
Provable Security in the Computational Model

I – Basic Notions

David Pointcheval

MPRI – Paris

Ecole normale supérieure/PSL, CNRS & INRIA

ENS/CNRS/INRIA Cascade David Pointcheval 1/71



Outline

Cryptography

Provable Security

Basic Security Notions

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 2/71



Cryptography



Outline

Cryptography

Introduction

Kerckhoffs’ Principles

Formal Notations

Provable Security

Basic Security Notions

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 3/71



Secrecy of Communications

One ever wanted to communicate secretly

Bob
Alice

The treasure
is under 

…/...

ENS/CNRS/INRIA Cascade David Pointcheval 4/71



Secrecy of Communications

One ever wanted to communicate secretly

Bob
Alice

The treasure
is under 

…/...

ENS/CNRS/INRIA Cascade David Pointcheval 4/71



Secrecy of Communications

One ever wanted to communicate secretly

Bob
Alice

The treasure
is under 

…/...

ENS/CNRS/INRIA Cascade David Pointcheval 4/71



Secrecy of Communications

One ever wanted to communicate secretly

Bob
Alice

The treasure
is under 

…/...

ENS/CNRS/INRIA Cascade David Pointcheval 4/71



Secrecy of Communications

One ever wanted to communicate secretly

Bob
Alice

The treasure
is under 

…/...

With the all-digital world, security needs are even stronger

ENS/CNRS/INRIA Cascade David Pointcheval 4/71



Old Methods

Substitutions and permutations
Security relies on

the secrecy of the mechanism

ENS/CNRS/INRIA Cascade David Pointcheval 5/71



Old Methods

Scytale - Permutation

Substitutions and permutations
Security relies on

the secrecy of the mechanism

ENS/CNRS/INRIA Cascade David Pointcheval 5/71



Old Methods

Scytale - Permutation

Substitutions and permutations
Security relies on

the secrecy of the mechanism

Alberti’s disk
Mono-alphabetical Substitution

ENS/CNRS/INRIA Cascade David Pointcheval 5/71



Old Methods

Scytale - Permutation

Substitutions and permutations
Security relies on

the secrecy of the mechanism

Alberti’s disk
Mono-alphabetical Substitution

Wheel – M 94 (CSP 488)
Poly-alphabetical Substitution

ENS/CNRS/INRIA Cascade David Pointcheval 5/71



Old Methods

Scytale - Permutation

Substitutions and permutations
Security relies on

the secrecy of the mechanism

Alberti’s disk
Mono-alphabetical Substitution

Wheel – M 94 (CSP 488)
Poly-alphabetical Substitution

ENS/CNRS/INRIA Cascade David Pointcheval 5/71



Outline

Cryptography

Introduction

Kerckhoffs’ Principles

Formal Notations

Provable Security

Basic Security Notions

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 6/71



Kerckhoffs’ Principles (1)

La Cryptographie Militaire (1883)
Le système doit être matèriellement,
sinon mathématiquement, indéchiffrable

The system should be, if not theoretically unbreakable,

unbreakable in practice

−→ If the security cannot be formally proven,
heuristics should provide some confidence.

ENS/CNRS/INRIA Cascade David Pointcheval 7/71



Kerckhoffs’ Principles (1)

La Cryptographie Militaire (1883)
Le système doit être matèriellement,
sinon mathématiquement, indéchiffrable

The system should be, if not theoretically unbreakable,

unbreakable in practice

−→ If the security cannot be formally proven,
heuristics should provide some confidence.

ENS/CNRS/INRIA Cascade David Pointcheval 7/71



Kerckhoffs’ Principles (2)

La Cryptographie Militaire (1883)
Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient
tomber entre les mains de l’ennemi

Compromise of the system should not inconvenience the correspondents

−→ The description of the mechanism should be public

ENS/CNRS/INRIA Cascade David Pointcheval 8/71



Kerckhoffs’ Principles (2)

La Cryptographie Militaire (1883)
Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient
tomber entre les mains de l’ennemi

Compromise of the system should not inconvenience the correspondents

−→ The description of the mechanism should be public

ENS/CNRS/INRIA Cascade David Pointcheval 8/71



Kerckhoffs’ Principles (3)

La Cryptographie Militaire (1883)
La clef doit pouvoir en être communiquée et retenue sans le
secours de notes écrites, et être changée ou modifiée au gré des
correspondants

The key should be rememberable without notes and should be easily

changeable

−→ The parameters specific to the users (the key) should be short

ENS/CNRS/INRIA Cascade David Pointcheval 9/71



Kerckhoffs’ Principles (3)

La Cryptographie Militaire (1883)
La clef doit pouvoir en être communiquée et retenue sans le
secours de notes écrites, et être changée ou modifiée au gré des
correspondants

The key should be rememberable without notes and should be easily

changeable

−→ The parameters specific to the users (the key) should be short

ENS/CNRS/INRIA Cascade David Pointcheval 9/71



Use of (Secret) Key

A shared information (secret key) between the sender and the
receiver parameterizes the mechanism:

• Vigenère: each key letter tells the shift

• Enigma: connectors and rotors

ENS/CNRS/INRIA Cascade David Pointcheval 10/71



Use of (Secret) Key

A shared information (secret key) between the sender and the
receiver parameterizes the mechanism:

• Vigenère: each key letter tells the shift

• Enigma: connectors and rotors

ENS/CNRS/INRIA Cascade David Pointcheval 10/71



Use of (Secret) Key

A shared information (secret key) between the sender and the
receiver parameterizes the mechanism:

• Vigenère: each key letter tells the shift

• Enigma: connectors and rotors

ENS/CNRS/INRIA Cascade David Pointcheval 10/71



Use of (Secret) Key

A shared information (secret key) between the sender and the
receiver parameterizes the mechanism:

• Vigenère: each key letter tells the shift

• Enigma: connectors and rotors

Security looks better: but broken (Alan Turing et al.)

ENS/CNRS/INRIA Cascade David Pointcheval 10/71



Symmetric Encryption

Principles 2 and 3 define the concepts of symmetric cryptography:

kk

E Dm c m

kG1k

Secrecy
It is impossible/hard to recover m from c only (without k )

Security
It is heuristic only: 1st principle

ENS/CNRS/INRIA Cascade David Pointcheval 11/71



Symmetric Encryption

Principles 2 and 3 define the concepts of symmetric cryptography:

kk

E Dm c m

kG1k

Secrecy
It is impossible/hard to recover m from c only (without k )

Security
It is heuristic only: 1st principle

ENS/CNRS/INRIA Cascade David Pointcheval 11/71



Symmetric Encryption

Principles 2 and 3 define the concepts of symmetric cryptography:

kk

E Dm c m

kG1k

Secrecy
It is impossible/hard to recover m from c only (without k )

Security
It is heuristic only: 1st principle

ENS/CNRS/INRIA Cascade David Pointcheval 11/71



Perfect Secrecy?

Any security indeed vanished with statistical attacks!

ENS/CNRS/INRIA Cascade David Pointcheval 12/71



Perfect Secrecy?

Any security indeed vanished with statistical attacks!

Perfect secrecy? Is it possible?

ENS/CNRS/INRIA Cascade David Pointcheval 12/71



Perfect Secrecy?

Any security indeed vanished with statistical attacks!

Perfect secrecy? Is it possible?

Perfect Secrecy
The ciphertext does not reveal any (additional) information
about the plaintext: no more than known before

• a priori information about the plaintext,
defined by the distribution probability of the plaintext

• a posteriori information about the plaintext,
defined by the distribution probability of the plaintext,
given the ciphertext

Both distributions should be perfectly identical

ENS/CNRS/INRIA Cascade David Pointcheval 12/71



One-Time Pad Encryption

Vernam’s Cipher (1929)

• Encryption of m ∈ {0,1}n under the key k ∈ {0,1}n:
m = 1 0 0 1 0 1 1 plaintext

⊕ XOR (+ modulo 2)

k = 1 1 0 1 0 0 0 key = random mask
=

c = 0 1 0 0 0 1 1 ciphertext

• Decryption of c ∈ {0,1}n under the key k ∈ {0,1}n:
c ⊕ k = (m ⊕ k)⊕ k = m ⊕ (k ⊕ k) = m

ENS/CNRS/INRIA Cascade David Pointcheval 13/71



One-Time Pad Encryption

Vernam’s Cipher (1929)

• Encryption of m ∈ {0,1}n under the key k ∈ {0,1}n:
m = 1 0 0 1 0 1 1 plaintext

⊕ XOR (+ modulo 2)

k = 1 1 0 1 0 0 0 key = random mask
=

c = 0 1 0 0 0 1 1 ciphertext

• Decryption of c ∈ {0,1}n under the key k ∈ {0,1}n:
c ⊕ k = (m ⊕ k)⊕ k = m ⊕ (k ⊕ k) = m

ENS/CNRS/INRIA Cascade David Pointcheval 13/71



One-Time Pad Encryption

Vernam’s Cipher (1929)

• Encryption of m ∈ {0,1}n under the key k ∈ {0,1}n:
m = 1 0 0 1 0 1 1 plaintext

⊕ XOR (+ modulo 2)

k = 1 1 0 1 0 0 0 key = random mask
=

c = 0 1 0 0 0 1 1 ciphertext

• Decryption of c ∈ {0,1}n under the key k ∈ {0,1}n:
c ⊕ k = (m ⊕ k)⊕ k = m ⊕ (k ⊕ k) = m

ENS/CNRS/INRIA Cascade David Pointcheval 13/71



One-Time Pad Encryption

Vernam’s Cipher (1929)

• Encryption of m ∈ {0,1}n under the key k ∈ {0,1}n:
m = 1 0 0 1 0 1 1 plaintext

⊕ XOR (+ modulo 2)

k = 1 1 0 1 0 0 0 key = random mask
=

c = 0 1 0 0 0 1 1 ciphertext

• Decryption of c ∈ {0,1}n under the key k ∈ {0,1}n:
c ⊕ k = (m ⊕ k)⊕ k = m ⊕ (k ⊕ k) = m

Which message is encrypted in the ciphertext c ∈ {0,1}n?

ENS/CNRS/INRIA Cascade David Pointcheval 13/71



One-Time Pad Encryption

Vernam’s Cipher (1929)

• Encryption of m ∈ {0,1}n under the key k ∈ {0,1}n:
m = 1 0 0 1 0 1 1 plaintext

⊕ XOR (+ modulo 2)

k = 1 1 0 1 0 0 0 key = random mask
=

c = 0 1 0 0 0 1 1 ciphertext

• Decryption of c ∈ {0,1}n under the key k ∈ {0,1}n:
c ⊕ k = (m ⊕ k)⊕ k = m ⊕ (k ⊕ k) = m

Which message is encrypted in the ciphertext c ∈ {0,1}n?

For any candidate m ∈ {0,1}n, the key k = c ⊕m would lead to c

ENS/CNRS/INRIA Cascade David Pointcheval 13/71



One-Time Pad Encryption

Vernam’s Cipher (1929)

• Encryption of m ∈ {0,1}n under the key k ∈ {0,1}n:
m = 1 0 0 1 0 1 1 plaintext

⊕ XOR (+ modulo 2)

k = 1 1 0 1 0 0 0 key = random mask
=

c = 0 1 0 0 0 1 1 ciphertext

• Decryption of c ∈ {0,1}n under the key k ∈ {0,1}n:
c ⊕ k = (m ⊕ k)⊕ k = m ⊕ (k ⊕ k) = m

Which message is encrypted in the ciphertext c ∈ {0,1}n?

For any candidate m ∈ {0,1}n, the key k = c ⊕m would lead to c

⇒ no information about m is leaked with c!

ENS/CNRS/INRIA Cascade David Pointcheval 13/71



Information Theory

Drawbacks

• The key must be as long as the plaintext

• This key must be used once only (one-time pad)

Theorem (Shannon – 1949)
To achieve perfect secrecy, A and B have to share a common string
truly random and as long as the whole communication.

Thus, the above one-time pad technique is optimal. . .

ENS/CNRS/INRIA Cascade David Pointcheval 14/71



Information Theory

Drawbacks

• The key must be as long as the plaintext

• This key must be used once only (one-time pad)

Theorem (Shannon – 1949)
To achieve perfect secrecy, A and B have to share a common string
truly random and as long as the whole communication.

Thus, the above one-time pad technique is optimal. . .

ENS/CNRS/INRIA Cascade David Pointcheval 14/71



Information Theory

Drawbacks

• The key must be as long as the plaintext

• This key must be used once only (one-time pad)

Theorem (Shannon – 1949)
To achieve perfect secrecy, A and B have to share a common string
truly random and as long as the whole communication.

Thus, the above one-time pad technique is optimal. . .

ENS/CNRS/INRIA Cascade David Pointcheval 14/71



Practical Secrecy

Perfect Secrecy vs. Practical Secrecy

• No information about the plaintext m is in the ciphertext c
without the knowledge of the key k
⇒ information theory
No information about the plaintext m can be extracted
from the ciphertext c, even for a powerful adversary
(unlimited time and/or unlimited power): perfect secrecy

• In practice: adversaries are limited in time/power
⇒ complexity theory

ENS/CNRS/INRIA Cascade David Pointcheval 15/71



Practical Secrecy

Perfect Secrecy vs. Practical Secrecy

• No information about the plaintext m is in the ciphertext c
without the knowledge of the key k
⇒ information theory
No information about the plaintext m can be extracted
from the ciphertext c, even for a powerful adversary
(unlimited time and/or unlimited power): perfect secrecy

• In practice: adversaries are limited in time/power
⇒ complexity theory

ENS/CNRS/INRIA Cascade David Pointcheval 15/71



Practical Secrecy

Perfect Secrecy vs. Practical Secrecy

• No information about the plaintext m is in the ciphertext c
without the knowledge of the key k
⇒ information theory
No information about the plaintext m can be extracted
from the ciphertext c, even for a powerful adversary
(unlimited time and/or unlimited power): perfect secrecy

• In practice: adversaries are limited in time/power
⇒ complexity theory

Shannon also showed that combining appropriately permutations and
substitutions can hide information: extracting information from the
ciphertext is time consuming

ENS/CNRS/INRIA Cascade David Pointcheval 15/71



Modern Symmetric Encryption: DES and AES

Combination of substitutions and permutations

DES (1977)
Data Encryption Standard

AES (2001)
Advanced Encryption Standard

ENS/CNRS/INRIA Cascade David Pointcheval 16/71



Modern Symmetric Encryption: DES and AES

Combination of substitutions and permutations

DES (1977)
Data Encryption Standard

AES (2001)
Advanced Encryption Standard

ENS/CNRS/INRIA Cascade David Pointcheval 16/71



Modern Symmetric Encryption: DES and AES

Combination of substitutions and permutations

DES (1977)
Data Encryption Standard

AES (2001)
Advanced Encryption Standard

ENS/CNRS/INRIA Cascade David Pointcheval 16/71



Modern Symmetric Encryption: DES and AES

Combination of substitutions and permutations

DES (1977)
Data Encryption Standard

AES (2001)
Advanced Encryption Standard

ENS/CNRS/INRIA Cascade David Pointcheval 16/71



Modern Symmetric Encryption: DES and AES

Combination of substitutions and permutations

DES (1977)
Data Encryption Standard

AES (2001)
Advanced Encryption Standard

ENS/CNRS/INRIA Cascade David Pointcheval 16/71



Outline

Cryptography

Introduction

Kerckhoffs’ Principles

Formal Notations

Provable Security

Basic Security Notions

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 17/71



Symmetric Encryption: Formalism

Symmetric Encryption – Secret Key Encryption
One secret key only shared by Alice and Bob: this is a common
parameter for the encryption and the decryption algorithms
This secret key has a symmetric capability

kk

E Dm c m

kG1k

ENS/CNRS/INRIA Cascade David Pointcheval 18/71



Symmetric Encryption: Formalism

Symmetric Encryption – Secret Key Encryption
One secret key only shared by Alice and Bob: this is a common
parameter for the encryption and the decryption algorithms
This secret key has a symmetric capability

kk

E Dm c m

kG1k

The secrecy of the key k guarantees the secrecy of communications
but requires such a common secret key!

