Secure Function Evaluation

Multi-Party Computation

n players P_i want to jointly evaluate $y_i = f_i(x_1, \ldots, x_n)$, for public functions f_i so that
- x_i is the private input of P_i
- P_i eventually learns $y_i = f_i(x_1, \ldots, x_n)$
- ... and nothing else about x_j for $j \neq i$

Security Notions

- Privacy
- Correctness
- Fairness (much harder to get)
Secure Function Evaluation

t-Privacy

If t parties collude, they cannot learn more on the other inputs than from their own/known inputs and outputs.

Note that the knowledge of y_i can leak some information on the x_j's.

Security Models

- **Honest-but-curious**: all the players follow the protocol honestly, but the adversary knows all the inputs/outputs from t users.
- **Malicious users**: the adversary controls a fixed set of t players.
- **Dynamic adversary**: the adversary dynamically chooses the (up to) t players it controls.

Outline

1. **Secure Function Evaluation**
 - Introduction
 - Examples
 - Malicious Setting

2. **Oblivious Transfer**

3. **Garbled Circuits**

Electronic Voting

Private Evaluation of the Sum

For all i: $x_i \in \{0, 1\}$ and $f_i(x_1, \ldots, x_n) = \sum_j x_j$

Example (Homomorphic Encryption)

- P_i encrypts $C_i = E(x_i)$ with an additively homomorphic encryption scheme.
- They all compute $C = E(\sum x_i)$.
- They jointly decrypt C to get $y = \sum x_i$ using a distributed decryption.

Electronic Voting

Privacy: Limitations

In case of unanimity (i.e., $\sum x_i = n$), one learns all the x_i's, even in the honest-but-curious setting.

This is not a weakness of the protocol, but of the functionality: one should just reveal the winner.

Replay Attacks

A malicious adversary could try to amplify P_1's vote, replaying its message C_1 by t corrupted players: this can leak P_1’s vote x_1

This can be avoided with non-malleable encryption.
Secure 2-Party Computation

The 2-party particular case: on Alice’s input \(x \) and Bob’s input \(y \),
Alice gets \(f(x, y) \) and Bob gets \(g(x, y) \), but nothing else.

Equality Test

Alice owns a value \(x \) and Bob owns a value \(y \),
in the end, they both learn whether \(x = y \) or not.

Yao Millionaires’ Problem

Alice owns an integer \(x \) and Bob owns an integer \(y \),
in the end, they both learn whether \(x \leq y \) or not.

Theorem \[\text{[Lin-Tzeng – 2005]} \]

Given \(x = x_{n-1} \ldots x_0, y = y_{n-1} \ldots y_0 \in \{0, 1\}^n \), and denoting
\[
T_x^1 = \{ x_{n-1} \ldots x_i | x_i = 1 \} \quad T_y^0 = \{ y_{n-1} \ldots y_{i+1} | y_i = 0 \}
\]
\[
x > y \iff T_x^1 \cap T_y^0 \neq \emptyset
\]
\[
x > y \iff \exists i < n, (x_i > y_i) \land (\forall j > i, x_j = y_j)
\]
\[
\iff \exists i < n, (x_i = 1) \land (y_i = 0) \land (\forall j > i, x_j = y_j)
\]
\[
\iff |T_x^1 \cap T_y^0| = 1
\]

Equality Test

Alice owns a value \(x \in [A, B] \) and Bob owns a value \(y \in [A, B] \),
in the end, they both learn whether \(x = y \) or not.

With Homomorphic Encryption

- Alice encrypts \(C = E(x) \) with an additively homomorphic encryption scheme.
- Bob computes \(C' = E(r(x - y)) \), for a random element \(r \).
- Alice computes \(C'' = E(r'(x - y)) \), for a random element \(r' \).
- They jointly decrypt \(C'' \): the value is 0 iff \(x = y \) (or random).

Yao Millionaires’ Problem

We fill and order the sets by length: \(\tilde{T}_x^1 = \{ X_i \} \) and \(\tilde{T}_y^0 = \{ Y_i \} \) where
for \(i = 0, \ldots n \):
- if \(x_i = 0 \), \(X_i = 2^n \), otherwise \(X_i = x_{n-1} \ldots x_i \in [0, 2^{n-i}[\)
- if \(y_i = 1 \), \(Y_i = 2^n + 1 \), otherwise \(Y_i = y_{n-1} \ldots y_{i+1}1 \in [0, 2^{n-i}[\)
\[
x > y \iff \exists i < n, X_i = Y_i
\]

