr_{\mathbf{Game}_{1}}[b'=b] - 1 \\ &= 2 \times \Pr_{\mathbf{Game}_{1}}[b'=b|\neg \mathbf{F}] \Pr_{\mathbf{Game}_{1}}[\neg \mathbf{F}] \\ &+ 2 \times \Pr_{\mathbf{Game}_{1}}[b'=b|\mathbf{F}] \Pr_{\mathbf{Game}_{1}}[\mathbf{F}] - 1 \\ &= 2 \times \Pr_{\mathbf{Game}_{0}}[b'=b|\neg \mathbf{F}] \Pr_{\mathbf{Game}_{0}}[\neg \mathbf{F}] + \Pr_{\mathbf{Game}_{0}}[\mathbf{F}] - 1 \end{aligned}$$

$$\begin{aligned} \mathbf{Adv}_{\mathbf{Game}_{1}} &= 2 \times \Pr_{\mathbf{Game}_{1}}[b'=b] - 1 \\ &= 2 \times \Pr_{\mathbf{Game}_{1}}[b'=b|\neg \mathbf{F}] \Pr_{\mathbf{Game}_{1}}[\neg \mathbf{F}] \\ &+ 2 \times \Pr_{\mathbf{Game}_{1}}[b'=b|\mathbf{F}] \Pr_{\mathbf{Game}_{1}}[\mathbf{F}] - 1 \\ &= 2 \times \Pr_{\mathbf{Game}_{0}}[b'=b|\neg \mathbf{F}] \Pr_{\mathbf{Game}_{0}}[\neg \mathbf{F}] + \Pr_{\mathbf{Game}_{0}}[\mathbf{F}] - 1 \\ &= 2 \times \Pr_{\mathbf{Game}_{0}}[b'=b] - 2 \times \Pr_{\mathbf{Game}_{0}}[b'=b|\mathbf{F}] \Pr_{\mathbf{Game}_{0}}[\mathbf{F}] \\ &+ \Pr_{\mathbf{Game}_{0}}[\mathbf{F}] - 1 \end{aligned}$$

A

$$\mathbf{Adv}_{\mathbf{Game}_{1}} = 2 \times \Pr_{\mathbf{Game}_{1}}[b' = b] - 1$$

$$= 2 \times \Pr_{\mathbf{Game}_{1}}[b' = b|\neg \mathbf{F}] \Pr_{\mathbf{Game}_{1}}[\neg \mathbf{F}]$$

$$+ 2 \times \Pr_{\mathbf{Game}_{1}}[b' = b|\mathbf{F}] \Pr_{\mathbf{Game}_{1}}[\mathbf{F}] - 1$$

$$= 2 \times \Pr_{\mathbf{Game}_{0}}[b' = b|\neg \mathbf{F}] \Pr_{\mathbf{Game}_{0}}[\neg \mathbf{F}] + \Pr_{\mathbf{Game}_{0}}[\mathbf{F}] - 1$$

$$= 2 \times \Pr_{\mathbf{Game}_{0}}[b' = b] - 2 \times \Pr_{\mathbf{Game}_{0}}[b' = b|\mathbf{F}] \Pr_{\mathbf{Game}_{0}}[\mathbf{F}]$$

$$+ \Pr_{\mathbf{Game}_{0}}[\mathbf{F}] - 1$$

$$= \mathbf{Adv}_{\mathbf{Game}_{0}} - \Pr_{\mathbf{F}}[\mathbf{F}](2 \times \Pr_{\mathbf{F}}[b' = b|\mathbf{F}] - 1)$$

 $\operatorname{Game}_0 = \operatorname{Fr}[\Gamma](2 \times \operatorname{Fr}[D] = D|\Gamma]$ Game₀ Game₀

$$\begin{aligned} \mathbf{Adv}_{\mathbf{Game}_{1}} &= 2 \times \Pr_{\mathbf{Game}_{1}}[b'=b] - 1 \\ &= 2 \times \Pr_{\mathbf{Game}_{1}}[b'=b|\neg\mathbf{F}] \Pr_{\mathbf{Game}_{1}}[\neg\mathbf{F}] \\ &+ 2 \times \Pr_{\mathbf{Game}_{1}}[b'=b|\mathbf{F}] \Pr_{\mathbf{Game}_{1}}[\mathbf{F}] - 1 \\ &= 2 \times \Pr_{\mathbf{Game}_{0}}[b'=b|\neg\mathbf{F}] \Pr_{\mathbf{Game}_{0}}[\neg\mathbf{F}] + \Pr_{\mathbf{Game}_{0}}[\mathbf{F}] - 1 \\ &= 2 \times \Pr_{\mathbf{Game}_{0}}[b'=b] - 2 \times \Pr_{\mathbf{Game}_{0}}[b'=b|\mathbf{F}] \Pr_{\mathbf{Game}_{0}}[\mathbf{F}] \\ &+ \Pr_{\mathbf{Game}_{0}}[\mathbf{F}] - 1 \\ &= \mathbf{Adv}_{\mathbf{Game}_{0}} - \Pr_{\mathbf{Game}_{0}}[\mathbf{F}](2 \times \Pr_{\mathbf{Game}_{0}}[b'=b|\mathbf{F}] - 1) \\ &\geq \mathbf{Adv}_{\mathbf{Game}_{0}} - \Pr_{\mathbf{Game}_{0}}[\mathbf{F}] \end{aligned}$$

•
$$r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$$
,

• whereas
$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$

The adversary just knows the public key:

$$c = g_1^{x_1} g_2^{x_2} \qquad d = g_1^{y_1} g_2^{y_2}$$

Let us move to the exponents, in basis g_1 , with $g_2 = g_1^s$: $\log c = x_1 + sx_2$ $\log d = y_1 + sy_2$ $\log v = r_1(x_1 + \alpha y_1) + sr_2(x_2 + \alpha y_2)$

The system is under-defined: for any *v*, there are (x_1, x_2, y_1, y_2) that satisfy the system $\implies v$ is unpredictable $\implies \Pr[\mathbf{F}] \le q_D/q \implies \operatorname{Adv}_{\operatorname{Game}_1} \ge \operatorname{Adv}_{\operatorname{Game}_0} - q_D/q$

ENS/CNRS/INRIA Cascade

•
$$r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$$
,

• whereas
$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$

The adversary just knows the public key:

$$c = g_1^{x_1} g_2^{x_2} \qquad d = g_1^{y_1} g_2^{y_2}$$

Let us move to the exponents, in basis g_1 , with $g_2 = g_1^s$: $\log c = x_1 + sx_2$ $\log d = y_1 + sy_2$ $\log v = r_1(x_1 + \alpha y_1) + sr_2(x_2 + \alpha y_2)$

The system is under-defined: for any v, there are (x_1, x_2, y_1, y_2) that satisfy the system $\implies v$ is unpredictable $\implies \Pr[\mathbf{F}] \le q_D/q \implies \operatorname{Adv}_{\operatorname{Game}_1} \ge \operatorname{Adv}_{\operatorname{Game}_0} - q_D/q$

ENS/CNRS/INRIA Cascade

•
$$r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$$
,

• whereas
$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$

The adversary just knows the public key:

$$c = g_1^{x_1} g_2^{x_2} \qquad d = g_1^{y_1} g_2^{y_2}$$

Let us move to the exponents, in basis g_1 , with $g_2 = g_1^s$: $\log c = x_1 + sx_2$ $\log d = y_1 + sy_2$ $\log v = r_1(x_1 + \alpha y_1) + sr_2(x_2 + \alpha y_2)$

The system is under-defined: for any v, there are (x_1, x_2, y_1, y_2) that satisfy the system $\implies v$ is unpredictable $\implies \Pr[\mathbf{F}] \le q_D/q \implies \operatorname{Adv}_{\operatorname{Game}_1} \ge \operatorname{Adv}_{\operatorname{Game}_0} - q_D/q$

ENS/CNRS/INRIA Cascade

•
$$r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$$
,

• whereas
$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$

The adversary just knows the public key:

$$c = g_1^{x_1} g_2^{x_2} \qquad d = g_1^{y_1} g_2^{y_2}$$

Let us move to the exponents, in basis g_1 , with $g_2 = g_1^s$: $\log c = x_1 + sx_2$ $\log d = y_1 + sy_2$ $\log v = r_1(x_1 + \alpha y_1) + sr_2(x_2 + \alpha y_2)$

The system is under-defined: for any *v*, there are (x_1, x_2, y_1, y_2) that satisfy the system \implies *v* is unpredictable

 $\implies \Pr[\mathbf{F}] \leq q_D/q \qquad \Longrightarrow \operatorname{Adv}_{\operatorname{Game}_1} \geq \operatorname{Adv}_{\operatorname{Game}_0} - q_D/q$

ENS/CNRS/INRIA Cascade

•
$$r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$$
,

• whereas
$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$

The adversary just knows the public key:

$$c = g_1^{x_1} g_2^{x_2} \qquad d = g_1^{y_1} g_2^{y_2}$$

Let us move to the exponents, in basis g_1 , with $g_2 = g_1^s$: $\log c = x_1 + sx_2$ $\log d = y_1 + sy_2$ $\log v = r_1(x_1 + \alpha y_1) + sr_2(x_2 + \alpha y_2)$

The system is under-defined: for any *v*, there are (x_1, x_2, y_1, y_2) that satisfy the system $\implies v$ is unpredictable

 $\implies \Pr[\mathbf{F}] \le q_D/q \qquad \Longrightarrow \operatorname{Adv}_{\operatorname{Game}_1} \ge \operatorname{Adv}_{\operatorname{Game}_0} - q_D/q$