ENS/CNRS/INRIA Cascade David Pointcheval 18/71



Symmetric Encryption: Formalism

Symmetric Encryption – Secret Key Encryption
One secret key only shared by Alice and Bob: this is a common
parameter for the encryption and the decryption algorithms
This secret key has a symmetric capability

kk

E Dm c m

kG1k

The secrecy of the key k guarantees the secrecy of communications
but requires such a common secret key!

How can we establish such a common secret key?
Or, how to avoid it?

ENS/CNRS/INRIA Cascade David Pointcheval 18/71



Asymmetric Encryption: Intuition [Diffie-Hellman 1976]

Secrecy

• The recipient only should be able to open the message

• No requirement about the sender

Why would the sender need a secret key to encrypt a message?

ENS/CNRS/INRIA Cascade David Pointcheval 19/71



Asymmetric Encryption: Intuition [Diffie-Hellman 1976]

Secrecy

• The recipient only should be able to open the message

• No requirement about the sender

Why would the sender need a secret key to encrypt a message?

Alice

Bob

The treasure
is under 

…/...

ENS/CNRS/INRIA Cascade David Pointcheval 19/71



Asymmetric Encryption: Intuition [Diffie-Hellman 1976]

Secrecy

• The recipient only should be able to open the message

• No requirement about the sender

Why would the sender need a secret key to encrypt a message?

Alice

Bob

ENS/CNRS/INRIA Cascade David Pointcheval 19/71



Asymmetric Encryption: Intuition [Diffie-Hellman 1976]

Secrecy

• The recipient only should be able to open the message

• No requirement about the sender

Why would the sender need a secret key to encrypt a message?

Alice

Bob

ENS/CNRS/INRIA Cascade David Pointcheval 19/71



Asymmetric Encryption: Intuition [Diffie-Hellman 1976]

Secrecy

• The recipient only should be able to open the message

• No requirement about the sender

Why would the sender need a secret key to encrypt a message?

Alice

Bob

ENS/CNRS/INRIA Cascade David Pointcheval 19/71



Asymmetric Encryption: Intuition [Diffie-Hellman 1976]

Secrecy

• The recipient only should be able to open the message

• No requirement about the sender

Why would the sender need a secret key to encrypt a message?

Alice

Bob

The treasure
is under 

…/...

ENS/CNRS/INRIA Cascade David Pointcheval 19/71



Asymmetric Encryption: Formalism

Public Key Cryptography – Diffie-Hellman (1976)

• Bob’s public key is used by Alice as a parameter to encrypt a
message to Bob

• Bob’s private key is used by Bob as a parameter to decrypt
ciphertexts

Asymmetric cryptography extends the 2nd principle:

skpk

E Dm c m

(pk,sk)G1k

ENS/CNRS/INRIA Cascade David Pointcheval 20/71



Asymmetric Encryption: Formalism

Public Key Cryptography – Diffie-Hellman (1976)

• Bob’s public key is used by Alice as a parameter to encrypt a
message to Bob

• Bob’s private key is used by Bob as a parameter to decrypt
ciphertexts

Asymmetric cryptography extends the 2nd principle:

skpk

E Dm c m

(pk,sk)G1k

The secrecy of the private key sk guarantees the secrecy of
communications

ENS/CNRS/INRIA Cascade David Pointcheval 20/71



Provable Security



Outline

Cryptography

Provable Security

Definition

Computational Assumptions

Some Reductions

Basic Security Notions

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 21/71



What is a Secure Cryptographic Scheme/Protocol?

• Symmetric encryption:
The secrecy of the key k guarantees the secrecy
of communications

• Asymmetric encryption:
The secrecy of the private key sk guarantees
the secrecy of communications

• What does mean secrecy?
→ Security notions have to be formally defined

• How to guarantee above security claims for concrete schemes?
→ Provable security

ENS/CNRS/INRIA Cascade David Pointcheval 22/71



What is a Secure Cryptographic Scheme/Protocol?

• Symmetric encryption:
The secrecy of the key k guarantees the secrecy
of communications

• Asymmetric encryption:
The secrecy of the private key sk guarantees
the secrecy of communications

• What does mean secrecy?
→ Security notions have to be formally defined

• How to guarantee above security claims for concrete schemes?
→ Provable security

ENS/CNRS/INRIA Cascade David Pointcheval 22/71



What is a Secure Cryptographic Scheme/Protocol?

• Symmetric encryption:
The secrecy of the key k guarantees the secrecy
of communications

• Asymmetric encryption:
The secrecy of the private key sk guarantees
the secrecy of communications

• What does mean secrecy?
→ Security notions have to be formally defined

• How to guarantee above security claims for concrete schemes?
→ Provable security

ENS/CNRS/INRIA Cascade David Pointcheval 22/71



What is a Secure Cryptographic Scheme/Protocol?

• Symmetric encryption:
The secrecy of the key k guarantees the secrecy
of communications

• Asymmetric encryption:
The secrecy of the private key sk guarantees
the secrecy of communications

• What does mean secrecy?
→ Security notions have to be formally defined

• How to guarantee above security claims for concrete schemes?
→ Provable security

ENS/CNRS/INRIA Cascade David Pointcheval 22/71



What is a Secure Cryptographic Scheme/Protocol?

• Symmetric encryption:
The secrecy of the key k guarantees the secrecy
of communications

• Asymmetric encryption:
The secrecy of the private key sk guarantees
the secrecy of communications

• What does mean secrecy?
→ Security notions have to be formally defined

• How to guarantee above security claims for concrete schemes?
→ Provable security

ENS/CNRS/INRIA Cascade David Pointcheval 22/71



Provable Security

One can prove that:

• if an adversary is able to break the cryptographic scheme

• then one can break a well-known hard problem

ENS/CNRS/INRIA Cascade David Pointcheval 23/71



Provable Security

One can prove that:

• if an adversary is able to break the cryptographic scheme

• then one can break a well-known hard problem

hard →
instance

→solution

ENS/CNRS/INRIA Cascade David Pointcheval 23/71



General Method

Computational Security Proofs
In order to prove the security of a cryptographic scheme/protocol,
one needs

• a formal security model (security notions)

• acceptable computational assumptions (hard problems)

• a reduction: if one can break the security notions,
then one can break the hard problem

ENS/CNRS/INRIA Cascade David Pointcheval 24/71



General Method

Computational Security Proofs
In order to prove the security of a cryptographic scheme/protocol,
one needs

• a formal security model (security notions)

• acceptable computational assumptions (hard problems)

• a reduction: if one can break the security notions,
then one can break the hard problem

ENS/CNRS/INRIA Cascade David Pointcheval 24/71



General Method

Computational Security Proofs
In order to prove the security of a cryptographic scheme/protocol,
one needs

• a formal security model (security notions)

• acceptable computational assumptions (hard problems)

• a reduction: if one can break the security notions,
then one can break the hard problem

ENS/CNRS/INRIA Cascade David Pointcheval 24/71



General Method

Computational Security Proofs
In order to prove the security of a cryptographic scheme/protocol,
one needs

• a formal security model (security notions)

• acceptable computational assumptions (hard problems)

• a reduction: if one can break the security notions,
then one can break the hard problem

ENS/CNRS/INRIA Cascade David Pointcheval 24/71



General Method

Computational Security Proofs
In order to prove the security of a cryptographic scheme/protocol,
one needs

• a formal security model (security notions)

• acceptable computational assumptions (hard problems)

• a reduction: if one can break the security notions,
then one can break the hard problem

Oracles

ChallengerAdversary 0 / 1

Security Game

ENS/CNRS/INRIA Cascade David Pointcheval 24/71



General Method

Computational Security Proofs
In order to prove the security of a cryptographic scheme/protocol,
one needs

• a formal security model (security notions)

• acceptable computational assumptions (hard problems)

• a reduction: if one can break the security notions,
then one can break the hard problem

Oracles

ChallengerAdversary 0 / 1

Security Game
Oracles

ChallengerAdversary

Instance

Sim
ulator

Solution

Reduction

ENS/CNRS/INRIA Cascade David Pointcheval 24/71



Outline

Cryptography

Provable Security

Definition

Computational Assumptions

Some Reductions

Basic Security Notions

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 25/71



Integer Factoring [Lenstra-Verheul 2000]

Integer Factoring

• Given n = pq

• Find p and q

Year Required Complexity n bitlength
before 2000 64 768
before 2010 80 1024
before 2020 112 2048
before 2030 128 3072

192 7680
256 15360

Note that the reduction may be lossy: extra bits are then required

ENS/CNRS/INRIA Cascade David Pointcheval 26/71



Integer Factoring Records

Integer Factoring

• Given n = pq

• Find p and q

Digits Date Details
129 April 1994 Quadratic Sieve
130 April 1996 Algebraic Sieve
140 February 1999
155 August 1999 512 bits
160 April 2003
200 May 2005
232 December 2009 768 bits

ENS/CNRS/INRIA Cascade David Pointcheval 27/71



Integer Factoring Variants

RSA [Rivest-Shamir-Adleman 1978]

• Given n = pq, e and y ∈ Z?
n

• Find x such that y = xe mod n

Note that this problem is hard without the prime factors p and q, but
becomes easy with them: if d = e−1 mod ϕ(n), then x = yd mod n

Flexible RSA [Baric-Pfitzmann and Fujisaki-Okamoto 1997]

• Given n = pq and y ∈ Z?
n

• Find x and e > 1 such that y = xe mod n

Both problems are assumed as hard as integer factoring:
the prime factors are a trapdoor to find solutions

ENS/CNRS/INRIA Cascade David Pointcheval 28/71



Integer Factoring Variants

RSA [Rivest-Shamir-Adleman 1978]

• Given n = pq, e and y ∈ Z?
n

• Find x such that y = xe mod n

Note that this problem is hard without the prime factors p and q, but
becomes easy with them: if d = e−1 mod ϕ(n), then x = yd mod n

Flexible RSA [Baric-Pfitzmann and Fujisaki-Okamoto 1997]

• Given n = pq and y ∈ Z?
n

• Find x and e > 1 such that y = xe mod n

Both problems are assumed as hard as integer factoring:
the prime factors are a trapdoor to find solutions

ENS/CNRS/INRIA Cascade David Pointcheval 28/71



Integer Factoring Variants

RSA [Rivest-Shamir-Adleman 1978]

• Given n = pq, e and y ∈ Z?
n

• Find x such that y = xe mod n

Note that this problem is hard without the prime factors p and q, but
becomes easy with them: if d = e−1 mod ϕ(n), then x = yd mod n

Flexible RSA [Baric-Pfitzmann and Fujisaki-Okamoto 1997]

• Given n = pq and y ∈ Z?
n

• Find x and e > 1 such that y = xe mod n

Both problems are assumed as hard as integer factoring:
the prime factors are a trapdoor to find solutions

ENS/CNRS/INRIA Cascade David Pointcheval 28/71



Discrete Logarithm

Discrete Logarithm Problem

• Given G = 〈g〉 a cyclic group of order q, and y ∈ G

• Find x such that y = gx

Possible groups: G ∈ (Z?
p,×), or an elliptic curve

(Computational) Diffie Hellman Problem

• Given G = 〈g〉 a cyclic group of order q, and X = gx , Y = gy

• Find Z = gxy

The knowledge of x or y helps to solve this problem (trapdoor)

ENS/CNRS/INRIA Cascade David Pointcheval 29/71



Discrete Logarithm

Discrete Logarithm Problem

• Given G = 〈g〉 a cyclic group of order q, and y ∈ G

• Find x such that y = gx

Possible groups: G ∈ (Z?
p,×), or an elliptic curve

(Computational) Diffie Hellman Problem

• Given G = 〈g〉 a cyclic group of order q, and X = gx , Y = gy

• Find Z = gxy

The knowledge of x or y helps to solve this problem (trapdoor)

ENS/CNRS/INRIA Cascade David Pointcheval 29/71



Success Probabilities

For any computational problem P, we quantify the quality of an
adversary A by its success probability in finding the solution:

SuccP(A) = Pr[A(instance)→ solution].

We quantify the hardness of the problem by the success probability of
the best adversary within time t : Succ(t) = max|A|≤t{Succ(A)}.

Note that the probability space can be restricted:
some inputs are fixed, and others only are randomly chosen.

Discrete Logarithm Problem
We usually fix the group G = 〈g〉 of order q, and the generator g,
but x is randomly chosen:

Succdlp
G (A) = Pr

x R←Zq

[A(gx)→ x ].

ENS/CNRS/INRIA Cascade David Pointcheval 30/71



Success Probabilities

For any computational problem P, we quantify the quality of an
adversary A by its success probability in finding the solution:

SuccP(A) = Pr[A(instance)→ solution].

We quantify the hardness of the problem by the success probability of
the best adversary within time t : Succ(t) = max|A|≤t{Succ(A)}.

Note that the probability space can be restricted:
some inputs are fixed, and others only are randomly chosen.

Discrete Logarithm Problem
We usually fix the group G = 〈g〉 of order q, and the generator g,
but x is randomly chosen:

Succdlp
G (A) = Pr

x R←Zq

[A(gx)→ x ].

ENS/CNRS/INRIA Cascade David Pointcheval 30/71



Success Probabilities

For any computational problem P, we quantify the quality of an
adversary A by its success probability in finding the solution:

SuccP(A) = Pr[A(instance)→ solution].

We quantify the hardness of the problem by the success probability of
the best adversary within time t : Succ(t) = max|A|≤t{Succ(A)}.

Note that the probability space can be restricted:
some inputs are fixed, and others only are randomly chosen.

Discrete Logarithm Problem
We usually fix the group G = 〈g〉 of order q, and the generator g,
but x is randomly chosen:

Succdlp
G (A) = Pr

x R←Zq

[A(gx)→ x ].

ENS/CNRS/INRIA Cascade David Pointcheval 30/71



Success Probabilities

For any computational problem P, we quantify the quality of an
adversary A by its success probability in finding the solution:

SuccP(A) = Pr[A(instance)→ solution].

We quantify the hardness of the problem by the success probability of
the best adversary within time t : Succ(t) = max|A|≤t{Succ(A)}.

Note that the probability space can be restricted:
some inputs are fixed, and others only are randomly chosen.

Discrete Logarithm Problem
We usually fix the group G = 〈g〉 of order q, and the generator g,
but x is randomly chosen:

Succdlp
G (A) = Pr

x R←Zq

[A(gx)→ x ].

ENS/CNRS/INRIA Cascade David Pointcheval 30/71



Decisional Problem

(Decisional) Diffie Hellman Problem

• Given G = 〈g〉 a cyclic group of order q, and X = gx , Y = gy ,
as well as a candidate Z ∈ G

• Decide whether Z = gxy

The adversary is called a distinguisher (outputs 1 bit).
A good distinguisher should behave in significantly different
manners according to the input distribution:

Advddh
G (A) = Pr[A(X ,Y ,Z ) = 1|Z = gxy ]

− Pr[A(X ,Y ,Z ) = 1|Z R← G]

ENS/CNRS/INRIA Cascade David Pointcheval 31/71



Outline

Cryptography

Provable Security

Definition

Computational Assumptions

Some Reductions

Basic Security Notions

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 32/71



DDH ≤ CDH ≤ DLP

CDH ≤ DLP
Let A be an adversary against the DLP within time t , then we build
an adversary B against the CDH: given X and Y , B runs A on X ,
that outputs x ′ (correct or not); then B outputs Y x ′ .

The running time t ′ of B is the same as A, plus one exponentiation:

Succcdh
G (t ′) ≥ Succcdh

G (B) = Pr[B(X ,Y )→ gxy = Y x ]

= Pr[A(X )→ x ] = Succdlp
G (A)

Taking the maximum on the adversaries A:

Succcdh
G (t + τexp) ≥ Succdlp

G (t)

ENS/CNRS/INRIA Cascade David Pointcheval 33/71



DDH ≤ CDH ≤ DLP

CDH ≤ DLP
Let A be an adversary against the DLP within time t , then we build
an adversary B against the CDH: given X and Y , B runs A on X ,
that outputs x ′ (correct or not); then B outputs Y x ′ .

