Secure Function Evaluation

Multi-Party Computation

n players P_i want to jointly evaluate $y_i = f_i(x_1, \ldots, x_n)$ for public functions f_i so that

- x_i is the private input of P_i
- P_i eventually learns $y_i = f_i(x_1, \ldots, x_n)$
- \ldots and nothing else about x_j for $j \neq i$

Security Notions

- Privacy
- Correctness
- Fairness (much harder to get)
Secure Function Evaluation

t-Privacy

If *t* parties collude, they cannot learn more on the other inputs than from their own/known inputs and outputs

Note that the knowledge of *y*_{*i*} can leak some information on the *x*_{*j*}'s.

Security Models

- **Honest-but-curious**: all the players follow the protocol honestly, but the adversary knows all the inputs/outputs from *t* users
- **Malicious users**: the adversary controls a fixed set of *t* players
- **Dynamic adversary**: the adversary dynamically chooses the (up to) *t* players it controls

Electronic Voting

Private Evaluation of the Sum

For all *i*: *x*_{*i*} ∈ {0, 1} and *f*_{*i*}(*x*₁, . . . , *x*_{*n*}) = ∑ *j* *x*_{*j*}

Example (Homomorphic Encryption)

- *P*_{*i*} encrypts *C*_{*i*} = *E*(*x*_{*i*}) with an additively homomorphic encryption scheme
- They all compute *C* = *E*(∑ *x*_{*i*})
- They jointly decrypt *C* to get *y* = ∑ *x*_{*i*} using a distributed decryption

Electronic Voting

Privacy: Limitations

In case of unanimity (i.e. ∑ *x*_{*i*} = *n*), one learns all the *x*_{*i*}'s, even in the honest-but-curious setting

This is not a weakness of the protocol, but of the functionality: one should just reveal the winner

Replay Attacks

A malicious adversary could try to amplify *P*₁'s vote, replaying its message *C*₁ by *t* corrupted players: this can leak *P*₁'s vote *x*₁

This can be avoided with non-malleable encryption
Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else.

Equality Test

Alice owns a value x and Bob owns a value y, in the end, they both learn whether $x = y$ or not.

Yao Millionaires’ Problem

Alice owns an integer x and Bob owns an integer y, in the end, they both learn whether $x \leq y$ or not.

Equality Test

Alice owns a value $x \in [A, B]$ and Bob owns a value $y \in [A, B]$, in the end, they both learn whether $x = y$ or not.

With Homomorphic Encryption

- Alice encrypts $C = E(x)$ with an additively homomorphic encryption scheme.
- Bob computes $C' = E(r(x - y))$, for a random element r.
- Alice computes $C'' = E(r'(x - y))$, for a random element r'.
- They jointly decrypt C'': the value is 0 if $x = y$ (or random).

Yao Millionaires’ Problem

Alice owns an integer $x \in [0, 2^n]$ and Bob owns an integer $y \in [0, 2^n]$, in the end, they both learn whether $x \leq y$ or not.

Theorem [Lin-Tzeng - 2005]

Given $x = x_{n-1} \ldots x_0, y = y_{n-1} \ldots y_0 \in \{0, 1\}^n$, and denoting

$$
\bar{T}_x^1 = \{x_{n-1} \ldots x_i | x_i = 1\} \quad \bar{T}_y^0 = \{y_{n-1} \ldots y_{i+1} | y_i = 0\}
$$

$$
x > y \iff \bar{T}_x^1 \cap \bar{T}_y^0 \neq \emptyset
$$

Yao Millionaires’ Problem

We fill and order the sets by length: $\bar{T}_x^1 = \{X_i\}$ and $\bar{T}_y^0 = \{Y_i\}$ where for $i = 0, \ldots, n$:

- if $x_i = 0$, $X_i = 2^n$, otherwise $X_i = x_{n-1} \ldots x_i \in [0, 2^{n-i}]$.
- if $y_i = 1$, $Y_i = 2^n + 1$, otherwise $Y_i = y_{n-1} \ldots y_{i+1} \in [0, 2^{n-i}]$.

