I – Basic Notions

David Pointcheval MPRI – Paris

Ecole normale supérieure/PSL, CNRS & INRIA

ENS/CNRS/INRIA Cascade

David Pointcheval

Cryptography

Provable Security

Basic Security Notions

Conclusion

Cryptography

Introduction

Kerckhoffs' Principles

Formal Notations

Provable Security

Basic Security Notions

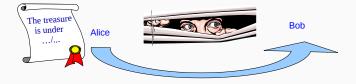
Conclusion

One ever wanted to communicate secretly

Bob

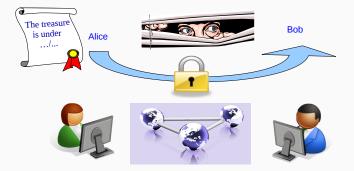
One ever wanted to communicate secretly

One ever wanted to communicate secretly



One ever wanted to communicate secretly

One ever wanted to communicate secretly



With the all-digital world, security needs are even stronger

Substitutions and permutations Security relies on the secrecy of the mechanism

Scytale - Permutation

Substitutions and permutations Security relies on the secrecy of the mechanism

Scytale - Permutation

Substitutions and permutations Security relies on the secrecy of the mechanism

Alberti's disk Mono-alphabetical Substitution

ENS/CNRS/INRIA Cascade

David Pointcheval

Scytale - Permutation

Alberti's disk Mono-alphabetical Substitution

Substitutions and permutations Security relies on the secrecy of the mechanism

Wheel – M 94 (CSP 488) Poly-alphabetical Substitution

ENS/CNRS/INRIA Cascade

Scytale - Permutation

Alberti's disk Mono-alphabetical Substitution Substitutions and permutations Security relies on the secrecy of the mechanism

Wheel – M 94 (CSP 488) Poly-alphabetical Substitution

ENS/CNRS/INRIA Cascade

David Pointcheval

Cryptography

Introduction

Kerckhoffs' Principles

Formal Notations

Provable Security

Basic Security Notions

Conclusion

Le système doit être matèriellement, sinon mathématiquement, indéchiffrable

The system should be, if not theoretically unbreakable, unbreakable in practice

 \longrightarrow If the security cannot be formally proven, heuristics should provide some confidence.

Le système doit être matèriellement, sinon mathématiquement, indéchiffrable

The system should be, if not theoretically unbreakable, unbreakable in practice

 \longrightarrow If the security cannot be formally proven, heuristics should provide some confidence.

Il faut qu'il n'exige pas le secret, et qu'il puisse sans inconvénient tomber entre les mains de l'ennemi

Compromise of the system should not inconvenience the correspondents

ightarrow The description of the mechanism should be public

Il faut qu'il n'exige pas le secret, et qu'il puisse sans inconvénient tomber entre les mains de l'ennemi

Compromise of the system should not inconvenience the correspondents

 \longrightarrow The description of the mechanism should be public

La clef doit pouvoir en être communiquée et retenue sans le secours de notes écrites, et être changée ou modifiée au gré des correspondants

The key should be rememberable without notes and should be easily changeable

 \longrightarrow The parameters specific to the users (the key) should be short

La clef doit pouvoir en être communiquée et retenue sans le secours de notes écrites, et être changée ou modifiée au gré des correspondants

The key should be rememberable without notes and should be easily changeable

 \longrightarrow The parameters specific to the users (the key) should be short

A shared information (secret key) between the sender and the receiver parameterizes the mechanism:

- · Vigenère: each key letter tells the shift
- Enigma: connectors and rotors

A shared information (secret key) between the sender and the receiver parameterizes the mechanism:

- · Vigenère: each key letter tells the shift
- Enigma: connectors and rotors

Use of (Secret) Key

A shared information (secret key) between the sender and the receiver parameterizes the mechanism:

- · Vigenère: each key letter tells the shift
- Enigma: connectors and rotors

Use of (Secret) Key

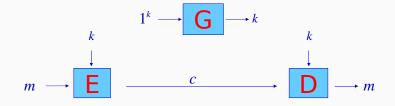
A shared information (secret key) between the sender and the receiver parameterizes the mechanism:

- · Vigenère: each key letter tells the shift
- Enigma: connectors and rotors

Security **looks** better: but broken (Alan Turing *et al.*)

Symmetric Encryption

Principles 2 and 3 define the concepts of symmetric cryptography:



Secrecy

It is impossible/hard to recover *m* from *c* only (without *k*)

Security

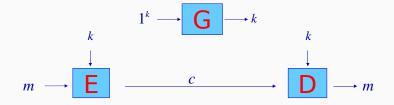
It is heuristic only: 1st principle

ENS/CNRS/INRIA Cascade

David Pointcheval

Symmetric Encryption

Principles 2 and 3 define the concepts of symmetric cryptography:



Secrecy

It is impossible/hard to recover m from c only (without k)

Security

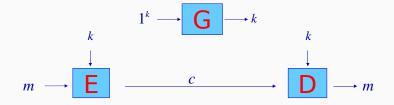
It is heuristic only: 1st principle

ENS/CNRS/INRIA Cascade

David Pointcheval

Symmetric Encryption

Principles 2 and 3 define the concepts of symmetric cryptography:



Secrecy

It is impossible/hard to recover m from c only (without k)

Security

It is heuristic only: 1st principle

Any security indeed vanished with statistical attacks!

Any security indeed vanished with statistical attacks! Perfect secrecy? Is it possible? Any security indeed vanished with statistical attacks! Perfect secrecy? Is it possible?

Perfect Secrecy

The ciphertext does not reveal any (additional) information about the plaintext: no more than known before

- a priori information about the plaintext, defined by the distribution probability of the plaintext
- a posteriori information about the plaintext, defined by the distribution probability of the plaintext, given the ciphertext

Both distributions should be perfectly identical

One-Time Pad Encryption

Vernam's Cipher (1929)

• Encryption of $m \in \{0, 1\}^n$ under the key $k \in \{0, 1\}^n$: $m = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ & \oplus & & & XOR \ (+ \text{ modulo } 2) \\ k = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ & & & = & \\ c = & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

One-Time Pad Encryption

Vernam's Cipher (1929)

• Encryption of $m \in \{0, 1\}^n$ under the key $k \in \{0, 1\}^n$: $m = 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1$ plaintext \oplus XOR (+ modulo 2) $k = 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0$ key = random mask = $c = 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1$ ciphertext • Decryption of $c \in \{0, 1\}^n$ under the key $k \in \{0, 1\}^n$: $c \oplus k = (m \oplus k) \oplus k = m \oplus (k \oplus k) = m$

Vernam's Cipher (1929)

• Encryption of $m \in \{0,1\}^n$ under the key $k \in \{0,1\}^n$:

$$m = \boxed{1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1} \text{ plaintext}$$

$$\oplus \qquad \text{XOR (+ modulo 2)}$$

$$k = \boxed{1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0} \text{ key} = \text{random mask}$$

$$= \\c = \boxed{0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1} \text{ ciphertext}$$

• Decryption of $c \in \{0, 1\}^n$ under the key $k \in \{0, 1\}^n$:

$$c \oplus k = (m \oplus k) \oplus k = m \oplus (k \oplus k) = m$$

Vernam's Cipher (1929)

• Encryption of $m \in \{0,1\}^n$ under the key $k \in \{0,1\}^n$:

$$m = 1 0 0 1 0 1 1$$
 plaintext

$$\oplus XOR (+ \text{ modulo 2})$$

$$k = 1 1 0 1 0 0 0$$
key = random mask

$$=$$

$$c = 0 1 0 0 0 1 1$$
 ciphertext

• Decryption of $c \in \{0, 1\}^n$ under the key $k \in \{0, 1\}^n$: $c \oplus k = (m \oplus k) \oplus k = m \oplus (k \oplus k) = m$

Which message is encrypted in the ciphertext $c \in \{0, 1\}^n$?

Vernam's Cipher (1929)

• Encryption of $m \in \{0,1\}^n$ under the key $k \in \{0,1\}^n$:

$$m = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ & & & \\ & & & \\ &$$

• Decryption of $c \in \{0, 1\}^n$ under the key $k \in \{0, 1\}^n$: $c \oplus k = (m \oplus k) \oplus k = m \oplus (k \oplus k) = m$

Which message is encrypted in the ciphertext $c \in \{0, 1\}^n$?

For any candidate $m \in \{0, 1\}^n$, the key $k = c \oplus m$ would lead to *c*

Vernam's Cipher (1929)

• Encryption of $m \in \{0,1\}^n$ under the key $k \in \{0,1\}^n$:

$$m = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ & & & \\ & & & \\ &$$

• Decryption of $c \in \{0, 1\}^n$ under the key $k \in \{0, 1\}^n$: $c \oplus k = (m \oplus k) \oplus k = m \oplus (k \oplus k) = m$

Which message is encrypted in the ciphertext $c \in \{0, 1\}^n$?

For any candidate $m \in \{0, 1\}^n$, the key $k = c \oplus m$ would lead to c

 \Rightarrow no information about *m* is leaked with *c*!

ENS/CNRS/INRIA Cascade

Information Theory

Drawbacks

- The key must be as long as the plaintext
- This key must be used once only (one-time pad)

Theorem (Shannon – 1949)

To achieve perfect secrecy, A and B have to share a common string truly random and as long as the whole communication.

Thus, the above one-time pad technique is optimal...

Information Theory

Drawbacks

- The key must be as long as the plaintext
- This key must be used once only (one-time pad)

Theorem (Shannon – 1949)

To achieve perfect secrecy, A and B have to share a common string truly random and as long as the whole communication.

Thus, the above one-time pad technique is optimal...

Information Theory

Drawbacks

- The key must be as long as the plaintext
- This key must be used once only (one-time pad)

Theorem (Shannon – 1949)

To achieve perfect secrecy, A and B have to share a common string truly random and as long as the whole communication.

Thus, the above one-time pad technique is optimal...

Practical Secrecy

Perfect Secrecy vs. Practical Secrecy

No information about the plaintext *m* is in the ciphertext *c* without the knowledge of the key *k*

\Rightarrow information theory

No information about the plaintext *m* can be extracted from the ciphertext *c*, even for a powerful adversary (unlimited time and/or unlimited power): perfect secrecy

In practice: adversaries are limited in time/power
 complexity theory

Practical Secrecy

Perfect Secrecy vs. Practical Secrecy

• No information about the plaintext *m* is in the ciphertext *c* without the knowledge of the key *k*

\Rightarrow information theory

No information about the plaintext *m* can be extracted from the ciphertext *c*, even for a powerful adversary (unlimited time and/or unlimited power): perfect secrecy

In practice: adversaries are limited in time/power
 ⇒ complexity theory

Practical Secrecy

Perfect Secrecy vs. Practical Secrecy

• No information about the plaintext *m* is in the ciphertext *c* without the knowledge of the key *k*

\Rightarrow information theory

No information about the plaintext *m* can be extracted from the ciphertext *c*, even for a powerful adversary (unlimited time and/or unlimited power): perfect secrecy

 In practice: adversaries are limited in time/power ⇒ complexity theory

Shannon also showed that combining appropriately permutations and substitutions can hide information: extracting information from the ciphertext is time consuming

Combination of substitutions and permutations

DES (1977) Data Encryption Standard AES (2001) Advanced Encryption Standard

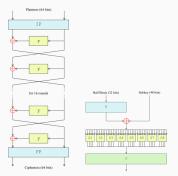
ENS/CNRS/INRIA Cascade

Combination of substitutions and permutations

DES (1977) Data Encryption Standard AES (2001) Advanced Encryption Standard

ENS/CNRS/INRIA Cascade

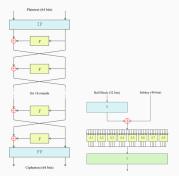
Combination of substitutions and permutations



DES (1977) Data Encryption Standard AES (2001) Advanced Encryption Standard

ENS/CNRS/INRIA Cascade

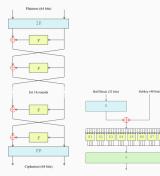
Combination of substitutions and permutations

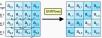


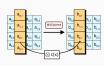
DES (1977) Data Encryption Standard AES (2001) Advanced Encryption Standard

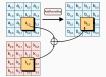
ENS/CNRS/INRIA Cascade

Combination of substitutions and permutations









DES (1977) Data Encryption Standard

AES (2001) Advanced Encryption Standard

Cryptography

Introduction

Kerckhoffs' Principles

Formal Notations

Provable Security

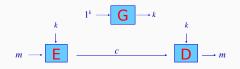
Basic Security Notions

Conclusion

ENS/CNRS/INRIA Cascade

Symmetric Encryption – Secret Key Encryption

One secret key only shared by Alice and Bob: this is a common parameter for the encryption and the decryption algorithms This secret key has a symmetric capability



Symmetric Encryption – Secret Key Encryption

One secret key only shared by Alice and Bob: this is a common parameter for the encryption and the decryption algorithms This secret key has a symmetric capability

The secrecy of the key *k* guarantees the secrecy of communications but requires such a common secret key!

Symmetric Encryption – Secret Key Encryption

One secret key only shared by Alice and Bob: this is a common parameter for the encryption and the decryption algorithms This secret key has a symmetric capability

The secrecy of the key *k* guarantees the secrecy of communications but requires such a common secret key!

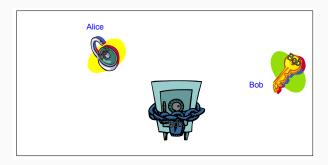
How can we establish such a common secret key? Or, how to avoid it?

- The recipient only should be able to open the message
- · No requirement about the sender

- The recipient only should be able to open the message
- · No requirement about the sender

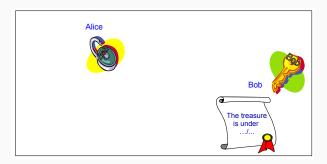
- The recipient only should be able to open the message
- · No requirement about the sender

- The recipient only should be able to open the message
- · No requirement about the sender



- The recipient only should be able to open the message
- · No requirement about the sender

- The recipient only should be able to open the message
- · No requirement about the sender

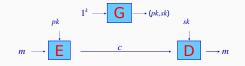


Asymmetric Encryption: Formalism

Public Key Cryptography – Diffie-Hellman (1976)

- Bob's public key is used by Alice as a parameter to encrypt a message to Bob
- Bob's private key is used by Bob as a parameter to decrypt ciphertexts

Asymmetric cryptography extends the 2nd principle:

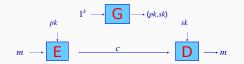


Asymmetric Encryption: Formalism

Public Key Cryptography – Diffie-Hellman (1976)

- Bob's public key is used by Alice as a parameter to encrypt a message to Bob
- Bob's private key is used by Bob as a parameter to decrypt ciphertexts

Asymmetric cryptography extends the 2nd principle:



The secrecy of the private key *sk* guarantees the secrecy of communications

Provable Security

Cryptography

Provable Security

Definition

Computational Assumptions Some Reductions

Basic Security Notions

Conclusion

The secrecy of the key k guarantees the secrecy of communications

• Asymmetric encryption:

The secrecy of the private key *sk* guarantees the secrecy of communications

What does mean secrecy?

ightarrow Security notions have to be formally defined

How to guarantee above security claims for concrete schemes?
 → Provable security

The secrecy of the key *k* guarantees the secrecy of communications

• Asymmetric encryption:

The secrecy of the private key *sk* guarantees the secrecy of communications

What does mean secrecy?

ightarrow Security notions have to be formally defined

How to guarantee above security claims for concrete schemes?
 → Provable security

The secrecy of the key *k* guarantees the secrecy of communications

• Asymmetric encryption:

The secrecy of the private key *sk* guarantees the secrecy of communications

What does mean secrecy?

ightarrow Security notions have to be formally defined

How to guarantee above security claims for concrete schemes?
 → Provable security

The secrecy of the key *k* guarantees the secrecy of communications

Asymmetric encryption:

The secrecy of the private key *sk* guarantees the secrecy of communications

• What does mean secrecy?

ightarrow Security notions have to be formally defined

- How to guarantee above security claims for concrete schemes? \rightarrow Provable security

The secrecy of the key *k* guarantees the secrecy of communications

• Asymmetric encryption:

The secrecy of the private key *sk* guarantees the secrecy of communications

• What does mean secrecy?

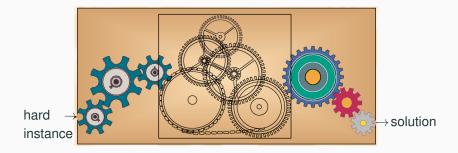
ightarrow Security notions have to be formally defined

• How to guarantee above security claims for concrete schemes? \rightarrow Provable security One can prove that:

- if an adversary is able to break the cryptographic scheme
- then one can break a well-known hard problem

One can prove that:

- if an adversary is able to break the cryptographic scheme
- then one can break a well-known hard problem



Computational Security Proofs

In order to prove the security of a cryptographic scheme/protocol, one needs

- a formal security model (security notions)
- acceptable computational assumptions (hard problems)
- a reduction: if one can break the security notions, then one can break the hard problem

Computational Security Proofs

In order to prove the security of a cryptographic scheme/protocol, one needs

- a formal security model (security notions)
- acceptable computational assumptions (hard problems)
- a reduction: if one can break the security notions, then one can break the hard problem

Computational Security Proofs

In order to prove the security of a cryptographic scheme/protocol, one needs

- a formal security model (security notions)
- acceptable computational assumptions (hard problems)
- a reduction: if one can break the security notions, then one can break the hard problem

Computational Security Proofs

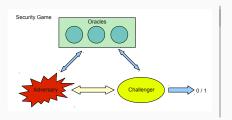
In order to prove the security of a cryptographic scheme/protocol, one needs

- a formal security model (security notions)
- acceptable computational assumptions (hard problems)
- a reduction: if one can break the security notions, then one can break the hard problem

Computational Security Proofs

In order to prove the security of a cryptographic scheme/protocol, one needs

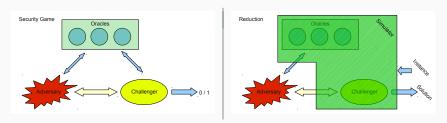
- a formal security model (security notions)
- acceptable computational assumptions (hard problems)
- a reduction: if one can break the security notions, then one can break the hard problem



Computational Security Proofs

In order to prove the security of a cryptographic scheme/protocol, one needs

- · a formal security model (security notions)
- acceptable computational assumptions (hard problems)
- a reduction: if one can break the security notions, then one can break the hard problem



ENS/CNRS/INRIA Cascade

Cryptography

Provable Security

Definition

Computational Assumptions

Some Reductions

Basic Security Notions

Conclusion

ENS/CNRS/INRIA Cascade

Integer Factoring

- Given n = pq
- Find p and q

Year	Required Complexity	n bitlength
before 2000	64	768
before 2010	80	1024
before 2020	112	2048
before 2030	128	3072
	192	7680
	256	15360

Note that the reduction may be lossy: extra bits are then required

ENS/CNRS/INRIA Cascade

David Pointcheval

Integer Factoring Records

Integer Factoring

- Given n = pq
- Find p and q

Digits	Date	Details
129	April 1994	Quadratic Sieve
130	April 1996	Algebraic Sieve
140	February 1999	
155	August 1999	512 bits
160	April 2003	
200	May 2005	
232	December 2009	768 bits

Integer Factoring Variants

RSA

- Given n = pq, e and $y \in \mathbb{Z}_n^*$
- Find x such that $y = x^e \mod n$

Note that this problem is hard without the prime factors *p* and *q*, but becomes easy with them: if $d = e^{-1} \mod \varphi(n)$, then $x = y^d \mod n$