With Homomorphic Encryption

- Alice encrypts \(C_i = E(X_i) \) with an additively homomorphic encryption scheme.
- Bob computes \(C_i' = E(r_i(X_i - Y_i)) \), for random elements \(r_i \)
 and sends them in random order.
- Alice computes \(C_i'' = E(r'_i(X_i - Y_i)) \), for random elements \(r'_i \).
- They jointly decrypt the \(C_i'' \)'s: one value is 0 iff \(x > y \).
1 Secure Function Evaluation
 - Introduction
 - Examples
 - Malicious Setting

2 Oblivious Transfer
 - Definition
 - Examples

3 Garbled Circuits

GMW Compiler

[Goldreich-Micali-Wigderson – STOC 1987]

- Commitment of the inputs
- Secure coin tossing
- Zero-knowledge proofs of correct behavior

Secure 2-Party Computation

The 2-party particular case: on Alice's input x and Bob's input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else

Oblivious Transfer

[Rabin – 1981]

Alice owns two values x_0, x_1 and Bob owns a bit $b \in \{0, 1\}$, so that in the end, Bob learns x_b and Alice gets nothing:

- $x = (x_0, x_1)$ and $y = b$, then $f((x_0, x_1), b) = x_b$ and $g((x_0, x_1), b) = \perp$

Oblivious Transfer is equivalent to Secure 2-Party Computation

[Kilian – STOC 1988]

From an Oblivious Transfer Protocol, one can implement any 2-Party Secure Function Evaluation
Oblivious Transfer

Example (Bellare-Micali’s Construction – 1992)

In a discrete logarithm setting \((G, g, p)\), for \(x_0, x_1 \in G\):

- Alice chooses \(c \overset{R}{\leftarrow} G\) and sends it to Bob.
- Bob chooses \(k \overset{R}{\leftarrow} \mathbb{Z}_p\), sets \(pk_b \leftarrow g^k\) and \(pk_{1-b} \leftarrow c/pk_b\), and sends \((pk_0, pk_1)\) to Alice.
- Alice checks \(pk_0 \cdot pk_1 = c\) and encrypts \(x_i\) under \(pk_i\) (for \(i = 0, 1\)) with ElGamal:

 \[C_i \leftarrow g^{r_i} \text{ and } C'_i \leftarrow x_i \cdot pk_i^{t_i}, \text{ for } r_i \overset{R}{\leftarrow} \mathbb{Z}_p \]

Bob can decrypt \((C_b, C'_b)\) using \(k\).

Because of the random \(c\) (unknown discrete logarithm), Bob should not be able to infer any information about \(x_{1-b}\).

This is provably secure in the **honest-but-curious setting**.

Example (Naor-Pinkas Construction – 2000)

In a discrete logarithm setting \((G, g, p)\), for \(x_0, x_1 \in G\):

- Bob chooses \(r, s, t \overset{R}{\leftarrow} \mathbb{Z}_p\), sets \(X \leftarrow g^r, Y \leftarrow g^s, Z_b \leftarrow g^{rs}, Z_{1-b} \leftarrow g^t\), and sends \((X, Y, Z_0, Z_1)\) to Bob.
- Alice checks \(Z_0 \neq Z_1\), and re-randomizes the tuples:

 \[T_0 \leftarrow (X, Y'_0 = Y^{u_0} g^{v_0}, Z'_0 = Z_0^{u_0} X^{v_0}) \] and

 \[T_1 \leftarrow (X, Y'_1 = Y^{u_1} g^{v_1}, Z'_1 = Z_1^{u_1} X^{v_1}) \], for \(u_0, v_0, u_1, v_1 \overset{R}{\leftarrow} \mathbb{Z}_p\).
- Alice encrypts \(x_i\) under \(T_i\):

 \[C_i \leftarrow Y_i' \text{ and } C'_i \leftarrow x_i \cdot Z'_i \]

Bob can decrypt \((C_b, C'_b)\) using \(r\).

The re-randomization keeps the DH-tuple \(T_b\), but perfectly removes information in \(T_{1-b}\).

This is provably secure in the **malicious setting**.
Boolean Circuit

Boolean circuit, Alice’s inputs \((x_1, x_2, x_3)\), and Bob’s inputs \((y_1, y_2, y_3)\):

They both learn \(z\) in the end, but nothing else

Outline

1. Secure Function Evaluation
2. Oblivious Transfer
3. Garbled Circuits

Introduction

Garbled Circuits

Correctness

ENS/CNRS/INRIA Cascade David Pointcheval

Garbled Circuit

Alice converts the circuit into a generic circuit: 1-input or 2-input gates

\[
\begin{align*}
A &= \begin{bmatrix} 1 & 0 \end{bmatrix} \quad \text{not} \\
B &= \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and} \\
C &= \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{or} \\
D &= \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{line} \\
E &= \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \\
F &= \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{or} \\
G &= \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \\
\end{align*}
\]