ENS/CNRS/INRIA Cascade

•
$$r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$$
,

• whereas
$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$

The adversary just knows the public key:

$$c = g_1^{x_1} g_2^{x_2} \qquad d = g_1^{y_1} g_2^{y_2}$$

Let us move to the exponents, in basis g_1 , with $g_2 = g_1^s$: $\log c = x_1 + sx_2$ $\log d = y_1 + sy_2$ $\log v = r_1(x_1 + \alpha y_1) + sr_2(x_2 + \alpha y_2)$

The system is under-defined: for any *v*, there are (x_1, x_2, y_1, y_2) that satisfy the system $\implies v$ is unpredictable

$$\implies \Pr[\mathbf{F}] \le q_D/q \qquad \Longrightarrow \operatorname{Adv}_{\operatorname{Game}_1} \ge \operatorname{Adv}_{\operatorname{Game}_0} - q_D/q$$

ENS/CNRS/INRIA Cascade

•
$$r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$$
,

• whereas
$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$

The adversary just knows the public key:

$$c = g_1^{x_1} g_2^{x_2} \qquad d = g_1^{y_1} g_2^{y_2}$$

Let us move to the exponents, in basis g_1 , with $g_2 = g_1^s$: $\log c = x_1 + sx_2$ $\log d = y_1 + sy_2$ $\log v = r_1(x_1 + \alpha y_1) + sr_2(x_2 + \alpha y_2)$

The system is under-defined: for any v, there are (x_1, x_2, y_1, y_2) that satisfy the system $\implies v$ is unpredictable $\implies \Pr[\mathbf{F}] \le q_D/q \implies \operatorname{Adv}_{\operatorname{Game}_1} \ge \operatorname{Adv}_{\operatorname{Game}_0} - q_D/q$

ENS/CNRS/INRIA Cascade

Game₂: we use the simulations

Key Generation Simulation

 $x_1, x_2, y_1, y_2, z_1, z_2 \stackrel{R}{\leftarrow} \mathbb{Z}_q, g_1, g_2 \stackrel{R}{\leftarrow} \mathbb{G}: sk = (x_1, x_2, y_1, y_2, z_1, z_2)$

 $c = g_1^{x_1} g_2^{x_2}, \, d = g_1^{y_1} g_2^{y_2}$, and $h = g_1^{z_1} g_2^{z_2}$: $pk = (g_1, g_2, \mathcal{H}, c, d, h)$

Distribution of the public key: Identical

Decryption Simulation

If $v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$ where $\alpha = \mathcal{H}(u_1, u_2, e)$: $m = e/u_1^{z_1} u_2^{z_2}$

Under the assumption of \neg F, perfect simulation \implies Hop-S-Perfect: $Adv_{Game_2} = Adv_{Game_1}$

ENS/CNRS/INRIA Cascade

Game₂: we use the simulations

Key Generation Simulation

$$x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2} \stackrel{R}{\leftarrow} \mathbb{Z}_{q}, g_{1}, g_{2} \stackrel{R}{\leftarrow} \mathbb{G}: sk = (x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2})$$

$$g_{2} = g_{1}^{s}$$

$$c = g_{1}^{x_{1}} g_{2}^{x_{2}}, d = g_{1}^{y_{1}} g_{2}^{y_{2}}, \text{ and } h = g_{1}^{z_{1}} g_{2}^{z_{2}}: pk = (g_{1}, g_{2}, \mathcal{H}, c, d, h)$$

$$z = z_{1} + sz_{2}$$

Distribution of the public key: Identical

Decryption Simulation

If
$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$
 where $\alpha = \mathcal{H}(u_1, u_2, e)$: $m = e/u_1^{z_1} u_2^{z_2}$

Under the assumption of $\neg F$, perfect simulation \implies Hop-S-Perfect: $Adv_{Game_2} = Adv_{Game_1}$

ENS/CNRS/INRIA Cascade

Game₂: we use the simulations

Key Generation Simulation

$$x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2} \stackrel{R}{\leftarrow} \mathbb{Z}_{q}, g_{1}, g_{2} \stackrel{R}{\leftarrow} \mathbb{G}: sk = (x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2})$$

$$g_{2} = g_{1}^{s}$$

$$c = g_{1}^{x_{1}} g_{2}^{x_{2}}, d = g_{1}^{y_{1}} g_{2}^{y_{2}}, \text{ and } h = g_{1}^{z_{1}} g_{2}^{z_{2}}: pk = (g_{1}, g_{2}, \mathcal{H}, c, d, h)$$

$$z = z_{1} + sz_{2}$$

Distribution of the public key: Identical

Decryption Simulation If $v = u_1^{x_1+\alpha y_1} u_2^{x_2+\alpha y_2}$ where $\alpha = \mathcal{H}(u_1, u_2, e)$: $m = e/u_1^{z_1} u_2^{z_1} u_$

 \implies Hop-S-Perfect: $Adv_{Game_2} = Adv_{Game_1}$

ENS/CNRS/INRIA Cascade

Game₂: we use the simulations

Key Generation Simulation

$$x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2} \stackrel{R}{\leftarrow} \mathbb{Z}_{q}, g_{1}, g_{2} \stackrel{R}{\leftarrow} \mathbb{G}: sk = (x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2})$$

$$g_{2} = g_{1}^{s}$$

$$c = g_{1}^{x_{1}} g_{2}^{x_{2}}, d = g_{1}^{y_{1}} g_{2}^{y_{2}}, \text{ and } h = g_{1}^{z_{1}} g_{2}^{z_{2}}: pk = (g_{1}, g_{2}, \mathcal{H}, c, d, h)$$

$$z = z_{1} + sz_{2}$$

Distribution of the public key: Identical

Decryption Simulation

If
$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$
 where $\alpha = \mathcal{H}(u_1, u_2, e)$: $m = e/u_1^{z_1} u_2^{z_2}$

Under the assumption of \neg F, perfect simulation \implies Hop-S-Perfect: $Adv_{Game_2} = Adv_{Game_1}$

ENS/CNRS/INRIA Cascade

Game₂: we use the simulations

Key Generation Simulation

$$x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2} \stackrel{R}{\leftarrow} \mathbb{Z}_{q}, g_{1}, g_{2} \stackrel{R}{\leftarrow} \mathbb{G}: sk = (x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2})$$

$$g_{2} = g_{1}^{s}$$

$$c = g_{1}^{x_{1}} g_{2}^{x_{2}}, d = g_{1}^{y_{1}} g_{2}^{y_{2}}, \text{ and } h = g_{1}^{z_{1}} g_{2}^{z_{2}}: pk = (g_{1}, g_{2}, \mathcal{H}, c, d, h)$$

$$z = z_{1} + sz_{2}$$

Distribution of the public key: Identical

Decryption Simulation

If
$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$
 where $\alpha = \mathcal{H}(u_1, u_2, e)$: $m = e/u_1^{z_1} u_2^{z_2}$

Under the assumption of $\neg F$, perfect simulation \implies Hop-S-Perfect: Adv_{Game₂} = Adv_{Game₁}

ENS/CNRS/INRIA Cascade

Game₂: we use the simulations

Key Generation Simulation

$$x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2} \stackrel{R}{\leftarrow} \mathbb{Z}_{q}, g_{1}, g_{2} \stackrel{R}{\leftarrow} \mathbb{G}: sk = (x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2})$$

$$g_{2} = g_{1}^{s}$$

$$c = g_{1}^{x_{1}} g_{2}^{x_{2}}, d = g_{1}^{y_{1}} g_{2}^{y_{2}}, \text{ and } h = g_{1}^{z_{1}} g_{2}^{z_{2}}: pk = (g_{1}, g_{2}, \mathcal{H}, c, d, h)$$

$$z = z_{1} + sz_{2}$$

Distribution of the public key: Identical

Decryption Simulation

If
$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$
 where $\alpha = \mathcal{H}(u_1, u_2, e)$: $m = e/u_1^{z_1} u_2^{z_2}$

Under the assumption of $\neg F$, perfect simulation \implies Hop-S-Perfect: $Adv_{Game_2} = Adv_{Game_1}$

ENS/CNRS/INRIA Cascade

Game₃: we do no longer exclude bad accepted ciphertexts
 Hop-S-Negl:
 Advormes - Advormes - Pr[F] > Advormes - ap/a

 Game₃: we do no longer exclude bad accepted ciphertexts → Hop-S-NegI:

 $\operatorname{Adv}_{\operatorname{Game}_3} \ge \operatorname{Adv}_{\operatorname{Game}_2} - \Pr[\mathbf{F}] \ge \operatorname{Adv}_{\operatorname{Game}_2} - q_D/q$

 Game₃: we do no longer exclude bad accepted ciphertexts → Hop-S-NegI:

 $\mathbf{Adv}_{\mathbf{Game}_3} \geq \mathbf{Adv}_{\mathbf{Game}_2} - \mathsf{Pr}[\mathbf{F}] \geq \mathbf{Adv}_{\mathbf{Game}_2} - q_D/q$

 Game₃: we do no longer exclude bad accepted ciphertexts → Hop-S-NegI:

 $\mathbf{Adv}_{\mathbf{Game}_3} \geq \mathbf{Adv}_{\mathbf{Game}_2} - \mathsf{Pr}[\mathbf{F}] \geq \mathbf{Adv}_{\mathbf{Game}_2} - q_D/q$

• Game₄: we modify the generation of the challenge ciphertext:

Original Challenge

Random choice: $b \stackrel{R}{\leftarrow} \{0,1\}, r \stackrel{R}{\leftarrow} \mathbb{Z}_q$ [$\alpha = \mathcal{H}(u_1, u_2, e)$] $u_1 = g_1^r, u_2 = g_2^r, e = m_b \times h^r, v = c^r d^{r\alpha}$