Flexible RSA

[Baric-Pfitzmann and Fujisaki-Okamoto 1997]

- Given n = pq and $y \in \mathbb{Z}_n^\star$
- Find x and e > 1 such that $y = x^e \mod n$

Both problems are assumed as hard as integer factoring: the prime factors are a trapdoor to find solutions

Integer Factoring Variants

RSA

- Given n = pq, e and $y \in \mathbb{Z}_n^*$
- Find x such that $y = x^e \mod n$

Note that this problem is hard without the prime factors *p* and *q*, but becomes easy with them: if $d = e^{-1} \mod \varphi(n)$, then $x = y^d \mod n$

Flexible RSA

[Baric-Pfitzmann and Fujisaki-Okamoto 1997]

- Given n = pq and $y \in \mathbb{Z}_n^*$
- Find x and e > 1 such that $y = x^e \mod n$

Both problems are assumed as hard as integer factoring: the prime factors are a trapdoor to find solutions

Integer Factoring Variants

RSA

- Given n = pq, e and $y \in \mathbb{Z}_n^*$
- Find x such that $y = x^e \mod n$

Note that this problem is hard without the prime factors *p* and *q*, but becomes easy with them: if $d = e^{-1} \mod \varphi(n)$, then $x = y^d \mod n$

Flexible RSA

[Baric-Pfitzmann and Fujisaki-Okamoto 1997]

- Given n = pq and $y \in \mathbb{Z}_n^*$
- Find x and e > 1 such that $y = x^e \mod n$

Both problems are assumed as hard as integer factoring: the prime factors are a trapdoor to find solutions

Discrete Logarithm

Discrete Logarithm Problem

- Given $\mathbb{G}=\langle g
 angle$ a cyclic group of order q, and $y\in\mathbb{G}$
- Find x such that $y = g^x$

Possible groups: $\mathbb{G} \in (\mathbb{Z}_{\rho}^{\star}, \times)$, or an elliptic curve

(Computational) Diffie Hellman Problem

- Given $\mathbb{G}=\langle g
 angle$ a cyclic group of order q, and $X=g^x,~Y=g^y$
- Find $Z = g^{xy}$

The knowledge of x or y helps to solve this problem (trapdoor)

Discrete Logarithm

Discrete Logarithm Problem

- Given $\mathbb{G}=\langle g
 angle$ a cyclic group of order q, and $y\in\mathbb{G}$
- Find x such that $y = g^x$

Possible groups: $\mathbb{G} \in (\mathbb{Z}_{p}^{\star}, \times)$, or an elliptic curve

(Computational) Diffie Hellman Problem

- Given $\mathbb{G} = \langle g \rangle$ a cyclic group of order q, and $X = g^x$, $Y = g^y$
- Find $Z = g^{xy}$

The knowledge of x or y helps to solve this problem (trapdoor)

 $\operatorname{Succ}^{P}(\mathcal{A}) = \Pr[\mathcal{A}(\operatorname{instance}) \to \operatorname{solution}].$

We quantify the hardness of the problem by the success probability of the best adversary within time t: **Succ** $(t) = \max_{|A| \le t} { Succ(A) }$.

Note that the probability space can be restricted: some inputs are fixed, and others only are randomly chosen.

Discrete Logarithm Problem

We usually fix the group $\mathbb{G}=\langle g
angle$ of order q, and the generator g,

but x is randomly chosen:

$$\operatorname{Succ}^{\operatorname{\mathsf{dlp}}}_{\mathbb{G}}(\mathcal{A}) = \Pr_{\substack{ x \stackrel{R}{\leftarrow} \mathbb{Z}_{q}}} [\mathcal{A}(g^{\operatorname{x}}) o x].$$

 $\operatorname{Succ}^{P}(\mathcal{A}) = \Pr[\mathcal{A}(\operatorname{instance}) \rightarrow \operatorname{solution}].$

We quantify the hardness of the problem by the success probability of the best adversary within time *t*: $\mathbf{Succ}(t) = \max_{|\mathcal{A}| \le t} {\mathbf{Succ}(\mathcal{A})}$.

Note that the probability space can be restricted: some inputs are fixed, and others only are randomly chosen.

Discrete Logarithm Problem

We usually fix the group $\mathbb{G} = \langle g \rangle$ of order *q*, and the generator *g*, but *x* is randomly chosen:

$$\operatorname{Succ}_{\mathbb{G}}^{\operatorname{\mathsf{dlp}}}(\mathcal{A}) = \Pr_{\substack{x \stackrel{\beta}{\leftarrow} \mathbb{Z}_q}} [\mathcal{A}(g^x) \to x].$$

ENS/CNRS/INRIA Cascade

David Pointcheval

 $\operatorname{Succ}^{\mathcal{P}}(\mathcal{A}) = \Pr[\mathcal{A}(\operatorname{instance}) \rightarrow \operatorname{solution}].$

We quantify the hardness of the problem by the success probability of the best adversary within time *t*: $Succ(t) = \max_{|\mathcal{A}| \le t} \{Succ(\mathcal{A})\}$.

Note that the probability space can be restricted: some inputs are fixed, and others only are randomly chosen.

Discrete Logarithm Problem We usually fix the group $\mathbb{G} = \langle g \rangle$ of order q, and the generator g, but x is randomly chosen: $\mathbf{Succ}_{\mathbb{G}}^{\mathsf{dlp}}(\mathcal{A}) = \Pr_{\mathcal{B}_{-}} [\mathcal{A}(g^{x}) \to x].$

 $\operatorname{Succ}^{\mathcal{P}}(\mathcal{A}) = \Pr[\mathcal{A}(\operatorname{instance}) \rightarrow \operatorname{solution}].$

We quantify the hardness of the problem by the success probability of the best adversary within time *t*: $Succ(t) = \max_{|\mathcal{A}| \le t} \{Succ(\mathcal{A})\}$.

Note that the probability space can be restricted: some inputs are fixed, and others only are randomly chosen.

Discrete Logarithm Problem

We usually fix the group $\mathbb{G} = \langle g \rangle$ of order q, and the generator g, but x is randomly chosen:

$$\operatorname{Succ}_{\mathbb{G}}^{\operatorname{dlp}}(\mathcal{A}) = \Pr_{\substack{x \stackrel{R}{\leftarrow} \mathbb{Z}_q}} [\mathcal{A}(g^x) \to x].$$

ENS/CNRS/INRIA Cascade

Decisional Problem

(Decisional) Diffie Hellman Problem

- Given G = ⟨g⟩ a cyclic group of order q, and X = g^x, Y = g^y, as well as a candidate Z ∈ G
- Decide whether $Z = g^{xy}$

The adversary is called a distinguisher (outputs 1 bit). A good distinguisher should behave in significantly different manners according to the input distribution:

$$\operatorname{Adv}_{\mathbb{G}}^{\operatorname{ddn}}(\mathcal{A}) = \Pr[\mathcal{A}(X, Y, Z) = 1 | Z = g^{xy}] - \Pr[\mathcal{A}(X, Y, Z) = 1 | Z \stackrel{R}{\leftarrow} \mathbb{G}]$$

Cryptography

Provable Security

Definition

Computational Assumptions

Some Reductions

Basic Security Notions

Conclusion

ENS/CNRS/INRIA Cascade

David Pointcheval

$\mathbf{CDH} \leq \mathbf{DLP}$

Let \mathcal{A} be an adversary against the **DLP** within time *t*, then we build an adversary \mathcal{B} against the **CDH**: given *X* and *Y*, \mathcal{B} runs \mathcal{A} on *X*, that outputs x' (correct or not); then \mathcal{B} outputs $Y^{x'}$.

The running time t' of \mathcal{B} is the same as \mathcal{A} , plus one exponentiation:

$$\begin{aligned} \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t') \geq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(\mathcal{B}) &= \operatorname{Pr}[\mathcal{B}(X,Y) \to g^{xy} = Y^{x}] \\ &= \operatorname{Pr}[\mathcal{A}(X) \to x] = \operatorname{Succ}_{\mathbb{G}}^{\operatorname{dlp}}(\mathcal{A}) \end{aligned}$$

Taking the maximum on the adversaries \mathcal{A} :

$$\operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t + \tau_{\exp}) \geq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdp}}(t)$$

$\mathbf{CDH} \leq \mathbf{DLP}$

Let \mathcal{A} be an adversary against the **DLP** within time *t*, then we build an adversary \mathcal{B} against the **CDH**: given *X* and *Y*, \mathcal{B} runs \mathcal{A} on *X*, that outputs x' (correct or not); then \mathcal{B} outputs $Y^{x'}$.

The running time t' of \mathcal{B} is the same as \mathcal{A} , plus one exponentiation:

$$\begin{aligned} \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t') \geq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(\mathcal{B}) &= \operatorname{Pr}[\mathcal{B}(X,Y) \to g^{xy} = Y^{x}] \\ &= \operatorname{Pr}[\mathcal{A}(X) \to x] = \operatorname{Succ}_{\mathbb{G}}^{\operatorname{dlp}}(\mathcal{A}) \end{aligned}$$

Taking the maximum on the adversaries \mathcal{A} :

$$\operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t + \tau_{\exp}) \geq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{dlp}}(t)$$

ENS/CNRS/INRIA Cascade

$\text{DDH} \leq \text{CDH}$

Let \mathcal{A} be an adversary against the **CDH** within time *t*, we build an adversary \mathcal{B} against the **DDH**: given *X*, *Y* and *Z*, \mathcal{B} runs \mathcal{A} on (X, Y), that outputs *Z'*; then \mathcal{B} outputs 1 if Z' = Z and 0 otherwise. The running time of \mathcal{B} is the same as \mathcal{A} : $\mathbf{Adv}_{\mathbb{G}}^{\mathbf{ddh}}(t)$ is greater than

$$\begin{aligned} \operatorname{Adv}_{\mathbb{G}}^{\operatorname{ddh}}(\mathcal{B}) &= \operatorname{Pr}[\mathcal{B} \to 1 | Z = g^{xy}] - \operatorname{Pr}[\mathcal{B} \to 1 | Z \stackrel{R}{\leftarrow} \mathbb{G}] \\ &= \operatorname{Pr}[\mathcal{A}(X, Y) \to Z | Z = g^{xy}] - \operatorname{Pr}[\mathcal{A}(X, Y) \to Z | Z \stackrel{R}{\leftarrow} \mathbb{G}] \\ &= \operatorname{Pr}[\mathcal{A}(X, Y) \to g^{xy}] - \operatorname{Pr}[\mathcal{A}(X, Y) \to Z | Z \stackrel{R}{\leftarrow} \mathbb{G}] \\ &= \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(\mathcal{A}) - 1/q \end{aligned}$$

Taking the maximum on the adversaries \mathcal{A} :

 $\operatorname{Adv}_{\mathbb{G}}^{\operatorname{ddh}}(t) \geq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t) - 1/q$

$\text{DDH} \leq \text{CDH}$

Let \mathcal{A} be an adversary against the **CDH** within time *t*, we build an adversary \mathcal{B} against the **DDH**: given *X*, *Y* and *Z*, \mathcal{B} runs \mathcal{A} on (X, Y), that outputs *Z'*; then \mathcal{B} outputs 1 if Z' = Z and 0 otherwise. The running time of \mathcal{B} is the same as \mathcal{A} : Adv^{ddh}_G(*t*) is greater than

$$\begin{aligned} \mathbf{Adv}_{\mathbb{G}}^{\mathsf{ddh}}(\mathcal{B}) &= & \Pr[\mathcal{B} \to 1 | Z = g^{xy}] - \Pr[\mathcal{B} \to 1 | Z \stackrel{R}{\leftarrow} \mathbb{G}] \\ &= & \Pr[\mathcal{A}(X, Y) \to Z | Z = g^{xy}] - \Pr[\mathcal{A}(X, Y) \to Z | Z \stackrel{R}{\leftarrow} \mathbb{G}] \\ &= & \Pr[\mathcal{A}(X, Y) \to g^{xy}] - \Pr[\mathcal{A}(X, Y) \to Z | Z \stackrel{R}{\leftarrow} \mathbb{G}] \\ &= & \mathbf{Succ}_{\mathbb{G}}^{\mathsf{cdh}}(\mathcal{A}) - 1/q \end{aligned}$$

Taking the maximum on the adversaries \mathcal{A} :

$$\operatorname{Adv}_{\mathbb{G}}^{\operatorname{ddh}}(t) \geq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t) - 1/q$$

ENS/CNRS/INRIA Cascade

David Pointcheval

Distribution Indistinguishability

Indistinguishabilities

Let \mathcal{D}_0 and \mathcal{D}_1 , two distributions on a finite set *X*:

• \mathcal{D}_0 and \mathcal{D}_1 are perfectly indistinguishable if

$$\mathsf{Dist}(\mathcal{D}_0, \mathcal{D}_1) = \sum_{x \in X} \left| \Pr_{a \in \mathcal{D}_1}[a = x] - \Pr_{a \in \mathcal{D}_0}[a = x] \right| = 0$$

• \mathcal{D}_0 and \mathcal{D}_1 are statistically indistinguishable if

$$\mathsf{Dist}(\mathcal{D}_0, \mathcal{D}_1) = \sum_{x \in X} \left| \Pr_{a \in \mathcal{D}_1}[a = x] - \Pr_{a \in \mathcal{D}_0}[a = x] \right| = \mathsf{negl}()$$

Indistinguishabilities

Let \mathcal{D}_0 and \mathcal{D}_1 , two distributions on a finite set *X*:

+ \mathcal{D}_0 and \mathcal{D}_1 are perfectly indistinguishable if

$$\mathsf{Dist}(\mathcal{D}_0, \mathcal{D}_1) = \sum_{x \in \mathcal{X}} \left| \Pr_{a \in \mathcal{D}_1}[a = x] - \Pr_{a \in \mathcal{D}_0}[a = x] \right| = 0$$

• \mathcal{D}_0 and \mathcal{D}_1 are statistically indistinguishable if

$$\mathsf{Dist}(\mathcal{D}_0, \mathcal{D}_1) = \sum_{x \in X} \left| \Pr_{a \in \mathcal{D}_1}[a = x] - \Pr_{a \in \mathcal{D}_0}[a = x] \right| = \mathsf{negl}()$$

Indistinguishabilities

Let \mathcal{D}_0 and \mathcal{D}_1 , two distributions on a finite set *X*:

+ \mathcal{D}_0 and \mathcal{D}_1 are perfectly indistinguishable if

$$\mathsf{Dist}(\mathcal{D}_0, \mathcal{D}_1) = \sum_{x \in \mathcal{X}} \left| \Pr_{a \in \mathcal{D}_1}[a = x] - \Pr_{a \in \mathcal{D}_0}[a = x] \right| = 0$$

+ \mathcal{D}_0 and \mathcal{D}_1 are statistically indistinguishable if

$$\mathsf{Dist}(\mathcal{D}_0, \mathcal{D}_1) = \sum_{x \in X} \left| \Pr_{a \in \mathcal{D}_1}[a = x] - \Pr_{a \in \mathcal{D}_0}[a = x] \right| = \mathsf{negl}()$$

Distribution Indistinguishability

Computational Indistinguishability

Let \mathcal{D}_0 and \mathcal{D}_1 , two distributions on a finite set *X*,

 a distinguisher A between D₀ and D₁ is characterized by its advantage

$$\mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) = \Pr_{\boldsymbol{a}\in\mathcal{D}_1}[\mathcal{A}(\boldsymbol{a})=1] - \Pr_{\boldsymbol{a}\in\mathcal{D}_0}[\mathcal{A}(\boldsymbol{a})=1]$$

- the computational indistinguishability of \mathcal{D}_0 and \mathcal{D}_1 is measured by

$$\mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(t) = \max_{|\mathcal{A}| \le t} \{ \mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) \}$$

Let \mathcal{D}_0 and \mathcal{D}_1 , two distributions on a finite set *X*,

- a distinguisher ${\mathcal A}$ between ${\mathcal D}_0$ and ${\mathcal D}_1$ is characterized by its advantage

$$\mathrm{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) = \Pr_{a\in\mathcal{D}_1}[\mathcal{A}(a)=1] - \Pr_{a\in\mathcal{D}_0}[\mathcal{A}(a)=1]$$

- the computational indistinguishability of \mathcal{D}_0 and \mathcal{D}_1 is measured by

$$\mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(t) = \max_{|\mathcal{A}| \le t} \{ \mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) \}$$

Let \mathcal{D}_0 and \mathcal{D}_1 , two distributions on a finite set *X*,

- a distinguisher ${\mathcal A}$ between ${\mathcal D}_0$ and ${\mathcal D}_1$ is characterized by its advantage

$$\mathrm{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) = \Pr_{a \in \mathcal{D}_1}[\mathcal{A}(a) = 1] - \Pr_{a \in \mathcal{D}_0}[\mathcal{A}(a) = 1]$$

- the computational indistinguishability of \mathcal{D}_0 and \mathcal{D}_1 is measured by

$$\mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(t) = \max_{|\mathcal{A}| \le t} \{ \mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) \}$$

$$\begin{aligned} \mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) &= \Pr_{a\in\mathcal{D}_1}[\mathcal{A}(a)=1] - \Pr_{a\in\mathcal{D}_0}[\mathcal{A}(a)=1] \\ &= \Pr[a\in\mathcal{D}_1:\mathcal{A}(a)=1] - \Pr[a\in\mathcal{D}_0:\mathcal{A}(a)=1] \end{aligned}$$

$$\begin{aligned} \mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) &= \Pr_{a\in\mathcal{D}_1}[\mathcal{A}(a)=1] - \Pr_{a\in\mathcal{D}_0}[\mathcal{A}(a)=1] \\ &= \Pr[a\in\mathcal{D}_1:\mathcal{A}(a)=1] - \Pr[a\in\mathcal{D}_0:\mathcal{A}(a)=1] \\ &= \Pr[b\leftarrow 1; a\in\mathcal{D}_b:\mathcal{A}(a)=1] \\ &-\Pr[b\leftarrow 0; a\in\mathcal{D}_b:\mathcal{A}(a)=1] \end{aligned}$$

$$\begin{aligned} \mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) &= \Pr_{a\in\mathcal{D}_1}[\mathcal{A}(a)=1] - \Pr_{a\in\mathcal{D}_0}[\mathcal{A}(a)=1] \\ &= \Pr[a\in\mathcal{D}_1:\mathcal{A}(a)=1] - \Pr[a\in\mathcal{D}_0:\mathcal{A}(a)=1] \\ &= \Pr[b\leftarrow 1; a\in\mathcal{D}_b:\mathcal{A}(a)=1] \\ &- \Pr[b\leftarrow 0; a\in\mathcal{D}_b:\mathcal{A}(a)=1] \\ &= \Pr[b\leftarrow 1; a\in\mathcal{D}_b:\mathcal{A}(a)=1] \\ &- 1 + \Pr[b\leftarrow 0; a\in\mathcal{D}_b:\mathcal{A}(a)=0] \end{aligned}$$

$$\begin{aligned} \mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) &= \Pr_{a\in\mathcal{D}_1}[\mathcal{A}(a)=1] - \Pr_{a\in\mathcal{D}_0}[\mathcal{A}(a)=1] \\ &= \Pr[a\in\mathcal{D}_1:\mathcal{A}(a)=1] - \Pr[a\in\mathcal{D}_0:\mathcal{A}(a)=1] \\ &= \Pr[b\leftarrow 1; a\in\mathcal{D}_b:\mathcal{A}(a)=1] \\ &-1 + \Pr[b\leftarrow 0; a\in\mathcal{D}_b:\mathcal{A}(a)=0] \end{aligned}$$

$$\mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) = \Pr_{a\in\mathcal{D}_1}[\mathcal{A}(a)=1] - \Pr_{a\in\mathcal{D}_0}[\mathcal{A}(a)=1]$$