$x > y \iff \exists i < n, X_i = Y_i$

With Homomorphic Encryption

- Alice encrypts $C_i = E(X_i)$ with an additively homomorphic encryption scheme.
- Bob computes $C_i' = E(r_i(X_i - Y_i))$, for random elements r_i and sends them in random order.
- Alice computes $C_i'' = E(r'_i(X_i - Y_i))$, for random elements r'_i.
- They jointly decrypt the C_i''s: one value is 0 if $x > y$.
Secure Function Evaluation

- Introduction
- Examples
- Malicious Setting

Oblivious Transfer

- Definition
- Examples

Garbled Circuits

GMW Compiler

- Commitment of the inputs
- Secure coin tossing
- Zero-knowledge proofs of correct behavior

Secure 2-Party Computation

The 2-party particular case: on Alice's input x and Bob's input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else.

Oblivious Transfer

Alice owns two values x_0, x_1 and Bob owns a bit $b \in \{0, 1\}$, so that in the end, Bob learns x_b and Alice gets nothing:

$x = (x_0, x_1)$ and $y = b$, then $f((x_0, x_1), b) = x_b$ and $g((x_0, x_1), b) = \bot$

Oblivious Transfer is equivalent to Secure 2-Party Computation

From an Oblivious Transfer Protocol, one can implement any 2-Party Secure Function Evaluation.
Outline

1 Secure Function Evaluation

2 Oblivious Transfer
 - Definition
 - Examples

3 Garbled Circuits

Oblivious Transfer

Example (Bellare-Micali’s Construction – 1992)

In a discrete logarithm setting \((G, g, p)\), for \(x_0, x_1 \in G\)

- Alice chooses \(c \gets R G\) and sends it to Bob
- Bob chooses \(k \gets R \mathbb{Z}_p\), sets \(pk_b \leftarrow g^k\) and \(pk_{1-b} \leftarrow c/pk_b\), and sends \((pk_0, pk_1)\) to Alice
- Alice checks \(pk_0 \cdot pk_1 = c\) and encrypts \(x_i\) under \(pk_i\) (for \(i = 0, 1\)) with ElGamal:
 \[
 C_i \leftarrow g^{r_i} \quad \text{and} \quad C'_i \leftarrow x_i \cdot pk_i^{r_i}, \quad \text{for} \quad r_i \leftarrow R \mathbb{Z}_p
 \]
- Bob can decrypt \((C_b, C'_b)\) using \(k\)

Because of the random \(c\) (unknown discrete logarithm), Bob should not be able to infer any information about \(x_{1-b}\)
This is provably secure in the **honest-but-curious setting**

Example (Naor-Pinkas Construction – 2000)

In a discrete logarithm setting \((G, g, p)\), for \(x_0, x_1 \in G\)

- Bob chooses \(r, s, t \leftarrow \mathbb{Z}_p\), sets \(X \leftarrow g^r, Y \leftarrow g^s, Z_b \leftarrow g^{rs}, Z_{1-b} \leftarrow g^t\), and sends \((X, Y, Z_0, Z_1)\) to Bob
- Alice checks \(Z_0 \neq Z_1\), and re-randomizes the tuples:
 \[
 T_0 \leftarrow (X, Y_0' = Y u_0 g^{v_0}, Z_0' = Z_0^{u_0} X^{v_0}) \quad \text{and} \quad T_1 \leftarrow (X, Y_1' = Y u_1 g^{v_1}, Z_1' = Z_1^{u_1} X^{v_1})\]
 for \(u_0, v_0, u_1, v_1 \leftarrow R \mathbb{Z}_p\)
- Alice encrypts \(x_i\) under \(T_i\): \(C_i \leftarrow Y_i'\) and \(C'_i \leftarrow x_i \cdot Z_i'\)
- Bob can decrypt \((C_b, C'_b)\) using \(r\)

The re-randomization keeps the DH-tuple \(T_b\), but perfectly removes information in \(T_{1-b}\)
This is provably secure in the **malicious setting**
Boolean circuit, Alice’s inputs \((x_1, x_2, x_3)\), and Bob’s inputs \((y_1, y_2, y_3)\):

\[
\begin{align*}
&x_1 \\
&x_2 \\
&x_3 \\
&y_1 \\
&y_2 \\
&y_3 \\
\end{align*}
\]

They both learn \(z\) in the end, but nothing else.