New Challenge 1

Given (
$$U = g_1^r, V = g_2^r$$
) and random choice $b \stackrel{R}{\leftarrow} \{0, 1\}$

 $u_1 = U, \ u_2 = V, \ e = m_b \times U^{z_1} V^{z_2}, \ v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$

With $(U = g_1^r, V = g_2^r)$: $U^{z_1}V^{z_2} = h^r$ and $U^{x_1 + \alpha y_1}V^{x_2 + \alpha y_2} = c^r d^{r\alpha}$ \implies Hop-S-Perfect: $Adv_{Game_4} = Adv_{Game_3}$

ENS/CNRS/INRIA Cascade

• Game₄: we modify the generation of the challenge ciphertext:

Original Challenge

Random choice:
$$b \stackrel{R}{\leftarrow} \{0, 1\}, r \stackrel{R}{\leftarrow} \mathbb{Z}_q$$
 [$\alpha = \mathcal{H}(u_1, u_2, e)$]

$$u_1 = g_1^r, \ u_2 = g_2^r, \ e = m_b \times h^r, \ v = c^r d^{r_\alpha}$$

New Challenge 1

Given
$$(U = g_1^r, V = g_2^r)$$
 and random choice $b \leftarrow \{0, 1\}$
 $u_1 = U, u_2 = V, e = m_b \times U^{z_1} V^{z_2}, v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$

With $(U = g_1^r, V = g_2^r)$: $U^{z_1}V^{z_2} = h^r$ and $U^{x_1 + \alpha y_1}V^{x_2 + \alpha y_2} = c^r d^{r\alpha}$ \implies Hop-S-Perfect: $Adv_{Game_4} = Adv_{Game_3}$ • Game₄: we modify the generation of the challenge ciphertext:

Original Challenge

Random choice:
$$b \stackrel{R}{\leftarrow} \{0, 1\}, r \stackrel{R}{\leftarrow} \mathbb{Z}_q$$
 [$\alpha = \mathcal{H}(u_1, u_2, e)$]

$$u_1 = g_1^r, \ u_2 = g_2^r, \ e = m_b \times h^r, \ v = c^r d^{r_0}$$

New Challenge 1

Given
$$(U = g_1^r, V = g_2^r)$$
 and random choice $b \leftarrow^R \{0, 1\}$
 $u_1 = U, u_2 = V, e = m_b \times U^{z_1} V^{z_2}, v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$

With $(U = g_1^r, V = g_2^r)$: $U^{z_1}V^{z_2} = h^r$ and $U^{x_1+\alpha y_1}V^{x_2+\alpha y_2} = c^r d^{r\alpha}$ \implies Hop-S-Perfect: $Adv_{Game_4} = Adv_{Game_3}$
Original Challenge

Random choice:
$$b \stackrel{R}{\leftarrow} \{0, 1\}, r \stackrel{R}{\leftarrow} \mathbb{Z}_q$$
 $[\alpha = \mathcal{H}(u_1, u_2, e)]$

$$u_1 = g_1^r, \ u_2 = g_2^r, \ e = m_b \times h^r, \ v = c^r d^{r_\alpha}$$

New Challenge 1

Given
$$(U = g_1^r, V = g_2^r)$$
 and random choice $b \stackrel{R}{\leftarrow} \{0, 1\}$

$$u_1 = U, \ u_2 = V, \ e = m_b imes U^{z_1} V^{z_2}, \ v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$$

With $(U = g_1^r, V = g_2^r)$: $U^{z_1}V^{z_2} = h^r$ and $U^{x_1+\alpha y_1}V^{x_2+\alpha y_2} = c^r d^{r\alpha}$ \implies Hop-S-Perfect: $Adv_{Game_4} = Adv_{Game_5}$

Original Challenge

Random choice:
$$b \stackrel{R}{\leftarrow} \{0, 1\}, r \stackrel{R}{\leftarrow} \mathbb{Z}_q$$
 $[\alpha = \mathcal{H}(u_1, u_2, e)]$

$$u_1 = g_1^r, \ u_2 = g_2^r, \ e = m_b \times h^r, \ v = c^r d^{r_\alpha}$$

New Challenge 1

Given
$$(U = g_1^r, V = g_2^r)$$
 and random choice $b \stackrel{R}{\leftarrow} \{0, 1\}$

$$u_1 = U, \ u_2 = V, \ e = m_b \times U^{z_1} V^{z_2}, \ v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$$

With $(U = g_1^r, V = g_2^r)$: $U^{z_1}V^{z_2} = h^r$ and $U^{x_1+\alpha y_1}V^{x_2+\alpha y_2} = c^r d^{r\alpha}$ \implies Hop-S-Perfect: $Adv_{Game_4} = Adv_{Game_3}$

Previous Challenge 1

Given $(U = g_1^r, V = g_2^r)$ and random choice $b \stackrel{R}{\leftarrow} \{0, 1\}$

$$u_1 = U, \ u_2 = V, \ e = m_b \times U^{z_1} V^{z_2}, \ v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$$

New Challenge 2

Given
$$(U=g_1^{r_1},V=g_2^{r_2})$$
 and random choice $b \stackrel{R}{\leftarrow} \{0,1\}$.

 $u_1 = U, \ u_2 = V, \ e = m_b \times U^{z_1} V^{z_2}, \ v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$

The input changes from $(U = g_1^r, V = g_2^r)$ to $(U = g_1^{r_1}, V = g_2^{r_2})$: \implies Hop-D-Comp: Adv_{Game₅} \ge Adv_{Game₄} $- 2 \times Adv_G^{ddh}(t)$

ENS/CNRS/INRIA Cascade

Previous Challenge 1

Given $(U = g_1^r, V = g_2^r)$ and random choice $b \leftarrow \{0, 1\}$

$$u_1 = U, \ u_2 = V, \ e = m_b \times U^{z_1} V^{z_2}, \ v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$$

New Challenge 2

Given
$$(U = g_1^{r_1}, V = g_2^{r_2})$$
 and random choice $b \leftarrow \{0, 1\}$
 $u_1 = U, u_2 = V, e = m_b \times U^{z_1} V^{z_2}, v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$

The input changes from $(U = g_1^r, V = g_2^r)$ to $(U = g_1^{r_1}, V = g_2^{r_2})$: \implies Hop-D-Comp: Adv_{Game₅} \ge Adv_{Game₄} $- 2 \times Adv_G^{ddh}(t)$

ENS/CNRS/INRIA Cascade

Previous Challenge 1

Given $(U = g_1^r, V = g_2^r)$ and random choice $b \leftarrow \{0, 1\}$

$$u_1 = U, \ u_2 = V, \ e = m_b \times U^{z_1} V^{z_2}, \ v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$$

New Challenge 2

Given
$$(U = g_1^{r_1}, V = g_2^{r_2})$$
 and random choice $b \leftarrow \{0, 1\}$
 $u_1 = U, u_2 = V, e = m_b \times U^{z_1} V^{z_2}, v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$

The input changes from $(U = g_1^r, V = g_2^r)$ to $(U = g_1^{r_1}, V = g_2^{r_2})$: \implies Hop-D-Comp: Adv_{Game5} \ge Adv_{Game4} $- 2 \times$ Adv^{ddh}_G(t)

ENS/CNRS/INRIA Cascade

Previous Challenge 1

Given $(U = g_1^r, V = g_2^r)$ and random choice $b \stackrel{R}{\leftarrow} \{0, 1\}$

$$u_1 = U, \ u_2 = V, \ e = m_b \times U^{z_1} V^{z_2}, \ v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$$

New Challenge 2

Given
$$(U = g_1^{r_1}, V = g_2^{r_2})$$
 and random choice $b \leftarrow \{0, 1\}$
 $u_1 = U, u_2 = V, e = m_b \times U^{z_1} V^{z_2}, v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$

The input changes from $(U = g_1^r, V = g_2^r)$ to $(U = g_1^{r_1}, V = g_2^{r_2})$: \implies Hop-D-Comp: Adv_{Games} \ge Adv_{Game4} $- 2 \times$ Adv^{ddh}_G(t)

Previous Challenge 1

Given $(U = g_1^r, V = g_2^r)$ and random choice $b \leftarrow \{0, 1\}$

$$u_1 = U, \ u_2 = V, \ e = m_b \times U^{z_1} V^{z_2}, \ v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$$

New Challenge 2

Given
$$(U = g_1^{r_1}, V = g_2^{r_2})$$
 and random choice $b \leftarrow \{0, 1\}$
 $u_1 = U, u_2 = V, e = m_b \times U^{z_1} V^{z_2}, v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$

The input changes from $(U = g_1^r, V = g_2^r)$ to $(U = g_1^{r_1}, V = g_2^{r_2})$: \implies Hop-D-Comp: Adv_{Game₅} \ge Adv_{Game₄} $- 2 \times Adv_{\mathbb{G}}^{ddh}(t)$

$$\Pr_{\mathbf{Game}_4}[b'=b] - \Pr_{\mathbf{Game}_5}[b'=b] \leq \mathbf{Adv}^{\mathbf{ddh}}_{\mathbb{G}}(t)$$

 $\implies \textbf{Hop-D-Comp: Adv}_{\textbf{Game}_{5}} \geq \textbf{Adv}_{\textbf{Game}_{4}} - 2 \times \textbf{Adv}_{\textbf{G}}^{\textbf{ddh}}(t)$ (Since $\textbf{Adv} = 2 \times \Pr[b' = b] - 1$)

$$\Pr_{\mathsf{Game}_4}[b'=b] - \Pr_{\mathsf{Game}_5}[b'=b] \leq \mathbf{Adv}_{\mathbb{G}}^{\mathsf{ddh}}(t)$$