The running time t ′ of B is the same as A, plus one exponentiation:

Succcdh
G (t ′) ≥ Succcdh

G (B) = Pr[B(X ,Y )→ gxy = Y x ]

= Pr[A(X )→ x ] = Succdlp
G (A)

Taking the maximum on the adversaries A:

Succcdh
G (t + τexp) ≥ Succdlp

G (t)

ENS/CNRS/INRIA Cascade David Pointcheval 33/71



DDH ≤ CDH ≤ DLP

DDH ≤ CDH
Let A be an adversary against the CDH within time t , we build an
adversary B against the DDH: given X ,Y and Z , B runs A on
(X ,Y ), that outputs Z ′; then B outputs 1 if Z ′ = Z and 0 otherwise.

The running time of B is the same as A: Advddh
G (t) is greater than

Advddh
G (B) = Pr[B → 1|Z = gxy ]− Pr[B → 1|Z R← G]

= Pr[A(X ,Y )→ Z |Z = gxy ]− Pr[A(X ,Y )→ Z |Z R← G]

= Pr[A(X ,Y )→ gxy ]− Pr[A(X ,Y )→ Z |Z R← G]

= Succcdh
G (A)− 1/q

Taking the maximum on the adversaries A:

Advddh
G (t) ≥ Succcdh

G (t)− 1/q

ENS/CNRS/INRIA Cascade David Pointcheval 34/71



DDH ≤ CDH ≤ DLP

DDH ≤ CDH
Let A be an adversary against the CDH within time t , we build an
adversary B against the DDH: given X ,Y and Z , B runs A on
(X ,Y ), that outputs Z ′; then B outputs 1 if Z ′ = Z and 0 otherwise.

The running time of B is the same as A: Advddh
G (t) is greater than

Advddh
G (B) = Pr[B → 1|Z = gxy ]− Pr[B → 1|Z R← G]

= Pr[A(X ,Y )→ Z |Z = gxy ]− Pr[A(X ,Y )→ Z |Z R← G]

= Pr[A(X ,Y )→ gxy ]− Pr[A(X ,Y )→ Z |Z R← G]

= Succcdh
G (A)− 1/q

Taking the maximum on the adversaries A:

Advddh
G (t) ≥ Succcdh

G (t)− 1/q

ENS/CNRS/INRIA Cascade David Pointcheval 34/71



Distribution Indistinguishability

Indistinguishabilities
Let D0 and D1, two distributions on a finite set X :

• D0 and D1 are perfectly indistinguishable if

Dist(D0,D1) =
∑
x∈X

∣∣∣∣ Pra∈D1
[a = x ]− Pr

a∈D0
[a = x ]

∣∣∣∣ = 0

• D0 and D1 are statistically indistinguishable if

Dist(D0,D1) =
∑
x∈X

∣∣∣∣ Pra∈D1
[a = x ]− Pr

a∈D0
[a = x ]

∣∣∣∣ = negl()

ENS/CNRS/INRIA Cascade David Pointcheval 35/71



Distribution Indistinguishability

Indistinguishabilities
Let D0 and D1, two distributions on a finite set X :

• D0 and D1 are perfectly indistinguishable if

Dist(D0,D1) =
∑
x∈X

∣∣∣∣ Pra∈D1
[a = x ]− Pr

a∈D0
[a = x ]

∣∣∣∣ = 0

• D0 and D1 are statistically indistinguishable if

Dist(D0,D1) =
∑
x∈X

∣∣∣∣ Pra∈D1
[a = x ]− Pr

a∈D0
[a = x ]

∣∣∣∣ = negl()

ENS/CNRS/INRIA Cascade David Pointcheval 35/71



Distribution Indistinguishability

Indistinguishabilities
Let D0 and D1, two distributions on a finite set X :

• D0 and D1 are perfectly indistinguishable if

Dist(D0,D1) =
∑
x∈X

∣∣∣∣ Pra∈D1
[a = x ]− Pr

a∈D0
[a = x ]

∣∣∣∣ = 0

• D0 and D1 are statistically indistinguishable if

Dist(D0,D1) =
∑
x∈X

∣∣∣∣ Pra∈D1
[a = x ]− Pr

a∈D0
[a = x ]

∣∣∣∣ = negl()

ENS/CNRS/INRIA Cascade David Pointcheval 35/71



Distribution Indistinguishability

Computational Indistinguishability
Let D0 and D1, two distributions on a finite set X ,

• a distinguisher A between D0 and D1 is characterized by its
advantage

AdvD0,D1(A) = Pr
a∈D1

[A(a) = 1]− Pr
a∈D0

[A(a) = 1]

• the computational indistinguishability of D0 and D1 is measured
by

AdvD0,D1(t) = max
|A|≤t
{AdvD0,D1(A)}

ENS/CNRS/INRIA Cascade David Pointcheval 36/71



Distribution Indistinguishability

Computational Indistinguishability
Let D0 and D1, two distributions on a finite set X ,

• a distinguisher A between D0 and D1 is characterized by its
advantage

AdvD0,D1(A) = Pr
a∈D1

[A(a) = 1]− Pr
a∈D0

[A(a) = 1]

• the computational indistinguishability of D0 and D1 is measured
by

AdvD0,D1(t) = max
|A|≤t
{AdvD0,D1(A)}

ENS/CNRS/INRIA Cascade David Pointcheval 36/71



Distribution Indistinguishability

Computational Indistinguishability
Let D0 and D1, two distributions on a finite set X ,

• a distinguisher A between D0 and D1 is characterized by its
advantage

AdvD0,D1(A) = Pr
a∈D1

[A(a) = 1]− Pr
a∈D0

[A(a) = 1]

• the computational indistinguishability of D0 and D1 is measured
by

AdvD0,D1(t) = max
|A|≤t
{AdvD0,D1(A)}

ENS/CNRS/INRIA Cascade David Pointcheval 36/71



Computational Indistinguishability

AdvD0,D1(A) = Pr
a∈D1

[A(a) = 1]− Pr
a∈D0

[A(a) = 1]

= Pr[a ∈ D1 : A(a) = 1]− Pr[a ∈ D0 : A(a) = 1]

ENS/CNRS/INRIA Cascade David Pointcheval 37/71



Computational Indistinguishability

AdvD0,D1(A) = Pr
a∈D1

[A(a) = 1]− Pr
a∈D0

[A(a) = 1]

= Pr[a ∈ D1 : A(a) = 1]− Pr[a ∈ D0 : A(a) = 1]

= Pr[b ← 1;a ∈ Db : A(a) = 1]

−Pr[b ← 0;a ∈ Db : A(a) = 1]

ENS/CNRS/INRIA Cascade David Pointcheval 37/71



Computational Indistinguishability

AdvD0,D1(A) = Pr
a∈D1

[A(a) = 1]− Pr
a∈D0

[A(a) = 1]

= Pr[a ∈ D1 : A(a) = 1]− Pr[a ∈ D0 : A(a) = 1]

= Pr[b ← 1;a ∈ Db : A(a) = 1]

−Pr[b ← 0;a ∈ Db : A(a) = 1]

= Pr[b ← 1;a ∈ Db : A(a) = 1]

−1 + Pr[b ← 0;a ∈ Db : A(a) = 0]

ENS/CNRS/INRIA Cascade David Pointcheval 37/71



Computational Indistinguishability

AdvD0,D1(A) = Pr
a∈D1

[A(a) = 1]− Pr
a∈D0

[A(a) = 1]

= Pr[a ∈ D1 : A(a) = 1]− Pr[a ∈ D0 : A(a) = 1]

= Pr[b ← 1;a ∈ Db : A(a) = 1]

−1 + Pr[b ← 0;a ∈ Db : A(a) = 0]

ENS/CNRS/INRIA Cascade David Pointcheval 37/71



Computational Indistinguishability

AdvD0,D1(A) = Pr
a∈D1

[A(a) = 1]− Pr
a∈D0

[A(a) = 1]

= Pr[a ∈ D1 : A(a) = 1]− Pr[a ∈ D0 : A(a) = 1]

= Pr[b ← 1;a ∈ Db : A(a) = 1]

−1 + Pr[b ← 0;a ∈ Db : A(a) = 0]

= Pr[b ← 1;a ∈ Db : A(a) = b]

+Pr[b ← 0;a ∈ Db : A(a) = b]− 1

ENS/CNRS/INRIA Cascade David Pointcheval 37/71



Computational Indistinguishability

AdvD0,D1(A) = Pr
a∈D1

[A(a) = 1]− Pr
a∈D0

[A(a) = 1]

= Pr[a ∈ D1 : A(a) = 1]− Pr[a ∈ D0 : A(a) = 1]

= Pr[b ← 1;a ∈ Db : A(a) = b]

+Pr[b ← 0;a ∈ Db : A(a) = b]− 1

ENS/CNRS/INRIA Cascade David Pointcheval 37/71



Computational Indistinguishability

AdvD0,D1(A) = Pr
a∈D1

[A(a) = 1]− Pr
a∈D0

[A(a) = 1]

= Pr[a ∈ D1 : A(a) = 1]− Pr[a ∈ D0 : A(a) = 1]

= Pr[b ← 1;a ∈ Db : A(a) = b]

+Pr[b ← 0;a ∈ Db : A(a) = b]− 1

= Pr[a ∈ Db : A(a) = b ∧ b = 1]/Pr[b = 1]

+Pr[a ∈ Db : A(a) = b ∧ b = 0]/Pr[b = 0]− 1

ENS/CNRS/INRIA Cascade David Pointcheval 37/71



Computational Indistinguishability

AdvD0,D1(A) = Pr
a∈D1

[A(a) = 1]− Pr
a∈D0

[A(a) = 1]

= Pr[a ∈ D1 : A(a) = 1]− Pr[a ∈ D0 : A(a) = 1]

= Pr[a ∈ Db : A(a) = b ∧ b = 1]/Pr[b = 1]

+Pr[a ∈ Db : A(a) = b ∧ b = 0]/Pr[b = 0]− 1

ENS/CNRS/INRIA Cascade David Pointcheval 37/71



Computational Indistinguishability

AdvD0,D1(A) = Pr
a∈D1

[A(a) = 1]− Pr
a∈D0

[A(a) = 1]

= Pr[a ∈ D1 : A(a) = 1]− Pr[a ∈ D0 : A(a) = 1]

= Pr[a ∈ Db : A(a) = b ∧ b = 1]/Pr[b = 1]

+Pr[a ∈ Db : A(a) = b ∧ b = 0]/Pr[b = 0]− 1

= 2× Pr[a ∈ Db : A(a) = b ∧ b = 1]

+ 2× Pr[a ∈ Db : A(a) = b ∧ b = 0]− 1

ENS/CNRS/INRIA Cascade David Pointcheval 37/71



Computational Indistinguishability

AdvD0,D1(A) = Pr
a∈D1

[A(a) = 1]− Pr
a∈D0

[A(a) = 1]

= Pr[a ∈ D1 : A(a) = 1]− Pr[a ∈ D0 : A(a) = 1]

= 2× Pr[a ∈ Db : A(a) = b ∧ b = 1]

+ 2× Pr[a ∈ Db : A(a) = b ∧ b = 0]− 1

ENS/CNRS/INRIA Cascade David Pointcheval 37/71



Computational Indistinguishability

AdvD0,D1(A) = Pr
a∈D1

[A(a) = 1]− Pr
a∈D0

[A(a) = 1]

= Pr[a ∈ D1 : A(a) = 1]− Pr[a ∈ D0 : A(a) = 1]

= 2× Pr[a ∈ Db : A(a) = b ∧ b = 1]

+ 2× Pr[a ∈ Db : A(a) = b ∧ b = 0]− 1

= 2× Pr[a ∈ Db : A(a) = b]− 1

ENS/CNRS/INRIA Cascade David Pointcheval 37/71



Computational Indistinguishability

AdvD0,D1(A) = Pr
a∈D1

[A(a) = 1]− Pr
a∈D0

[A(a) = 1]

= Pr[a ∈ D1 : A(a) = 1]− Pr[a ∈ D0 : A(a) = 1]

= 2× Pr[a ∈ Db : A(a) = b]− 1

ENS/CNRS/INRIA Cascade David Pointcheval 37/71



Computational Indistinguishability

AdvD0,D1(A) = Pr
a∈D1

[A(a) = 1]− Pr
a∈D0

[A(a) = 1]

= Pr[a ∈ D1 : A(a) = 1]− Pr[a ∈ D0 : A(a) = 1]

Equivalent Notation
Let D0 and D1, two distributions on a finite set X ,

AdvD0,D1(A) = 2× Pr[a ∈ Db : A(a) = b]− 1

ENS/CNRS/INRIA Cascade David Pointcheval 37/71



Relations between Indistinguishability Notions

For any distinguisher A, we have

AdvD0,D1(A) = Pr
a∈D0

[A(a) = 1]− Pr
a∈D1

[A(a) = 1]

ENS/CNRS/INRIA Cascade David Pointcheval 38/71



Relations between Indistinguishability Notions

For any distinguisher A, we have

AdvD0,D1(A) = Pr
a∈D0

[A(a) = 1]− Pr
a∈D1

[A(a) = 1]

=
∑
x∈X

(
Pra∈D0 [A(a) = 1 ∧ a = x ]
−Pra∈D1 [A(a) = 1 ∧ a = x ]

)

ENS/CNRS/INRIA Cascade David Pointcheval 38/71



Relations between Indistinguishability Notions

For any distinguisher A, we have

AdvD0,D1(A) =
∑
x∈X

(
Pra∈D0 [A(a) = 1 ∧ a = x ]
−Pra∈D1 [A(a) = 1 ∧ a = x ]

)

ENS/CNRS/INRIA Cascade David Pointcheval 38/71



Relations between Indistinguishability Notions

For any distinguisher A, we have

AdvD0,D1(A) =
∑
x∈X

(
Pra∈D0 [A(a) = 1 ∧ a = x ]
−Pra∈D1 [A(a) = 1 ∧ a = x ]

)

=
∑
x∈X

(
Pra∈D0 [A(x) = 1 ∧ a = x ]
−Pra∈D1 [A(x) = 1 ∧ a = x ]

)

ENS/CNRS/INRIA Cascade David Pointcheval 38/71



Relations between Indistinguishability Notions

For any distinguisher A, we have

AdvD0,D1(A) =
∑
x∈X

(
Pra∈D0 [A(x) = 1 ∧ a = x ]
−Pra∈D1 [A(x) = 1 ∧ a = x ]

)

ENS/CNRS/INRIA Cascade David Pointcheval 38/71



Relations between Indistinguishability Notions

For any distinguisher A, we have

AdvD0,D1(A) =
∑
x∈X

(
Pra∈D0 [A(x) = 1 ∧ a = x ]
−Pra∈D1 [A(x) = 1 ∧ a = x ]

)

=
∑
x∈X

Pr[A(x) = 1]×

(
Pra∈D0 [a = x ]
−Pra∈D1 [a = x ]

)
a = x and A(x) = 1 are independent events

ENS/CNRS/INRIA Cascade David Pointcheval 38/71



Relations between Indistinguishability Notions

For any distinguisher A, we have

AdvD0,D1(A) =
∑
x∈X

Pr[A(x) = 1]×

(
Pra∈D0 [a = x ]
−Pra∈D1 [a = x ]

)

ENS/CNRS/INRIA Cascade David Pointcheval 38/71



Relations between Indistinguishability Notions

For any distinguisher A, we have

AdvD0,D1(A) =
∑
x∈X

Pr[A(x) = 1]×

(
Pra∈D0 [a = x ]
−Pra∈D1 [a = x ]

)

≤
∑
x∈X

|Pr[A(x) = 1]| ×

∣∣∣∣∣ Pra∈D0 [a = x ]
−Pra∈D1 [a = x ]

∣∣∣∣∣
A better analysis could be done here

ENS/CNRS/INRIA Cascade David Pointcheval 38/71



Relations between Indistinguishability Notions

For any distinguisher A, we have

AdvD0,D1(A) ≤
∑
x∈X

|Pr[A(x) = 1]| ×

∣∣∣∣∣ Pra∈D0 [a = x ]
−Pra∈D1 [a = x ]

∣∣∣∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 38/71



Relations between Indistinguishability Notions

For any distinguisher A, we have

AdvD0,D1(A) ≤
∑
x∈X

|Pr[A(x) = 1]| ×

∣∣∣∣∣ Pra∈D0 [a = x ]
−Pra∈D1 [a = x ]

∣∣∣∣∣
≤
∑
x∈X

∣∣∣∣ Pra∈D0
[a = x ]− Pr

a∈D1
[a = x ]

∣∣∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 38/71



Relations between Indistinguishability Notions

For any distinguisher A, we have

AdvD0,D1(A) ≤
∑
x∈X

∣∣∣∣ Pra∈D0
[a = x ]− Pr

a∈D1
[a = x ]

∣∣∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 38/71



Relations between Indistinguishability Notions

For any distinguisher A, we have

AdvD0,D1(A) ≤
∑
x∈X

∣∣∣∣ Pra∈D0
[a = x ]− Pr

a∈D1
[a = x ]

∣∣∣∣
≤ Dist(D0,D1)

ENS/CNRS/INRIA Cascade David Pointcheval 38/71



Relations between Indistinguishability Notions

For any distinguisher A, we have

AdvD0,D1(A) ≤ Dist(D0,D1)

Theorem
Dist(D0,D1) is the best advantage any adversary could get,
even within an unbounded time.