= $\Pr[a\in\mathcal{D}_1:\mathcal{A}(a)=1] - \Pr[a\in\mathcal{D}_0:\mathcal{A}(a)=1]$
= $\Pr[b\leftarrow 1; a\in\mathcal{D}_b:\mathcal{A}(a)=1]$
 $-1 + \Pr[b\leftarrow 0; a\in\mathcal{D}_b:\mathcal{A}(a)=0]$
= $\Pr[b\leftarrow 1; a\in\mathcal{D}_b:\mathcal{A}(a)=b]$
 $+ \Pr[b\leftarrow 0; a\in\mathcal{D}_b:\mathcal{A}(a)=b] - 1$

$$\begin{aligned} \mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) &= & \Pr_{a\in\mathcal{D}_1}[\mathcal{A}(a)=1] - \Pr_{a\in\mathcal{D}_0}[\mathcal{A}(a)=1] \\ &= & \Pr[a\in\mathcal{D}_1:\mathcal{A}(a)=1] - \Pr[a\in\mathcal{D}_0:\mathcal{A}(a)=1] \\ &= & \Pr[b\leftarrow 1; a\in\mathcal{D}_b:\mathcal{A}(a)=b] \\ &+ \Pr[b\leftarrow 0; a\in\mathcal{D}_b:\mathcal{A}(a)=b] - 1 \end{aligned}$$

$$\begin{aligned} \mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) &= & \Pr_{a\in\mathcal{D}_1}[\mathcal{A}(a)=1] - \Pr_{a\in\mathcal{D}_0}[\mathcal{A}(a)=1] \\ &= & \Pr[a\in\mathcal{D}_1:\mathcal{A}(a)=1] - \Pr[a\in\mathcal{D}_0:\mathcal{A}(a)=1] \\ &= & \Pr[b\leftarrow 1; a\in\mathcal{D}_b:\mathcal{A}(a)=b] \\ &+ \Pr[b\leftarrow 0; a\in\mathcal{D}_b:\mathcal{A}(a)=b] - 1 \\ &= & \Pr[a\in\mathcal{D}_b:\mathcal{A}(a)=b\wedge b=1]/\Pr[b=1] \\ &+ \Pr[a\in\mathcal{D}_b:\mathcal{A}(a)=b\wedge b=0]/\Pr[b=0] - 1 \end{aligned}$$

$$\begin{aligned} \mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) &= & \Pr_{a\in\mathcal{D}_1}[\mathcal{A}(a)=1] - \Pr_{a\in\mathcal{D}_0}[\mathcal{A}(a)=1] \\ &= & \Pr[a\in\mathcal{D}_1:\mathcal{A}(a)=1] - \Pr[a\in\mathcal{D}_0:\mathcal{A}(a)=1] \\ &= & \Pr[a\in\mathcal{D}_b:\mathcal{A}(a)=b\wedge b=1]/\Pr[b=1] \\ &+ \Pr[a\in\mathcal{D}_b:\mathcal{A}(a)=b\wedge b=0]/\Pr[b=0]-1 \end{aligned}$$

$$\mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) = \Pr_{a\in\mathcal{D}_1} [\mathcal{A}(a) = 1] - \Pr_{a\in\mathcal{D}_0} [\mathcal{A}(a) = 1]$$

$$= \Pr[a \in \mathcal{D}_1 : \mathcal{A}(a) = 1] - \Pr[a \in \mathcal{D}_0 : \mathcal{A}(a) = 1]$$

$$= \Pr[a \in \mathcal{D}_b : \mathcal{A}(a) = b \land b = 1] / \Pr[b = 1]$$

$$+ \Pr[a \in \mathcal{D}_b : \mathcal{A}(a) = b \land b = 0] / \Pr[b = 0] - 1$$

$$= 2 \times \Pr[a \in \mathcal{D}_b : \mathcal{A}(a) = b \land b = 1]$$

$$+ 2 \times \Pr[a \in \mathcal{D}_b : \mathcal{A}(a) = b \land b = 0] - 1$$

Computational Indistinguishability

$$\mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) = \Pr_{a\in\mathcal{D}_1}[\mathcal{A}(a)=1] - \Pr_{a\in\mathcal{D}_0}[\mathcal{A}(a)=1]$$

= $\Pr[a\in\mathcal{D}_1:\mathcal{A}(a)=1] - \Pr[a\in\mathcal{D}_0:\mathcal{A}(a)=1]$
= $2 \times \Pr[a\in\mathcal{D}_b:\mathcal{A}(a)=b \land b=1]$
+ $2 \times \Pr[a\in\mathcal{D}_b:\mathcal{A}(a)=b \land b=0] - 1$

Computational Indistinguishability

$$\mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) = \Pr_{a\in\mathcal{D}_1}[\mathcal{A}(a)=1] - \Pr_{a\in\mathcal{D}_0}[\mathcal{A}(a)=1]$$

= $\Pr[a\in\mathcal{D}_1:\mathcal{A}(a)=1] - \Pr[a\in\mathcal{D}_0:\mathcal{A}(a)=1]$
= $2 \times \Pr[a\in\mathcal{D}_b:\mathcal{A}(a)=b \wedge b=1]$
+ $2 \times \Pr[a\in\mathcal{D}_b:\mathcal{A}(a)=b \wedge b=0] - 1$
= $2 \times \Pr[a\in\mathcal{D}_b:\mathcal{A}(a)=b] - 1$

Computational Indistinguishability

$$\mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) = \Pr_{a\in\mathcal{D}_1}[\mathcal{A}(a)=1] - \Pr_{a\in\mathcal{D}_0}[\mathcal{A}(a)=1]$$
$$= \Pr[a\in\mathcal{D}_1:\mathcal{A}(a)=1] - \Pr[a\in\mathcal{D}_0:\mathcal{A}(a)=1]$$
$$= 2 \times \Pr[a\in\mathcal{D}_b:\mathcal{A}(a)=b] - 1$$

$$\begin{aligned} \mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) &= & \Pr_{\mathbf{a}\in\mathcal{D}_1}[\mathcal{A}(\mathbf{a})=1] - \Pr_{\mathbf{a}\in\mathcal{D}_0}[\mathcal{A}(\mathbf{a})=1] \\ &= & \Pr[\mathbf{a}\in\mathcal{D}_1:\mathcal{A}(\mathbf{a})=1] - \Pr[\mathbf{a}\in\mathcal{D}_0:\mathcal{A}(\mathbf{a})=1] \end{aligned}$$

Equivalent Notation

Let \mathcal{D}_0 and \mathcal{D}_1 , two distributions on a finite set *X*,

$$\mathrm{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) = \mathsf{2} imes \mathsf{Pr}[\pmb{a} \in \mathcal{D}_{\pmb{b}} : \mathcal{A}(\pmb{a}) = \pmb{b}] - \mathsf{1}$$

ENS/CNRS/INRIA Cascade

Relations between Indistinguishability Notions

$$\mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) = \Pr_{a\in\mathcal{D}_0}[\mathcal{A}(a)=1] - \Pr_{a\in\mathcal{D}_1}[\mathcal{A}(a)=1]$$

$$\mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) = \Pr_{a\in\mathcal{D}_0}[\mathcal{A}(a)=1] - \Pr_{a\in\mathcal{D}_1}[\mathcal{A}(a)=1]$$
$$= \sum_{x\in\mathcal{X}} \begin{pmatrix} \Pr_{a\in\mathcal{D}_0}[\mathcal{A}(a)=1 \land a=x] \\ -\Pr_{a\in\mathcal{D}_1}[\mathcal{A}(a)=1 \land a=x] \end{pmatrix}$$

$$\operatorname{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) = \sum_{x \in X} \begin{pmatrix} \operatorname{Pr}_{a \in \mathcal{D}_0}[\mathcal{A}(a) = 1 \land a = x] \\ -\operatorname{Pr}_{a \in \mathcal{D}_1}[\mathcal{A}(a) = 1 \land a = x] \end{pmatrix}$$

$$\mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) = \sum_{x \in \mathcal{X}} \begin{pmatrix} \Pr_{a \in \mathcal{D}_0}[\mathcal{A}(a) = 1 \land a = x] \\ -\Pr_{a \in \mathcal{D}_1}[\mathcal{A}(a) = 1 \land a = x] \end{pmatrix}$$
$$= \sum_{x \in \mathcal{X}} \begin{pmatrix} \Pr_{a \in \mathcal{D}_0}[\mathcal{A}(x) = 1 \land a = x] \\ -\Pr_{a \in \mathcal{D}_1}[\mathcal{A}(x) = 1 \land a = x] \end{pmatrix}$$

$$\operatorname{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) = \sum_{x \in \mathcal{X}} \begin{pmatrix} \operatorname{Pr}_{a \in \mathcal{D}_0}[\mathcal{A}(x) = 1 \land a = x] \\ -\operatorname{Pr}_{a \in \mathcal{D}_1}[\mathcal{A}(x) = 1 \land a = x] \end{pmatrix}$$

$$\begin{aligned} \mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) &= \sum_{x \in \mathcal{X}} \begin{pmatrix} \mathsf{Pr}_{a \in \mathcal{D}_0}[\mathcal{A}(x) = 1 \land a = x] \\ -\mathsf{Pr}_{a \in \mathcal{D}_1}[\mathcal{A}(x) = 1 \land a = x] \end{pmatrix} \\ &= \sum_{x \in \mathcal{X}} \mathsf{Pr}[\mathcal{A}(x) = 1] \times \begin{pmatrix} \mathsf{Pr}_{a \in \mathcal{D}_0}[a = x] \\ -\mathsf{Pr}_{a \in \mathcal{D}_1}[a = x] \end{pmatrix} \\ &= x \text{ and } \mathcal{A}(x) = 1 \text{ are independent events} \end{aligned}$$

Relations between Indistinguishability Notions

$$\mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) = \sum_{x \in \mathcal{X}} \Pr[\mathcal{A}(x) = 1] \times \begin{pmatrix} \Pr_{a \in \mathcal{D}_0}[a = x] \\ -\Pr_{a \in \mathcal{D}_1}[a = x] \end{pmatrix}$$

$$\begin{aligned} \mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) &= \sum_{x \in \mathcal{X}} \Pr[\mathcal{A}(x) = 1] \times \begin{pmatrix} \Pr_{a \in \mathcal{D}_0}[a = x] \\ -\Pr_{a \in \mathcal{D}_1}[a = x] \end{pmatrix} \\ &\leq \sum_{x \in \mathcal{X}} |\Pr[\mathcal{A}(x) = 1]| \times \begin{vmatrix} \Pr_{a \in \mathcal{D}_0}[a = x] \\ -\Pr_{a \in \mathcal{D}_1}[a = x] \end{vmatrix} \\ & \text{A better analysis could be done here} \end{aligned}$$

$$\mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) \leq \sum_{x \in \mathcal{X}} |\Pr[\mathcal{A}(x) = 1]| \times \begin{vmatrix} \Pr_{a \in \mathcal{D}_0}[a = x] \\ -\Pr_{a \in \mathcal{D}_1}[a = x] \end{vmatrix}$$

$$\begin{aligned} \mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) &\leq \sum_{x \in \mathcal{X}} |\Pr[\mathcal{A}(x) = 1]| \times \begin{vmatrix} \Pr_{a \in \mathcal{D}_0}[a = x] \\ -\Pr_{a \in \mathcal{D}_1}[a = x] \end{vmatrix} \\ &\leq \sum_{x \in \mathcal{X}} \left| \Pr_{a \in \mathcal{D}_0}[a = x] - \Pr_{a \in \mathcal{D}_1}[a = x] \right| \end{aligned}$$

Relations between Indistinguishability Notions

$$\operatorname{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) \leq \sum_{x \in X} \left| \Pr_{a \in \mathcal{D}_0}[a = x] - \Pr_{a \in \mathcal{D}_1}[a = x] \right|$$

$$\begin{aligned} \mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) &\leq \sum_{x\in\mathcal{X}} \left| \Pr_{a\in\mathcal{D}_0}[a=x] - \Pr_{a\in\mathcal{D}_1}[a=x] \right| \\ &\leq \mathbf{Dist}(\mathcal{D}_0,\mathcal{D}_1) \end{aligned}$$

 $\operatorname{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) \leq \operatorname{Dist}(\mathcal{D}_0,\mathcal{D}_1)$

Theorem

Dist $(\mathcal{D}_0, \mathcal{D}_1)$ is the best advantage any adversary could get, even within an unbounded time.

$$\forall t$$
, $\operatorname{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(t) \leq \operatorname{Dist}(\mathcal{D}_0,\mathcal{D}_1).$

With a better analysis, we can even get

$$\forall t, \quad \mathbf{Adv}^{\mathcal{D}_0, \mathcal{D}_1}(t) \leq \frac{1}{2} \cdot \mathbf{Dist}(\mathcal{D}_0, \mathcal{D}_1).$$

ENS/CNRS/INRIA Cascade

Let us consider the distributions \mathcal{D}_A and \mathcal{D}_B :

$$\mathcal{D}_{A} = (g^{x}, g^{y_{1}}, g^{xy_{1}}, \dots, g^{y_{n}}, g^{xy_{n}}) \subseteq \mathbb{G}^{2n+1}$$
$$\mathcal{D}_{B} = (g^{x}, g^{y_{1}}, g^{z_{1}}, \dots, g^{y_{n}}, g^{z_{n}}) \subseteq \mathbb{G}^{2n+1}$$
$$\mathbf{Adv}^{\mathcal{D}_{A}, \mathcal{D}_{B}}(t)?$$

We define the hybrid distribution

$$\mathcal{D}_{i} = (g^{x}, g^{y_{1}}, g^{xy_{1}}, \dots, g^{y_{i}}, g^{xy_{i}}, g^{y_{i+1}}, g^{z_{i+1}}, \dots, g^{y_{n}}, g^{z_{n}})$$

$$\mathcal{D}_0 = \mathcal{D}_B \qquad \mathcal{D}_n = \mathcal{D}_A.$$

ENS/CNRS/INRIA Cascade

Let us consider the distributions \mathcal{D}_A and \mathcal{D}_B :

$$\mathcal{D}_{A} = (g^{x}, g^{y_{1}}, g^{xy_{1}}, \dots, g^{y_{n}}, g^{xy_{n}}) \subseteq \mathbb{G}^{2n+1}$$
$$\mathcal{D}_{B} = (g^{x}, g^{y_{1}}, g^{z_{1}}, \dots, g^{y_{n}}, g^{z_{n}}) \subseteq \mathbb{G}^{2n+1}$$
$$\mathbf{Adv}^{\mathcal{D}_{A}, \mathcal{D}_{B}}(t)?$$

We define the hybrid distribution

$$\mathcal{D}_{i} = (g^{x}, g^{y_{1}}, g^{xy_{1}}, \dots, g^{y_{i}}, g^{xy_{i}}, g^{y_{i+1}}, g^{z_{i+1}}, \dots, g^{y_{n}}, g^{z_{n}})$$

 $\mathcal{D}_0 = \mathcal{D}_B \qquad \mathcal{D}_n = \mathcal{D}_A.$

ENS/CNRS/INRIA Cascade

Let us consider the distributions \mathcal{D}_A and \mathcal{D}_B :

$$\mathcal{D}_{A} = (g^{x}, g^{y_{1}}, g^{xy_{1}}, \dots, g^{y_{n}}, g^{xy_{n}}) \subseteq \mathbb{G}^{2n+1}$$
$$\mathcal{D}_{B} = (g^{x}, g^{y_{1}}, g^{z_{1}}, \dots, g^{y_{n}}, g^{z_{n}}) \subseteq \mathbb{G}^{2n+1}$$
$$\mathbf{Adv}^{\mathcal{D}_{A}, \mathcal{D}_{B}}(t)?$$

We define the hybrid distribution

$$\mathcal{D}_{i} = (g^{x}, g^{y_{1}}, g^{xy_{1}}, \dots, g^{y_{i}}, g^{xy_{i}}, g^{y_{i+1}}, g^{z_{i+1}}, \dots, g^{y_{n}}, g^{z_{n}})$$

$$\mathcal{D}_0 = \mathcal{D}_B \qquad \mathcal{D}_n = \mathcal{D}_A.$$

ENS/CNRS/INRIA Cascade

Given a **DDH** input (X, Y, Z), we generate the hybrid instance:

$$\mathcal{I}_i = (X, g^{y_1}, X^{y_1}, \dots, g^{y_{i-1}}, X^{y_{i-1}}, Y, Z, g^{y_{i+1}}, g^{z_{i+1}}, \dots, g^{y_n}, g^{z_n})$$

Note that

• if $Z = g^{xy}$, then $\mathcal{I} \in \mathcal{D}_i$ • if $Z \stackrel{R}{\leftarrow} \mathbb{G}$, then $\mathcal{I} \in \mathcal{D}_{i-1}$ $\begin{cases} \operatorname{Adv}^{\mathcal{D}_i, \mathcal{D}_{i-1}}(\mathcal{A}) \leq \operatorname{Adv}^{\operatorname{ddh}}(t') \\ \text{where } t' \leq t + 2(n-1)\tau_{\exp} \end{cases}$

 $\operatorname{Adv}^{\mathcal{D}_{A},\mathcal{D}_{B}}(\mathcal{A}) = \operatorname{Adv}^{\mathcal{D}_{n},\mathcal{D}_{0}}(\mathcal{A})$

Given a **DDH** input (X, Y, Z), we generate the hybrid instance:

$$\mathcal{I}_i = (X, g^{y_1}, X^{y_1}, \dots, g^{y_{i-1}}, X^{y_{i-1}}, Y, Z, g^{y_{i+1}}, g^{z_{i+1}}, \dots, g^{y_n}, g^{z_n})$$

Note that

- if $Z = g^{xy}$, then $\mathcal{I} \in \mathcal{D}_i$ if $Z \stackrel{R}{\leftarrow} \mathbb{G}$, then $\mathcal{I} \in \mathcal{D}_{i-1}$ $\begin{cases} \operatorname{Adv}^{\mathcal{D}_i, \mathcal{D}_{i-1}}(\mathcal{A}) \leq \operatorname{Adv}^{\operatorname{ddh}}_{\mathbb{G}}(t') \\ \text{where } t' \leq t + 2(n-1)\tau_{\exp} \end{cases}$

$$\begin{aligned} \mathbf{Adv}^{\mathcal{D}_{\mathcal{A}},\mathcal{D}_{\mathcal{B}}}(\mathcal{A}) &= \mathbf{Adv}^{\mathcal{D}_{n},\mathcal{D}_{0}}(\mathcal{A}) \\ &= \left| \Pr_{\mathcal{D}_{0}}[\mathcal{A} \to 1] - \Pr_{\mathcal{D}_{n}}[\mathcal{A} \to 1] \right. \end{aligned}$$

Given a **DDH** input (X, Y, Z), we generate the hybrid instance:

$$\mathcal{I}_i = (X, g^{y_1}, X^{y_1}, \dots, g^{y_{i-1}}, X^{y_{i-1}}, Y, Z, g^{y_{i+1}}, g^{z_{i+1}}, \dots, g^{y_n}, g^{z_n})$$