 $\implies \textbf{Hop-D-Comp: Adv}_{Game_5} \ge \textbf{Adv}_{Game_4} - 2 \times \textbf{Adv}_{\mathbb{G}}^{ddh}(t)$ (Since $\textbf{Adv} = 2 \times \Pr[b' = b] - 1$)

$$\Pr_{\mathsf{Game}_4}[b'=b] - \Pr_{\mathsf{Game}_5}[b'=b] \leq \mathbf{Adv}^{\mathsf{ddh}}_{\mathbb{G}}(t)$$

 $\implies \textbf{Hop-D-Comp: } Adv_{\textbf{Game}_5} \geq Adv_{\textbf{Game}_4} - 2 \times Adv_{\textbf{G}}^{ddh}(t)$ (Since $Adv = 2 \times Pr[b' = b] - 1$)

$$\Pr_{\mathsf{Game}_4}[b'=b] - \Pr_{\mathsf{Game}_5}[b'=b] \leq \mathbf{Adv}^{\mathsf{ddh}}_{\mathbb{G}}(t)$$

 $\implies \textbf{Hop-D-Comp: Adv}_{\textbf{Game}_5} \geq \textbf{Adv}_{\textbf{Game}_4} - 2 \times \textbf{Adv}_{\mathbb{G}}^{\textbf{ddh}}(t)$ (Since $\textbf{Adv} = 2 \times \Pr[b' = b] - 1$)

• **Game**₆: we abort (with a random output *b*') in case of second pre-image with a decryption query

Event F_H

 \mathcal{A} submits a ciphertext with the same α as the challenge ciphertext, but a different initial triple: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, but $\alpha = \alpha^*$, were "*" are for all the elements related to the challenge ciphertext.

Second pre-image of \mathcal{H} : \Longrightarrow $\Pr[\mathbf{F}_H] \leq \mathbf{Succ}^{\mathcal{H}}(t)$

The advantage in **Game**₆ is: $Pr_{Game_6}[b' = b|F_H] = 1/2$

 $\Pr_{\mathsf{Game}_5}[\mathsf{F}_H] = \Pr_{\mathsf{Game}_6}[\mathsf{F}_H] \quad \Pr_{\mathsf{Game}_5}[b' = b | \neg \mathsf{F}_H] = \Pr_{\mathsf{Game}_5}[b' = b | \neg \mathsf{F}_H]$

 \Longrightarrow Hop-S-Negl: $\operatorname{Adv}_{\operatorname{Game}_6} \ge \operatorname{Adv}_{\operatorname{Game}_5} - \Pr[\mathsf{F}_H]$

 $\mathbf{Adv}_{\mathbf{Game}_6} \geq \mathbf{Adv}_{\mathbf{Game}_5} - \mathbf{Succ}^{\mathcal{H}}(t)$

ENS/CNRS/INRIA Cascade

• **Game**₆: we abort (with a random output *b*') in case of second pre-image with a decryption query

Event F_H

 \mathcal{A} submits a ciphertext with the same α as the challenge ciphertext, but a different initial triple: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, but $\alpha = \alpha^*$, were "*" are for all the elements related to the challenge ciphertext.

Second pre-image of \mathcal{H} : $\implies \Pr[\mathbf{F}_{H}] \leq \operatorname{Succ}^{\mathcal{H}}(t)$

The advantage in $Game_6$ is: $Pr_{Game_6}[b' = b|F_H] = 1/2$

 $\Pr_{\mathbf{Game}_{5}}[\mathbf{F}_{H}] = \Pr_{\mathbf{Game}_{6}}[\mathbf{F}_{H}] \qquad \Pr_{\mathbf{Game}_{6}}[b' = b | \neg \mathbf{F}_{H}] = \Pr_{\mathbf{Game}_{5}}[b' = b | \neg \mathbf{F}_{H}]$

 $\Longrightarrow \mathsf{Hop} extsf{-S} extsf{-}\mathsf{Negl}: \mathbf{Adv}_{\mathsf{Game}_6} \geq \mathbf{Adv}_{\mathsf{Game}_5} - \mathsf{Pr}[\mathsf{F}_H]$

 $\mathbf{Adv}_{\mathbf{Game}_6} \geq \mathbf{Adv}_{\mathbf{Game}_5} - \mathbf{Succ}^{\mathcal{H}}(t)$

ENS/CNRS/INRIA Cascade

• **Game**₆: we abort (with a random output *b*') in case of second pre-image with a decryption query

Event F_H

 \mathcal{A} submits a ciphertext with the same α as the challenge ciphertext, but a different initial triple: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, but $\alpha = \alpha^*$, were "*" are for all the elements related to the challenge ciphertext.

Second pre-image of \mathcal{H} : $\implies \Pr[\mathbf{F}_{H}] \leq \operatorname{Succ}^{\mathcal{H}}(t)$

The advantage in **Game**₆ is: $Pr_{Game_6}[b' = b|F_H] = 1/2$

 $\Pr_{\mathbf{Game}_{5}}[\mathbf{F}_{H}] = \Pr_{\mathbf{Game}_{6}}[\mathbf{F}_{H}] \qquad \Pr_{\mathbf{Game}_{6}}[b' = b | \neg \mathbf{F}_{H}] = \Pr_{\mathbf{Game}_{5}}[b' = b | \neg \mathbf{F}_{H}]$

 $\Longrightarrow \mathsf{Hop} extsf{-S} extsf{-}\mathsf{Negl}: \operatorname{Adv}_{\mathsf{Game}_6} \geq \operatorname{Adv}_{\mathsf{Game}_5} - \mathsf{Pr}[\mathsf{F}_H]$

 $\mathbf{Adv}_{\mathbf{Game}_6} \geq \mathbf{Adv}_{\mathbf{Game}_5} - \mathbf{Succ}^{\mathcal{H}}(t)$

ENS/CNRS/INRIA Cascade

• **Game**₆: we abort (with a random output *b*') in case of second pre-image with a decryption query

Event F_H

 \mathcal{A} submits a ciphertext with the same α as the challenge ciphertext, but a different initial triple: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, but $\alpha = \alpha^*$, were "*" are for all the elements related to the challenge ciphertext.

Second pre-image of \mathcal{H} : \Longrightarrow $\Pr[\mathbf{F}_{H}] \leq \mathbf{Succ}^{\mathcal{H}}(t)$

The advantage in $Game_6$ is: $Pr_{Game_6}[b' = b|F_H] = 1/2$

 $\begin{aligned} \Pr_{\mathbf{Game}_{5}}[\mathbf{F}_{H}] &= \Pr_{\mathbf{Game}_{6}}[\mathbf{F}_{H}] & \Pr_{\mathbf{Game}_{6}}[b' = b | \neg \mathbf{F}_{H}] = \Pr_{\mathbf{Game}_{5}}[b' = b | \neg \mathbf{F}_{H}] \\ &\implies \mathbf{Hop}\text{-}\mathbf{S}\text{-}\mathbf{Negl}: \mathbf{Adv}_{\mathbf{Game}_{6}} \geq \mathbf{Adv}_{\mathbf{Game}_{5}} - \Pr[\mathbf{F}_{H}] \\ & \mathbf{Adv}_{\mathbf{Game}_{6}} \geq \mathbf{Adv}_{\mathbf{Game}_{5}} - \mathbf{Succ}^{\mathcal{H}}(t) \end{aligned}$

ENS/CNRS/INRIA Cascade

Proof: Invalid ciphertexts

 Game₇: we abort (with a random output b') in case of bad accepted ciphertext, we do as in Game₁

Event F'

A submits a bad accepted ciphertext (note: this is not computationally detectable

The advantage in **Game**₇ is: $\Pr_{Game_7}[b'=b|\mathbf{F}']=1/2$

 $\Pr_{\mathsf{Game}_6}[\mathsf{F}'] = \Pr_{\mathsf{Game}_7}[\mathsf{F}'] \quad \Pr_{\mathsf{Game}_7}[b' = b | \neg \mathsf{F}'] = \Pr_{\mathsf{Game}_6}[b' = b | \neg \mathsf{F}']$

 $\Longrightarrow \mathsf{Hop} extsf{-S} extsf{-Negl: Adv}_{\mathsf{Game}_7} \geq extsf{Adv}_{\mathsf{Game}_6} - \mathsf{Pr}[\mathsf{F}']$

ENS/CNRS/INRIA Cascade

Proof: Invalid ciphertexts

 Game₇: we abort (with a random output b') in case of bad accepted ciphertext, we do as in Game₁

Event F'

A submits a bad accepted ciphertext (note: this is not computationally detectable)

The advantage in \mathbf{Game}_7 is: $\Pr_{\mathbf{Game}_7}[b'=b|\mathbf{F}']=1/2$

 $\Pr_{\mathsf{Game}_6}[\mathsf{F}'] = \Pr_{\mathsf{Game}_7}[\mathsf{F}'] \quad \Pr_{\mathsf{Game}_7}[b' = b | \neg \mathsf{F}'] = \Pr_{\mathsf{Game}_6}[b' = b | \neg \mathsf{F}']$

 $\Longrightarrow \mathsf{Hop} extsf{-S} extsf{-Negl: Adv}_{\mathsf{Game}_7} \geq extsf{Adv}_{\mathsf{Game}_6} - \mathsf{Pr}[\mathsf{F}']$

ENS/CNRS/INRIA Cascade

Proof: Invalid ciphertexts

 Game₇: we abort (with a random output b') in case of bad accepted ciphertext, we do as in Game₁