Garbled Gates

Alice generates the garbled gates

1-Input Garbled Gate

For the gate \(A\) (not): 4 random secret keys \(I_A^0, I_A^1, O_A^0, O_A^1\)

\[
A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^0) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^1)
\]

2-Input Garbled Gate

For the gate \(B\) (and): 8 random secret keys \(I_B^0, I_B^1, J_B^0, J_B^1, O_B^0, O_B^1\)

\[
B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : C_B^{00} = \text{Encrypt}(I_B^0||J_B^0, O_B^0) \quad C_B^{01} = \text{Encrypt}(I_B^0||J_B^1, O_B^0) \\
C_B^{10} = \text{Encrypt}(I_B^1||J_B^0, O_B^0) \quad C_B^{11} = \text{Encrypt}(I_B^1||J_B^1, O_B^0)
\]
Alice’s Inputs

Alice publishes the ciphertexts in random order for each gate.

Alice publishes the keys corresponding to her inputs:
- For x_1, she sends $I_D^{x_1}$
- For x_2, she sends $J_B^{x_2}$
- For x_3, she sends $J_C^{x_3}$

Bob’s Inputs

Bob’s Inputs

\[
\begin{align*}
A &= [1 \ 0] : C_A^0 &= \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 &= \text{Encrypt}(I_A^1, O_A^0) \\
B &= \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : C_B^{00} &= \text{Encrypt}(I_B^0||J_B^0, O_B^0) \quad C_B^{01} &= \text{Encrypt}(I_B^0||J_B^1, O_B^0) \\
&\quad C_B^{10} &= \text{Encrypt}(I_B^1||J_B^0, O_B^0) \quad C_B^{11} &= \text{Encrypt}(I_B^1||J_B^1, O_B^0) \\
\end{align*}
\]

Oblivious Transfer

- Alice owns I_A^0, I_A^1 and Bob owns $y_1 \in \{0, 1\}$
 - Using an OT, Bob gets $I_A^{y_1}$, while Alice learns nothing
 - From the ciphertexts $(C_A^b)_b$, Bob gets $O_A^{y_A}$

Bob’s Inputs

\[
\begin{align*}
B &= \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : C_B^{00} &= \text{Encrypt}(I_B^0||J_B^0, O_B^0) \quad C_B^{01} &= \text{Encrypt}(I_B^0||J_B^1, O_B^0) \\
&\quad C_B^{10} &= \text{Encrypt}(I_B^1||J_B^0, O_B^0) \quad C_B^{11} &= \text{Encrypt}(I_B^1||J_B^1, O_B^0) \\
\end{align*}
\]

Oblivious Transfer

- Alice owns I_B^0, I_B^1, and Bob owns $y_2 \in \{0, 1\}$
 - Using an OT, Bob gets $I_B^{y_2}$, while Alice learns nothing
 - Bob additionally knows $J_B^{x_2}$
 - From the ciphertexts $(C_B^{bb'})_{bb'}$, Bob gets $O_B^{y_B}$
Evaluation of Internal Gates

\[
E = \begin{bmatrix}
0 & 1 \\
1 & 1
\end{bmatrix}
\]

\[
C_{E}^{00} = \text{Encrypt}(I_{E}^{0} || J_{E}^{0}, O_{E}^{0}) \\
C_{E}^{01} = \text{Encrypt}(I_{E}^{0} || J_{E}^{1}, O_{E}^{1}) \\
C_{E}^{10} = \text{Encrypt}(I_{E}^{1} || J_{E}^{0}, O_{E}^{1}) \\
C_{E}^{11} = \text{Encrypt}(I_{E}^{1} || J_{E}^{1}, O_{E}^{1})
\]

Evaluation of Gate E

Bob knows \(I_{E}^{yA} = O_{A}^{yA} \) and \(J_{E}^{yB} = O_{B}^{yB} \)

From the ciphertexts \((C_{E}^{bb'})_{bb'}\), Bob gets \(O_{E}^{yE} \)

Evaluation of Gate G

Bob knows \(I_{G}^{yE} = O_{E}^{yE} \) and \(J_{G}^{yF} = O_{F}^{yF} \)

From the ciphertexts \((C_{G}^{bb'})_{bb'}\), Bob gets \(z \in \{0, 1\}\)

Bob can then transmit \(z \) to Alice

Outline

1. Secure Function Evaluation
2. Oblivious Transfer
3. Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness
Honest-but-Curious and Malicious

The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 \[\Rightarrow\] Redundancy is added to the plaintext
 (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
 \[\Rightarrow\] Cut-and-choose technique

- Alice plays the oblivious transfer protocols with correct inputs
 \[\Rightarrow\] Inputs are committed, checked during the cut-and-choose,
 and ZK proofs are done during the OT

- Bob sends back the correct value \(z \)
 \[\Rightarrow\] Random tags are appended to the final results 0 and 1
 that Bob cannot guess