Note that

• if $Z = g^{xy}$, then $\mathcal{I} \in \mathcal{D}_i$ • if $Z \stackrel{R}{\leftarrow} \mathbb{G}$, then $\mathcal{I} \in \mathcal{D}_{i-1}$ $\begin{cases} \operatorname{Adv}^{\mathcal{D}_i, \mathcal{D}_{i-1}}(\mathcal{A}) \leq \operatorname{Adv}^{\operatorname{ddh}}_{\mathbb{G}}(t') \\ \text{where } t' \leq t + 2(n-1)\tau_{\exp} \end{cases}$

$$\mathbf{Adv}^{\mathcal{D}_{\mathcal{A}},\mathcal{D}_{\mathcal{B}}}(\mathcal{A}) \ = \ \left| \Pr_{\mathcal{D}_{0}}[\mathcal{A} \to 1] - \Pr_{\mathcal{D}_{n}}[\mathcal{A} \to 1] \right|$$

Given a **DDH** input (X, Y, Z), we generate the hybrid instance:

$$\mathcal{I}_i = (X, g^{y_1}, X^{y_1}, \dots, g^{y_{i-1}}, X^{y_{i-1}}, Y, Z, g^{y_{i+1}}, g^{z_{i+1}}, \dots, g^{y_n}, g^{z_n})$$

Note that

• if $Z = g^{xy}$, then $\mathcal{I} \in \mathcal{D}_i$ • if $Z \stackrel{R}{\leftarrow} \mathbb{G}$, then $\mathcal{I} \in \mathcal{D}_{i-1}$ $\begin{cases} \operatorname{Adv}^{\mathcal{D}_i, \mathcal{D}_{i-1}}(\mathcal{A}) \leq \operatorname{Adv}^{\operatorname{ddh}}_{\mathbb{G}}(t') \\ \text{where } t' \leq t + 2(n-1)\tau_{\exp} \end{cases}$

$$\mathbf{Adv}^{\mathcal{D}_{\mathcal{A}},\mathcal{D}_{\mathcal{B}}}(\mathcal{A}) = \left| \begin{array}{l} \Pr_{\mathcal{D}_{0}}[\mathcal{A} \to 1] - \Pr_{\mathcal{D}_{n}}[\mathcal{A} \to 1] \right| \\ = \sum_{i=1}^{n} \left| \begin{array}{l} \Pr_{\mathcal{D}_{i-1}}[\mathcal{A} \to 1] - \Pr_{\mathcal{D}_{i}}[\mathcal{A} \to 1] \right| \end{array} \right|$$

Given a **DDH** input (X, Y, Z), we generate the hybrid instance:

$$\mathcal{I}_i = (X, g^{y_1}, X^{y_1}, \dots, g^{y_{i-1}}, X^{y_{i-1}}, Y, Z, g^{y_{i+1}}, g^{z_{i+1}}, \dots, g^{y_n}, g^{z_n})$$

Note that

• if $Z = g^{xy}$, then $\mathcal{I} \in \mathcal{D}_i$ • if $Z \stackrel{R}{\leftarrow} \mathbb{G}$, then $\mathcal{I} \in \mathcal{D}_{i-1}$ $\begin{cases} \operatorname{Adv}^{\mathcal{D}_i, \mathcal{D}_{i-1}}(\mathcal{A}) \leq \operatorname{Adv}^{\operatorname{ddh}}(t') \\ \text{where } t' \leq t + 2(n-1)\tau_{\exp} \end{cases}$

$$\mathbf{Adv}^{\mathcal{D}_{\mathcal{A}},\mathcal{D}_{\mathcal{B}}}(\mathcal{A}) = \sum_{i=1}^{n} \left| \Pr_{\mathcal{D}_{i-1}}[\mathcal{A} \to 1] - \Pr_{\mathcal{D}_{i}}[\mathcal{A} \to 1] \right|$$

Given a **DDH** input (X, Y, Z), we generate the hybrid instance:

$$\mathcal{I}_i = (X, g^{y_1}, X^{y_1}, \dots, g^{y_{i-1}}, X^{y_{i-1}}, Y, Z, g^{y_{i+1}}, g^{z_{i+1}}, \dots, g^{y_n}, g^{z_n})$$

Note that

• if $Z = g^{xy}$, then $\mathcal{I} \in \mathcal{D}_i$ • if $Z \stackrel{R}{\leftarrow} \mathbb{G}$, then $\mathcal{I} \in \mathcal{D}_{i-1}$ $\begin{cases} \operatorname{Adv}^{\mathcal{D}_i, \mathcal{D}_{i-1}}(\mathcal{A}) \leq \operatorname{Adv}^{\operatorname{ddh}}_{\mathbb{G}}(t') \\ \text{where } t' \leq t + 2(n-1)\tau_{\exp} \end{cases}$

$$\begin{aligned} \mathbf{Adv}^{\mathcal{D}_{\mathcal{A}},\mathcal{D}_{\mathcal{B}}}(\mathcal{A}) &= \sum_{i=1}^{n} \left| \Pr_{\mathcal{D}_{i-1}}[\mathcal{A} \to 1] - \Pr_{\mathcal{D}_{i}}[\mathcal{A} \to 1] \right| \\ &= \sum_{i=1}^{n} \mathbf{Adv}^{\mathcal{D}_{i},\mathcal{D}_{i-1}}(\mathcal{A}) \end{aligned}$$

Given a **DDH** input (X, Y, Z), we generate the hybrid instance:

$$\mathcal{I}_i = (X, g^{y_1}, X^{y_1}, \dots, g^{y_{i-1}}, X^{y_{i-1}}, Y, Z, g^{y_{i+1}}, g^{z_{i+1}}, \dots, g^{y_n}, g^{z_n})$$

Note that

- if $Z = g^{xy}$, then $\mathcal{I} \in \mathcal{D}_i$ if $Z \stackrel{R}{\leftarrow} \mathbb{G}$, then $\mathcal{I} \in \mathcal{D}_{i-1}$ $\begin{cases} \operatorname{Adv}^{\mathcal{D}_i, \mathcal{D}_{i-1}}(\mathcal{A}) \leq \operatorname{Adv}^{\operatorname{ddh}}_{\mathbb{G}}(t') \\ \text{where } t' \leq t + 2(n-1)\tau_{\exp} \end{cases}$

$$\mathbf{Adv}^{\mathcal{D}_{\mathcal{A}},\mathcal{D}_{\mathcal{B}}}(\mathcal{A}) = \sum_{i=1}^{n} \mathbf{Adv}^{\mathcal{D}_{i},\mathcal{D}_{i-1}}(\mathcal{A})$$

Given a **DDH** input (X, Y, Z), we generate the hybrid instance:

$$\mathcal{I}_i = (X, g^{y_1}, X^{y_1}, \dots, g^{y_{i-1}}, X^{y_{i-1}}, Y, Z, g^{y_{i+1}}, g^{z_{i+1}}, \dots, g^{y_n}, g^{z_n})$$

Note that

• if $Z = g^{xy}$, then $\mathcal{I} \in \mathcal{D}_i$ • if $Z \stackrel{R}{\leftarrow} \mathbb{G}$, then $\mathcal{I} \in \mathcal{D}_{i-1}$ $\begin{cases} \operatorname{Adv}^{\mathcal{D}_i, \mathcal{D}_{i-1}}(\mathcal{A}) \leq \operatorname{Adv}^{\operatorname{ddh}}_{\mathbb{G}}(t') \\ \text{where } t' \leq t + 2(n-1)\tau_{\exp} \end{cases}$

$$\begin{aligned} \mathbf{Adv}^{\mathcal{D}_{A},\mathcal{D}_{B}}(\mathcal{A}) &= \sum_{i=1}^{n} \mathbf{Adv}^{\mathcal{D}_{i},\mathcal{D}_{i-1}}(\mathcal{A}) \\ &\leq \sum_{i=1}^{n} \mathbf{Adv}^{\mathsf{ddh}}_{\mathbb{G}}(t') \end{aligned}$$

Given a **DDH** input (X, Y, Z), we generate the hybrid instance:

$$\mathcal{I}_i = (X, g^{y_1}, X^{y_1}, \dots, g^{y_{i-1}}, X^{y_{i-1}}, Y, Z, g^{y_{i+1}}, g^{z_{i+1}}, \dots, g^{y_n}, g^{z_n})$$

Note that

• if $Z = g^{xy}$, then $\mathcal{I} \in \mathcal{D}_i$ • if $Z \stackrel{R}{\leftarrow} \mathbb{G}$, then $\mathcal{I} \in \mathcal{D}_{i-1}$ $\begin{cases} \operatorname{Adv}^{\mathcal{D}_i, \mathcal{D}_{i-1}}(\mathcal{A}) \leq \operatorname{Adv}^{\operatorname{ddh}}_{\mathbb{G}}(t') \\ \text{where } t' \leq t + 2(n-1)\tau_{\exp} \end{cases}$

$$\operatorname{Adv}^{\mathcal{D}_{\mathcal{A}},\mathcal{D}_{\mathcal{B}}}(\mathcal{A}) \leq \sum_{i=1}^{n} \operatorname{Adv}_{\mathbb{G}}^{\operatorname{ddh}}(t')$$

Given a **DDH** input (X, Y, Z), we generate the hybrid instance:

$$\mathcal{I}_i = (X, g^{y_1}, X^{y_1}, \dots, g^{y_{i-1}}, X^{y_{i-1}}, Y, Z, g^{y_{i+1}}, g^{z_{i+1}}, \dots, g^{y_n}, g^{z_n})$$

Note that

- if $Z = g^{xy}$, then $\mathcal{I} \in \mathcal{D}_i$ if $Z \stackrel{R}{\leftarrow} \mathbb{G}$, then $\mathcal{I} \in \mathcal{D}_{i-1}$ $\begin{cases} \operatorname{Adv}^{\mathcal{D}_i, \mathcal{D}_{i-1}}(\mathcal{A}) \leq \operatorname{Adv}^{\operatorname{ddh}}_{\mathbb{G}}(t') \\ \text{where } t' \leq t + 2(n-1)\tau_{\exp} \end{cases}$

$$\begin{aligned} \mathbf{Adv}^{\mathcal{D}_{A},\mathcal{D}_{B}}(\mathcal{A}) &\leq & \sum_{i=1}^{n} \mathbf{Adv}_{\mathbb{G}}^{\mathsf{ddh}}(t') \\ &\leq & n \times \mathbf{Adv}_{\mathbb{G}}^{\mathsf{ddh}}(t') \end{aligned}$$

Given a **DDH** input (X, Y, Z), we generate the hybrid instance:

$$\mathcal{I}_i = (X, g^{y_1}, X^{y_1}, \dots, g^{y_{i-1}}, X^{y_{i-1}}, Y, Z, g^{y_{i+1}}, g^{z_{i+1}}, \dots, g^{y_n}, g^{z_n})$$

Note that

• if $Z = g^{xy}$, then $\mathcal{I} \in \mathcal{D}_i$ • if $Z \stackrel{R}{\leftarrow} \mathbb{G}$, then $\mathcal{I} \in \mathcal{D}_{i-1}$ $\begin{cases} \operatorname{Adv}^{\mathcal{D}_i, \mathcal{D}_{i-1}}(\mathcal{A}) \leq \operatorname{Adv}^{\operatorname{ddh}}(t') \\ \text{where } t' \leq t + 2(n-1)\tau_{\exp} \end{cases}$

 $\operatorname{Adv}^{\mathcal{D}_A,\mathcal{D}_B}(\mathcal{A}) \leq n \times \operatorname{Adv}^{\operatorname{ddh}}(t')$

Given a **DDH** input (X, Y, Z), we generate the hybrid instance:

$$\mathcal{I}_i = (X, g^{y_1}, X^{y_1}, \dots, g^{y_{i-1}}, X^{y_{i-1}}, Y, Z, g^{y_{i+1}}, g^{z_{i+1}}, \dots, g^{y_n}, g^{z_n})$$

Note that

- if $Z = g^{xy}$, then $\mathcal{I} \in \mathcal{D}_i$ if $Z \stackrel{R}{\leftarrow} \mathbb{G}$, then $\mathcal{I} \in \mathcal{D}_{i-1}$ $\begin{cases} \operatorname{Adv}^{\mathcal{D}_i, \mathcal{D}_{i-1}}(\mathcal{A}) \leq \operatorname{Adv}^{\operatorname{ddh}}_{\mathbb{G}}(t') \\ \text{where } t' \leq t + 2(n-1)\tau_{\exp} \end{cases}$

 $\mathbf{Adv}^{\mathcal{D}_{A},\mathcal{D}_{B}}(\mathcal{A}) \leq n \times \mathbf{Adv}^{\mathbf{ddh}}(t')$

Theorem

$$\forall t, \qquad \mathbf{Adv}^{\mathcal{D}_{\mathcal{A}}, \mathcal{D}_{\mathcal{B}}}(t) \leq n \times \mathbf{Adv}^{\mathsf{ddh}}_{\mathbb{G}}(t+2(n-1)\tau_{\mathsf{exp}})$$

ENS/CNRS/INRIA Cascade

Basic Security Notions

Cryptography

Provable Security

Basic Security Notions

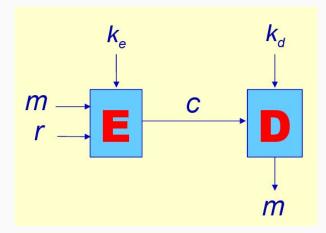
Public-Key Encryption

Variants of Indistinguishability

Signatures

Conclusion

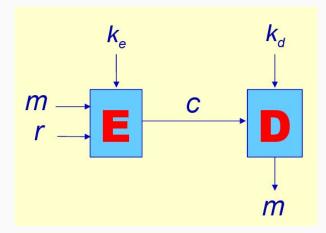
Public-Key Encryption



Goal: Privacy/Secrecy of the plaintext

ENS/CNRS/INRIA Cascade

Public-Key Encryption



Goal: Privacy/Secrecy of the plaintext

ENS/CNRS/INRIA Cascade

One-Wayness

For a public-key encryption scheme $S = (\mathcal{K}, \mathcal{E}, \mathcal{D})$, without the secrete key *sk*, it should be computationally impossible to recover the plaintext *m* from the ciphertext *c*:

 $\mathbf{Succ}^{\mathsf{ow}}_{\mathcal{S}}(\mathcal{A}) = \mathsf{Pr}[(\mathbf{s}k, \mathbf{p}k) \leftarrow \mathcal{K}(); \mathbf{m} \stackrel{R}{\leftarrow} \mathcal{M}; \mathbf{c} = \mathcal{E}_{\mathbf{p}k}(\mathbf{m}) : \mathcal{A}(\mathbf{p}k, \mathbf{c}) \rightarrow \mathbf{m}]$

should be negligible.

Chosen-Plaintext Attacks

In the public-key setting, the adversary has access to the encryption key (the public key), and thus can encrypt any plaintext of its choice: chosen-plaintext attack

One-Wayness

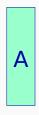
For a public-key encryption scheme $S = (\mathcal{K}, \mathcal{E}, \mathcal{D})$, without the secrete key *sk*, it should be computationally impossible to recover the plaintext *m* from the ciphertext *c*:

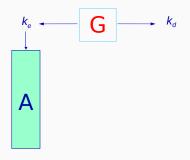
 $\mathbf{Succ}^{\mathsf{ow}}_{\mathcal{S}}(\mathcal{A}) = \mathsf{Pr}[(\mathbf{s}k, \mathbf{p}k) \leftarrow \mathcal{K}(); \mathbf{m} \stackrel{R}{\leftarrow} \mathcal{M}; \mathbf{c} = \mathcal{E}_{\mathbf{p}k}(\mathbf{m}) : \mathcal{A}(\mathbf{p}k, \mathbf{c}) \rightarrow \mathbf{m}]$

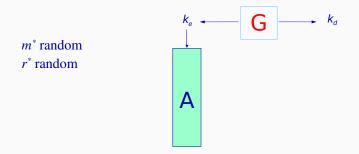
should be negligible.

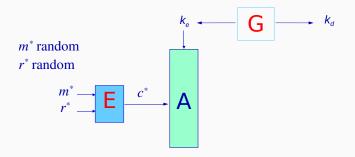
Chosen-Plaintext Attacks

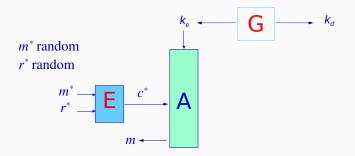
In the public-key setting, the adversary has access to the encryption key (the public key), and thus can encrypt any plaintext of its choice: chosen-plaintext attack

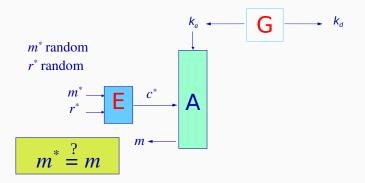












ElGamal Encryption

The ElGamal encryption scheme \mathcal{EG} is defined, in a group $\mathbb{G}=\langle g \rangle$ of order q

- $\mathcal{K}(\mathbb{G}, g, q)$: $x \stackrel{R}{\leftarrow} \mathbb{Z}_q$, and $sk \leftarrow x$ and $pk \leftarrow y = g^x$
- $\mathcal{E}_{pk}(m)$: $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, $c_1 \leftarrow g^r$ and $c_2 \leftarrow y^r \times m = pk^r \times m$. Then, the ciphertext is $c = (c_1, c_2)$

•
$$\mathcal{D}_{sk}(c)$$
 outputs $c_2/c_1^x = c_2/c_1^{sk}$

Theorem (ElGamal is OW – CPA)

$$\operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(t) \leq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t)$$

ElGamal Encryption

The ElGamal encryption scheme \mathcal{EG} is defined, in a group $\mathbb{G}=\langle g \rangle$ of order q

- $\mathcal{K}(\mathbb{G}, g, q)$: $x \stackrel{R}{\leftarrow} \mathbb{Z}_q$, and $sk \leftarrow x$ and $pk \leftarrow y = g^x$
- $\mathcal{E}_{pk}(m)$: $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, $c_1 \leftarrow g^r$ and $c_2 \leftarrow y^r \times m = pk^r \times m$. Then, the ciphertext is $c = (c_1, c_2)$

•
$$\mathcal{D}_{sk}(c)$$
 outputs $c_2/c_1^x = c_2/c_1^{sk}$

Theorem (ElGamal is OW – CPA)

$$\operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(t) \leq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t)$$

$$\operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(t) \leq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t)$$

• \mathcal{A} gets $pk \leftarrow y = g^x$ from \mathcal{K}

$$\operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(t) \leq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t)$$

- \mathcal{A} gets $pk \leftarrow y = g^x$ from \mathcal{K}
- The challenger chooses $r^* \xleftarrow{R}{\leftarrow} \mathbb{Z}_q^\star$ and sets $c_1 \leftarrow g^{r^*}$

$$\operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(t) \leq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t)$$

•
$$\mathcal{A}$$
 gets $pk \leftarrow y = g^x$ from \mathcal{K}

- The challenger chooses $r^* \xleftarrow{R}{\leftarrow} \mathbb{Z}_q^\star$ and sets $c_1 \leftarrow g^{r^*}$
- The challenger chooses m^{*} ← M, sets c₂ ← y^{r^{*}} × m^{*} and sends c = (c₁, c₂)

$$\operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(t) \leq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t)$$

•
$$\mathcal{A}$$
 gets $pk \leftarrow y = g^x$ from \mathcal{K}

- The challenger chooses $r^* \xleftarrow{R}{\leftarrow} \mathbb{Z}_q^{\star}$ and sets $c_1 \leftarrow g^{r^*}$
- The challenger chooses m^{*} ← M, sets c₂ ← y^{r^{*}} × m^{*} and sends c = (c₁, c₂)
- \mathcal{A} receives $c \leftarrow (c_1, c_2)$, and outputs m

$$\operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(t) \leq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t)$$