Event F'

A submits a bad accepted ciphertext (note: this is not computationally detectable)

The advantage in **Game**₇ is: $Pr_{Game_7}[b' = b|\mathbf{F}'] = 1/2$

$$\Pr_{\mathsf{Game}_6}[\mathsf{F}'] = \Pr_{\mathsf{Game}_7}[\mathsf{F}'] \quad \Pr_{\mathsf{Game}_7}[b' = b | \neg \mathsf{F}'] = \Pr_{\mathsf{Game}_6}[b' = b | \neg \mathsf{F}']$$

 \implies Hop-S-Negl: $Adv_{Game_7} \ge Adv_{Game_6} - Pr[F']$

ENS/CNRS/INRIA Cascade

•
$$r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$$
,

• whereas $v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$

Let us use "*" for all the elements related to the challenge ciphertext. Three cases may appear:

• Case 1: $(u_1, u_2, e) = (u_1^*, u_2^*, e^*)$, then necessarily

 $v \neq v^* = U^{x_1 + \alpha^* y_1} V^{x_2 + \alpha^* y_2} = u_1^{*x_1 + \alpha^* y_1} u_2^{*x_2 + \alpha^* y_2}$

Then, the ciphertext is rejected $\implies \Pr[\mathbf{F}_1] = 0$

- Case 2: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, but $\alpha = \alpha^*$: From the previous game, Aborts $\implies \Pr[\mathbf{F}'_2] = 0$
- Case 3: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, and $\alpha \neq \alpha^*$

ENS/CNRS/INRIA Cascade

•
$$r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$$
,

• whereas $v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$

Let us use "*" for all the elements related to the challenge ciphertext. Three cases may appear:

• Case 1: $(u_1, u_2, e) = (u_1^*, u_2^*, e^*)$, then necessarily

 $v \neq v^* = U^{x_1 + \alpha^* y_1} V^{x_2 + \alpha^* y_2} = u_1^{*x_1 + \alpha^* y_1} u_2^{*x_2 + \alpha^* y_2}$

Then, the ciphertext is rejected $\implies \Pr[\mathbf{F}_1'] = 0$

• Case 2: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, but $\alpha = \alpha^*$: From the previous game, Aborts $\implies \Pr[\mathbf{F}_2'] = 0$

• Case 3: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, and $\alpha \neq \alpha^*$

ENS/CNRS/INRIA Cascade

•
$$r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$$
,

• whereas $v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$

Let us use "*" for all the elements related to the challenge ciphertext. Three cases may appear:

• Case 1: $(u_1, u_2, e) = (u_1^*, u_2^*, e^*)$, then necessarily

 $v \neq v^* = U^{x_1 + \alpha^* y_1} V^{x_2 + \alpha^* y_2} = u_1^{*x_1 + \alpha^* y_1} u_2^{*x_2 + \alpha^* y_2}$

Then, the ciphertext is rejected $\implies \Pr[\mathbf{F}_1] = 0$

• Case 2: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, but $\alpha = \alpha^*$: From the previous game, Aborts $\implies \Pr[\mathbf{F}'_2] = 0$

• Case 3: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, and $\alpha \neq \alpha^*$

ENS/CNRS/INRIA Cascade

•
$$r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$$
,

• whereas $v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$

Let us use "*" for all the elements related to the challenge ciphertext. Three cases may appear:

• Case 1: $(u_1, u_2, e) = (u_1^*, u_2^*, e^*)$, then necessarily

$$v \neq v^* = U^{x_1 + \alpha^* y_1} V^{x_2 + \alpha^* y_2} = u_1^{*x_1 + \alpha^* y_1} u_2^{*x_2 + \alpha^* y_2}$$

Then, the ciphertext is rejected $\implies \Pr[\mathsf{F}'_1] = 0$

• Case 2: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, but $\alpha = \alpha^*$: From the previous game, Aborts $\implies \Pr[\mathbf{F}'_2] =$

• Case 3: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, and $\alpha \neq \alpha^*$

•
$$r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$$
,

• whereas $v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$

Let us use "*" for all the elements related to the challenge ciphertext. Three cases may appear:

• Case 1: $(u_1, u_2, e) = (u_1^*, u_2^*, e^*)$, then necessarily

$$v \neq v^* = U^{x_1 + \alpha^* y_1} V^{x_2 + \alpha^* y_2} = u_1^{*x_1 + \alpha^* y_1} u_2^{*x_2 + \alpha^* y_2}$$

Then, the ciphertext is rejected $\implies \Pr[\mathbf{F}'_1] = 0$

• Case 2: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, but $\alpha = \alpha^*$: From the previous game, Aborts $\implies \Pr[\mathbf{F}_2'] =$

• Case 3: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, and $\alpha \neq \alpha^*$

•
$$r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$$
,

• whereas $v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$

Let us use "*" for all the elements related to the challenge ciphertext. Three cases may appear:

• Case 1: $(u_1, u_2, e) = (u_1^*, u_2^*, e^*)$, then necessarily

$$v \neq v^* = U^{x_1 + \alpha^* y_1} V^{x_2 + \alpha^* y_2} = u_1^{*x_1 + \alpha^* y_1} u_2^{*x_2 + \alpha^* y_2}$$

Then, the ciphertext is rejected $\implies \Pr[\mathbf{F}'_1] = 0$

- Case 2: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, but $\alpha = \alpha^*$: From the previous game, Aborts $\implies \Pr[F'_2] = 0$
- Case 3: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, and $\alpha \neq \alpha^*$

•
$$r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$$
,

• whereas $v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$

Let us use "*" for all the elements related to the challenge ciphertext. Three cases may appear:

• Case 1: $(u_1, u_2, e) = (u_1^*, u_2^*, e^*)$, then necessarily

$$v \neq v^* = U^{x_1 + \alpha^* y_1} V^{x_2 + \alpha^* y_2} = u_1^{*x_1 + \alpha^* y_1} u_2^{*x_2 + \alpha^* y_2}$$

Then, the ciphertext is rejected $\implies \Pr[\mathbf{F}'_1] = 0$

• Case 2: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, but $\alpha = \alpha^*$: From the previous game, Aborts $\implies \Pr[\mathbf{F}_2'] = 0$

• Case 3: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, and $\alpha \neq \alpha^*$

•
$$r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$$
,

• whereas $v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$

Let us use "*" for all the elements related to the challenge ciphertext. Three cases may appear:

• Case 1: $(u_1, u_2, e) = (u_1^*, u_2^*, e^*)$, then necessarily

$$v \neq v^* = U^{x_1 + \alpha^* y_1} V^{x_2 + \alpha^* y_2} = u_1^{*x_1 + \alpha^* y_1} u_2^{*x_2 + \alpha^* y_2}$$

Then, the ciphertext is rejected $\implies \Pr[\mathbf{F}'_1] = 0$

- Case 2: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, but $\alpha = \alpha^*$: From the previous game, Aborts $\implies \Pr[\mathbf{F}_2'] = 0$
- Case 3: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, and $\alpha \neq \alpha^*$

ENS/CNRS/INRIA Cascade

The adversary knows the public key, and the (invalid) challenge ciphertext:

$$c = g_1^{x_1} g_2^{x_2}$$
 $d = g_1^{y_1} g_2^{y_2}$
 $v^* = U^{x_1 + lpha^* y_1} V^{x_2 + lpha^* y_2} = g_1^{r_1^* (x_1 + lpha^* y_1)} g_2^{r_2^* (x_2 + lpha^* y_2)}$

Let us move to the exponents, in basis g_1 , with $g_2 = g_1^s$:

$$\log c = x_{1} + Sx_{2}$$

$$\log d = y_{1} + Sy_{2}$$

$$\log v^{*} = r_{1}^{*}(x_{1} + \alpha^{*}y_{1}) + Sr_{2}^{*}(x_{2} + \alpha^{*}y_{2})$$

$$\log v = r_{1}(x_{1} + \alpha y_{1}) + Sr_{2}(x_{2} + \alpha y_{2})$$

The adversary knows the public key, and the (invalid) challenge ciphertext:

$$c = g_1^{x_1} g_2^{x_2}$$
 $d = g_1^{y_1} g_2^{y_2}$
 $v^* = U^{x_1 + lpha^* y_1} V^{x_2 + lpha^* y_2} = g_1^{r_1^* (x_1 + lpha^* y_1)} g_2^{r_2^* (x_2 + lpha^* y_2)}$

Let us move to the exponents, in basis g_1 , with $g_2 = g_1^s$:

$$\log c = x_{1} + sx_{2}$$

$$\log d = y_{1} + sy_{2}$$

$$\log v^{*} = r_{1}^{*}(x_{1} + \alpha^{*}y_{1}) + sr_{2}^{*}(x_{2} + \alpha^{*}y_{2})$$

$$\log v = r_{1}(x_{1} + \alpha y_{1}) + sr_{2}(x_{2} + \alpha y_{2})$$

Details: Bad Accept (Case 3)

$$\Delta = \begin{vmatrix} 1 & s & 0 & 0 \\ 0 & 0 & 1 & s \\ r_1^* & sr_2^* & r_1^*\alpha^* & sr_2^*\alpha^* \\ r_1 & sr_2 & r_1\alpha & sr_2\alpha \end{vmatrix}$$

$$\Delta = \begin{vmatrix} 1 & s & 0 & 0 \\ 0 & 0 & 1 & s \\ r_1^* & sr_2^* & r_1^*\alpha^* & sr_2^*\alpha^* \\ r_1 & sr_2 & r_1\alpha & sr_2\alpha \end{vmatrix}$$
$$= \begin{vmatrix} 0 & 1 & s \\ sr_2^* & r_1^*\alpha^* & sr_2^*\alpha^* \\ sr_2 & r_1\alpha & sr_2\alpha \end{vmatrix} - s \times \begin{vmatrix} 0 & 1 & s \\ r_1^* & r_1^*\alpha^* & sr_2^*\alpha^* \\ r_1 & r_1\alpha & sr_2\alpha \end{vmatrix}$$