∀t , AdvD0,D1(t) ≤ Dist(D0,D1).

With a better analysis, we can even get

∀t , AdvD0,D1(t) ≤ 1
2
· Dist(D0,D1).

ENS/CNRS/INRIA Cascade David Pointcheval 38/71



Hybrid Technique

Let us consider the distributions DA and DB:

DA =(gx ,gy1 ,gxy1 ,. . . ,gyn ,gxyn) ⊆ G2n+1

DB =(gx ,gy1 ,gz1 , . . . ,gyn , gzn) ⊆ G2n+1

AdvDA,DB(t)?

We define the hybrid distribution

Di = (gx ,gy1 ,gxy1 , . . . ,gyi ,gxyi ,gyi+1 ,gzi+1 , . . . ,gyn ,gzn)

D0 = DB Dn = DA.

ENS/CNRS/INRIA Cascade David Pointcheval 39/71



Hybrid Technique

Let us consider the distributions DA and DB:

DA =(gx ,gy1 ,gxy1 ,. . . ,gyn ,gxyn) ⊆ G2n+1

DB =(gx ,gy1 ,gz1 , . . . ,gyn , gzn) ⊆ G2n+1

AdvDA,DB(t)?

We define the hybrid distribution

Di = (gx ,gy1 ,gxy1 , . . . ,gyi ,gxyi ,gyi+1 ,gzi+1 , . . . ,gyn ,gzn)

D0 = DB Dn = DA.

ENS/CNRS/INRIA Cascade David Pointcheval 39/71



Hybrid Technique

Let us consider the distributions DA and DB:

DA =(gx ,gy1 ,gxy1 ,. . . ,gyn ,gxyn) ⊆ G2n+1

DB =(gx ,gy1 ,gz1 , . . . ,gyn , gzn) ⊆ G2n+1

AdvDA,DB(t)?

We define the hybrid distribution

Di = (gx ,gy1 ,gxy1 , . . . ,gyi ,gxyi ,gyi+1 ,gzi+1 , . . . ,gyn ,gzn)

D0 = DB Dn = DA.

ENS/CNRS/INRIA Cascade David Pointcheval 39/71



Hybrid Technique

Let A be an adversary within time t , against DA vs. DB.

Given a DDH input (X ,Y ,Z ), we generate the hybrid instance:

Ii = (X ,gy1 ,X y1 , . . . ,gyi−1 ,X yi−1 ,Y ,Z ,gyi+1 ,gzi+1 , . . . ,gyn ,gzn)

Note that
• if Z = gxy , then I ∈ Di

• if Z R← G, then I ∈ Di−1

}
AdvDi ,Di−1(A) ≤ Advddh

G (t ′)
where t ′ ≤ t + 2(n − 1)τexp

AdvDA,DB(A) = AdvDn,D0(A)

ENS/CNRS/INRIA Cascade David Pointcheval 40/71



Hybrid Technique

Let A be an adversary within time t , against DA vs. DB.

Given a DDH input (X ,Y ,Z ), we generate the hybrid instance:

Ii = (X ,gy1 ,X y1 , . . . ,gyi−1 ,X yi−1 ,Y ,Z ,gyi+1 ,gzi+1 , . . . ,gyn ,gzn)

Note that
• if Z = gxy , then I ∈ Di

• if Z R← G, then I ∈ Di−1

}
AdvDi ,Di−1(A) ≤ Advddh

G (t ′)
where t ′ ≤ t + 2(n − 1)τexp

AdvDA,DB(A) = AdvDn,D0(A)

=

∣∣∣∣PrD0
[A → 1]− Pr

Dn
[A → 1]

∣∣∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 40/71



Hybrid Technique

Let A be an adversary within time t , against DA vs. DB.

Given a DDH input (X ,Y ,Z ), we generate the hybrid instance:

Ii = (X ,gy1 ,X y1 , . . . ,gyi−1 ,X yi−1 ,Y ,Z ,gyi+1 ,gzi+1 , . . . ,gyn ,gzn)

Note that
• if Z = gxy , then I ∈ Di

• if Z R← G, then I ∈ Di−1

}
AdvDi ,Di−1(A) ≤ Advddh

G (t ′)
where t ′ ≤ t + 2(n − 1)τexp

AdvDA,DB(A) =

∣∣∣∣PrD0
[A → 1]− Pr

Dn
[A → 1]

∣∣∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 40/71



Hybrid Technique

Let A be an adversary within time t , against DA vs. DB.

Given a DDH input (X ,Y ,Z ), we generate the hybrid instance:

Ii = (X ,gy1 ,X y1 , . . . ,gyi−1 ,X yi−1 ,Y ,Z ,gyi+1 ,gzi+1 , . . . ,gyn ,gzn)

Note that
• if Z = gxy , then I ∈ Di

• if Z R← G, then I ∈ Di−1

}
AdvDi ,Di−1(A) ≤ Advddh

G (t ′)
where t ′ ≤ t + 2(n − 1)τexp

AdvDA,DB(A) =

∣∣∣∣PrD0
[A → 1]− Pr

Dn
[A → 1]

∣∣∣∣
=

n∑
i=1

∣∣∣∣ PrDi−1
[A → 1]− Pr

Di
[A → 1]

∣∣∣∣
ENS/CNRS/INRIA Cascade David Pointcheval 40/71



Hybrid Technique

Let A be an adversary within time t , against DA vs. DB.

Given a DDH input (X ,Y ,Z ), we generate the hybrid instance:

Ii = (X ,gy1 ,X y1 , . . . ,gyi−1 ,X yi−1 ,Y ,Z ,gyi+1 ,gzi+1 , . . . ,gyn ,gzn)

Note that
• if Z = gxy , then I ∈ Di

• if Z R← G, then I ∈ Di−1

}
AdvDi ,Di−1(A) ≤ Advddh

G (t ′)
where t ′ ≤ t + 2(n − 1)τexp

AdvDA,DB(A) =
n∑

i=1

∣∣∣∣ PrDi−1
[A → 1]− Pr

Di
[A → 1]

∣∣∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 40/71



Hybrid Technique

Let A be an adversary within time t , against DA vs. DB.

Given a DDH input (X ,Y ,Z ), we generate the hybrid instance:

Ii = (X ,gy1 ,X y1 , . . . ,gyi−1 ,X yi−1 ,Y ,Z ,gyi+1 ,gzi+1 , . . . ,gyn ,gzn)

Note that
• if Z = gxy , then I ∈ Di

• if Z R← G, then I ∈ Di−1

}
AdvDi ,Di−1(A) ≤ Advddh

G (t ′)
where t ′ ≤ t + 2(n − 1)τexp

AdvDA,DB(A) =
n∑

i=1

∣∣∣∣ PrDi−1
[A → 1]− Pr

Di
[A → 1]

∣∣∣∣
=

n∑
i=1

AdvDi ,Di−1(A)

ENS/CNRS/INRIA Cascade David Pointcheval 40/71



Hybrid Technique

Let A be an adversary within time t , against DA vs. DB.

Given a DDH input (X ,Y ,Z ), we generate the hybrid instance:

Ii = (X ,gy1 ,X y1 , . . . ,gyi−1 ,X yi−1 ,Y ,Z ,gyi+1 ,gzi+1 , . . . ,gyn ,gzn)

Note that
• if Z = gxy , then I ∈ Di

• if Z R← G, then I ∈ Di−1

}
AdvDi ,Di−1(A) ≤ Advddh

G (t ′)
where t ′ ≤ t + 2(n − 1)τexp

AdvDA,DB(A) =
n∑

i=1

AdvDi ,Di−1(A)

ENS/CNRS/INRIA Cascade David Pointcheval 40/71



Hybrid Technique

Let A be an adversary within time t , against DA vs. DB.

Given a DDH input (X ,Y ,Z ), we generate the hybrid instance:

Ii = (X ,gy1 ,X y1 , . . . ,gyi−1 ,X yi−1 ,Y ,Z ,gyi+1 ,gzi+1 , . . . ,gyn ,gzn)

Note that
• if Z = gxy , then I ∈ Di

• if Z R← G, then I ∈ Di−1

}
AdvDi ,Di−1(A) ≤ Advddh

G (t ′)
where t ′ ≤ t + 2(n − 1)τexp

AdvDA,DB(A) =
n∑

i=1

AdvDi ,Di−1(A)

≤
n∑

i=1

Advddh
G (t ′)

ENS/CNRS/INRIA Cascade David Pointcheval 40/71



Hybrid Technique

Let A be an adversary within time t , against DA vs. DB.

Given a DDH input (X ,Y ,Z ), we generate the hybrid instance:

Ii = (X ,gy1 ,X y1 , . . . ,gyi−1 ,X yi−1 ,Y ,Z ,gyi+1 ,gzi+1 , . . . ,gyn ,gzn)

Note that
• if Z = gxy , then I ∈ Di

• if Z R← G, then I ∈ Di−1

}
AdvDi ,Di−1(A) ≤ Advddh

G (t ′)
where t ′ ≤ t + 2(n − 1)τexp

AdvDA,DB(A) ≤
n∑

i=1

Advddh
G (t ′)

ENS/CNRS/INRIA Cascade David Pointcheval 40/71



Hybrid Technique

Let A be an adversary within time t , against DA vs. DB.

Given a DDH input (X ,Y ,Z ), we generate the hybrid instance:

Ii = (X ,gy1 ,X y1 , . . . ,gyi−1 ,X yi−1 ,Y ,Z ,gyi+1 ,gzi+1 , . . . ,gyn ,gzn)

Note that
• if Z = gxy , then I ∈ Di

• if Z R← G, then I ∈ Di−1

}
AdvDi ,Di−1(A) ≤ Advddh

G (t ′)
where t ′ ≤ t + 2(n − 1)τexp

AdvDA,DB(A) ≤
n∑

i=1

Advddh
G (t ′)

≤ n × Advddh
G (t ′)

ENS/CNRS/INRIA Cascade David Pointcheval 40/71



Hybrid Technique

Let A be an adversary within time t , against DA vs. DB.

Given a DDH input (X ,Y ,Z ), we generate the hybrid instance:

Ii = (X ,gy1 ,X y1 , . . . ,gyi−1 ,X yi−1 ,Y ,Z ,gyi+1 ,gzi+1 , . . . ,gyn ,gzn)

Note that
• if Z = gxy , then I ∈ Di

• if Z R← G, then I ∈ Di−1

}
AdvDi ,Di−1(A) ≤ Advddh

G (t ′)
where t ′ ≤ t + 2(n − 1)τexp

AdvDA,DB(A) ≤ n × Advddh
G (t ′)

ENS/CNRS/INRIA Cascade David Pointcheval 40/71



Hybrid Technique

Let A be an adversary within time t , against DA vs. DB.

Given a DDH input (X ,Y ,Z ), we generate the hybrid instance:

Ii = (X ,gy1 ,X y1 , . . . ,gyi−1 ,X yi−1 ,Y ,Z ,gyi+1 ,gzi+1 , . . . ,gyn ,gzn)

Note that
• if Z = gxy , then I ∈ Di

• if Z R← G, then I ∈ Di−1

}
AdvDi ,Di−1(A) ≤ Advddh

G (t ′)
where t ′ ≤ t + 2(n − 1)τexp

AdvDA,DB(A) ≤ n × Advddh
G (t ′)

Theorem

∀t , AdvDA,DB(t) ≤ n × Advddh
G (t + 2(n − 1)τexp)

ENS/CNRS/INRIA Cascade David Pointcheval 40/71



Basic Security Notions



Outline

Cryptography

Provable Security

Basic Security Notions

Public-Key Encryption

Variants of Indistinguishability

Signatures

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 41/71



Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext

ENS/CNRS/INRIA Cascade David Pointcheval 42/71



Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext

ENS/CNRS/INRIA Cascade David Pointcheval 42/71



OW− CPA

One-Wayness
For a public-key encryption scheme S = (K, E ,D), without the
secrete key sk , it should be computationally impossible to recover
the plaintext m from the ciphertext c:

Succow
S (A) = Pr[(sk ,pk)← K();m R←M; c = Epk (m) : A(pk , c)→ m]

should be negligible.

Chosen-Plaintext Attacks
In the public-key setting, the adversary has access to the encryption
key (the public key), and thus can encrypt any plaintext of its choice:
chosen-plaintext attack

ENS/CNRS/INRIA Cascade David Pointcheval 43/71



OW− CPA

One-Wayness
For a public-key encryption scheme S = (K, E ,D), without the
secrete key sk , it should be computationally impossible to recover
the plaintext m from the ciphertext c:

Succow
S (A) = Pr[(sk ,pk)← K();m R←M; c = Epk (m) : A(pk , c)→ m]

should be negligible.

Chosen-Plaintext Attacks
In the public-key setting, the adversary has access to the encryption
key (the public key), and thus can encrypt any plaintext of its choice:
chosen-plaintext attack

ENS/CNRS/INRIA Cascade David Pointcheval 43/71



OW− CPA Security Game

A

ENS/CNRS/INRIA Cascade David Pointcheval 44/71



OW− CPA Security Game

A

kdke G

ENS/CNRS/INRIA Cascade David Pointcheval 44/71



OW− CPA Security Game

A

kdke G
m* random
r* random

ENS/CNRS/INRIA Cascade David Pointcheval 44/71



OW− CPA Security Game

A

kdke G
m* random
r* random

Er*
m* c*

ENS/CNRS/INRIA Cascade David Pointcheval 44/71



OW− CPA Security Game

A

kdke G
m* random
r* random

Er*
m* c*

m

ENS/CNRS/INRIA Cascade David Pointcheval 44/71



OW− CPA Security Game

A

kdke G

m

m* random
r* random

m* = m
?