•
$$\mathcal{A}$$
 gets $pk \leftarrow y = g^x$ from \mathcal{K}

- The challenger chooses $r^* \xleftarrow{R}{\leftarrow} \mathbb{Z}_q^{\star}$ and sets $c_1 \leftarrow g^{r^*}$
- The challenger chooses m^{*} ← M, sets c₂ ← y^{r^{*}} × m^{*} and sends c = (c₁, c₂)
- \mathcal{A} receives $c \leftarrow (c_1, c_2)$, and outputs m

•
$$\Pr[m = m^*] = \operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(\mathcal{A})$$

$$\operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(t) \leq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t)$$

- \mathcal{A} gets $pk \leftarrow X$ from \mathcal{B}
- The challenger chooses $r^* \xleftarrow{R}{\leftarrow} \mathbb{Z}_q^\star$ and sets $c_1 \leftarrow g^{r^*}$
- The challenger chooses m^{*} ← M, sets c₂ ← y^{r^{*}} × m^{*} and sends c = (c₁, c₂)
- \mathcal{A} receives $c \leftarrow (c_1, c_2)$, and outputs m
- $\Pr[m = m^*] = \operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(\mathcal{A})$

$$\operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(t) \leq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t)$$

- \mathcal{A} gets $pk \leftarrow X$ from \mathcal{B}
- \mathcal{B} sets $c_1 \leftarrow Y$
- The challenger chooses m^{*} ← M, sets c₂ ← y^{r^{*}} × m^{*} and sends c = (c₁, c₂)
- \mathcal{A} receives $c \leftarrow (c_1, c_2)$, and outputs m
- $\Pr[m = m^*] = \operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(\mathcal{A})$

$$\operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(t) \leq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t)$$

- \mathcal{A} gets $pk \leftarrow X$ from \mathcal{B}
- \mathcal{B} sets $c_1 \leftarrow Y$
- \mathcal{B} chooses $c_2 \stackrel{R}{\leftarrow} \mathbb{G}$ (which virtually sets $m^* \leftarrow c_2/\mathsf{CDH}(X, Y)$), and sends $c = (c_1, c_2)$
- \mathcal{A} receives $c \leftarrow (c_1, c_2)$, and outputs m
- $\Pr[m = m^*] = \operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(\mathcal{A})$

$$\operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(t) \leq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t)$$

- \mathcal{A} gets $pk \leftarrow X$ from \mathcal{B}
- \mathcal{B} sets $c_1 \leftarrow Y$
- \mathcal{B} chooses $c_2 \stackrel{R}{\leftarrow} \mathbb{G}$ (which virtually sets $m^* \leftarrow c_2/\mathsf{CDH}(X, Y)$), and sends $c = (c_1, c_2)$
- \mathcal{B} receives m from \mathcal{A} and outputs c_2/m
- $\Pr[m = m^*] = \operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(\mathcal{A})$

$$\operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(t) \leq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t)$$

- \mathcal{A} gets $pk \leftarrow X$ from \mathcal{B}
- \mathcal{B} sets $c_1 \leftarrow Y$
- \mathcal{B} chooses $c_2 \stackrel{R}{\leftarrow} \mathbb{G}$ (which virtually sets $m^* \leftarrow c_2/\mathsf{CDH}(X, Y)$), and sends $c = (c_1, c_2)$
- \mathcal{B} receives m from \mathcal{A} and outputs c_2/m
- $\Pr[m = m^*] = \operatorname{Succ}_{\mathcal{EG}}^{\operatorname{ow-cpa}}(\mathcal{A})$ = $\Pr[c_2/m = c_2/m^*] = \Pr[c_2/m = \operatorname{CDH}(X, Y)] \leq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t)$

ENS/CNRS/INRIA Cascade

David Pointcheval

For a yes/no answer or sell/buy order, one bit of information may be enough for the adversary!

How to model that no bit of information leaks?

Semantic Security [Goldwasser-Micali 1984] For any predicate f, $\mathcal{E}(m)$ does not help to guess f(m), with better probability than f(m') (for a random but private m'): in the game

> $(sk, pk) \leftarrow \mathcal{K}(); (\mathcal{M}, f, ext{state}) \leftarrow \mathcal{A}(pk);$ $m, m' \stackrel{R}{\leftarrow} \mathcal{M}; c = \mathcal{E}_{pk}(m); p \leftarrow \mathcal{A}(ext{state}, c)$

then,

 $\mathbf{Adv}_{\mathcal{S}}^{\mathsf{sem}}(\mathcal{A}) = \left| \mathsf{Pr}[p = f(m)] - \mathsf{Pr}[p = f(m')] \right|.$

ENS/CNRS/INRIA Cascade

David Pointcheval

For a yes/no answer or sell/buy order,

one bit of information may be enough for the adversary!

How to model that no bit of information leaks?

Semantic Security

[Goldwasser-Micali 1984]

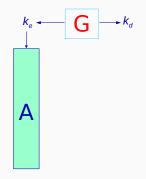
For any predicate f, $\mathcal{E}(m)$ does not help to guess f(m), with better probability than f(m') (for a random but private m'): in the game

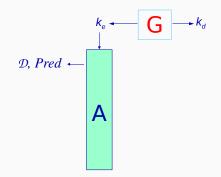
$$(m{sk},m{pk}) \leftarrow \mathcal{K}(); (\mathcal{M},f, ext{state}) \leftarrow \mathcal{A}(m{pk});$$

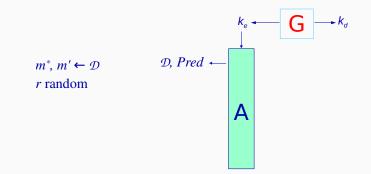
 $m,m' \stackrel{R}{\leftarrow} \mathcal{M}; m{c} = \mathcal{E}_{m{pk}}(m); m{p} \leftarrow \mathcal{A}(ext{state},m{c});$

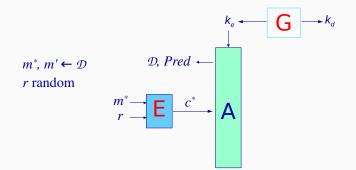
then,

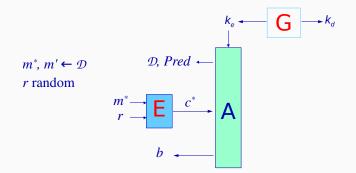
$$\operatorname{Adv}_{S}^{\operatorname{sem}}(\mathcal{A}) = \left| \operatorname{Pr}[p = f(m)] - \operatorname{Pr}[p = f(m')] \right|.$$

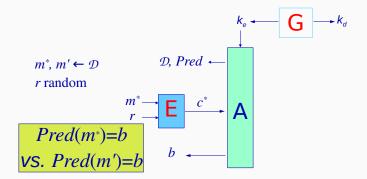












Another equivalent formulation (if efficiently computable predicate):

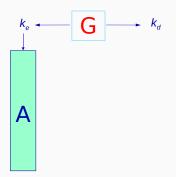
IND – CPA

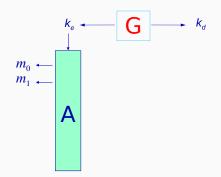
After having chosen two plaintexts m_0 and m_1 , upon receiving the encryption of m_b (for a random bit *b*), it should be hard to guess which message has been encrypted: in the game

$$egin{aligned} & (sk, pk) \leftarrow \mathcal{K}(); (m_0, m_1, ext{state}) \leftarrow \mathcal{A}(pk); \ & b \stackrel{R}{\leftarrow} \{0, 1\}; c = \mathcal{E}_{pk}(m_b); b' \leftarrow \mathcal{A}(ext{state}, c) \end{aligned}$$

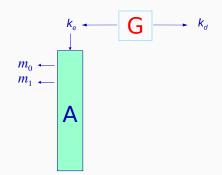
then,

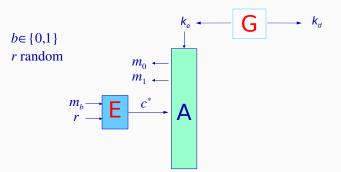
$$\begin{aligned} \mathbf{Adv}_{\mathcal{S}}^{\mathsf{ind-cpa}}(\mathcal{A}) &= \left| \mathsf{Pr}[b'=1|b=1] - \mathsf{Pr}[b'=1|b=0] \right| \\ &= \left| 2 \times \mathsf{Pr}[b'=b] - 1 \right| \end{aligned}$$

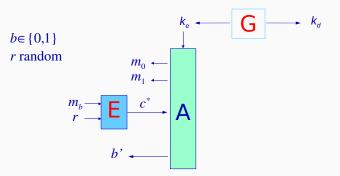




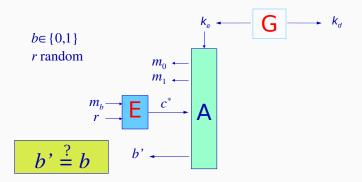
 $b \in \{0,1\}$ *r* random







IND – CPA Security Game



- \mathcal{B} runs \mathcal{A} to get \mathcal{D} and a predicate \mathcal{P} ; it gets $m_0, m_1 \stackrel{R}{\leftarrow} \mathcal{D}$, and outputs them;
- the challenger encrypts *m_b* in *c*
- B runs A, to get the guess p of A about the predicate P on the plaintext in c;
 - If $\mathcal{P}(m_0) = \mathcal{P}(m_0)$, \mathcal{B} outputs a random bit b'_i
 - otherwise it outputs b' such that $\mathcal{P}(m_{b'}) = \rho$.

- \mathcal{B} runs \mathcal{A} to get \mathcal{D} and a predicate \mathcal{P} ; it gets $m_0, m_1 \stackrel{R}{\leftarrow} \mathcal{D}$, and outputs them;
- the challenger encrypts *m_b* in *c*
- B runs A, to get the guess p of A about the predicate P on the plaintext in c;
 - If $\mathcal{P}(m_0) = \mathcal{P}(m_1)$, \mathcal{B} outputs a random bit b',
 - otherwise it outputs b' such that P(m_{b'}) = ρ.

- \mathcal{B} runs \mathcal{A} to get \mathcal{D} and a predicate \mathcal{P} ; it gets $m_0, m_1 \stackrel{R}{\leftarrow} \mathcal{D}$, and outputs them;
- the challenger encrypts m_b in c
- B runs A, to get the guess p of A about the predicate P on the plaintext in c;
 - If $\mathcal{P}(m_0) = \mathcal{P}(m_1)$, \mathcal{B} outputs a random bit b',
 - otherwise it outputs b' such that $\mathcal{P}(m_{b'}) = \rho$

- \mathcal{B} runs \mathcal{A} to get \mathcal{D} and a predicate \mathcal{P} ; it gets $m_0, m_1 \stackrel{R}{\leftarrow} \mathcal{D}$, and outputs them;
- the challenger encrypts *m_b* in *c*
- B runs A, to get the guess p of A about the predicate P on the plaintext in c;
 - If $\mathcal{P}(m_0) = \mathcal{P}(m_1)$, \mathcal{B} outputs a random bit b',
 - otherwise it outputs b' such that $\mathcal{P}(m_{b'}) = p$.

- \mathcal{B} runs \mathcal{A} to get \mathcal{D} and a predicate \mathcal{P} ; it gets $m_0, m_1 \stackrel{R}{\leftarrow} \mathcal{D}$, and outputs them;
- the challenger encrypts *m_b* in *c*
- B runs A, to get the guess p of A about the predicate P on the plaintext in c;
 - If $\mathcal{P}(m_0) = \mathcal{P}(m_1)$, \mathcal{B} outputs a random bit b',
 - otherwise it outputs b' such that $\mathcal{P}(m_{b'}) = p$.

- \mathcal{B} runs \mathcal{A} to get \mathcal{D} and a predicate \mathcal{P} ; it gets $m_0, m_1 \stackrel{R}{\leftarrow} \mathcal{D}$, and outputs them;
- the challenger encrypts *m_b* in *c*
- B runs A, to get the guess p of A about the predicate P on the plaintext in c;
 - If $\mathcal{P}(m_0) = \mathcal{P}(m_1)$, \mathcal{B} outputs a random bit b',
 - otherwise it outputs b' such that $\mathcal{P}(m_{b'}) = p$.

- \mathcal{B} runs \mathcal{A} to get \mathcal{D} and a predicate \mathcal{P} ; it gets $m_0, m_1 \stackrel{R}{\leftarrow} \mathcal{D}$, and outputs them;
- the challenger encrypts *m_b* in *c*
- B runs A, to get the guess p of A about the predicate P on the plaintext in c;
 - If $\mathcal{P}(m_0) = \mathcal{P}(m_1)$, \mathcal{B} outputs a random bit b',
 - otherwise it outputs b' such that $\mathcal{P}(m_{b'}) = p$.

Note that (if diff denotes the event that $\mathcal{P}(m) \neq \mathcal{P}(m')$)

- \mathcal{B} runs \mathcal{A} to get \mathcal{D} and a predicate \mathcal{P} ; it gets $m_0, m_1 \stackrel{R}{\leftarrow} \mathcal{D}$, and outputs them;
- the challenger encrypts *m_b* in *c*
- B runs A, to get the guess p of A about the predicate P on the plaintext in c;
 - If $\mathcal{P}(m_0) = \mathcal{P}(m_1)$, \mathcal{B} outputs a random bit b',
 - otherwise it outputs b' such that $\mathcal{P}(m_{b'}) = p$.

Note that (if diff denotes the event that $\mathcal{P}(m) \neq \mathcal{P}(m')$) $\operatorname{Adv}^{\operatorname{sem}}(\mathcal{A}) = |\operatorname{Pr}[p = \mathcal{P}(m)|c = \mathcal{E}(m)] - \operatorname{Pr}[p = \mathcal{P}(m')|c = \mathcal{E}(m)]|$

- \mathcal{B} runs \mathcal{A} to get \mathcal{D} and a predicate \mathcal{P} ; it gets $m_0, m_1 \stackrel{R}{\leftarrow} \mathcal{D}$, and outputs them;
- the challenger encrypts m_b in c
- B runs A, to get the guess p of A about the predicate P on the plaintext in c;
 - If $\mathcal{P}(m_0) = \mathcal{P}(m_1)$, \mathcal{B} outputs a random bit b',
 - otherwise it outputs b' such that $\mathcal{P}(m_{b'}) = p$.

Note that (if diff denotes the event that $\mathcal{P}(m) \neq \mathcal{P}(m')$) $\mathbf{Adv}^{\text{sem}}(\mathcal{A}) = |\Pr[p = \mathcal{P}(m)|c = \mathcal{E}(m)] - \Pr[p = \mathcal{P}(m')|c = \mathcal{E}(m)]|$ $= \left| \begin{array}{c} \Pr[p = \mathcal{P}(m)|c = \mathcal{E}(m) \land \text{diff}] \\ -\Pr[p = \mathcal{P}(m')|c = \mathcal{E}(m) \land \text{diff}] \end{array} \right| \times \Pr[\text{diff}]$

ENS/CNRS/INRIA Cascade

David Pointcheval

Indistinguishability implies Semantic Security

If diff denotes the event that $\mathcal{P}(m_0) \neq \mathcal{P}(m_1)$

Indistinguishability implies Semantic Security

If diff denotes the event that $\mathcal{P}(m_0) \neq \mathcal{P}(m_1)$

$$Adv^{ind}(B) = |Pr[b' = 1|b = 1] - Pr[b' = 1|b = 0]|$$

If diff denotes the event that $\mathcal{P}(m_0) \neq \mathcal{P}(m_1)$ $\mathbf{Adv}^{\mathrm{ind}}(\mathcal{B}) = |\Pr[b' = 1|b = 1] - \Pr[b' = 1|b = 0]|$ $= \left| \begin{array}{c} \Pr[b' = 1|b = 1 \land \mathrm{diff}] \\ -\Pr[b' = 1|b = 0 \land \mathrm{diff}] \end{array} \right| \times \Pr[\mathrm{diff}]$

If diff denotes the event that
$$\mathcal{P}(m_0) \neq \mathcal{P}(m_1)$$

$$\mathbf{Adv}^{\mathrm{ind}}(\mathcal{B}) = |\Pr[b' = 1|b = 1] - \Pr[b' = 1|b = 0]|$$

$$= \left| \begin{array}{c} \Pr[b' = 1|b = 1 \land \mathrm{diff}] \\ -\Pr[b' = 1|b = 0 \land \mathrm{diff}] \end{array} \right| \times \Pr[\mathrm{diff}]$$

$$= \left| \begin{array}{c} \Pr[\mathcal{P}(m_1) = p|c = \mathcal{E}(m_1) \land \mathrm{diff}] \\ -\Pr[\mathcal{P}(m_1) = p|c = \mathcal{E}(m_0) \land \mathrm{diff}] \end{array} \right| \times \Pr[\mathrm{diff}]$$

If diff denotes the event that
$$\mathcal{P}(m_0) \neq \mathcal{P}(m_1)$$

$$\mathbf{Adv}^{ind}(\mathcal{B}) = |\Pr[b' = 1|b = 1] - \Pr[b' = 1|b = 0]|$$

$$= \left| \begin{array}{c} \Pr[b' = 1|b = 1 \land \text{diff}] \\ -\Pr[b' = 1|b = 0 \land \text{diff}] \\ -\Pr[b' = 1|b = 0 \land \text{diff}] \end{array} \right| \times \Pr[\text{diff}]$$

$$= \left| \begin{array}{c} \Pr[\mathcal{P}(m_1) = p|c = \mathcal{E}(m_1) \land \text{diff}] \\ -\Pr[\mathcal{P}(m_1) = p|c = \mathcal{E}(m_0) \land \text{diff}] \end{array} \right| \times \Pr[\text{diff}]$$

$$= \left| \begin{array}{c} \Pr[\mathcal{P}(m_1) = p|c = \mathcal{E}(m_1) \land \text{diff}] \\ -\Pr[\mathcal{P}(m_0) = p|c = \mathcal{E}(m_1) \land \text{diff}] \end{array} \right| \times \Pr[\text{diff}]$$

If diff denotes the event that
$$\mathcal{P}(m_0) \neq \mathcal{P}(m_1)$$

$$\mathbf{Adv}^{\mathrm{ind}}(\mathcal{B}) = |\Pr[b' = 1|b = 1] - \Pr[b' = 1|b = 0]|$$

$$= \left| \begin{array}{c} \Pr[b' = 1|b = 1 \land \mathrm{diff}] \\ -\Pr[b' = 1|b = 0 \land \mathrm{diff}] \end{array} \right| \times \Pr[\mathrm{diff}]$$

$$= \left| \begin{array}{c} \Pr[\mathcal{P}(m_1) = p|c = \mathcal{E}(m_1) \land \mathrm{diff}] \\ -\Pr[\mathcal{P}(m_1) = p|c = \mathcal{E}(m_0) \land \mathrm{diff}] \end{array} \right| \times \Pr[\mathrm{diff}]$$

$$= \left| \begin{array}{c} \Pr[\mathcal{P}(m_1) = p|c = \mathcal{E}(m_1) \land \mathrm{diff}] \\ -\Pr[\mathcal{P}(m_0) = p|c = \mathcal{E}(m_1) \land \mathrm{diff}] \end{array} \right| \times \Pr[\mathrm{diff}]$$

$$= \left| \begin{array}{c} \Pr[\mathcal{P}(m_0) = p|c = \mathcal{E}(m_1) \land \mathrm{diff}] \\ -\Pr[\mathcal{P}(m_0) = p|c = \mathcal{E}(m_1) \land \mathrm{diff}] \end{array} \right| \times \Pr[\mathrm{diff}]$$

$$= \left| \begin{array}{c} \mathrm{Adv}^{\mathrm{sem}}(\mathcal{A}) \leq \mathrm{Adv}^{\mathrm{ind}}(t') \right|$$