Details: Bad Accept (Case 3)

$$\Delta = \begin{vmatrix} 0 & 1 & s \\ sr_{2}^{*} & r_{1}^{*}\alpha^{*} & sr_{2}^{*}\alpha^{*} \\ sr_{2} & r_{1}\alpha & sr_{2}\alpha \end{vmatrix} - s \times \begin{vmatrix} 0 & 1 & s \\ r_{1}^{*} & r_{1}^{*}\alpha^{*} & sr_{2}^{*}\alpha^{*} \\ r_{1}^{*} & r_{1}\alpha & sr_{2}\alpha \end{vmatrix}$$

$$\Delta = \begin{vmatrix} 0 & 1 & s \\ sr_{2}^{*} & r_{1}^{*}\alpha^{*} & sr_{2}^{*}\alpha^{*} \\ sr_{2} & r_{1}\alpha & sr_{2}\alpha \end{vmatrix} - s \times \begin{vmatrix} 0 & 1 & s \\ r_{1}^{*} & r_{1}^{*}\alpha^{*} & sr_{2}^{*}\alpha^{*} \\ r_{1} & r_{1}\alpha & sr_{2}\alpha \end{vmatrix}$$
$$= s^{2} \times \left(\begin{vmatrix} 0 & 1 & 1 \\ r_{2}^{*} & r_{1}^{*}\alpha^{*} & r_{2}^{*}\alpha^{*} \\ r_{2} & r_{1}\alpha & r_{2}\alpha \end{vmatrix} - \begin{vmatrix} 0 & 1 & 1 \\ r_{1}^{*} & r_{1}^{*}\alpha^{*} & r_{2}^{*}\alpha^{*} \\ r_{1} & r_{1}\alpha & r_{2}\alpha \end{vmatrix} \right)$$

Details: Bad Accept (Case 3)

$$\Delta = s^{2} \times \left(\begin{vmatrix} 0 & 1 & 1 \\ r_{2}^{*} & r_{1}^{*}\alpha^{*} & r_{2}^{*}\alpha^{*} \\ r_{2} & r_{1}\alpha & r_{2}\alpha \end{vmatrix} - \begin{vmatrix} 0 & 1 & 1 \\ r_{1}^{*} & r_{1}^{*}\alpha^{*} & r_{2}^{*}\alpha^{*} \\ r_{1} & r_{1}\alpha & r_{2}\alpha \end{vmatrix} \right)$$

$$\Delta = s^{2} \times \left(\begin{vmatrix} 0 & 1 & 1 \\ r_{2}^{*} & r_{1}^{*}\alpha^{*} & r_{2}^{*}\alpha^{*} \\ r_{2} & r_{1}\alpha & r_{2}\alpha \end{vmatrix} - \begin{vmatrix} 0 & 1 & 1 \\ r_{1}^{*} & r_{1}^{*}\alpha^{*} & r_{2}^{*}\alpha^{*} \\ r_{1} & r_{1}\alpha & r_{2}\alpha \end{vmatrix} \right)$$
$$= s^{2} \times \left(\begin{vmatrix} r_{2} \times \begin{vmatrix} 1 & 1 \\ r_{1}^{*}\alpha^{*} & r_{2}^{*}\alpha^{*} \\ -r_{1} \times \begin{vmatrix} 1 & 1 \\ r_{1}^{*}\alpha^{*} & r_{2}^{*}\alpha^{*} \end{vmatrix} + r_{1}^{*} \times \begin{vmatrix} 1 & 1 \\ r_{1}\alpha & r_{2}\alpha \\ 1 & 1 \\ r_{1}\alpha & r_{2}\alpha \end{vmatrix} \right)$$

Details: Bad Accept (Case 3)

$$\Delta = s^{2} \times \begin{pmatrix} r_{2} \times \begin{vmatrix} 1 & 1 \\ r_{1}^{*}\alpha^{*} & r_{2}^{*}\alpha^{*} \end{vmatrix} - r_{2}^{*} \times \begin{vmatrix} 1 & 1 \\ r_{1}\alpha & r_{2}\alpha \\ -r_{1} \times \begin{vmatrix} 1 & 1 \\ r_{1}^{*}\alpha^{*} & r_{2}^{*}\alpha^{*} \end{vmatrix} + r_{1}^{*} \times \begin{vmatrix} 1 & 1 \\ r_{1}\alpha & r_{2}\alpha \\ r_{1}\alpha & r_{2}\alpha \end{vmatrix} \end{pmatrix}$$

Details: Bad Accept (Case 3)

$$\Delta = s^{2} \times \begin{pmatrix} r_{2} \times \begin{vmatrix} 1 & 1 \\ r_{1}^{*}\alpha^{*} & r_{2}^{*}\alpha^{*} \end{vmatrix} - r_{2}^{*} \times \begin{vmatrix} 1 & 1 \\ r_{1}\alpha & r_{2}\alpha \\ 1 & 1 \\ r_{1}^{*}\alpha^{*} & r_{2}^{*}\alpha^{*} \end{vmatrix} + r_{1}^{*} \times \begin{vmatrix} 1 & 1 \\ r_{1}\alpha & r_{2}\alpha \\ 1 & 1 \\ r_{1}\alpha & r_{2}\alpha \end{vmatrix} \end{pmatrix}$$
$$= s^{2} \times \begin{pmatrix} r_{2} \times (r_{2}^{*} - r_{1}^{*}) \times \alpha^{*} & - r_{2}^{*} \times (r_{2} - r_{1}) \times \alpha \\ -r_{1} \times (r_{2}^{*} - r_{1}^{*}) \times \alpha^{*} & + r_{1}^{*} \times (r_{2} - r_{1}) \times \alpha \end{pmatrix}$$
$$\Delta = s^2 \times \left(\begin{array}{ccc} r_2 \times (r_2^* - r_1^*) \times \alpha^* & - r_2^* \times (r_2 - r_1) \times \alpha \\ -r_1 \times (r_2^* - r_1^*) \times \alpha^* & + r_1^* \times (r_2 - r_1) \times \alpha \end{array} \right)$$

$$\Delta = s^{2} \times \begin{pmatrix} r_{2} \times (r_{2}^{*} - r_{1}^{*}) \times \alpha^{*} & -r_{2}^{*} \times (r_{2} - r_{1}) \times \alpha \\ -r_{1} \times (r_{2}^{*} - r_{1}^{*}) \times \alpha^{*} & +r_{1}^{*} \times (r_{2} - r_{1}) \times \alpha \end{pmatrix}$$

= $s^{2} \times ((r_{2} - r_{1}) \times (r_{2}^{*} - r_{1}^{*}) \times \alpha^{*} - (r_{2}^{*} - r_{1}^{*}) \times (r_{2} - r_{1}) \times \alpha)$

$$\Delta = s^{2} \times ((r_{2} - r_{1}) \times (r_{2}^{*} - r_{1}^{*}) \times \alpha^{*} - (r_{2}^{*} - r_{1}^{*}) \times (r_{2} - r_{1}) \times \alpha)$$

$$\Delta = s^{2} \times ((r_{2} - r_{1}) \times (r_{2}^{*} - r_{1}^{*}) \times \alpha^{*} - (r_{2}^{*} - r_{1}^{*}) \times (r_{2} - r_{1}) \times \alpha)$$

= $s^{2} \times (r_{2} - r_{1}) \times (r_{2}^{*} - r_{1}^{*}) \times (\alpha^{*} - \alpha)$

$$\Delta = \mathbf{s}^2 \times (\mathbf{r}_2 - \mathbf{r}_1) \times (\mathbf{r}_2^* - \mathbf{r}_1^*) \times (\alpha^* - \alpha)$$

$$\Delta = s^2 \times (r_2 - r_1) \times (r_2^* - r_1^*) \times (\alpha^* - \alpha)$$

$$\neq 0$$

The determinant of the system is

$$\Delta = s^2 \times (r_2 - r_1) \times (r_2^* - r_1^*) \times (\alpha^* - \alpha)$$

$$\neq 0$$

The system is under-defined:

for any v, there are (x_1, x_2, y_1, y_2) that satisfy the system

$$\Delta = s^2 \times (r_2 - r_1) \times (r_2^* - r_1^*) \times (\alpha^* - \alpha)$$

$$\neq 0$$

The system is under-defined:

for any v, there are (x_1, x_2, y_1, y_2) that satisfy the system

 \implies *v* is unpredictable

$$\Delta = s^2 \times (r_2 - r_1) \times (r_2^* - r_1^*) \times (\alpha^* - \alpha)$$

$$\neq 0$$

The system is under-defined: for any *v*, there are (x_1, x_2, y_1, y_2) that satisfy the system $\implies v$ is unpredictable $\implies \Pr[\mathbf{F}'_3] \le q_D/q$

$$\Delta = s^2 \times (r_2 - r_1) \times (r_2^* - r_1^*) \times (\alpha^* - \alpha)$$

$$\neq 0$$

The system is under-defined: for any *v*, there are (x_1, x_2, y_1, y_2) that satisfy the system $\implies v$ is unpredictable $\implies \Pr[\mathbf{F}'_3] \le q_D/q$ $\implies \operatorname{Adv}_{\operatorname{Game}_7} \ge \operatorname{Adv}_{\operatorname{Game}_6} - q_D/q$