Er*
m* c*

ENS/CNRS/INRIA Cascade David Pointcheval 44/71



ElGamal Encryption [ElGamal 1985]

ElGamal Encryption
The ElGamal encryption scheme EG is defined,
in a group G = 〈g〉 of order q

• K(G,g,q): x R← Zq, and sk ← x and pk ← y = gx

• Epk (m): r R← Zq, c1 ← gr and c2 ← y r ×m = pk r ×m.
Then, the ciphertext is c = (c1, c2)

• Dsk (c) outputs c2/cx
1 = c2/csk

1

Theorem (ElGamal is OW− CPA)

Succow−cpa
EG (t) ≤ Succcdh

G (t)

ENS/CNRS/INRIA Cascade David Pointcheval 45/71



ElGamal Encryption [ElGamal 1985]

ElGamal Encryption
The ElGamal encryption scheme EG is defined,
in a group G = 〈g〉 of order q

• K(G,g,q): x R← Zq, and sk ← x and pk ← y = gx

• Epk (m): r R← Zq, c1 ← gr and c2 ← y r ×m = pk r ×m.
Then, the ciphertext is c = (c1, c2)

• Dsk (c) outputs c2/cx
1 = c2/csk

1

Theorem (ElGamal is OW− CPA)

Succow−cpa
EG (t) ≤ Succcdh

G (t)

ENS/CNRS/INRIA Cascade David Pointcheval 45/71



ElGamal is OW− CPA: Proof

Succow−cpa
EG (t) ≤ Succcdh

G (t)

Let A be an adversary against EG, we build an adversary B against
CDH: let us be given a CDH instance (X ,Y )

• A gets pk ← y = gx from K

ENS/CNRS/INRIA Cascade David Pointcheval 46/71



ElGamal is OW− CPA: Proof

Succow−cpa
EG (t) ≤ Succcdh

G (t)

Let A be an adversary against EG, we build an adversary B against
CDH: let us be given a CDH instance (X ,Y )

• A gets pk ← y = gx from K

• The challenger chooses r∗ R← Z?
q and sets c1 ← gr∗

ENS/CNRS/INRIA Cascade David Pointcheval 46/71



ElGamal is OW− CPA: Proof

Succow−cpa
EG (t) ≤ Succcdh

G (t)

Let A be an adversary against EG, we build an adversary B against
CDH: let us be given a CDH instance (X ,Y )

• A gets pk ← y = gx from K

• The challenger chooses r∗ R← Z?
q and sets c1 ← gr∗

• The challenger chooses m∗ R←M, sets c2 ← y r∗ ×m∗

and sends c = (c1, c2)

ENS/CNRS/INRIA Cascade David Pointcheval 46/71



ElGamal is OW− CPA: Proof

Succow−cpa
EG (t) ≤ Succcdh

G (t)

Let A be an adversary against EG, we build an adversary B against
CDH: let us be given a CDH instance (X ,Y )

• A gets pk ← y = gx from K

• The challenger chooses r∗ R← Z?
q and sets c1 ← gr∗

• The challenger chooses m∗ R←M, sets c2 ← y r∗ ×m∗

and sends c = (c1, c2)

• A receives c ← (c1, c2), and outputs m

ENS/CNRS/INRIA Cascade David Pointcheval 46/71



ElGamal is OW− CPA: Proof

Succow−cpa
EG (t) ≤ Succcdh

G (t)

Let A be an adversary against EG, we build an adversary B against
CDH: let us be given a CDH instance (X ,Y )

• A gets pk ← y = gx from K

• The challenger chooses r∗ R← Z?
q and sets c1 ← gr∗

• The challenger chooses m∗ R←M, sets c2 ← y r∗ ×m∗

and sends c = (c1, c2)

• A receives c ← (c1, c2), and outputs m

• Pr[m = m∗] = Succow−cpa
EG (A)

ENS/CNRS/INRIA Cascade David Pointcheval 46/71



ElGamal is OW− CPA: Proof

Succow−cpa
EG (t) ≤ Succcdh

G (t)

Let A be an adversary against EG, we build an adversary B against
CDH: let us be given a CDH instance (X ,Y )

• A gets pk ← X from B

• The challenger chooses r∗ R← Z?
q and sets c1 ← gr∗

• The challenger chooses m∗ R←M, sets c2 ← y r∗ ×m∗

and sends c = (c1, c2)

• A receives c ← (c1, c2), and outputs m

• Pr[m = m∗] = Succow−cpa
EG (A)

ENS/CNRS/INRIA Cascade David Pointcheval 46/71



ElGamal is OW− CPA: Proof

Succow−cpa
EG (t) ≤ Succcdh

G (t)

Let A be an adversary against EG, we build an adversary B against
CDH: let us be given a CDH instance (X ,Y )

• A gets pk ← X from B

• B sets c1 ← Y

• The challenger chooses m∗ R←M, sets c2 ← y r∗ ×m∗

and sends c = (c1, c2)

• A receives c ← (c1, c2), and outputs m

• Pr[m = m∗] = Succow−cpa
EG (A)

ENS/CNRS/INRIA Cascade David Pointcheval 46/71



ElGamal is OW− CPA: Proof

Succow−cpa
EG (t) ≤ Succcdh

G (t)

Let A be an adversary against EG, we build an adversary B against
CDH: let us be given a CDH instance (X ,Y )

• A gets pk ← X from B

• B sets c1 ← Y

• B chooses c2
R← G (which virtually sets m∗ ← c2/CDH(X ,Y )),

and sends c = (c1, c2)

• A receives c ← (c1, c2), and outputs m

• Pr[m = m∗] = Succow−cpa
EG (A)

ENS/CNRS/INRIA Cascade David Pointcheval 46/71



ElGamal is OW− CPA: Proof

Succow−cpa
EG (t) ≤ Succcdh

G (t)

Let A be an adversary against EG, we build an adversary B against
CDH: let us be given a CDH instance (X ,Y )

• A gets pk ← X from B

• B sets c1 ← Y

• B chooses c2
R← G (which virtually sets m∗ ← c2/CDH(X ,Y )),

and sends c = (c1, c2)

• B receives m from A and outputs c2/m

• Pr[m = m∗] = Succow−cpa
EG (A)

ENS/CNRS/INRIA Cascade David Pointcheval 46/71



ElGamal is OW− CPA: Proof

Succow−cpa
EG (t) ≤ Succcdh

G (t)

Let A be an adversary against EG, we build an adversary B against
CDH: let us be given a CDH instance (X ,Y )

• A gets pk ← X from B

• B sets c1 ← Y

• B chooses c2
R← G (which virtually sets m∗ ← c2/CDH(X ,Y )),

and sends c = (c1, c2)

• B receives m from A and outputs c2/m

• Pr[m = m∗] = Succow−cpa
EG (A)

= Pr[c2/m = c2/m∗] = Pr[c2/m = CDH(X ,Y )] ≤ Succcdh
G (t)

ENS/CNRS/INRIA Cascade David Pointcheval 46/71



Is OW− CPA Enough?

For a yes/no answer or sell/buy order,
one bit of information may be enough for the adversary!

How to model that no bit of information leaks?
Semantic Security [Goldwasser-Micali 1984]

For any predicate f , E(m) does not help to guess f (m), with better
probability than f (m′) (for a random but private m′): in the game

(sk ,pk)← K();(M, f , state)← A(pk);

m,m′ R←M;c = Epk (m);p ← A(state, c)

then,
Advsem

S (A) =
∣∣Pr[p = f (m)]− Pr[p = f (m′)]

∣∣ .
ENS/CNRS/INRIA Cascade David Pointcheval 47/71



Is OW− CPA Enough?

For a yes/no answer or sell/buy order,
one bit of information may be enough for the adversary!

How to model that no bit of information leaks?
Semantic Security [Goldwasser-Micali 1984]

For any predicate f , E(m) does not help to guess f (m), with better
probability than f (m′) (for a random but private m′): in the game

(sk ,pk)← K();(M, f , state)← A(pk);

m,m′ R←M;c = Epk (m);p ← A(state, c)

then,
Advsem

S (A) =
∣∣Pr[p = f (m)]− Pr[p = f (m′)]

∣∣ .
ENS/CNRS/INRIA Cascade David Pointcheval 47/71



Semantic Security

A

ENS/CNRS/INRIA Cascade David Pointcheval 48/71



Semantic Security

A

kdke G

ENS/CNRS/INRIA Cascade David Pointcheval 48/71



Semantic Security

A

D, Pred

kdke G

ENS/CNRS/INRIA Cascade David Pointcheval 48/71



Semantic Security

A

D, Pred

kdke G

m*, m' ← D
r random

ENS/CNRS/INRIA Cascade David Pointcheval 48/71



Semantic Security

A

D, Pred

kdke G

Er
m* c*

m*, m' ← D
r random

ENS/CNRS/INRIA Cascade David Pointcheval 48/71



Semantic Security

A

D, Pred

kdke G

Er
m* c*

b

m*, m' ← D
r random

ENS/CNRS/INRIA Cascade David Pointcheval 48/71



Semantic Security

A

D, Pred

kdke G

Er
m* c*

b

m*, m' ← D
r random

Pred(m*)=b
vs. Pred(m')=b

ENS/CNRS/INRIA Cascade David Pointcheval 48/71



Indistinguishability

Another equivalent formulation (if efficiently computable predicate):

IND− CPA
After having chosen two plaintexts m0 and m1, upon receiving the
encryption of mb (for a random bit b), it should be hard to guess
which message has been encrypted: in the game

(sk ,pk)← K();(m0,m1, state)← A(pk);

b R← {0,1};c = Epk (mb);b′ ← A(state, c)

then,

Advind−cpa
S (A) =

∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]
∣∣

=
∣∣2× Pr[b′ = b]− 1

∣∣
ENS/CNRS/INRIA Cascade David Pointcheval 49/71



IND− CPA Security Game

A

ENS/CNRS/INRIA Cascade David Pointcheval 50/71



IND− CPA Security Game

A

kdke G

ENS/CNRS/INRIA Cascade David Pointcheval 50/71



IND− CPA Security Game

A

m1

m0

kdke G

ENS/CNRS/INRIA Cascade David Pointcheval 50/71



IND− CPA Security Game

A

m1

m0

kdke G
b∈{0,1}
r random

ENS/CNRS/INRIA Cascade David Pointcheval 50/71



IND− CPA Security Game

A

m1

m0

kdke G

Er
mb c*

b∈{0,1}
r random

ENS/CNRS/INRIA Cascade David Pointcheval 50/71



IND− CPA Security Game

A

m1

m0

kdke G

Er
mb c*

b’

b∈{0,1}
r random

ENS/CNRS/INRIA Cascade David Pointcheval 50/71



IND− CPA Security Game

A

m1

m0

kdke G

Er
mb c*

b’

b∈{0,1}
r random

b’ = b?

ENS/CNRS/INRIA Cascade David Pointcheval 50/71



Indistinguishability implies Semantic Security

Let A be an adversary within time t against semantic security, we
build an adversary B against indistinguishability:

• B runs A to get D and a predicate P;
it gets m0,m1

R← D, and outputs them;

• the challenger encrypts mb in c

• B runs A, to get the guess p of A about the predicate P
on the plaintext in c;

• If P(m0) = P(m1), B outputs a random bit b′,
• otherwise it outputs b′ such that P(mb′) = p.

ENS/CNRS/INRIA Cascade David Pointcheval 51/71



Indistinguishability implies Semantic Security

Let A be an adversary within time t against semantic security, we
build an adversary B against indistinguishability:

• B runs A to get D and a predicate P;
it gets m0,m1

R← D, and outputs them;

• the challenger encrypts mb in c

• B runs A, to get the guess p of A about the predicate P
on the plaintext in c;

• If P(m0) = P(m1), B outputs a random bit b′,
• otherwise it outputs b′ such that P(mb′) = p.

ENS/CNRS/INRIA Cascade David Pointcheval 51/71



Indistinguishability implies Semantic Security

Let A be an adversary within time t against semantic security, we
build an adversary B against indistinguishability:

• B runs A to get D and a predicate P;
it gets m0,m1

R← D, and outputs them;

• the challenger encrypts mb in c

• B runs A, to get the guess p of A about the predicate P
on the plaintext in c;

• If P(m0) = P(m1), B outputs a random bit b′,
• otherwise it outputs b′ such that P(mb′) = p.

ENS/CNRS/INRIA Cascade David Pointcheval 51/71



Indistinguishability implies Semantic Security

Let A be an adversary within time t against semantic security, we
build an adversary B against indistinguishability:

• B runs A to get D and a predicate P;
it gets m0,m1

R← D, and outputs them;

• the challenger encrypts mb in c

• B runs A, to get the guess p of A about the predicate P
on the plaintext in c;

• If P(m0) = P(m1), B outputs a random bit b′,
• otherwise it outputs b′ such that P(mb′) = p.

ENS/CNRS/INRIA Cascade David Pointcheval 51/71



Indistinguishability implies Semantic Security

Let A be an adversary within time t against semantic security, we
build an adversary B against indistinguishability:

• B runs A to get D and a predicate P;
it gets m0,m1

R← D, and outputs them;

• the challenger encrypts mb in c

• B runs A, to get the guess p of A about the predicate P
on the plaintext in c;

• If P(m0) = P(m1), B outputs a random bit b′,
• otherwise it outputs b′ such that P(mb′) = p.

ENS/CNRS/INRIA Cascade David Pointcheval 51/71



Indistinguishability implies Semantic Security

Let A be an adversary within time t against semantic security, we
build an adversary B against indistinguishability:

• B runs A to get D and a predicate P;
it gets m0,m1

R← D, and outputs them;

• the challenger encrypts mb in c

• B runs A, to get the guess p of A about the predicate P
on the plaintext in c;

• If P(m0) = P(m1), B outputs a random bit b′,
• otherwise it outputs b′ such that P(mb′) = p.

ENS/CNRS/INRIA Cascade David Pointcheval 51/71



Indistinguishability implies Semantic Security

Let A be an adversary within time t against semantic security, we
build an adversary B against indistinguishability:

• B runs A to get D and a predicate P;
it gets m0,m1

R← D, and outputs them;

• the challenger encrypts mb in c

• B runs A, to get the guess p of A about the predicate P
on the plaintext in c;

• If P(m0) = P(m1), B outputs a random bit b′,
• otherwise it outputs b′ such that P(mb′) = p.

Note that (if diff denotes the event that P(m) 6= P(m′))

ENS/CNRS/INRIA Cascade David Pointcheval 51/71



Indistinguishability implies Semantic Security

Let A be an adversary within time t against semantic security, we
build an adversary B against indistinguishability:

• B runs A to get D and a predicate P;
it gets m0,m1

R← D, and outputs them;

• the challenger encrypts mb in c

• B runs A, to get the guess p of A about the predicate P
on the plaintext in c;

• If P(m0) = P(m1), B outputs a random bit b′,
• otherwise it outputs b′ such that P(mb′) = p.

Note that (if diff denotes the event that P(m) 6= P(m′))
Advsem(A) =

∣∣Pr[p = P(m)|c = E(m)]− Pr[p = P(m′)|c = E(m)]
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 51/71



Indistinguishability implies Semantic Security

Let A be an adversary within time t against semantic security, we
build an adversary B against indistinguishability:

• B runs A to get D and a predicate P;
it gets m0,m1

R← D, and outputs them;

• the challenger encrypts mb in c

• B runs A, to get the guess p of A about the predicate P
on the plaintext in c;

• If P(m0) = P(m1), B outputs a random bit b′,
• otherwise it outputs b′ such that P(mb′) = p.