If diff denotes the event that
$$\mathcal{P}(m_0) \neq \mathcal{P}(m_1)$$

$$\mathbf{Adv}^{\mathrm{ind}}(\mathcal{B}) = |\Pr[b' = 1|b = 1] - \Pr[b' = 1|b = 0]|$$

$$= \left| \begin{array}{c} \Pr[b' = 1|b = 1 \land \mathrm{diff}] \\ -\Pr[b' = 1|b = 0 \land \mathrm{diff}] \end{array} \right| \times \Pr[\mathrm{diff}]$$

$$= \left| \begin{array}{c} \Pr[\mathcal{P}(m_1) = p|c = \mathcal{E}(m_1) \land \mathrm{diff}] \\ -\Pr[\mathcal{P}(m_1) = p|c = \mathcal{E}(m_0) \land \mathrm{diff}] \end{array} \right| \times \Pr[\mathrm{diff}]$$

$$= \left| \begin{array}{c} \Pr[\mathcal{P}(m_1) = p|c = \mathcal{E}(m_1) \land \mathrm{diff}] \\ -\Pr[\mathcal{P}(m_0) = p|c = \mathcal{E}(m_1) \land \mathrm{diff}] \end{array} \right| \times \Pr[\mathrm{diff}]$$

$$= \left| \begin{array}{c} \Pr[\mathcal{P}(m_0) = p|c = \mathcal{E}(m_1) \land \mathrm{diff}] \\ -\Pr[\mathcal{P}(m_0) = p|c = \mathcal{E}(m_1) \land \mathrm{diff}] \end{array} \right| \times \Pr[\mathrm{diff}]$$

$$= \left| \begin{array}{c} \operatorname{Adv}_{\mathrm{sem}}(\mathcal{A}) < \mathrm{Adv}_{\mathrm{sind}}(t') \right|$$

The running time t' of \mathcal{B} = one execution of \mathcal{A} (time t), two sampling from \mathcal{D} (time τ_D), two evaluations of the predicate \mathcal{P} (time $\tau_{\mathcal{P}}$)

If diff denotes the event that
$$\mathcal{P}(m_0) \neq \mathcal{P}(m_1)$$

$$\mathbf{Adv}^{\mathrm{ind}}(\mathcal{B}) = |\Pr[b' = 1|b = 1] - \Pr[b' = 1|b = 0]|$$

$$= \left| \begin{array}{c} \Pr[b' = 1|b = 1 \land \mathrm{diff}] \\ -\Pr[b' = 1|b = 0 \land \mathrm{diff}] \end{array} \right| \times \Pr[\mathrm{diff}]$$

$$= \left| \begin{array}{c} \Pr[\mathcal{P}(m_1) = p|c = \mathcal{E}(m_1) \land \mathrm{diff}] \\ -\Pr[\mathcal{P}(m_1) = p|c = \mathcal{E}(m_0) \land \mathrm{diff}] \end{array} \right| \times \Pr[\mathrm{diff}]$$

$$= \left| \begin{array}{c} \Pr[\mathcal{P}(m_1) = p|c = \mathcal{E}(m_1) \land \mathrm{diff}] \\ -\Pr[\mathcal{P}(m_0) = p|c = \mathcal{E}(m_1) \land \mathrm{diff}] \end{array} \right| \times \Pr[\mathrm{diff}]$$

$$= \left| \begin{array}{c} \Pr[\mathcal{P}(m_1) = p|c = \mathcal{E}(m_1) \land \mathrm{diff}] \\ -\Pr[\mathcal{P}(m_0) = p|c = \mathcal{E}(m_1) \land \mathrm{diff}] \end{array} \right| \times \Pr[\mathrm{diff}]$$

$$= \left| \begin{array}{c} \mathrm{Adv}^{\mathrm{sem}}(\mathcal{A}) \leq \mathrm{Adv}^{\mathrm{sind}}(t') \right|$$

The running time t' of \mathcal{B} = one execution of \mathcal{A} (time t), two sampling from \mathcal{D} (time $\tau_{\mathcal{D}}$), two evaluations of the predicate \mathcal{P} (time $\tau_{\mathcal{P}}$) $\mathbf{Adv}^{sem}(t) \leq \mathbf{Adv}^{ind}(t + 2\tau_{\mathcal{D}} + 2\tau_{\mathcal{P}})$

ENS/CNRS/INRIA Cascade

David Pointcheval

- \mathcal{B} runs \mathcal{A} to get (m_0, m_1) ; it sets $\mathcal{D} = \{m_0, m_1\}$, and $\mathcal{P}(m) = (m \stackrel{?}{=} m_1)$;
- the challenger chooses $m, m' \stackrel{H}{\leftarrow} \mathcal{D}$, and encrypts m in c
- \mathcal{B} runs \mathcal{A} , to get b', that it forwards as its guess p

• \mathcal{B} runs \mathcal{A} to get (m_0, m_1) ;

it sets $\mathcal{D} = \{m_0, m_1\}$, and $\mathcal{P}(m) = (m \stackrel{?}{=} m_1)$;

- the challenger chooses $m, m' \stackrel{R}{\leftarrow} \mathcal{D}$, and encrypts m in c
- \mathcal{B} runs \mathcal{A} , to get b', that it forwards as its guess p

- \mathcal{B} runs \mathcal{A} to get (m_0, m_1) ; it sets $\mathcal{D} = \{m_0, m_1\}$, and $\mathcal{P}(m) = (m \stackrel{?}{=} m_1)$;
- the challenger chooses $m, m' \stackrel{R}{\leftarrow} \mathcal{D}$, and encrypts m in c
- \mathcal{B} runs \mathcal{A} , to get b', that it forwards as its guess p

- \mathcal{B} runs \mathcal{A} to get (m_0, m_1) ; it sets $\mathcal{D} = \{m_0, m_1\}$, and $\mathcal{P}(m) = (m \stackrel{?}{=} m_1)$;
- the challenger chooses $m, m' \stackrel{R}{\leftarrow} D$, and encrypts m in c
- \mathcal{B} runs \mathcal{A} , to get b', that it forwards as its guess p

- \mathcal{B} runs \mathcal{A} to get (m_0, m_1) ; it sets $\mathcal{D} = \{m_0, m_1\}$, and $\mathcal{P}(m) = (m \stackrel{?}{=} m_1)$;
- the challenger chooses $m, m' \stackrel{R}{\leftarrow} D$, and encrypts m in c
- \mathcal{B} runs \mathcal{A} , to get b', that it forwards as its guess p

$$\operatorname{Adv}^{\operatorname{sem}}(\mathcal{B}) = \left| \operatorname{Pr}[p = \mathcal{P}(m)] - \operatorname{Pr}[p = \mathcal{P}(m')] \right|$$

- \mathcal{B} runs \mathcal{A} to get (m_0, m_1) ; it sets $\mathcal{D} = \{m_0, m_1\}$, and $\mathcal{P}(m) = (m \stackrel{?}{=} m_1)$;
- the challenger chooses $m, m' \stackrel{R}{\leftarrow} D$, and encrypts m in c
- \mathcal{B} runs \mathcal{A} , to get b', that it forwards as its guess p

$$\mathbf{Adv}^{\mathsf{sem}}(\mathcal{B}) = |\Pr[p = \mathcal{P}(m)] - \Pr[p = \mathcal{P}(m')]|$$
$$= |\Pr[m = m_p] - \Pr[m' = m_p]|$$

- \mathcal{B} runs \mathcal{A} to get (m_0, m_1) ; it sets $\mathcal{D} = \{m_0, m_1\}$, and $\mathcal{P}(m) = (m \stackrel{?}{=} m_1)$;
- the challenger chooses $m, m' \stackrel{R}{\leftarrow} D$, and encrypts m in c
- \mathcal{B} runs \mathcal{A} , to get b', that it forwards as its guess p

$$\mathbf{Adv}^{\mathsf{sem}}(\mathcal{B}) = |\Pr[p = \mathcal{P}(m)] - \Pr[p = \mathcal{P}(m')]|$$
$$= |\Pr[m = m_p] - \Pr[m' = m_p]|$$
$$= |\Pr[m = m_{b'}] - \Pr[m' = m_{b'}]|$$

- \mathcal{B} runs \mathcal{A} to get (m_0, m_1) ; it sets $\mathcal{D} = \{m_0, m_1\}$, and $\mathcal{P}(m) = (m \stackrel{?}{=} m_1)$;
- the challenger chooses $m, m' \stackrel{R}{\leftarrow} \mathcal{D}$, and encrypts m in c
- \mathcal{B} runs \mathcal{A} , to get b', that it forwards as its guess p

$$\mathbf{Adv}^{\text{sem}}(\mathcal{B}) = |\Pr[p = \mathcal{P}(m)] - \Pr[p = \mathcal{P}(m')]|$$

$$= |\Pr[m = m_{\rho}] - \Pr[m' = m_{\rho}]|$$

$$= |\Pr[m = m_{b'}] - \Pr[m' = m_{b'}]|$$

$$\mathbf{Adv}^{\text{ind}}(\mathcal{A}) = |\Pr[b' = 1|b = 1] - \Pr[b' = 1|b = 0]|$$

where $m = m_{b}$

David Pointcheval

$$\operatorname{Adv}^{\operatorname{sem}}(\mathcal{B}) = |\operatorname{Pr}[m = m_{b'}] - \operatorname{Pr}[m' = m_{b'}]|$$

$$\mathbf{Adv}^{\text{sem}}(\mathcal{B}) = \left| \Pr[m = m_{b'}] - \Pr[m' = m_{b'}] \right|$$
$$= \left| \Pr[m_b = m_{b'}] - \Pr[m_d = m_{b'}] \right|$$
where $m = m_b$ and $m' = m_d$

$$\mathbf{Adv}^{\mathrm{sem}}(\mathcal{B}) = |\Pr[m = m_{b'}] - \Pr[m' = m_{b'}]|$$

= $|\Pr[m_b = m_{b'}] - \Pr[m_d = m_{b'}]|$
where $m = m_b$ and $m' = m_d$
= $|\Pr[b = b'] - \Pr[d = b']|$

$$\mathbf{Adv}^{\text{sem}}(\mathcal{B}) = \left| \Pr[m = m_{b'}] - \Pr[m' = m_{b'}] \right|$$
$$= \left| \Pr[m_b = m_{b'}] - \Pr[m_d = m_{b'}] \right|$$
$$\text{where } m = m_b \text{ and } m' = m_d$$
$$= \left| \Pr[b = b'] - \Pr[d = b'] \right|$$
$$= \left| \Pr[b = b'] - 1/2 \right|$$

$$\mathbf{Adv}^{\text{sem}}(\mathcal{B}) = \left| \Pr[m = m_{b'}] - \Pr[m' = m_{b'}] \right|$$
$$= \left| \Pr[m_b = m_{b'}] - \Pr[m_d = m_{b'}] \right|$$
$$\text{where } m = m_b \text{ and } m' = m_d$$
$$= \left| \Pr[b = b'] - \Pr[d = b'] \right|$$

$$= |\Pr[b = b'] - 1/2|$$

$$= \mathrm{Adv}^{\mathsf{ind}}(\mathcal{A})/2 \leq \mathrm{Adv}^{\mathsf{sem}}(t')$$

$$\mathbf{Adv}^{\mathrm{sem}}(\mathcal{B}) = |\Pr[m = m_{b'}] - \Pr[m' = m_{b'}]|$$

=
$$|\Pr[m_b = m_{b'}] - \Pr[m_d = m_{b'}]|$$

where $m = m_b$ and $m' = m_d$
=
$$|\Pr[b = b'] - \Pr[d = b']|$$

=
$$|\Pr[b = b'] - 1/2|$$

=
$$\mathbf{Adv}^{\mathrm{ind}}(\mathcal{A})/2 \leq \mathbf{Adv}^{\mathrm{sem}}(t')$$

The running time t' of \mathcal{B} = one execution of \mathcal{A} (time t)

$$\mathbf{Adv}^{\mathrm{sem}}(\mathcal{B}) = |\Pr[m = m_{b'}] - \Pr[m' = m_{b'}]|$$

=
$$|\Pr[m_b = m_{b'}] - \Pr[m_d = m_{b'}]|$$

where $m = m_b$ and $m' = m_d$
=
$$|\Pr[b = b'] - \Pr[d = b']|$$

=
$$|\Pr[b = b'] - 1/2|$$

=
$$\mathbf{Adv}^{\mathrm{ind}}(\mathcal{A})/2 \leq \mathbf{Adv}^{\mathrm{sem}}(t')$$

The running time t' of \mathcal{B} = one execution of \mathcal{A} (time t)

$$\mathbf{Adv}^{\mathsf{ind}}(t) \leq \mathbf{2} \times \mathbf{Adv}^{\mathsf{sem}}(t)$$

ENS/CNRS/INRIA Cascade

ElGamal Encryption

ElGamal Encryption

The ElGamal encryption scheme \mathcal{EG} is defined, in a group $\mathbb{G} = \langle g \rangle$ of order q

- $\mathcal{K}(\mathbb{G}, g, q)$: $x \stackrel{R}{\leftarrow} \mathbb{Z}_q$, and $sk \leftarrow x$ and $pk \leftarrow y = g^x$
- $\mathcal{E}_{pk}(m)$: $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, $c_1 \leftarrow g^r$ and $c_2 \leftarrow y^r \times m = pk^r \times m$. Then, the ciphertext is $c = (c_1, c_2)$
- $\mathcal{D}_{sk}(c)$ outputs $c_2/c_1^x = c_2/c_1^{sk}$

Theorem (ElGamal is IND – CPA)

 $\mathbf{Adv}^{\mathsf{ind-cpa}}_{\mathcal{EG}}(t) \leq \mathbf{2} imes \mathbf{Adv}^{\mathsf{ddh}}_{\mathbb{G}}(t)$

ElGamal Encryption

ElGamal Encryption

The ElGamal encryption scheme \mathcal{EG} is defined, in a group $\mathbb{G} = \langle g \rangle$ of order q

- $\mathcal{K}(\mathbb{G}, g, q)$: $x \stackrel{R}{\leftarrow} \mathbb{Z}_q$, and $sk \leftarrow x$ and $pk \leftarrow y = g^x$
- $\mathcal{E}_{pk}(m)$: $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, $c_1 \leftarrow g^r$ and $c_2 \leftarrow y^r \times m = pk^r \times m$. Then, the ciphertext is $c = (c_1, c_2)$
- $\mathcal{D}_{sk}(c)$ outputs $c_2/c_1^x = c_2/c_1^{sk}$

Theorem (ElGamal is IND – CPA)

$$\operatorname{Adv}_{\mathcal{EG}}^{\operatorname{\mathsf{ind-cpa}}}(t) \leq \mathsf{2} imes \operatorname{Adv}_{\mathbb{G}}^{\operatorname{\mathsf{ddh}}}(t)$$

• \mathcal{A} gets $pk \leftarrow y = g^x$ from \mathcal{K} , and outputs (m_0, m_1)

- \mathcal{A} gets $pk \leftarrow y = g^x$ from \mathcal{K} , and outputs (m_0, m_1)
- The challenger chooses $r^* \xleftarrow{R}{\leftarrow} \mathbb{Z}_q^{\star}$ and sets $c_1 \leftarrow g^{r^*}$

- \mathcal{A} gets $pk \leftarrow y = g^x$ from \mathcal{K} , and outputs (m_0, m_1)
- The challenger chooses $r^* \stackrel{R}{\leftarrow} \mathbb{Z}_q^{\star}$ and sets $c_1 \leftarrow g^{r^*}$
- The challenger chooses $b \stackrel{R}{\leftarrow} \{0, 1\}$, sets $c_2 \leftarrow y^{r^*} \times m_b$, and sends $c = (c_1, c_2)$

- \mathcal{A} gets $pk \leftarrow y = g^x$ from \mathcal{K} , and outputs (m_0, m_1)
- The challenger chooses $r^* \stackrel{R}{\leftarrow} \mathbb{Z}_q^{\star}$ and sets $c_1 \leftarrow g^{r^*}$
- The challenger chooses $b \stackrel{R}{\leftarrow} \{0, 1\}$, sets $c_2 \leftarrow y^{r^*} \times m_b$, and sends $c = (c_1, c_2)$
- \mathcal{A} receives $c \leftarrow (c_1, c_2)$, and outputs b'

- \mathcal{A} gets $pk \leftarrow y = g^x$ from \mathcal{K} , and outputs (m_0, m_1)
- The challenger chooses $r^* \xleftarrow{R}{\leftarrow} \mathbb{Z}_q^{\star}$ and sets $c_1 \leftarrow g^{r^*}$
- The challenger chooses $b \stackrel{R}{\leftarrow} \{0, 1\}$, sets $c_2 \leftarrow y^{r^*} \times m_b$, and sends $c = (c_1, c_2)$
- \mathcal{A} receives $c \leftarrow (c_1, c_2)$, and outputs b'

•
$$2 \times \Pr[b' = b] - 1 = \operatorname{Adv}_{\mathcal{EG}}^{\operatorname{ind-cpa}}(\mathcal{A})$$

- \mathcal{A} gets $pk \leftarrow X$ from \mathcal{B} , and outputs (m_0, m_1)
- The challenger chooses $r^* \xleftarrow{R}{\leftarrow} \mathbb{Z}_q^{\star}$ and sets $c_1 \leftarrow g^{r^*}$
- The challenger chooses $b \stackrel{R}{\leftarrow} \{0, 1\}$, sets $c_2 \leftarrow y^{r^*} \times m_b$, and sends $c = (c_1, c_2)$
- \mathcal{A} receives $c \leftarrow (c_1, c_2)$, and outputs b'

•
$$2 \times \Pr[b' = b] - 1 = \operatorname{Adv}_{\mathcal{EG}}^{\operatorname{ind-cpa}}(\mathcal{A})$$

- \mathcal{A} gets $pk \leftarrow X$ from \mathcal{B} , and outputs (m_0, m_1)
- \mathcal{B} sets $c_1 \leftarrow Y$
- The challenger chooses $b \stackrel{R}{\leftarrow} \{0, 1\}$, sets $c_2 \leftarrow y^{r^*} \times m_b$, and sends $c = (c_1, c_2)$
- \mathcal{A} receives $c \leftarrow (c_1, c_2)$, and outputs b'

•
$$2 \times \Pr[b' = b] - 1 = \operatorname{Adv}_{\mathcal{EG}}^{\operatorname{ind-cpa}}(\mathcal{A})$$

- \mathcal{A} gets $pk \leftarrow X$ from \mathcal{B} , and outputs (m_0, m_1)
- \mathcal{B} sets $c_1 \leftarrow Y$
- \mathcal{B} chooses $b \stackrel{R}{\leftarrow} \{0, 1\}$, sets $c_2 \leftarrow Z \times m_b$, and sends $c = (c_1, c_2)$
- \mathcal{A} receives $c \leftarrow (c_1, c_2)$, and outputs b'

•
$$2 \times \Pr[b' = b] - 1 = \operatorname{Adv}_{\mathcal{EG}}^{\operatorname{ind-cpa}}(\mathcal{A})$$