- only valid ciphertexts are decrypted
- · the challenge ciphertext contains

 $e = m_b imes U^{z_1} V^{z_2}$

· the public key contains

$$h = g_1^{z_1} g_2^{z_2}$$

Again, the system is under-defined: for any m_b , there are (z_1, z_2) that satisfy the system $\implies m_b$ is unpredictable $\implies b$ is unpredictable $\implies Adv_{Game_7} = 0$

ENS/CNRS/INRIA Cascade

- · only valid ciphertexts are decrypted
- · the challenge ciphertext contains

 $e = m_b imes U^{z_1} V^{z_2}$

· the public key contains

$$h = g_1^{z_1} g_2^{z_2}$$

Again, the system is under-defined: for any m_b , there are (z_1, z_2) that satisfy the system $\implies m_b$ is unpredictable $\implies b$ is unpredictable $\implies Adv_{Game_7} = 0$

ENS/CNRS/INRIA Cascade

- · only valid ciphertexts are decrypted
- · the challenge ciphertext contains

 $e = m_b imes U^{z_1} V^{z_2}$

the public key contains

$$h = g_1^{z_1} g_2^{z_2}$$

Again, the system is under-defined: for any m_b , there are (z_1, z_2) that satisfy the system $\implies m_b$ is unpredictable $\implies b$ is unpredictable $\implies Adv_{Game_7} = 0$

ENS/CNRS/INRIA Cascade

- · only valid ciphertexts are decrypted
- · the challenge ciphertext contains

 $e = m_b \times U^{z_1} V^{z_2}$

· the public key contains

$$h = g_1^{z_1} g_2^{z_2}$$

Again, the system is under-defined: for any m_b , there are (z_1, z_2) that satisfy the system $\implies m_b$ is unpredictable $\implies b$ is unpredictable $\implies Adv_{Game_7} = 0$

ENS/CNRS/INRIA Cascade

- · only valid ciphertexts are decrypted
- · the challenge ciphertext contains

 $e = m_b \times U^{z_1} V^{z_2}$

· the public key contains

$$h = g_1^{z_1} g_2^{z_2}$$

Again, the system is under-defined: for any m_b , there are (z_1, z_2) that satisfy the system $\implies m_b$ is unpredictable $\implies b$ is unpredictable $\implies Ady_{Game_1} = 0$

- · only valid ciphertexts are decrypted
- · the challenge ciphertext contains

 $e = m_b \times U^{z_1} V^{z_2}$

· the public key contains

$$h = g_1^{z_1} g_2^{z_2}$$

Again, the system is under-defined: for any m_b , there are (z_1, z_2) that satisfy the system $\implies m_b$ is unpredictable $\implies b$ is unpredictable

ENS/CNRS/INRIA Cascade

- only valid ciphertexts are decrypted
- · the challenge ciphertext contains

 $e = m_b \times U^{z_1} V^{z_2}$

· the public key contains

$$h = g_1^{z_1} g_2^{z_2}$$

Again, the system is under-defined:

for any m_b , there are (z_1, z_2) that satisfy the system

 $\implies m_b$ is unpredictable $\implies b$ is unpredictable

 $\Longrightarrow \mathbf{Adv}_{\mathbf{Game}_7} = \mathbf{C}$

- only valid ciphertexts are decrypted
- · the challenge ciphertext contains

 $e = m_b \times U^{z_1} V^{z_2}$

· the public key contains

$$h = g_1^{z_1} g_2^{z_2}$$

Again, the system is under-defined:

for any m_b , there are (z_1, z_2) that satisfy the system

 \implies m_b is unpredictable \implies b is unpredictable

$$\Longrightarrow \mathbf{Adv}_{\textbf{Game}_7} = \mathbf{0}$$

Adv _{Game7}	=	0
Adv_{Game_7}	\geq	${ m Adv}_{{ m Game}_6} - q_D/q$
Adv_{Game_6}	\geq	$\mathbf{Adv}_{\mathbf{Game}_5} - \mathbf{Succ}^{\mathcal{H}}(t)$
Adv_{Game_5}	\geq	$\mathbf{Adv}_{\mathbf{Game}_4} - 2 \times \mathbf{Adv}^{\mathbf{ddh}}_{\mathbb{G}}(t)$
Adv_{Game_4}	=	$\mathbf{Adv}_{\mathbf{Game}_3}$
$\mathbf{Adv}_{\mathbf{Game}_3}$	\geq	$\mathrm{Adv}_{\mathrm{Game}_2} - q_D/q$
Adv_{Game_2}	=	$\mathbf{Adv}_{\mathbf{Game}_1}$
$\mathbf{Adv}_{\mathbf{Game}_1}$	\geq	${ m Adv}_{{ m Game}_0} - q_D/q$
$\mathbf{Adv}_{\mathbf{Game}_0}$	=	$\operatorname{Adv}^{\operatorname{ind-cca}}_{\mathcal{CS}}(\mathcal{A})$

 $\mathbf{Adv}_{\mathcal{CS}}^{\mathsf{ind}-\mathsf{cca}}(\mathcal{A}) \leq 2 \times \mathbf{Adv}_{\mathbb{G}}^{\mathsf{ddh}}(t) + \mathbf{Succ}^{\mathcal{H}}(t) + 3q_D/c$

ENS/CNRS/INRIA Cascade

Adv_{Game_7}	=	0
$\mathbf{Adv}_{\mathbf{Game}_7}$	\geq	${ m Adv}_{{ m Game}_6} - q_D/q$
Adv_{Game_6}	\geq	$\mathbf{Adv}_{\mathbf{Game}_5} - \mathbf{Succ}^{\mathcal{H}}(t)$
$\mathbf{Adv}_{\mathbf{Game}_5}$	\geq	$\mathbf{Adv}_{\mathbf{Game}_4} - 2 \times \mathbf{Adv}^{\mathbf{ddh}}_{\mathbb{G}}(t)$
$\mathbf{Adv}_{\mathbf{Game}_4}$	=	$\mathbf{Adv}_{\mathbf{Game}_3}$
$\mathbf{Adv}_{\mathbf{Game}_3}$	\geq	$\mathrm{Adv}_{\mathrm{Game}_2} - q_D/q$
Adv_{Game_2}	=	$\mathbf{Adv}_{\mathbf{Game}_1}$
$\mathbf{Adv}_{\mathbf{Game}_1}$	\geq	${ m Adv}_{{ m Game}_0} - q_D/q$
$\mathbf{Adv}_{\mathbf{Game}_0}$	=	$\operatorname{Adv}_{\mathcal{CS}}^{\operatorname{ind-cca}}(\mathcal{A})$

$$\operatorname{Adv}_{\mathcal{CS}}^{\operatorname{ind-cca}}(\mathcal{A}) \leq 2 imes \operatorname{Adv}_{\mathbb{G}}^{\operatorname{ddh}}(t) + \operatorname{Succ}^{\mathcal{H}}(t) + 3q_D/q_D$$

ENS/CNRS/INRIA Cascade

Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Advanced Security Notions

Cramer-Shoup Encryption Scheme

Generic Conversion

Conclusion

ENS/CNRS/INRIA Cascade

For efficiency: random oracle model

Setup

- A trapdoor one-way permutation family $\{(f, g)\}$ onto the set X
- Two hash functions, for the security parameter k_1 ,

 $\mathcal{G}: X \longrightarrow \{0,1\}^n \text{ and } \mathcal{H}: \{0,1\}^{\star} \longrightarrow \{0,1\}^{k_1},$

where n is the bit-length of the plaintexts.

Key Generation

One chooses a random element in the family

- f is the public key
- the inverse g is the private key

For efficiency: random oracle model

Setup

- A trapdoor one-way permutation family $\{(f, g)\}$ onto the set X
- Two hash functions, for the security parameter k_1 ,

$$\mathcal{G}: X \longrightarrow \{0,1\}^n \text{ and } \mathcal{H}: \{0,1\}^* \longrightarrow \{0,1\}^{k_1},$$

where *n* is the bit-length of the plaintexts.

Key Generation

One chooses a random element in the family

- f is the public key
- the inverse g is the private key

First Generic Conversion (Cont'ed)

Encryption

One chooses a random element $r \in X$

$$a = f(r), \quad b = m \oplus \mathcal{G}(r), \quad c = \mathcal{H}(m, r)$$

Decryption

Given (a, b, c), and the private key g,

- one first recovers r = g(a)
- one gets $m = b \oplus \mathcal{G}(r)$
- one then checks whether $c \stackrel{?}{=} \mathcal{H}(m, r)$

If the equality holds, one returns *m*, otherwise one rejects the ciphertext

First Generic Conversion (Cont'ed)

Encryption

One chooses a random element $r \in X$

$$a = f(r), \quad b = m \oplus \mathcal{G}(r), \quad c = \mathcal{H}(m, r)$$

Decryption

Given (a, b, c), and the private key g,

- one first recovers r = g(a)
- one gets $m = b \oplus \mathcal{G}(r)$
- one then checks whether $c \stackrel{?}{=} \mathcal{H}(m, r)$

If the equality holds, one returns *m*, otherwise one rejects the ciphertext

Theorem

The Bellare-Rogaway conversion achieves IND - CCA security, under the one-wayness of the trapdoor permutation f:

$$\operatorname{Adv}_{\mathcal{BR}}^{\operatorname{ind-cca}}(t) \leq 2 \times \operatorname{Succ}_{f}^{\operatorname{ow}}(T) + \frac{4q_{D}}{2^{k_{1}}},$$

where $T \leq t + (q_G + q_H) \cdot T_f$.

Let us prove this theorem, with a sequence of games, in which A is an IND - CCA adversary against the Bellare-Rogaway conversion.