Note that (if diff denotes the event that P(m) 6= P(m′))
Advsem(A) =

∣∣Pr[p = P(m)|c = E(m)]− Pr[p = P(m′)|c = E(m)]
∣∣

=

∣∣∣∣∣ Pr[p = P(m)|c = E(m) ∧ diff]
−Pr[p = P(m′)|c = E(m) ∧ diff]

∣∣∣∣∣× Pr[diff]

ENS/CNRS/INRIA Cascade David Pointcheval 51/71



Indistinguishability implies Semantic Security

If diff denotes the event that P(m0) 6= P(m1)

ENS/CNRS/INRIA Cascade David Pointcheval 52/71



Indistinguishability implies Semantic Security

If diff denotes the event that P(m0) 6= P(m1)

Advind(B) =
∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 52/71



Indistinguishability implies Semantic Security

If diff denotes the event that P(m0) 6= P(m1)

Advind(B) =
∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

∣∣
=

∣∣∣∣∣ Pr[b′ = 1|b = 1 ∧ diff]
−Pr[b′ = 1|b = 0 ∧ diff]

∣∣∣∣∣× Pr[diff]

ENS/CNRS/INRIA Cascade David Pointcheval 52/71



Indistinguishability implies Semantic Security

If diff denotes the event that P(m0) 6= P(m1)

Advind(B) =
∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

∣∣
=

∣∣∣∣∣ Pr[b′ = 1|b = 1 ∧ diff]
−Pr[b′ = 1|b = 0 ∧ diff]

∣∣∣∣∣× Pr[diff]

=

∣∣∣∣∣ Pr[P(m1) = p|c = E(m1) ∧ diff]
−Pr[P(m1) = p|c = E(m0) ∧ diff]

∣∣∣∣∣× Pr[diff]

ENS/CNRS/INRIA Cascade David Pointcheval 52/71



Indistinguishability implies Semantic Security

If diff denotes the event that P(m0) 6= P(m1)

Advind(B) =
∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

∣∣
=

∣∣∣∣∣ Pr[b′ = 1|b = 1 ∧ diff]
−Pr[b′ = 1|b = 0 ∧ diff]

∣∣∣∣∣× Pr[diff]

=

∣∣∣∣∣ Pr[P(m1) = p|c = E(m1) ∧ diff]
−Pr[P(m1) = p|c = E(m0) ∧ diff]

∣∣∣∣∣× Pr[diff]

=

∣∣∣∣∣ Pr[P(m1) = p|c = E(m1) ∧ diff]
−Pr[P(m0) = p|c = E(m1) ∧ diff]

∣∣∣∣∣× Pr[diff]

ENS/CNRS/INRIA Cascade David Pointcheval 52/71



Indistinguishability implies Semantic Security

If diff denotes the event that P(m0) 6= P(m1)

Advind(B) =
∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

∣∣
=

∣∣∣∣∣ Pr[b′ = 1|b = 1 ∧ diff]
−Pr[b′ = 1|b = 0 ∧ diff]

∣∣∣∣∣× Pr[diff]

=

∣∣∣∣∣ Pr[P(m1) = p|c = E(m1) ∧ diff]
−Pr[P(m1) = p|c = E(m0) ∧ diff]

∣∣∣∣∣× Pr[diff]

=

∣∣∣∣∣ Pr[P(m1) = p|c = E(m1) ∧ diff]
−Pr[P(m0) = p|c = E(m1) ∧ diff]

∣∣∣∣∣× Pr[diff]

= Advsem(A) ≤ Advind(t ′)

ENS/CNRS/INRIA Cascade David Pointcheval 52/71



Indistinguishability implies Semantic Security

If diff denotes the event that P(m0) 6= P(m1)

Advind(B) =
∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

∣∣
=

∣∣∣∣∣ Pr[b′ = 1|b = 1 ∧ diff]
−Pr[b′ = 1|b = 0 ∧ diff]

∣∣∣∣∣× Pr[diff]

=

∣∣∣∣∣ Pr[P(m1) = p|c = E(m1) ∧ diff]
−Pr[P(m1) = p|c = E(m0) ∧ diff]

∣∣∣∣∣× Pr[diff]

=

∣∣∣∣∣ Pr[P(m1) = p|c = E(m1) ∧ diff]
−Pr[P(m0) = p|c = E(m1) ∧ diff]

∣∣∣∣∣× Pr[diff]

= Advsem(A) ≤ Advind(t ′)

The running time t ′ of B = one execution of A (time t), two sampling
from D (time τD), two evaluations of the predicate P (time τP )

ENS/CNRS/INRIA Cascade David Pointcheval 52/71



Indistinguishability implies Semantic Security

If diff denotes the event that P(m0) 6= P(m1)

Advind(B) =
∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

∣∣
=

∣∣∣∣∣ Pr[b′ = 1|b = 1 ∧ diff]
−Pr[b′ = 1|b = 0 ∧ diff]

∣∣∣∣∣× Pr[diff]

=

∣∣∣∣∣ Pr[P(m1) = p|c = E(m1) ∧ diff]
−Pr[P(m1) = p|c = E(m0) ∧ diff]

∣∣∣∣∣× Pr[diff]

=

∣∣∣∣∣ Pr[P(m1) = p|c = E(m1) ∧ diff]
−Pr[P(m0) = p|c = E(m1) ∧ diff]

∣∣∣∣∣× Pr[diff]

= Advsem(A) ≤ Advind(t ′)
The running time t ′ of B = one execution of A (time t), two sampling

from D (time τD), two evaluations of the predicate P (time τP )
Advsem(t) ≤ Advind(t + 2τD + 2τP)

ENS/CNRS/INRIA Cascade David Pointcheval 52/71



Semantic Security implies Indistinguishability

Let A be an adversary within time t against indistinguishability, we
build an adversary B against semantic security:

• B runs A to get (m0,m1);
it sets D = {m0,m1}, and P(m) = (m ?

= m1);

• the challenger chooses m,m′ R← D, and encrypts m in c

• B runs A, to get b′, that it forwards as its guess p

ENS/CNRS/INRIA Cascade David Pointcheval 53/71



Semantic Security implies Indistinguishability

Let A be an adversary within time t against indistinguishability, we
build an adversary B against semantic security:

• B runs A to get (m0,m1);
it sets D = {m0,m1}, and P(m) = (m ?

= m1);

• the challenger chooses m,m′ R← D, and encrypts m in c

• B runs A, to get b′, that it forwards as its guess p

ENS/CNRS/INRIA Cascade David Pointcheval 53/71



Semantic Security implies Indistinguishability

Let A be an adversary within time t against indistinguishability, we
build an adversary B against semantic security:

• B runs A to get (m0,m1);
it sets D = {m0,m1}, and P(m) = (m ?

= m1);

• the challenger chooses m,m′ R← D, and encrypts m in c

• B runs A, to get b′, that it forwards as its guess p

ENS/CNRS/INRIA Cascade David Pointcheval 53/71



Semantic Security implies Indistinguishability

Let A be an adversary within time t against indistinguishability, we
build an adversary B against semantic security:

• B runs A to get (m0,m1);
it sets D = {m0,m1}, and P(m) = (m ?

= m1);

• the challenger chooses m,m′ R← D, and encrypts m in c

• B runs A, to get b′, that it forwards as its guess p

ENS/CNRS/INRIA Cascade David Pointcheval 53/71



Semantic Security implies Indistinguishability

Let A be an adversary within time t against indistinguishability, we
build an adversary B against semantic security:

• B runs A to get (m0,m1);
it sets D = {m0,m1}, and P(m) = (m ?

= m1);

• the challenger chooses m,m′ R← D, and encrypts m in c

• B runs A, to get b′, that it forwards as its guess p

Advsem(B) =
∣∣Pr[p = P(m)]− Pr[p = P(m′)]

∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 53/71



Semantic Security implies Indistinguishability

Let A be an adversary within time t against indistinguishability, we
build an adversary B against semantic security:

• B runs A to get (m0,m1);
it sets D = {m0,m1}, and P(m) = (m ?

= m1);

• the challenger chooses m,m′ R← D, and encrypts m in c

• B runs A, to get b′, that it forwards as its guess p

Advsem(B) =
∣∣Pr[p = P(m)]− Pr[p = P(m′)]

∣∣
=

∣∣Pr[m = mp]− Pr[m′ = mp]
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 53/71



Semantic Security implies Indistinguishability

Let A be an adversary within time t against indistinguishability, we
build an adversary B against semantic security:

• B runs A to get (m0,m1);
it sets D = {m0,m1}, and P(m) = (m ?

= m1);

• the challenger chooses m,m′ R← D, and encrypts m in c

• B runs A, to get b′, that it forwards as its guess p

Advsem(B) =
∣∣Pr[p = P(m)]− Pr[p = P(m′)]

∣∣
=

∣∣Pr[m = mp]− Pr[m′ = mp]
∣∣

=
∣∣Pr[m = mb′ ]− Pr[m′ = mb′ ]

∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 53/71



Semantic Security implies Indistinguishability

Let A be an adversary within time t against indistinguishability, we
build an adversary B against semantic security:

• B runs A to get (m0,m1);
it sets D = {m0,m1}, and P(m) = (m ?

= m1);

• the challenger chooses m,m′ R← D, and encrypts m in c

• B runs A, to get b′, that it forwards as its guess p

Advsem(B) =
∣∣Pr[p = P(m)]− Pr[p = P(m′)]

∣∣
=

∣∣Pr[m = mp]− Pr[m′ = mp]
∣∣

=
∣∣Pr[m = mb′ ]− Pr[m′ = mb′ ]

∣∣
Advind(A) =

∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]
∣∣

where m = mb

ENS/CNRS/INRIA Cascade David Pointcheval 53/71



Semantic Security implies Indistinguishability

ENS/CNRS/INRIA Cascade David Pointcheval 54/71



Semantic Security implies Indistinguishability

Advsem(B) =
∣∣Pr[m = mb′ ]− Pr[m′ = mb′ ]

∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 54/71



Semantic Security implies Indistinguishability

Advsem(B) =
∣∣Pr[m = mb′ ]− Pr[m′ = mb′ ]

∣∣
= |Pr[mb = mb′ ]− Pr[md = mb′ ]|

where m = mb and m′ = md

ENS/CNRS/INRIA Cascade David Pointcheval 54/71



Semantic Security implies Indistinguishability

Advsem(B) =
∣∣Pr[m = mb′ ]− Pr[m′ = mb′ ]

∣∣
= |Pr[mb = mb′ ]− Pr[md = mb′ ]|

where m = mb and m′ = md

=
∣∣Pr[b = b′]− Pr[d = b′]

∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 54/71



Semantic Security implies Indistinguishability

Advsem(B) =
∣∣Pr[m = mb′ ]− Pr[m′ = mb′ ]

∣∣
= |Pr[mb = mb′ ]− Pr[md = mb′ ]|

where m = mb and m′ = md

=
∣∣Pr[b = b′]− Pr[d = b′]

∣∣
=

∣∣Pr[b = b′]− 1/2
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 54/71



Semantic Security implies Indistinguishability

Advsem(B) =
∣∣Pr[m = mb′ ]− Pr[m′ = mb′ ]

∣∣
= |Pr[mb = mb′ ]− Pr[md = mb′ ]|

where m = mb and m′ = md

=
∣∣Pr[b = b′]− Pr[d = b′]

∣∣
=

∣∣Pr[b = b′]− 1/2
∣∣

= Advind(A)/2 ≤ Advsem(t ′)

ENS/CNRS/INRIA Cascade David Pointcheval 54/71



Semantic Security implies Indistinguishability

Advsem(B) =
∣∣Pr[m = mb′ ]− Pr[m′ = mb′ ]

∣∣
= |Pr[mb = mb′ ]− Pr[md = mb′ ]|

where m = mb and m′ = md

=
∣∣Pr[b = b′]− Pr[d = b′]

∣∣
=

∣∣Pr[b = b′]− 1/2
∣∣

= Advind(A)/2 ≤ Advsem(t ′)

The running time t ′ of B = one execution of A (time t)

ENS/CNRS/INRIA Cascade David Pointcheval 54/71



Semantic Security implies Indistinguishability

Advsem(B) =
∣∣Pr[m = mb′ ]− Pr[m′ = mb′ ]

∣∣
= |Pr[mb = mb′ ]− Pr[md = mb′ ]|

where m = mb and m′ = md

=
∣∣Pr[b = b′]− Pr[d = b′]

∣∣
=

∣∣Pr[b = b′]− 1/2
∣∣

= Advind(A)/2 ≤ Advsem(t ′)

The running time t ′ of B = one execution of A (time t)

Advind(t) ≤ 2× Advsem(t)

ENS/CNRS/INRIA Cascade David Pointcheval 54/71



ElGamal Encryption

ElGamal Encryption
The ElGamal encryption scheme EG is defined,
in a group G = 〈g〉 of order q

• K(G,g,q): x R← Zq, and sk ← x and pk ← y = gx

• Epk (m): r R← Zq, c1 ← gr and c2 ← y r ×m = pk r ×m.
Then, the ciphertext is c = (c1, c2)

• Dsk (c) outputs c2/cx
1 = c2/csk

1

Theorem (ElGamal is IND− CPA)

Advind−cpa
EG (t) ≤ 2× Advddh

G (t)

ENS/CNRS/INRIA Cascade David Pointcheval 55/71



ElGamal Encryption

ElGamal Encryption
The ElGamal encryption scheme EG is defined,
in a group G = 〈g〉 of order q

• K(G,g,q): x R← Zq, and sk ← x and pk ← y = gx

• Epk (m): r R← Zq, c1 ← gr and c2 ← y r ×m = pk r ×m.
Then, the ciphertext is c = (c1, c2)

• Dsk (c) outputs c2/cx
1 = c2/csk

1

Theorem (ElGamal is IND− CPA)

Advind−cpa
EG (t) ≤ 2× Advddh

G (t)

ENS/CNRS/INRIA Cascade David Pointcheval 55/71



ElGamal is IND− CPA: Proof

Let A be an adversary against EG, we build an adversary B against
DDH: let us be given a DDH instance (X ,Y ,Z )

• A gets pk ← y = gx from K, and outputs (m0,m1)

ENS/CNRS/INRIA Cascade David Pointcheval 56/71



ElGamal is IND− CPA: Proof

Let A be an adversary against EG, we build an adversary B against
DDH: let us be given a DDH instance (X ,Y ,Z )

• A gets pk ← y = gx from K, and outputs (m0,m1)

• The challenger chooses r∗ R← Z?
q and sets c1 ← gr∗

ENS/CNRS/INRIA Cascade David Pointcheval 56/71



ElGamal is IND− CPA: Proof

Let A be an adversary against EG, we build an adversary B against
DDH: let us be given a DDH instance (X ,Y ,Z )

• A gets pk ← y = gx from K, and outputs (m0,m1)

• The challenger chooses r∗ R← Z?
q and sets c1 ← gr∗

• The challenger chooses b R← {0,1}, sets c2 ← y r∗ ×mb,
and sends c = (c1, c2)

ENS/CNRS/INRIA Cascade David Pointcheval 56/71



ElGamal is IND− CPA: Proof

Let A be an adversary against EG, we build an adversary B against
DDH: let us be given a DDH instance (X ,Y ,Z )

• A gets pk ← y = gx from K, and outputs (m0,m1)

• The challenger chooses r∗ R← Z?
q and sets c1 ← gr∗

• The challenger chooses b R← {0,1}, sets c2 ← y r∗ ×mb,
and sends c = (c1, c2)

• A receives c ← (c1, c2), and outputs b′

ENS/CNRS/INRIA Cascade David Pointcheval 56/71



ElGamal is IND− CPA: Proof

Let A be an adversary against EG, we build an adversary B against
DDH: let us be given a DDH instance (X ,Y ,Z )

• A gets pk ← y = gx from K, and outputs (m0,m1)

• The challenger chooses r∗ R← Z?
q and sets c1 ← gr∗

• The challenger chooses b R← {0,1}, sets c2 ← y r∗ ×mb,
and sends c = (c1, c2)

• A receives c ← (c1, c2), and outputs b′

• 2× Pr[b′ = b]− 1 = Advind−cpa
EG (A)

ENS/CNRS/INRIA Cascade David Pointcheval 56/71



ElGamal is IND− CPA: Proof

Let A be an adversary against EG, we build an adversary B against
DDH: let us be given a DDH instance (X ,Y ,Z )

• A gets pk ← X from B, and outputs (m0,m1)

• The challenger chooses r∗ R← Z?
q and sets c1 ← gr∗

• The challenger chooses b R← {0,1}, sets c2 ← y r∗ ×mb,
and sends c = (c1, c2)

• A receives c ← (c1, c2), and outputs b′

• 2× Pr[b′ = b]− 1 = Advind−cpa
EG (A)

ENS/CNRS/INRIA Cascade David Pointcheval 56/71



ElGamal is IND− CPA: Proof

Let A be an adversary against EG, we build an adversary B against
DDH: let us be given a DDH instance (X ,Y ,Z )

• A gets pk ← X from B, and outputs (m0,m1)

• B sets c1 ← Y

• The challenger chooses b R← {0,1}, sets c2 ← y r∗ ×mb,
and sends c = (c1, c2)