- \mathcal{A} gets $pk \leftarrow X$ from \mathcal{B} , and outputs (m_0, m_1)
- \mathcal{B} sets $c_1 \leftarrow Y$
- \mathcal{B} chooses $b \stackrel{R}{\leftarrow} \{0, 1\}$, sets $c_2 \leftarrow Z \times m_b$, and sends $c = (c_1, c_2)$
- \mathcal{B} receives b' from \mathcal{A} and outputs d = (b' = b)

•
$$2 \times \Pr[b' = b] - 1 = \operatorname{Adv}_{\mathcal{EG}}^{\operatorname{ind-cpa}}(\mathcal{A})$$

- \mathcal{A} gets $pk \leftarrow X$ from \mathcal{B} , and outputs (m_0, m_1)
- \mathcal{B} sets $c_1 \leftarrow Y$
- \mathcal{B} chooses $b \stackrel{R}{\leftarrow} \{0, 1\}$, sets $c_2 \leftarrow Z \times m_b$, and sends $c = (c_1, c_2)$
- \mathcal{B} receives b' from \mathcal{A} and outputs d = (b' = b)

•
$$|2 \times \Pr[b' = b] - 1|$$

= $\operatorname{Adv}_{\mathcal{EG}}^{\operatorname{ind-cpa}}(\mathcal{A})$, if $Z = \operatorname{CDH}(X, Y)$

- \mathcal{A} gets $pk \leftarrow X$ from \mathcal{B} , and outputs (m_0, m_1)
- \mathcal{B} sets $c_1 \leftarrow Y$
- \mathcal{B} chooses $b \stackrel{R}{\leftarrow} \{0, 1\}$, sets $c_2 \leftarrow Z \times m_b$, and sends $c = (c_1, c_2)$
- \mathcal{B} receives b' from \mathcal{A} and outputs d = (b' = b)

•
$$|2 \times \Pr[b' = b] - 1|$$

= $\mathbf{Adv}_{\mathcal{EG}}^{\text{ind-cpa}}(\mathcal{A})$, if $Z = \mathbf{CDH}(X, Y)$
= 0, otherwise

As a consequence,

•
$$|2 \times \Pr[b' = b|Z = \mathbf{CDH}(X, Y)] - 1| = \mathbf{Adv}_{\mathcal{EG}}^{\mathsf{ind-cpa}}(\mathcal{A})$$

•
$$\left| 2 \times \Pr[b' = b | Z \stackrel{R}{\leftarrow} \mathbb{G}] - 1 \right| = 0$$

$$\mathbf{Adv}_{\mathcal{EG}}^{\mathsf{ind-cpa}}(\mathcal{A}) = 2 \times \begin{vmatrix} \Pr[d=1|Z=\mathsf{CDH}(X,Y)] \\ -\Pr[d=1|Z \stackrel{R}{\leftarrow} \mathbb{G}] \\ = 2 \times \mathbf{Adv}_{\mathbb{G}}^{\mathsf{ddh}}(\mathcal{B}) \leq 2 \times \mathbf{Adv}_{\mathbb{G}}^{\mathsf{ddh}}(t) \end{vmatrix}$$

As a consequence,

•
$$|2 \times \Pr[b' = b|Z = \mathbf{CDH}(X, Y)] - 1| = \mathrm{Adv}_{\mathcal{EG}}^{\mathrm{ind-cpa}}(\mathcal{A})$$

•
$$\left| 2 \times \Pr[b' = b | Z \stackrel{R}{\leftarrow} \mathbb{G}] - 1 \right| = 0$$

$$\begin{aligned} \mathbf{Adv}_{\mathcal{EG}}^{\mathsf{ind-cpa}}(\mathcal{A}) &= 2 \times \begin{vmatrix} \mathsf{Pr}[d=1|Z=\mathsf{CDH}(X,Y)] \\ -\mathsf{Pr}[d=1|Z\overset{R}{\leftarrow} \mathbb{G}] \\ &= 2 \times \mathbf{Adv}_{\mathbb{G}}^{\mathsf{ddh}}(\mathcal{B}) \leq 2 \times \mathbf{Adv}_{\mathbb{G}}^{\mathsf{ddh}}(t) \end{aligned}$$

\mathcal{RSA} Encryption

The RSA encryption scheme \mathcal{RSA} is defined by

- *K*(1^k): *p* and *q* two random *k*-bit prime integers, and an exponent *e* (possibly fixed, or not):
 sk ← *d* = *e*⁻¹ mod φ(*n*) and *pk* ← (*n*, *e*)
- $\mathcal{E}_{pk}(m)$: the ciphertext is $c = m^e \mod n$
- $\mathcal{D}_{sk}(c)$: the plaintext is $m = c^d \mod n$

Theorem (\mathcal{RSA} is OW – CPA, but...)

A deterministic encryption scheme cannot be IND -- CPA

\mathcal{RSA} Encryption

The RSA encryption scheme \mathcal{RSA} is defined by

- *K*(1^k): *p* and *q* two random *k*-bit prime integers, and an exponent *e* (possibly fixed, or not):
 sk ← *d* = *e*⁻¹ mod φ(*n*) and *pk* ← (*n*, *e*)
- $\mathcal{E}_{pk}(m)$: the ciphertext is $c = m^e \mod n$
- $\mathcal{D}_{sk}(c)$: the plaintext is $m = c^d \mod n$

Theorem (\mathcal{RSA} is OW – CPA, but...)

$$\operatorname{Succ}_{\mathcal{RSA}}^{\operatorname{ow-cpa}}(t) \leq \operatorname{Succ}^{\operatorname{rsa}}(t)$$

\mathcal{RSA} Encryption

The RSA encryption scheme \mathcal{RSA} is defined by

- *K*(1^k): *p* and *q* two random *k*-bit prime integers, and an exponent *e* (possibly fixed, or not):
 sk ← *d* = *e*⁻¹ mod φ(*n*) and *pk* ← (*n*, *e*)
- $\mathcal{E}_{pk}(m)$: the ciphertext is $c = m^e \mod n$
- $\mathcal{D}_{sk}(c)$: the plaintext is $m = c^d \mod n$

Theorem (\mathcal{RSA} is OW – CPA, but...)

$$\operatorname{Succ}_{\mathcal{RSA}}^{\operatorname{ow-cpa}}(t) \leq \operatorname{Succ}^{\operatorname{rsa}}(t)$$

A deterministic encryption scheme cannot be IND - CPA

Cryptography

Provable Security

Basic Security Notions

Public-Key Encryption

Variants of Indistinguishability

Signatures

Conclusion

[Bellare-Desai-Jokipii-Rogaway 1997]

FtG - CPA

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and chooses 2 messages *m*₀ and *m*₁
- The challenger returns the encryption c of mb under pk
- The adversary outputs its guess b' on the bit b

 $\operatorname{Adv}_{S}^{\operatorname{fig-cpa}}(\mathcal{A}) = \operatorname{Adv}_{S}^{\operatorname{ind-cpa}}(\mathcal{A}) = \left| 2 \times \Pr[b' = b] - 1 \right|$

Note: the adversary has access to the following oracle, only once: $LR_b(m_0, m_1)$: outputs the encryption of m_b under pk

ENS/CNRS/INRIA Cascade

[Bellare-Desai-Jokipii-Rogaway 1997]

FtG-CPA

• The challenger flips a bit b

- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and chooses 2 messages *m*₀ and *m*₁
- The challenger returns the encryption c of m_b under pk
- The adversary outputs its guess b' on the bit b

 $\operatorname{Adv}_{S}^{\operatorname{fig-cpa}}(\mathcal{A}) = \operatorname{Adv}_{S}^{\operatorname{ind-cpa}}(\mathcal{A}) = \left| 2 \times \Pr[b' = b] - 1 \right|$

Note: the adversary has access to the following oracle, only once: $LR_b(m_0, m_1)$: outputs the encryption of m_b under pk

ENS/CNRS/INRIA Cascade

[Bellare-Desai-Jokipii-Rogaway 1997]

FtG-CPA

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and chooses 2 messages *m*₀ and *m*₁
- The challenger returns the encryption c of mb under pk
- The adversary outputs its guess b' on the bit b

 $\operatorname{Adv}_{S}^{\operatorname{fig-cpa}}(\mathcal{A}) = \operatorname{Adv}_{S}^{\operatorname{ind-cpa}}(\mathcal{A}) = \left| 2 \times \Pr[b' = b] - 1 \right|$

Note: the adversary has access to the following oracle, only once: $LR_b(m_0, m_1)$: outputs the encryption of m_b under pk

ENS/CNRS/INRIA Cascade

[Bellare-Desai-Jokipii-Rogaway 1997]

FtG - CPA

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and chooses 2 messages *m*₀ and *m*₁
- The challenger returns the encryption c of mb under pk
- The adversary outputs its guess b' on the bit b

 $\operatorname{Adv}_{S}^{\operatorname{ftg-cpa}}(\mathcal{A}) = \operatorname{Adv}_{S}^{\operatorname{ind-cpa}}(\mathcal{A}) = \left| 2 \times \Pr[b' = b] - 1 \right|$

Note: the adversary has access to the following oracle, only once: $LR_b(m_0, m_1)$: outputs the encryption of m_b under pk

ENS/CNRS/INRIA Cascade

[Bellare-Desai-Jokipii-Rogaway 1997]

FtG - CPA

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and chooses 2 messages *m*₀ and *m*₁
- The challenger returns the encryption c of m_b under pk
- The adversary outputs its guess b' on the bit b

$$\operatorname{Adv}_{S}^{\operatorname{fig-cpa}}(\mathcal{A}) = \operatorname{Adv}_{S}^{\operatorname{ind-cpa}}(\mathcal{A}) = \left| 2 \times \Pr[b' = b] - 1 \right|$$

Note: the adversary has access to the following oracle, only once: $LR_b(m_0, m_1)$: outputs the encryption of m_b under pk

ENS/CNRS/INRIA Cascade

[Bellare-Desai-Jokipii-Rogaway 1997]

FtG - CPA

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and chooses 2 messages *m*₀ and *m*₁
- The challenger returns the encryption c of m_b under pk
- The adversary outputs its guess b' on the bit b

 $\operatorname{Adv}_{S}^{\operatorname{ftg-cpa}}(\mathcal{A}) = \operatorname{Adv}_{S}^{\operatorname{ind-cpa}}(\mathcal{A}) = \left| 2 \times \Pr[b' = b] - 1 \right|$

Note: the adversary has access to the following oracle, only once: $LR_b(m_0, m_1)$: outputs the encryption of m_b under pk

ENS/CNRS/INRIA Cascade

[Bellare-Desai-Jokipii-Rogaway 1997]

FtG - CPA

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and chooses 2 messages *m*₀ and *m*₁
- The challenger returns the encryption *c* of *m*_b under *pk*
- The adversary outputs its guess b' on the bit b

$$\mathrm{Adv}^{\mathsf{ftg-cpa}}_{\mathcal{S}}(\mathcal{A}) = \mathrm{Adv}^{\mathsf{ind-cpa}}_{\mathcal{S}}(\mathcal{A}) = \left| 2 imes \mathsf{Pr}[b'=b] - 1
ight|$$

Note: the adversary has access to the following oracle, only once: $LR_b(m_0, m_1)$: outputs the encryption of m_b under pk

ENS/CNRS/INRIA Cascade

[Bellare-Desai-Jokipii-Rogaway 1997]

FtG – CPA

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key pk, and chooses 2 messages m_0 and m_1 Find stage
- The challenger returns the encryption *c* of *m*_b under *pk*
- The adversary outputs its guess b' on the bit b

$$\mathrm{Adv}^{\mathsf{ftg-cpa}}_{\mathcal{S}}(\mathcal{A}) = \mathrm{Adv}^{\mathsf{ind-cpa}}_{\mathcal{S}}(\mathcal{A}) = \left| 2 imes \mathsf{Pr}[b'=b] - 1
ight|$$

Note: the adversary has access to the following oracle, only once: $LR_b(m_0, m_1)$: outputs the encryption of m_b under pk

ENS/CNRS/INRIA Cascade

[Bellare-Desai-Jokipii-Rogaway 1997]

FtG – CPA

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key pk, and chooses 2 messages m_0 and m_1 Find stage
- The challenger returns the encryption *c* of *m*_b under *pk*
- The adversary outputs its guess b' on the bit b Guess stage

$$\operatorname{Adv}_{\mathcal{S}}^{\operatorname{ftg-cpa}}(\mathcal{A}) = \operatorname{Adv}_{\mathcal{S}}^{\operatorname{ind-cpa}}(\mathcal{A}) = \left| 2 imes \operatorname{Pr}[b' = b] - 1 \right|$$

Note: the adversary has access to the following oracle, only once: $LR_b(m_0, m_1)$: outputs the encryption of m_b under pk

ENS/CNRS/INRIA Cascade

[Bellare-Desai-Jokipii-Rogaway 1997]

FtG – CPA

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key pk, and chooses 2 messages m_0 and m_1 Find stage
- The challenger returns the encryption *c* of *m*_b under *pk*
- The adversary outputs its guess b' on the bit b Guess stage

$$\operatorname{Adv}^{\operatorname{ftg-cpa}}_{\mathcal{S}}(\mathcal{A}) = \operatorname{Adv}^{\operatorname{ind-cpa}}_{\mathcal{S}}(\mathcal{A}) = \left| 2 imes \operatorname{Pr}[b' = b] - 1 \right|$$

Note: the adversary has access to the following oracle, only once: $LR_b(m_0, m_1)$: outputs the encryption of m_b under pk

ENS/CNRS/INRIA Cascade

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and asks LR on any pair (*m*₀, *m*₁) of its choice
- The challenger answers using LR_b
- The adversary outputs its guess b' on the bit b

$$\operatorname{Adv}_{S}^{\operatorname{lor-cpa}}(\mathcal{A}) = \left| 2 \times \Pr[b' = b] - 1 \right|$$

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and asks LR on any pair (*m*₀, *m*₁) of its choice
- The challenger answers using LR_b
- The adversary outputs its guess b' on the bit b

$$\operatorname{Adv}_{S}^{\operatorname{lor-cpa}}(\mathcal{A}) = \left| 2 \times \Pr[b' = b] - 1 \right|$$

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and asks LR on any pair (*m*₀, *m*₁) of its choice
- The challenger answers using LR_b
- The adversary outputs its guess b' on the bit b

$$\operatorname{Adv}_{S}^{\operatorname{lor-cpa}}(\mathcal{A}) = \left| 2 \times \Pr[b' = b] - 1 \right|$$

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and asks LR on any pair (*m*₀, *m*₁) of its choice
- The challenger answers using LR_b
- The adversary outputs its guess b' on the bit b

$$\operatorname{Adv}_{S}^{\operatorname{lor-cpa}}(\mathcal{A}) = \left| 2 \times \Pr[b' = b] - 1 \right|$$

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and asks LR on any pair (*m*₀, *m*₁) of its choice
- The challenger answers using LR_b
- The adversary outputs its guess b' on the bit b

$$\operatorname{Adv}^{\operatorname{lor-cpa}}_{\mathcal{S}}(\mathcal{A}) = \left| 2 \times \operatorname{Pr}[b' = b] - 1 \right|$$

LOR – CPA

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and asks LR on any pair (*m*₀, *m*₁) of its choice
- The challenger answers using LR_b
- The adversary outputs its guess b' on the bit b

 $\operatorname{Adv}^{\operatorname{lor-cpa}}_{\mathcal{S}}(\mathcal{A}) = \left| 2 imes \operatorname{Pr}[b' = b] - 1 \right|$

LOR – CPA

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and asks LR on any pair (*m*₀, *m*₁) of its choice
- The challenger answers using LR_b
- The adversary outputs its guess b' on the bit b

$$\operatorname{Adv}_{\mathcal{S}}^{\operatorname{lor-cpa}}(\mathcal{A}) = \left| 2 \times \Pr[b' = b] - 1 \right|$$

Theorem (FtG $\stackrel{n}{\sim}$ LoR)

$$\begin{array}{lll} \forall t, & \mathbf{Adv}_{\mathcal{S}}^{\mathsf{ftg-cpa}}(t) & \leq & \mathbf{Adv}_{\mathcal{S}}^{\mathsf{lor-cpa}}(t) \\ \forall t, & \mathbf{Adv}_{\mathcal{S}}^{\mathsf{lor-cpa}}(t) & \leq & n \times \mathbf{Adv}_{\mathcal{S}}^{\mathsf{ftg-cpa}}(t) \end{array}$$

where n is the number of LR queries

$LoR \Rightarrow FtG$ is clear

FtG \Rightarrow LoR: hybrid distribution of the sequence of bits b

- The Left distribution is $(0, 0, \dots, 0) \in \{0, 1\}^n$, for the LR queries
- The Right distribution is $(1, 1, ..., 1) \in \{0, 1\}^n$, for the LR queries
- Hybrid distribution: $D_i = (0, ..., 0, 1, ..., 1) = 0^i 1^{n-i} \in \{0, 1\}^n$

 $\operatorname{\mathsf{Dist}}(\mathcal{D}_0,\mathcal{D}_n)=\operatorname{Adv}^{\operatorname{\mathsf{lor-cpa}}}_{\mathcal{S}}(\mathcal{A})\quad\operatorname{\mathsf{Dist}}(\mathcal{D}_i,\mathcal{D}_{i+1})\leq\operatorname{Adv}^{\operatorname{\mathsf{ftg-cpa}}}_{\mathcal{S}}(t)$

ENS/CNRS/INRIA Cascade

Theorem (FtG $\stackrel{n}{\sim}$ LoR)

$$\begin{array}{lll} \forall t, & \mathbf{Adv}_{\mathcal{S}}^{\mathsf{ftg-cpa}}(t) & \leq & \mathbf{Adv}_{\mathcal{S}}^{\mathsf{lor-cpa}}(t) \\ \forall t, & \mathbf{Adv}_{\mathcal{S}}^{\mathsf{lor-cpa}}(t) & \leq & n \times \mathbf{Adv}_{\mathcal{S}}^{\mathsf{ftg-cpa}}(t) \end{array}$$

where n is the number of LR queries

$LoR \Rightarrow FtG$ is clear

$FtG \Rightarrow LoR$: hybrid distribution of the sequence of bits b

- The Left distribution is $(0,0,\ldots,0)\in\{0,1\}^n$, for the LR queries
- The Right distribution is $(1, 1, ..., 1) \in \{0, 1\}^n$, for the LR queries
- Hybrid distribution: $D_i = (0, ..., 0, 1, ..., 1) = 0^i 1^{n-i} \in \{0, 1\}^n$

 $\operatorname{\mathsf{Dist}}(\mathcal{D}_0,\mathcal{D}_n)=\operatorname{Adv}^{\operatorname{\mathsf{lor-cpa}}}_{\mathcal{S}}(\mathcal{A})\quad\operatorname{\mathsf{Dist}}(\mathcal{D}_i,\mathcal{D}_{i+1})\leq\operatorname{Adv}^{\operatorname{\mathsf{ftg-cpa}}}_{\mathcal{S}}(t)$