Theorem

The Bellare-Rogaway conversion achieves IND - CCA security, under the one-wayness of the trapdoor permutation f:

$$\operatorname{Adv}_{\mathcal{BR}}^{\operatorname{ind-cca}}(t) \leq 2 \times \operatorname{Succ}_{f}^{\operatorname{ow}}(T) + \frac{4q_{D}}{2^{k_{1}}},$$

where $T \leq t + (q_G + q_H) \cdot T_f$.

Let us prove this theorem, with a sequence of games, in which \mathcal{A} is an IND – CCA adversary against the Bellare-Rogaway conversion.

Real Attack Game

Key Generation Oracle

Random permutation f, and its inverse g

Decryption Oracle

Compute r = g(a), and then $m = b \oplus \mathcal{G}(r)$

if $c = \mathcal{H}(m, r)$, outputs *m*, otherwise reject

Game₀: use of the perfect oracles

Challenge Ciphertext

Random *r*, random bit *b*: a = f(r), $b = m_b \oplus G(r)$, $c = \mathcal{H}(m, r)$

$$\operatorname{Adv}_{\operatorname{\mathsf{Game}}_0} = 2 imes \Pr_{\operatorname{\mathsf{Game}}_0}[b'=b] - 1 = arepsilon$$

Game₁: use of the simulation of the random oracles

Random Oracles

For any new query, a new random output: management of lists

$$Adv_{Game_1} = Adv_{Game_0}$$

ENS/CNRS/INRIA Cascade

• Game₀: use of the perfect oracles

Challenge Ciphertext

Random *r*, random bit *b*: a = f(r), $b = m_b \oplus G(r)$, $c = \mathcal{H}(m, r)$

$$\mathbf{Adv}_{\mathbf{Game}_0} = 2 imes \Pr_{\mathbf{Game}_0}[b' = b] - 1 = \varepsilon$$

· Game1: use of the simulation of the random oracles

Random Oracles

For any new query, a new random output: management of lists

$$\mathbf{Adv}_{\mathbf{Game}_1} = \mathbf{Adv}_{\mathbf{Game}_0}$$

ENS/CNRS/INRIA Cascade

• **Game**₂: use of an independent random value *h*⁺

Challenge Ciphertext

Random *r*, random bit *b*: a = f(r), $b = m_b \oplus \mathcal{G}(r)$, $c = h^+$

This game is indistinguishable from the previous one, unless (m_b, r) is queried to \mathcal{H} : event **AskMR** (it can only be asked by the adversary, since such a query by the decryption oracle would be for the challenge ciphertext).

Note that in case of **AskMR**, we stop the simulation with a random output:

$$\mathbf{Adv}_{\mathbf{Game}_2} \geq \mathbf{Adv}_{\mathbf{Game}_1} - 2 \times \Pr_{\mathbf{Game}_2}[\mathbf{AskMR}]$$

• **Game**₃: reject if (m, r) not queried to \mathcal{H}

Decryption Oracle

Look in the \mathcal{H} -list for (m, r) such that $c = \mathcal{H}(m, r)$. If not found: reject, if for one pair, a = f(r) and $b = m \oplus \mathcal{G}(r)$, output m

This makes a difference if this value *c*, without having been asked to \mathcal{H} , is correct: for each attempt, the probability is bounded by $1/2^{k_1}$:

Simulation of the Challenge Ciphertext

• **Game**₄: use of an independent random value g^+ (and h^+)

Challenge Ciphertext

Random *r*, random bit *b*: a = f(r), $b = m_b \oplus g^+$, $c = h^+$

This game is indistinguishable from the previous one, unless *r* is queried to \mathcal{G} by the adversary or by the decryption oracle. We denote by **AskR** the event that *r* is asked to \mathcal{G} or \mathcal{H} by the adversary (which includes **AskMR**). But *r* cannot be asked to \mathcal{G} by the decryption oracle without **AskR**: only possible if *r* is in the \mathcal{H} -list, and thus asked by the adversary:

$$\begin{array}{rcl} \mathbf{Adv}_{\mathsf{Game}_4} & \geq & \mathbf{Adv}_{\mathsf{Game}_3} - 2 \times \Pr_{\mathsf{Game}_3}[\mathsf{AskR} \wedge \neg \mathsf{AskMR}] \\ & & \mathsf{Pr}\left[\mathsf{AskR}\right] & = & \mathsf{Pr}\left[\mathsf{AskMR}\right] + \Pr_{\mathsf{Game}_3}[\mathsf{AskR} \wedge \neg \mathsf{AskMR}] \\ & & & \mathsf{Game}_3 \end{array}$$

ENS/CNRS/INRIA Cascade

• **Game**₅: use of an independent random value a^+ (and g^+ , h^+)

Challenge Ciphertext

random bit *b*: $a = a^+$, $b = m_b \oplus g^+$, $c = h^+$

This determines *r*, the unique value such that $a^+ = f(r)$, which allows to detect event **AskR**.

This game is perfectly indistinguishable from the previous one:

$$\begin{array}{rcl} \mathbf{Adv}_{\mathsf{Game}_5} &=& \mathbf{Adv}_{\mathsf{Game}_4} \\ & & & & \\ \mathsf{Pr}\left[\mathsf{AskR}\right] &=& & & & \\ & & & & \\ \mathsf{Game}_5 & & & & \\ \end{array}$$

Since we can assume that a^+ is a given challenge for inverting the permutation *f*, when one looks in the *G*-list or the *H*-list, one can find *r*, the pre-image of a^+ :

$$\Pr_{\mathsf{Game}_5}[\mathsf{AskR}] \leq \operatorname{Succ}^{\mathsf{ow}}_t(t + (q_G + q_H) \cdot T_f)$$

But clearly, in the last game, because of g^+ that perfectly hides m_b :

$$Adv_{Game_5} = 0$$

Conclusion

As a consequence, $0 = Adv_{Game_5}$

$$= \operatorname{Adv}_{\operatorname{Game}_{4}} \geq \operatorname{Adv}_{\operatorname{Game}_{3}} - 2 \times \Pr_{\operatorname{Game}_{3}} [\operatorname{AskR} \wedge \neg \operatorname{AskMR}]$$

$$\geq \operatorname{Adv}_{\operatorname{Game}_{2}} - 2 \times \Pr_{\operatorname{Game}_{3}} [\operatorname{AskR} \wedge \neg \operatorname{AskMR}] - 2q_{D}/2^{k_{1}}$$

$$\geq \operatorname{Adv}_{\operatorname{Game}_{1}} - 2 \times \Pr_{\operatorname{Game}_{2}} [\operatorname{AskMR}] - 2 \times \Pr_{\operatorname{Game}_{3}} [\operatorname{AskR} \wedge \neg \operatorname{AskMR}] - 2q_{D}/2^{k_{1}}$$

$$\geq \operatorname{Adv}_{\operatorname{Game}_{0}} - 2 \times \Pr_{\operatorname{Game}_{3}} [\operatorname{AskMR}] - 2 \times \Pr_{\operatorname{Game}_{3}} [\operatorname{AskR} \wedge \neg \operatorname{AskMR}] - 4q_{D}/2^{k_{1}}$$

$$\geq \operatorname{Adv}_{\operatorname{Game}_{0}} - 2 \times \Pr_{\operatorname{Game}_{4}} [\operatorname{AskR}] - 4q_{D}/2^{k_{1}}$$

$$\geq \operatorname{Adv}_{\operatorname{Game}_{0}} - 2 \times \Pr_{\operatorname{Game}_{4}} [\operatorname{AskR}] - 4q_{D}/2^{k_{1}}$$

And then,

$$Adv_{Game_0} \leq 4q_D/2^{k_1} + 2 \times Succ_f^{ow}(T)$$

ENS/CNRS/INRIA Cascade
Conclusion

Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade

David Pointcheval

Game-based Methodology: the story of OAEP

[Bellare-Rogaway EC '94]

Game-based Methodology: the story of OAEP [Bellare-Rogaway EC '94]

 Reduction proven indistinguishable for an IND-CCA adversary (actually IND-CCA1, and not IND-CCA2) but widely believed for IND-CCA2, without any further analysis of the reduction The direct-reduction methodology

[Shoup - Crypto '01]

Shoup showed the gap for IND-CCA2, under the OWP Granted his new game-based methodology

[Fujisaki-Okamoto-Pointcheval-Stern – Crypto '01] FOPS proved the security for IND-CCA2, under the PD-OWP Using the game-based methodology Game-based Methodology: the story of OAEP [Bellare-Rogaway EC '94]

 Reduction proven indistinguishable for an IND-CCA adversary (actually IND-CCA1, and not IND-CCA2) but widely believed for IND-CCA2, without any further analysis of the reduction The direct-reduction methodology

[Shoup - Crypto '01]

Shoup showed the gap for IND-CCA2, under the OWP Granted his new game-based methodology

[Fujisaki-Okamoto-Pointcheval-Stern – Crypto '01] FOPS proved the security for IND-CCA2, under the PD-OWP **Using the game-based methodology**

.

Game-based Methodology: the story of OAEP [Bellare-Rogaway EC '94]

 Reduction proven indistinguishable for an IND-CCA adversary (actually IND-CCA1, and not IND-CCA2) but widely believed for IND-CCA2, without any further analysis of the reduction The direct-reduction methodology

[Shoup - Crypto '01]

Shoup showed the gap for IND-CCA2, under the OWP Granted his new game-based methodology

• [Fujisaki-Okamoto-Pointcheval-Stern – Crypto '01] FOPS proved the security for IND-CCA2, under the PD-OWP Using the game-based methodology