• A receives c ← (c1, c2), and outputs b′

• 2× Pr[b′ = b]− 1 = Advind−cpa
EG (A)

ENS/CNRS/INRIA Cascade David Pointcheval 56/71



ElGamal is IND− CPA: Proof

Let A be an adversary against EG, we build an adversary B against
DDH: let us be given a DDH instance (X ,Y ,Z )

• A gets pk ← X from B, and outputs (m0,m1)

• B sets c1 ← Y

• B chooses b R← {0,1}, sets c2 ← Z ×mb,
and sends c = (c1, c2)

• A receives c ← (c1, c2), and outputs b′

• 2× Pr[b′ = b]− 1 = Advind−cpa
EG (A)

ENS/CNRS/INRIA Cascade David Pointcheval 56/71



ElGamal is IND− CPA: Proof

Let A be an adversary against EG, we build an adversary B against
DDH: let us be given a DDH instance (X ,Y ,Z )

• A gets pk ← X from B, and outputs (m0,m1)

• B sets c1 ← Y

• B chooses b R← {0,1}, sets c2 ← Z ×mb,
and sends c = (c1, c2)

• B receives b′ from A and outputs d = (b′ = b)

• 2× Pr[b′ = b]− 1 = Advind−cpa
EG (A)

ENS/CNRS/INRIA Cascade David Pointcheval 56/71



ElGamal is IND− CPA: Proof

Let A be an adversary against EG, we build an adversary B against
DDH: let us be given a DDH instance (X ,Y ,Z )

• A gets pk ← X from B, and outputs (m0,m1)

• B sets c1 ← Y

• B chooses b R← {0,1}, sets c2 ← Z ×mb,
and sends c = (c1, c2)

• B receives b′ from A and outputs d = (b′ = b)

• |2× Pr[b′ = b]− 1|
= Advind−cpa

EG (A), if Z = CDH(X ,Y )

ENS/CNRS/INRIA Cascade David Pointcheval 56/71



ElGamal is IND− CPA: Proof

Let A be an adversary against EG, we build an adversary B against
DDH: let us be given a DDH instance (X ,Y ,Z )

• A gets pk ← X from B, and outputs (m0,m1)

• B sets c1 ← Y

• B chooses b R← {0,1}, sets c2 ← Z ×mb,
and sends c = (c1, c2)

• B receives b′ from A and outputs d = (b′ = b)

• |2× Pr[b′ = b]− 1|
= Advind−cpa

EG (A), if Z = CDH(X ,Y )

= 0, otherwise

ENS/CNRS/INRIA Cascade David Pointcheval 56/71



ElGamal is IND− CPA: Proof

As a consequence,

• |2× Pr[b′ = b|Z = CDH(X ,Y )]− 1| = Advind−cpa
EG (A)

•
∣∣∣2× Pr[b′ = b|Z R← G]− 1

∣∣∣ = 0

Advind−cpa
EG (A) = 2×

∣∣∣∣∣ Pr[d = 1|Z = CDH(X ,Y )]

−Pr[d = 1|Z R← G]

∣∣∣∣∣
= 2× Advddh

G (B) ≤ 2× Advddh
G (t)

ENS/CNRS/INRIA Cascade David Pointcheval 57/71



ElGamal is IND− CPA: Proof

As a consequence,

• |2× Pr[b′ = b|Z = CDH(X ,Y )]− 1| = Advind−cpa
EG (A)

•
∣∣∣2× Pr[b′ = b|Z R← G]− 1

∣∣∣ = 0

Advind−cpa
EG (A) = 2×

∣∣∣∣∣ Pr[d = 1|Z = CDH(X ,Y )]

−Pr[d = 1|Z R← G]

∣∣∣∣∣
= 2× Advddh

G (B) ≤ 2× Advddh
G (t)

ENS/CNRS/INRIA Cascade David Pointcheval 57/71



RSA Encryption [Rivest-Shamir-Adleman 1978]

RSA Encryption
The RSA encryption scheme RSA is defined by

• K(1k ): p and q two random k -bit prime integers,
and an exponent e (possibly fixed, or not):
sk ← d = e−1 mod ϕ(n) and pk ← (n,e)

• Epk (m): the ciphertext is c = me mod n

• Dsk (c): the plaintext is m = cd mod n

Theorem (RSA is OW− CPA, but. . . )

Succow−cpa
RSA (t) ≤ Succrsa(t)

A deterministic encryption scheme cannot be IND− CPA

ENS/CNRS/INRIA Cascade David Pointcheval 58/71



RSA Encryption [Rivest-Shamir-Adleman 1978]

RSA Encryption
The RSA encryption scheme RSA is defined by

• K(1k ): p and q two random k -bit prime integers,
and an exponent e (possibly fixed, or not):
sk ← d = e−1 mod ϕ(n) and pk ← (n,e)

• Epk (m): the ciphertext is c = me mod n

• Dsk (c): the plaintext is m = cd mod n

Theorem (RSA is OW− CPA, but. . . )

Succow−cpa
RSA (t) ≤ Succrsa(t)

A deterministic encryption scheme cannot be IND− CPA

ENS/CNRS/INRIA Cascade David Pointcheval 58/71



RSA Encryption [Rivest-Shamir-Adleman 1978]

RSA Encryption
The RSA encryption scheme RSA is defined by

• K(1k ): p and q two random k -bit prime integers,
and an exponent e (possibly fixed, or not):
sk ← d = e−1 mod ϕ(n) and pk ← (n,e)

• Epk (m): the ciphertext is c = me mod n

• Dsk (c): the plaintext is m = cd mod n

Theorem (RSA is OW− CPA, but. . . )

Succow−cpa
RSA (t) ≤ Succrsa(t)

A deterministic encryption scheme cannot be IND− CPA

ENS/CNRS/INRIA Cascade David Pointcheval 58/71



Outline

Cryptography

Provable Security

Basic Security Notions

Public-Key Encryption

Variants of Indistinguishability

Signatures

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 59/71



Indistinguishability vs. Find-then-Guess
[Bellare-Desai-Jokipii-Rogaway 1997]

FtG− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and chooses 2 messages m0 and m1

• The challenger returns the encryption c of mb under pk

• The adversary outputs its guess b′ on the bit b

Advftg−cpa
S (A) = Advind−cpa

S (A) =
∣∣2× Pr[b′ = b]− 1

∣∣
Note: the adversary has access to the following oracle, only once:
LRb(m0,m1): outputs the encryption of mb under pk

ENS/CNRS/INRIA Cascade David Pointcheval 60/71



Indistinguishability vs. Find-then-Guess
[Bellare-Desai-Jokipii-Rogaway 1997]

FtG− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and chooses 2 messages m0 and m1

• The challenger returns the encryption c of mb under pk

• The adversary outputs its guess b′ on the bit b

Advftg−cpa
S (A) = Advind−cpa

S (A) =
∣∣2× Pr[b′ = b]− 1

∣∣
Note: the adversary has access to the following oracle, only once:
LRb(m0,m1): outputs the encryption of mb under pk

ENS/CNRS/INRIA Cascade David Pointcheval 60/71



Indistinguishability vs. Find-then-Guess
[Bellare-Desai-Jokipii-Rogaway 1997]

FtG− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and chooses 2 messages m0 and m1

• The challenger returns the encryption c of mb under pk

• The adversary outputs its guess b′ on the bit b

Advftg−cpa
S (A) = Advind−cpa

S (A) =
∣∣2× Pr[b′ = b]− 1

∣∣
Note: the adversary has access to the following oracle, only once:
LRb(m0,m1): outputs the encryption of mb under pk

ENS/CNRS/INRIA Cascade David Pointcheval 60/71



Indistinguishability vs. Find-then-Guess
[Bellare-Desai-Jokipii-Rogaway 1997]

FtG− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and chooses 2 messages m0 and m1

• The challenger returns the encryption c of mb under pk

• The adversary outputs its guess b′ on the bit b

Advftg−cpa
S (A) = Advind−cpa

S (A) =
∣∣2× Pr[b′ = b]− 1

∣∣
Note: the adversary has access to the following oracle, only once:
LRb(m0,m1): outputs the encryption of mb under pk

ENS/CNRS/INRIA Cascade David Pointcheval 60/71



Indistinguishability vs. Find-then-Guess
[Bellare-Desai-Jokipii-Rogaway 1997]

FtG− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and chooses 2 messages m0 and m1

• The challenger returns the encryption c of mb under pk

• The adversary outputs its guess b′ on the bit b

Advftg−cpa
S (A) = Advind−cpa

S (A) =
∣∣2× Pr[b′ = b]− 1

∣∣
Note: the adversary has access to the following oracle, only once:
LRb(m0,m1): outputs the encryption of mb under pk

ENS/CNRS/INRIA Cascade David Pointcheval 60/71



Indistinguishability vs. Find-then-Guess
[Bellare-Desai-Jokipii-Rogaway 1997]

FtG− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and chooses 2 messages m0 and m1

• The challenger returns the encryption c of mb under pk

• The adversary outputs its guess b′ on the bit b

Advftg−cpa
S (A) = Advind−cpa

S (A) =
∣∣2× Pr[b′ = b]− 1

∣∣
Note: the adversary has access to the following oracle, only once:
LRb(m0,m1): outputs the encryption of mb under pk

ENS/CNRS/INRIA Cascade David Pointcheval 60/71



Indistinguishability vs. Find-then-Guess
[Bellare-Desai-Jokipii-Rogaway 1997]

FtG− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and chooses 2 messages m0 and m1

• The challenger returns the encryption c of mb under pk

• The adversary outputs its guess b′ on the bit b

Advftg−cpa
S (A) = Advind−cpa

S (A) =
∣∣2× Pr[b′ = b]− 1

∣∣
Note: the adversary has access to the following oracle, only once:
LRb(m0,m1): outputs the encryption of mb under pk

ENS/CNRS/INRIA Cascade David Pointcheval 60/71



Indistinguishability vs. Find-then-Guess
[Bellare-Desai-Jokipii-Rogaway 1997]

FtG− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and chooses 2 messages m0 and m1 Find stage

• The challenger returns the encryption c of mb under pk

• The adversary outputs its guess b′ on the bit b

Advftg−cpa
S (A) = Advind−cpa

S (A) =
∣∣2× Pr[b′ = b]− 1

∣∣
Note: the adversary has access to the following oracle, only once:
LRb(m0,m1): outputs the encryption of mb under pk

ENS/CNRS/INRIA Cascade David Pointcheval 60/71



Indistinguishability vs. Find-then-Guess
[Bellare-Desai-Jokipii-Rogaway 1997]

FtG− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and chooses 2 messages m0 and m1 Find stage

• The challenger returns the encryption c of mb under pk

• The adversary outputs its guess b′ on the bit b Guess stage

Advftg−cpa
S (A) = Advind−cpa

S (A) =
∣∣2× Pr[b′ = b]− 1

∣∣
Note: the adversary has access to the following oracle, only once:
LRb(m0,m1): outputs the encryption of mb under pk

ENS/CNRS/INRIA Cascade David Pointcheval 60/71



Indistinguishability vs. Find-then-Guess
[Bellare-Desai-Jokipii-Rogaway 1997]

FtG− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and chooses 2 messages m0 and m1 Find stage

• The challenger returns the encryption c of mb under pk

• The adversary outputs its guess b′ on the bit b Guess stage

Advftg−cpa
S (A) = Advind−cpa

S (A) =
∣∣2× Pr[b′ = b]− 1

∣∣
Note: the adversary has access to the following oracle, only once:
LRb(m0,m1): outputs the encryption of mb under pk

ENS/CNRS/INRIA Cascade David Pointcheval 60/71



Left-or-Right Indistinguishability
[Bellare-Desai-Jokipii-Rogaway 1997]

LoR− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and asks LR on any pair (m0,m1) of its choice

• The challenger answers using LRb

• The adversary outputs its guess b′ on the bit b

Advlor−cpa
S (A) =

∣∣2× Pr[b′ = b]− 1
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 61/71



Left-or-Right Indistinguishability
[Bellare-Desai-Jokipii-Rogaway 1997]

LoR− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and asks LR on any pair (m0,m1) of its choice

• The challenger answers using LRb

• The adversary outputs its guess b′ on the bit b

Advlor−cpa
S (A) =

∣∣2× Pr[b′ = b]− 1
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 61/71



Left-or-Right Indistinguishability
[Bellare-Desai-Jokipii-Rogaway 1997]

LoR− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and asks LR on any pair (m0,m1) of its choice

• The challenger answers using LRb

• The adversary outputs its guess b′ on the bit b

Advlor−cpa
S (A) =

∣∣2× Pr[b′ = b]− 1
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 61/71



Left-or-Right Indistinguishability
[Bellare-Desai-Jokipii-Rogaway 1997]

LoR− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and asks LR on any pair (m0,m1) of its choice

• The challenger answers using LRb

• The adversary outputs its guess b′ on the bit b

Advlor−cpa
S (A) =

∣∣2× Pr[b′ = b]− 1
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 61/71



Left-or-Right Indistinguishability
[Bellare-Desai-Jokipii-Rogaway 1997]

LoR− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and asks LR on any pair (m0,m1) of its choice

• The challenger answers using LRb

• The adversary outputs its guess b′ on the bit b

Advlor−cpa
S (A) =

∣∣2× Pr[b′ = b]− 1
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 61/71



Left-or-Right Indistinguishability
[Bellare-Desai-Jokipii-Rogaway 1997]

LoR− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and asks LR on any pair (m0,m1) of its choice

• The challenger answers using LRb

• The adversary outputs its guess b′ on the bit b

Advlor−cpa
S (A) =

∣∣2× Pr[b′ = b]− 1
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 61/71



Left-or-Right Indistinguishability
[Bellare-Desai-Jokipii-Rogaway 1997]

LoR− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and asks LR on any pair (m0,m1) of its choice

• The challenger answers using LRb

• The adversary outputs its guess b′ on the bit b

Advlor−cpa
S (A) =

∣∣2× Pr[b′ = b]− 1
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 61/71



Find-then-Guess vs. Left-or-Right

Theorem (FtG n∼ LoR)

∀t , Advftg−cpa
S (t) ≤ Advlor−cpa

S (t)

∀t , Advlor−cpa
S (t) ≤ n × Advftg−cpa

S (t)

where n is the number of LR queries

LoR⇒ FtG is clear

FtG⇒ LoR: hybrid distribution of the sequence of bits b

• The Left distribution is (0,0, . . . ,0) ∈ {0,1}n, for the LR queries

• The Right distribution is (1,1, . . . ,1) ∈ {0,1}n, for the LR queries

• Hybrid distribution: Di = (0, . . . ,0,1, . . . ,1) = 0i1n−i ∈ {0,1}n

Dist(D0,Dn) = Advlor−cpa
S (A) Dist(Di ,Di+1) ≤ Advftg−cpa

S (t)

ENS/CNRS/INRIA Cascade David Pointcheval 62/71



Find-then-Guess vs. Left-or-Right

Theorem (FtG n∼ LoR)

∀t , Advftg−cpa
S (t) ≤ Advlor−cpa

S (t)

∀t , Advlor−cpa
S (t) ≤ n × Advftg−cpa

S (t)

where n is the number of LR queries

LoR⇒ FtG is clear

FtG⇒ LoR: hybrid distribution of the sequence of bits b

• The Left distribution is (0,0, . . . ,0) ∈ {0,1}n, for the LR queries

• The Right distribution is (1,1, . . . ,1) ∈ {0,1}n, for the LR queries

• Hybrid distribution: Di = (0, . . . ,0,1, . . . ,1) = 0i1n−i ∈ {0,1}n

Dist(D0,Dn) = Advlor−cpa
S (A) Dist(Di ,Di+1) ≤ Advftg−cpa

S (t)

ENS/CNRS/INRIA Cascade David Pointcheval 62/71



Find-then-Guess vs. Left-or-Right

Theorem (FtG n∼ LoR)

∀t , Advftg−cpa
S (t) ≤ Advlor−cpa

S (t)