ENS/CNRS/INRIA Cascade

Theorem (FtG $\stackrel{n}{\sim}$ LoR)

$$\begin{array}{lll} \forall t, & \mathbf{Adv}_{\mathcal{S}}^{\mathsf{ftg-cpa}}(t) & \leq & \mathbf{Adv}_{\mathcal{S}}^{\mathsf{lor-cpa}}(t) \\ \forall t, & \mathbf{Adv}_{\mathcal{S}}^{\mathsf{lor-cpa}}(t) & \leq & n \times \mathbf{Adv}_{\mathcal{S}}^{\mathsf{ftg-cpa}}(t) \end{array}$$

where n is the number of LR queries

$LoR \Rightarrow FtG$ is clear

$FtG \Rightarrow LoR$: hybrid distribution of the sequence of bits b

- The Left distribution is $(0, 0, \dots, 0) \in \{0, 1\}^n$, for the LR queries
- The Right distribution is $(1, 1, ..., 1) \in \{0, 1\}^n$, for the LR queries
- Hybrid distribution: $D_i = (0, ..., 0, 1, ..., 1) = 0^i 1^{n-i} \in \{0, 1\}^n$

 $\operatorname{\mathsf{Dist}}(\mathcal{D}_0,\mathcal{D}_n) = \operatorname{\mathbf{Adv}}^{\operatorname{\mathsf{lor-cpa}}}_{\mathcal{S}}(\mathcal{A}) \quad \operatorname{\mathbf{Dist}}(\mathcal{D}_i,\mathcal{D}_{i+1}) \leq \operatorname{\mathbf{Adv}}^{\operatorname{\mathsf{ftg-cpa}}}_{\mathcal{S}}(t)$

ENS/CNRS/INRIA Cascade

Theorem (FtG $\stackrel{n}{\sim}$ LoR)

$$\begin{array}{lll} \forall t, & \mathbf{Adv}_{\mathcal{S}}^{\mathsf{ftg-cpa}}(t) & \leq & \mathbf{Adv}_{\mathcal{S}}^{\mathsf{lor-cpa}}(t) \\ \forall t, & \mathbf{Adv}_{\mathcal{S}}^{\mathsf{lor-cpa}}(t) & \leq & n \times \mathbf{Adv}_{\mathcal{S}}^{\mathsf{ftg-cpa}}(t) \end{array}$$

where n is the number of LR queries

 $LoR \Rightarrow FtG$ is clear

 $FtG \Rightarrow LoR$: hybrid distribution of the sequence of bits b

- The Left distribution is $(0, 0, \dots, 0) \in \{0, 1\}^n$, for the LR queries
- The Right distribution is $(1, 1, ..., 1) \in \{0, 1\}^n$, for the LR queries
- Hybrid distribution: $D_i = (0, ..., 0, 1, ..., 1) = 0^i 1^{n-i} \in \{0, 1\}^n$

 $\mathbf{Dist}(\mathcal{D}_0, \mathcal{D}_n) = \mathbf{Adv}_{\mathcal{S}}^{\mathsf{lor}-\mathsf{cpa}}(\mathcal{A}) \quad \mathbf{Dist}(\mathcal{D}_i, \mathcal{D}_{i+1}) \leq \mathbf{Adv}_{\mathcal{S}}^{\mathsf{ftg}-\mathsf{cpa}}(t)$

ENS/CNRS/INRIA Cascade

Theorem (FtG $\stackrel{n}{\sim}$ LoR)

$$\begin{array}{lll} \forall t, & \mathbf{Adv}_{\mathcal{S}}^{\mathsf{ftg-cpa}}(t) & \leq & \mathbf{Adv}_{\mathcal{S}}^{\mathsf{lor-cpa}}(t) \\ \forall t, & \mathbf{Adv}_{\mathcal{S}}^{\mathsf{lor-cpa}}(t) & \leq & n \times \mathbf{Adv}_{\mathcal{S}}^{\mathsf{ftg-cpa}}(t) \end{array}$$

where n is the number of LR queries

 $LoR \Rightarrow FtG$ is clear

 $FtG \Rightarrow LoR$: hybrid distribution of the sequence of bits b

- The Left distribution is $(0, 0, \dots, 0) \in \{0, 1\}^n$, for the LR queries
- The Right distribution is $(1, 1, ..., 1) \in \{0, 1\}^n$, for the LR queries
- Hybrid distribution: $D_i = (0, ..., 0, 1, ..., 1) = 0^i 1^{n-i} \in \{0, 1\}^n$

 $\text{Dist}(\mathcal{D}_0, \mathcal{D}_n) = \text{Adv}_{\mathcal{S}}^{\text{lor-cpa}}(\mathcal{A}) \quad \text{Dist}(\mathcal{D}_i, \mathcal{D}_{i+1}) \leq \text{Adv}_{\mathcal{S}}^{\text{ftg-cpa}}(t)$

ENS/CNRS/INRIA Cascade

[Bellare-Desai-Jokipii-Rogaway 1997]

RoR - CPA

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}(p)$
- The adversary receives the public key pk, and asks RR on any message m of its choice
- The challenger answers using RR_b:
 - if b = 0, the RR₀ encrypts m
 - if b = 1, the RR₁ encrypts a random message
- The adversary outputs its guess b' on the bit b

 $\operatorname{Adv}_S^{\operatorname{ror-cpa}}(\mathcal{A}) = \left| 2 imes \operatorname{Pr}[b' = b] - 1 \right|$

ENS/CNRS/INRIA Cascade

[Bellare-Desai-Jokipii-Rogaway 1997]

$\mathbf{RoR} - \mathbf{CPA}$

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key pk, and asks RR on any message m of its choice
- The challenger answers using RR_b:
 - if b = 0, the RR₀ encrypts m
 - if b = 1, the RR₁ encrypts a random message
- The adversary outputs its guess b' on the bit b

 $\operatorname{Adv}^{\operatorname{ror-cpa}}_{S}(\mathcal{A}) = \left| 2 \times \Pr[b' = b] - 1 \right|$

[Bellare-Desai-Jokipii-Rogaway 1997]

RoR - CPA

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key pk, and asks RR on any message m of its choice
- The challenger answers using RR_b:
 - if b = 0, the RR₀ encrypts m
 - if b = 1, the RR₁ encrypts a random message
- The adversary outputs its guess b' on the bit b

 $\operatorname{Adv}^{\operatorname{ror-cpa}}_{S}(\mathcal{A}) = \left| 2 \times \Pr[b' = b] - 1 \right|$

[Bellare-Desai-Jokipii-Rogaway 1997]

RoR - CPA

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and asks RR on any message *m* of its choice
- The challenger answers using RR_b:
 - if b = 0, the RR₀ encrypts m
 - if b = 1, the RR₁ encrypts a random message
- The adversary outputs its guess b' on the bit b

 $\operatorname{Adv}^{\operatorname{ror-cpa}}_{S}(\mathcal{A}) = \left| 2 \times \Pr[b' = b] - 1 \right|$

RoR – **CPA**

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and asks RR on any message *m* of its choice
- The challenger answers using RR_b:
 - if b = 0, the RR₀ encrypts m
 - if *b* = 1, the RR₁ encrypts a random message
 - The adversary outputs its guess b' on the bit b

 $\operatorname{Adv}^{\operatorname{ror-cpa}}_{S}(\mathcal{A}) = \left| 2 imes \operatorname{Pr}[b' = b] - 1 \right|$

Rea

Random

RoR – **CPA**

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and asks RR on any message *m* of its choice
- The challenger answers using RR_b:
 - if b = 0, the RR₀ encrypts m
 - if b = 1, the RR₁ encrypts a random message
- The adversary outputs its guess b' on the bit b

 $\operatorname{Adv}^{\operatorname{ror-cpa}}_{S}(\mathcal{A}) = \left| 2 \times \Pr[b' = b] - 1 \right|$

Rea

Random

RoR – **CPA**

- The challenger flips a bit b
- The challenger runs the key generation algorithm $(sk, pk) \leftarrow \mathcal{K}()$
- The adversary receives the public key *pk*, and asks RR on any message *m* of its choice
- The challenger answers using RR_b:
 - if b = 0, the RR₀ encrypts m
 - if b = 1, the RR₁ encrypts a random message
- The adversary outputs its guess b' on the bit b

$$\operatorname{Adv}_{\mathcal{S}}^{\operatorname{ror-cpa}}(\mathcal{A}) = \left| 2 imes \operatorname{Pr}[b' = b] - 1 \right|$$

Real Random

Theorem (LoR \sim RoR)

LoR \Rightarrow RoR is clear (using $m_0 = m$ and $m_1 \stackrel{R}{\leftarrow} \mathcal{M}$)

RoR \Rightarrow LoR: \mathcal{B} flips a bit d, and uses m_d for the RR oracle, then forwards \mathcal{A} 's answer

 $\Pr[d \leftarrow B | \text{Real}] = \Pr[d \leftarrow A] \quad \Pr[d \leftarrow B | \text{Random}] = 1/2$

 $\begin{aligned} \mathbf{Adv}^{\mathsf{lor}}(\mathcal{A}) &= |2 \times \mathsf{Pr}[d \leftarrow \mathcal{A}] - 1| \\ &= |2 \times \mathsf{Pr}[d \leftarrow \mathcal{B}|\mathsf{Real}] - 2 \times \mathsf{Pr}[d \leftarrow \mathcal{B}|\mathsf{Random}]| \\ &\leq 2 \times \mathsf{Adv}^{\mathsf{ror}}(\mathcal{B}) \end{aligned}$

ENS/CNRS/INRIA Cascade

Theorem (LoR \sim RoR)

LoR \Rightarrow RoR is clear (using $m_0 = m$ and $m_1 \stackrel{R}{\leftarrow} \mathcal{M}$)

RoR \Rightarrow LoR: \mathcal{B} flips a bit d, and uses m_d for the RR oracle, then forwards \mathcal{A} 's answer

 $\Pr[d \leftarrow B | \text{Real}] = \Pr[d \leftarrow A] \quad \Pr[d \leftarrow B | \text{Random}] = 1/2$

$$\begin{aligned} \mathbf{Adv}^{\mathsf{lor}}(\mathcal{A}) &= |2 \times \mathsf{Pr}[d \leftarrow \mathcal{A}] - 1| \\ &= |2 \times \mathsf{Pr}[d \leftarrow \mathcal{B}|\mathsf{Real}] - 2 \times \mathsf{Pr}[d \leftarrow \mathcal{B}|\mathsf{Random}]| \\ &\leq 2 \times \mathsf{Adv}^{\mathsf{ror}}(\mathcal{B}) \end{aligned}$$

ENS/CNRS/INRIA Cascade

Theorem (LoR \sim RoR)

LoR \Rightarrow RoR is clear (using $m_0 = m$ and $m_1 \stackrel{R}{\leftarrow} \mathcal{M}$)

 $RoR \Rightarrow LoR: B$ flips a bit *d*, and uses m_d for the RR oracle, then forwards A's answer

 $\Pr[d \leftarrow B | \text{Real}] = \Pr[d \leftarrow A] \quad \Pr[d \leftarrow B | \text{Random}] = 1/2$

$$\begin{aligned} \mathbf{Adv}^{\mathsf{lor}}(\mathcal{A}) &= |2 \times \mathsf{Pr}[d \leftarrow \mathcal{A}] - 1| \\ &= |2 \times \mathsf{Pr}[d \leftarrow \mathcal{B}|\mathsf{Real}] - 2 \times \mathsf{Pr}[d \leftarrow \mathcal{B}|\mathsf{Random}]| \\ &\leq 2 \times \mathsf{Adv}^{\mathsf{ror}}(\mathcal{B}) \end{aligned}$$

ENS/CNRS/INRIA Cascade

Theorem (LoR \sim RoR)

LoR \Rightarrow RoR is clear (using $m_0 = m$ and $m_1 \stackrel{R}{\leftarrow} \mathcal{M}$)

 $RoR \Rightarrow LoR: B$ flips a bit *d*, and uses m_d for the RR oracle, then forwards A's answer

 $\Pr[d \leftarrow \mathcal{B}|\text{Real}] = \Pr[d \leftarrow \mathcal{A}] \quad \Pr[d \leftarrow \mathcal{B}|\text{Random}] = 1/2$

$$\begin{aligned} \mathbf{Adv}^{\mathsf{lor}}(\mathcal{A}) &= |2 \times \mathsf{Pr}[d \leftarrow \mathcal{A}] - 1| \\ &= |2 \times \mathsf{Pr}[d \leftarrow \mathcal{B}|\mathsf{Real}] - 2 \times \mathsf{Pr}[d \leftarrow \mathcal{B}|\mathsf{Random}]| \\ &\leq 2 \times \mathsf{Adv}^{\mathsf{ror}}(\mathcal{B}) \end{aligned}$$

ENS/CNRS/INRIA Cascade

Cryptography

Provable Security

Basic Security Notions

Public-Key Encryption

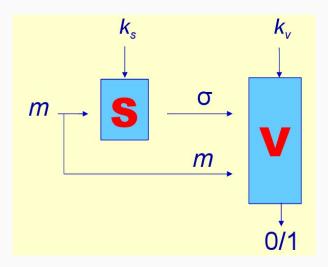
Variants of Indistinguishability

Signatures

Conclusion

ENS/CNRS/INRIA Cascade

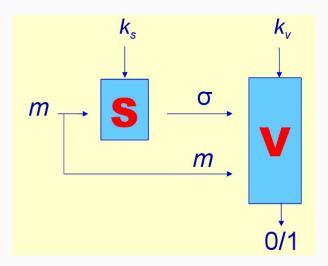
Signature



Goal: Authentication of the sender

ENS/CNRS/INRIA Cascade

Signature



Goal: Authentication of the sender

ENS/CNRS/INRIA Cascade

Existential Unforgeability

For a signature scheme SG = (K, S, V), without the secrete key *sk*, it should be computationally impossible to generate a valid pair (m, σ) :

 $\mathbf{Succ}^{\mathsf{euf}}_{\mathcal{SG}}(\mathcal{A}) = \mathsf{Pr}[(\mathbf{sk}, \mathbf{pk}) \leftarrow \mathcal{K}(); (\mathbf{m}, \sigma) \leftarrow \mathcal{A}(\mathbf{pk}) : \mathcal{V}_{\mathbf{pk}}(\mathbf{m}, \sigma) = 1]$

should be negligible.

No-Message Attacks

In the public-key setting, the adversary has access to the verification key (the public key), but not necessarily to valid signatures: no-message attack

Existential Unforgeability

For a signature scheme SG = (K, S, V), without the secrete key *sk*, it should be computationally impossible to generate a valid pair (m, σ) :

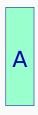
$$\mathbf{Succ}^{\mathsf{euf}}_{\mathcal{SG}}(\mathcal{A}) = \mathsf{Pr}[(\mathbf{sk}, \mathbf{pk}) \leftarrow \mathcal{K}(); (\mathbf{m}, \sigma) \leftarrow \mathcal{A}(\mathbf{pk}) : \mathcal{V}_{\mathbf{pk}}(\mathbf{m}, \sigma) = 1]$$

should be negligible.

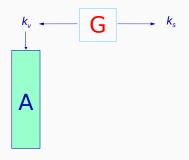
No-Message Attacks

In the public-key setting, the adversary has access to the verification key (the public key), but not necessarily to valid signatures: no-message attack

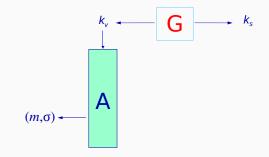
EUF – NMA Security Game



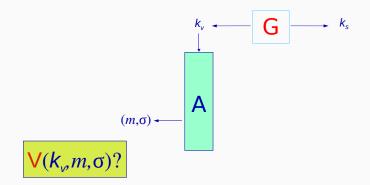
EUF - NMA Security Game



EUF - NMA Security Game



EUF – NMA Security Game



\mathcal{RSA} Signature

The RSA signature scheme \mathcal{RSA} is defined by

- *K*(1^k): *p* and *q* two random *k*-bit prime integers, and an exponent *v* (possibly fixed, or not):
 sk ← *s* = *v*⁻¹ mod φ(*n*) and *pk* ← (*n*, *v*)
- $S_{sk}(m)$: the signature is $\sigma = m^s \mod n$
- $\mathcal{V}_{pk}(m,\sigma)$ checks whether $m = \sigma^{\nu} \mod n$

Theorem (*RSA* **is not EUF** – **NMA)** The plain RSA signature is not secure at all!

\mathcal{RSA} Signature

The RSA signature scheme \mathcal{RSA} is defined by

- *K*(1^k): *p* and *q* two random *k*-bit prime integers, and an exponent *v* (possibly fixed, or not):
 sk ← *s* = *v*⁻¹ mod φ(*n*) and *pk* ← (*n*, *v*)
- $S_{sk}(m)$: the signature is $\sigma = m^s \mod n$
- $\mathcal{V}_{pk}(m,\sigma)$ checks whether $m = \sigma^{\nu} \mod n$

Theorem (\mathcal{RSA} **is not EUF** – **NMA)** *The plain RSA signature is not secure at all!*

Cryptography

Provable Security

Basic Security Notions

- Provable security provides guarantees on the security level
- But strong security notions have to be defined
 - encryption:
 - indistinguishability is not enough
 - some information may leak
 - signature: some signatures may be available
- We will provide stronger security notions Proofs will become more intricate!
- We will provide new proof techniques

- Provable security provides guarantees on the security level
- But strong security notions have to be defined
 - encryption:
 - indistinguishability is not enough
 - some information may leak
 - signature: some signatures may be available
- We will provide stronger security notions Proofs will become more intricate!
- We will provide new proof techniques

- · Provable security provides guarantees on the security level
- · But strong security notions have to be defined
 - encryption:
 - indistinguishability is not enough
 - some information may leak
 - signature: some signatures may be available
- We will provide stronger security notions Proofs will become more intricate!
- We will provide new proof techniques

- · Provable security provides guarantees on the security level
- · But strong security notions have to be defined
 - encryption:
 - indistinguishability is not enough
 - some information may leak
 - signature: some signatures may be available
- We will provide stronger security notions Proofs will become more intricate!
- We will provide new proof techniques

- · Provable security provides guarantees on the security level
- · But strong security notions have to be defined
 - encryption:
 - · indistinguishability is not enough
 - some information may leak
 - signature: some signatures may be available
- We will provide stronger security notions Proofs will become more intricate!
- We will provide new proof techniques

- · Provable security provides guarantees on the security level
- · But strong security notions have to be defined
 - encryption:
 - · indistinguishability is not enough
 - · some information may leak
 - signature: some signatures may be available
- We will provide stronger security notions Proofs will become more intricate!
- We will provide new proof techniques

- · Provable security provides guarantees on the security level
- · But strong security notions have to be defined
 - encryption:
 - · indistinguishability is not enough
 - · some information may leak
 - signature: some signatures may be available
- We will provide stronger security notions
 Proofs will become more intricate!
- We will provide new proof techniques

- · Provable security provides guarantees on the security level
- · But strong security notions have to be defined
 - encryption:
 - · indistinguishability is not enough
 - · some information may leak
 - · signature: some signatures may be available
- We will provide stronger security notions Proofs will become more intricate!
- We will provide new proof techniques

- · Provable security provides guarantees on the security level
- · But strong security notions have to be defined
 - encryption:
 - indistinguishability is not enough
 - · some information may leak
 - · signature: some signatures may be available
- We will provide stronger security notions
 Proofs will become more intricate!
- We will provide new proof techniques

- · Provable security provides guarantees on the security level
- · But strong security notions have to be defined
 - encryption:
 - indistinguishability is not enough
 - · some information may leak
 - · signature: some signatures may be available
- We will provide stronger security notions Proofs will become more intricate!
- We will provide new proof techniques

- · Provable security provides guarantees on the security level
- · But strong security notions have to be defined
 - encryption:
 - indistinguishability is not enough
 - · some information may leak
 - · signature: some signatures may be available
- We will provide stronger security notions Proofs will become more intricate!
- We will provide new proof techniques