∀t , Advlor−cpa
S (t) ≤ n × Advftg−cpa

S (t)

where n is the number of LR queries

LoR⇒ FtG is clear

FtG⇒ LoR: hybrid distribution of the sequence of bits b

• The Left distribution is (0,0, . . . ,0) ∈ {0,1}n, for the LR queries

• The Right distribution is (1,1, . . . ,1) ∈ {0,1}n, for the LR queries

• Hybrid distribution: Di = (0, . . . ,0,1, . . . ,1) = 0i1n−i ∈ {0,1}n

Dist(D0,Dn) = Advlor−cpa
S (A) Dist(Di ,Di+1) ≤ Advftg−cpa

S (t)

ENS/CNRS/INRIA Cascade David Pointcheval 62/71



Find-then-Guess vs. Left-or-Right

Theorem (FtG n∼ LoR)

∀t , Advftg−cpa
S (t) ≤ Advlor−cpa

S (t)

∀t , Advlor−cpa
S (t) ≤ n × Advftg−cpa

S (t)

where n is the number of LR queries

LoR⇒ FtG is clear

FtG⇒ LoR: hybrid distribution of the sequence of bits b

• The Left distribution is (0,0, . . . ,0) ∈ {0,1}n, for the LR queries

• The Right distribution is (1,1, . . . ,1) ∈ {0,1}n, for the LR queries

• Hybrid distribution: Di = (0, . . . ,0,1, . . . ,1) = 0i1n−i ∈ {0,1}n

Dist(D0,Dn) = Advlor−cpa
S (A) Dist(Di ,Di+1) ≤ Advftg−cpa

S (t)

ENS/CNRS/INRIA Cascade David Pointcheval 62/71



Find-then-Guess vs. Left-or-Right

Theorem (FtG n∼ LoR)

∀t , Advftg−cpa
S (t) ≤ Advlor−cpa

S (t)

∀t , Advlor−cpa
S (t) ≤ n × Advftg−cpa

S (t)

where n is the number of LR queries

LoR⇒ FtG is clear

FtG⇒ LoR: hybrid distribution of the sequence of bits b

• The Left distribution is (0,0, . . . ,0) ∈ {0,1}n, for the LR queries

• The Right distribution is (1,1, . . . ,1) ∈ {0,1}n, for the LR queries

• Hybrid distribution: Di = (0, . . . ,0,1, . . . ,1) = 0i1n−i ∈ {0,1}n

Dist(D0,Dn) = Advlor−cpa
S (A) Dist(Di ,Di+1) ≤ Advftg−cpa

S (t)

ENS/CNRS/INRIA Cascade David Pointcheval 62/71



Real-or-Random Indistinguishability
[Bellare-Desai-Jokipii-Rogaway 1997]

RoR− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and asks RR on any message m of its choice
• The challenger answers using RRb:

• if b = 0, the RR0 encrypts m Real
• if b = 1, the RR1 encrypts a random message Random

• The adversary outputs its guess b′ on the bit b

Advror−cpa
S (A) =

∣∣2× Pr[b′ = b]− 1
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 63/71



Real-or-Random Indistinguishability
[Bellare-Desai-Jokipii-Rogaway 1997]

RoR− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and asks RR on any message m of its choice
• The challenger answers using RRb:

• if b = 0, the RR0 encrypts m Real
• if b = 1, the RR1 encrypts a random message Random

• The adversary outputs its guess b′ on the bit b

Advror−cpa
S (A) =

∣∣2× Pr[b′ = b]− 1
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 63/71



Real-or-Random Indistinguishability
[Bellare-Desai-Jokipii-Rogaway 1997]

RoR− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and asks RR on any message m of its choice
• The challenger answers using RRb:

• if b = 0, the RR0 encrypts m Real
• if b = 1, the RR1 encrypts a random message Random

• The adversary outputs its guess b′ on the bit b

Advror−cpa
S (A) =

∣∣2× Pr[b′ = b]− 1
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 63/71



Real-or-Random Indistinguishability
[Bellare-Desai-Jokipii-Rogaway 1997]

RoR− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and asks RR on any message m of its choice
• The challenger answers using RRb:

• if b = 0, the RR0 encrypts m Real
• if b = 1, the RR1 encrypts a random message Random

• The adversary outputs its guess b′ on the bit b

Advror−cpa
S (A) =

∣∣2× Pr[b′ = b]− 1
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 63/71



Real-or-Random Indistinguishability
[Bellare-Desai-Jokipii-Rogaway 1997]

RoR− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and asks RR on any message m of its choice
• The challenger answers using RRb:

• if b = 0, the RR0 encrypts m Real
• if b = 1, the RR1 encrypts a random message Random

• The adversary outputs its guess b′ on the bit b

Advror−cpa
S (A) =

∣∣2× Pr[b′ = b]− 1
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 63/71



Real-or-Random Indistinguishability
[Bellare-Desai-Jokipii-Rogaway 1997]

RoR− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and asks RR on any message m of its choice
• The challenger answers using RRb:

• if b = 0, the RR0 encrypts m Real
• if b = 1, the RR1 encrypts a random message Random

• The adversary outputs its guess b′ on the bit b

Advror−cpa
S (A) =

∣∣2× Pr[b′ = b]− 1
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 63/71



Real-or-Random Indistinguishability
[Bellare-Desai-Jokipii-Rogaway 1997]

RoR− CPA

• The challenger flips a bit b

• The challenger runs the key generation algorithm (sk ,pk)← K()
• The adversary receives the public key pk ,

and asks RR on any message m of its choice
• The challenger answers using RRb:

• if b = 0, the RR0 encrypts m Real
• if b = 1, the RR1 encrypts a random message Random

• The adversary outputs its guess b′ on the bit b

Advror−cpa
S (A) =

∣∣2× Pr[b′ = b]− 1
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 63/71



Left-or-Right vs. Real-Random

Theorem (LoR ∼ RoR)

∀t , Advror−cpa
S (t) ≤ Advlor−cpa

S (t)

∀t , Advlor−cpa
S (t) ≤ 2× Advror−cpa

S (t)

LoR⇒ RoR is clear (using m0 = m and m1
R←M)

RoR⇒ LoR: B flips a bit d , and uses md for the RR oracle, then
forwards A’s answer

Pr[d ← B|Real] = Pr[d ← A] Pr[d ← B|Random] = 1/2

Advlor(A) = |2× Pr[d ← A]− 1|
= |2× Pr[d ← B|Real]− 2× Pr[d ← B|Random]|
≤ 2× Advror(B)

ENS/CNRS/INRIA Cascade David Pointcheval 64/71



Left-or-Right vs. Real-Random

Theorem (LoR ∼ RoR)

∀t , Advror−cpa
S (t) ≤ Advlor−cpa

S (t)

∀t , Advlor−cpa
S (t) ≤ 2× Advror−cpa

S (t)

LoR⇒ RoR is clear (using m0 = m and m1
R←M)

RoR⇒ LoR: B flips a bit d , and uses md for the RR oracle, then
forwards A’s answer

Pr[d ← B|Real] = Pr[d ← A] Pr[d ← B|Random] = 1/2

Advlor(A) = |2× Pr[d ← A]− 1|
= |2× Pr[d ← B|Real]− 2× Pr[d ← B|Random]|
≤ 2× Advror(B)

ENS/CNRS/INRIA Cascade David Pointcheval 64/71



Left-or-Right vs. Real-Random

Theorem (LoR ∼ RoR)

∀t , Advror−cpa
S (t) ≤ Advlor−cpa

S (t)

∀t , Advlor−cpa
S (t) ≤ 2× Advror−cpa

S (t)

LoR⇒ RoR is clear (using m0 = m and m1
R←M)

RoR⇒ LoR: B flips a bit d , and uses md for the RR oracle, then
forwards A’s answer

Pr[d ← B|Real] = Pr[d ← A] Pr[d ← B|Random] = 1/2

Advlor(A) = |2× Pr[d ← A]− 1|
= |2× Pr[d ← B|Real]− 2× Pr[d ← B|Random]|
≤ 2× Advror(B)

ENS/CNRS/INRIA Cascade David Pointcheval 64/71



Left-or-Right vs. Real-Random

Theorem (LoR ∼ RoR)

∀t , Advror−cpa
S (t) ≤ Advlor−cpa

S (t)

∀t , Advlor−cpa
S (t) ≤ 2× Advror−cpa

S (t)

LoR⇒ RoR is clear (using m0 = m and m1
R←M)

RoR⇒ LoR: B flips a bit d , and uses md for the RR oracle, then
forwards A’s answer

Pr[d ← B|Real] = Pr[d ← A] Pr[d ← B|Random] = 1/2

Advlor(A) = |2× Pr[d ← A]− 1|
= |2× Pr[d ← B|Real]− 2× Pr[d ← B|Random]|
≤ 2× Advror(B)

ENS/CNRS/INRIA Cascade David Pointcheval 64/71



Outline

Cryptography

Provable Security

Basic Security Notions

Public-Key Encryption

Variants of Indistinguishability

Signatures

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 65/71



Signature

Goal: Authentication of the sender

ENS/CNRS/INRIA Cascade David Pointcheval 66/71



Signature

Goal: Authentication of the sender

ENS/CNRS/INRIA Cascade David Pointcheval 66/71



EUF− NMA

Existential Unforgeability
For a signature scheme SG = (K,S,V), without the secrete key sk ,
it should be computationally impossible to generate a valid pair
(m, σ):

Succeuf
SG(A) = Pr[(sk ,pk)← K(); (m, σ)← A(pk) : Vpk (m, σ) = 1]

should be negligible.

No-Message Attacks
In the public-key setting, the adversary has access to the
verification key (the public key), but not necessarily to valid
signatures: no-message attack

ENS/CNRS/INRIA Cascade David Pointcheval 67/71



EUF− NMA

Existential Unforgeability
For a signature scheme SG = (K,S,V), without the secrete key sk ,
it should be computationally impossible to generate a valid pair
(m, σ):

Succeuf
SG(A) = Pr[(sk ,pk)← K(); (m, σ)← A(pk) : Vpk (m, σ) = 1]

should be negligible.

No-Message Attacks
In the public-key setting, the adversary has access to the
verification key (the public key), but not necessarily to valid
signatures: no-message attack

ENS/CNRS/INRIA Cascade David Pointcheval 67/71



EUF− NMA Security Game

A

ENS/CNRS/INRIA Cascade David Pointcheval 68/71



EUF− NMA Security Game

A

kskv G

ENS/CNRS/INRIA Cascade David Pointcheval 68/71



EUF− NMA Security Game

A

kskv G

(m,σ)

ENS/CNRS/INRIA Cascade David Pointcheval 68/71



EUF− NMA Security Game

A

kskv G

(m,σ)

V(kv,m,σ)?

ENS/CNRS/INRIA Cascade David Pointcheval 68/71



RSA Signature [Rivest-Shamir-Adleman 1978]

RSA Signature
The RSA signature scheme RSA is defined by

• K(1k ): p and q two random k -bit prime integers,
and an exponent v (possibly fixed, or not):
sk ← s = v−1 mod ϕ(n) and pk ← (n, v)

• Ssk (m): the signature is σ = ms mod n

• Vpk (m, σ) checks whether m = σv mod n

Theorem (RSA is not EUF− NMA)
The plain RSA signature is not secure at all!

ENS/CNRS/INRIA Cascade David Pointcheval 69/71



RSA Signature [Rivest-Shamir-Adleman 1978]

RSA Signature
The RSA signature scheme RSA is defined by

• K(1k ): p and q two random k -bit prime integers,
and an exponent v (possibly fixed, or not):
sk ← s = v−1 mod ϕ(n) and pk ← (n, v)

• Ssk (m): the signature is σ = ms mod n

• Vpk (m, σ) checks whether m = σv mod n

Theorem (RSA is not EUF− NMA)
The plain RSA signature is not secure at all!

ENS/CNRS/INRIA Cascade David Pointcheval 69/71



Conclusion



Outline

Cryptography

Provable Security

Basic Security Notions

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 70/71



Conclusion

• Provable security provides guarantees on the security level
• But strong security notions have to be defined

• encryption:
• indistinguishability is not enough
• some information may leak

• signature: some signatures may be available

• We will provide stronger security notions
Proofs will become more intricate!

• We will provide new proof techniques

ENS/CNRS/INRIA Cascade David Pointcheval 71/71



Conclusion

• Provable security provides guarantees on the security level
• But strong security notions have to be defined

• encryption:
• indistinguishability is not enough
• some information may leak

• signature: some signatures may be available

• We will provide stronger security notions
Proofs will become more intricate!

• We will provide new proof techniques

ENS/CNRS/INRIA Cascade David Pointcheval 71/71



Conclusion

• Provable security provides guarantees on the security level
• But strong security notions have to be defined

• encryption:
• indistinguishability is not enough
• some information may leak

• signature: some signatures may be available

• We will provide stronger security notions
Proofs will become more intricate!

• We will provide new proof techniques

ENS/CNRS/INRIA Cascade David Pointcheval 71/71



Conclusion

• Provable security provides guarantees on the security level
• But strong security notions have to be defined

• encryption:
• indistinguishability is not enough
• some information may leak

• signature: some signatures may be available

• We will provide stronger security notions
Proofs will become more intricate!

• We will provide new proof techniques

ENS/CNRS/INRIA Cascade David Pointcheval 71/71



Conclusion

• Provable security provides guarantees on the security level
• But strong security notions have to be defined

• encryption:
• indistinguishability is not enough
• some information may leak

• signature: some signatures may be available

• We will provide stronger security notions
Proofs will become more intricate!

• We will provide new proof techniques

ENS/CNRS/INRIA Cascade David Pointcheval 71/71



Conclusion

• Provable security provides guarantees on the security level
• But strong security notions have to be defined

• encryption:
• indistinguishability is not enough
• some information may leak

• signature: some signatures may be available

• We will provide stronger security notions
Proofs will become more intricate!

• We will provide new proof techniques

ENS/CNRS/INRIA Cascade David Pointcheval 71/71



Conclusion

• Provable security provides guarantees on the security level
• But strong security notions have to be defined

• encryption:
• indistinguishability is not enough
• some information may leak

• signature: some signatures may be available

• We will provide stronger security notions
Proofs will become more intricate!

• We will provide new proof techniques

ENS/CNRS/INRIA Cascade David Pointcheval 71/71



Conclusion

• Provable security provides guarantees on the security level
• But strong security notions have to be defined

• encryption:
• indistinguishability is not enough
• some information may leak

• signature: some signatures may be available

• We will provide stronger security notions
Proofs will become more intricate!

• We will provide new proof techniques

ENS/CNRS/INRIA Cascade David Pointcheval 71/71



Conclusion

• Provable security provides guarantees on the security level
• But strong security notions have to be defined

• encryption:
• indistinguishability is not enough
• some information may leak

• signature: some signatures may be available

• We will provide stronger security notions
Proofs will become more intricate!

• We will provide new proof techniques

ENS/CNRS/INRIA Cascade David Pointcheval 71/71



Conclusion

• Provable security provides guarantees on the security level
• But strong security notions have to be defined

• encryption:
• indistinguishability is not enough
• some information may leak

• signature: some signatures may be available

• We will provide stronger security notions
Proofs will become more intricate!

• We will provide new proof techniques

ENS/CNRS/INRIA Cascade David Pointcheval 71/71



Conclusion

• Provable security provides guarantees on the security level
• But strong security notions have to be defined

• encryption:
• indistinguishability is not enough
• some information may leak

• signature: some signatures may be available

• We will provide stronger security notions
Proofs will become more intricate!

• We will provide new proof techniques

ENS/CNRS/INRIA Cascade David Pointcheval 71/71


	Main Part
	Cryptography
	Introduction
	Kerckhoffs' Principles
	Formal Notations

	Provable Security
	Definition
	Computational Assumptions
	Some Reductions

	Basic Security Notions
	Public-Key Encryption
	Variants of Indistinguishability
	Signatures

	Conclusion
	Conclusion