Outline

1. Secure Function Evaluation
2. Oblivious Transfer
3. Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness

Garbled Circuit

Alice converts the circuit into a generic circuit: 1-input or 2-input gates

\[
\begin{align*}
A &= [1, 0] & \text{not} \\
B &= [0, 0] & [0, 1] & \text{and} \\
C &= [0, 1] & [1, 1] & \text{or} \\
D &= [0, 1] & [1, 1] & \text{line} \\
E &= [1, 0] & [0, 1] & [1, 0] & [1, 1] & \text{or} \\
F &= [0, 0] & [0, 1] & [1, 0] & [1, 1] & \text{and} \\
G &= [0, 1] & [1, 1] & & & \text{or} \\
\end{align*}
\]

Garbled Gates

Alice generates the garbled gates

1. **1-Input Garbled Gate**
 - For the gate \(A\) (not): 4 random secret keys \(I_A^0, I_A^1, O_A^0, O_A^1\)
 - \(A = [1, 0] : C_A^0 = \text{Encrypt}(I_A^0, O_A^0) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^1)\)

2. **2-Input Garbled Gate**
 - For the gate \(B\) (and): 8 random secret keys \(I_B^0, I_B^1, J_B^0, J_B^1, O_B^0, O_B^1\)
 - \(B = [0, 0] : C_B^{00} = \text{Encrypt}(I_B^0 || J_B^0, O_B^0) \quad C_B^{01} = \text{Encrypt}(I_B^0 || J_B^1, O_B^0) \quad C_B^{10} = \text{Encrypt}(I_B^1 || J_B^0, O_B^0) \quad C_B^{11} = \text{Encrypt}(I_B^1 || J_B^1, O_B^0)\)
Alice’s Inputs

Alice publishes the ciphertexts in random order for each gate

Alice publishes the keys corresponding to her inputs:
- for \(x_1 \), she sends \(I_{x_1} \)
- for \(x_2 \), she sends \(J_{x_2} \)
- for \(x_3 \), she sends \(J_{x_3} \)

Bob’s Inputs

\[
A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0)
\]

Oblivious Transfer

- Alice owns \(I_A^0, I_A^1 \) and Bob owns \(y_1 \in \{0, 1\} \)
- Using an OT, Bob gets \(I_A^{y_1} \), while Alice learns nothing
- From the ciphertexts \((C_A^b)_{b'} \), Bob gets \(O_A^{y_A} \)

Bob’s Inputs

\[
B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : C_B^{00} = \text{Encrypt}(I_B^0||J_B^0, O_B^0) \quad C_B^{01} = \text{Encrypt}(I_B^0||J_B^1, O_B^0) \\
C_B^{10} = \text{Encrypt}(I_B^1||J_B^0, O_B^0) \quad C_B^{11} = \text{Encrypt}(I_B^1||J_B^1, O_B^0)
\]

Oblivious Transfer

- Alice owns \(I_B^0, I_B^1 \), and Bob owns \(y_2 \in \{0, 1\} \)
- Using an OT, Bob gets \(I_B^{y_2} \), while Alice learns nothing
- Bob additionally knows \(J_B^{x_2} \)
- From the ciphertexts \((C_B^{bb'})_{bb'} \), Bob gets \(O_B^{y_B} \)

Internal Garbled Gates

For the gate \(E \) (or): 2 new random secret keys \(O_E^0, O_E^1 \)
while \(I_E^0 \leftarrow O_A^0, I_E^1 \leftarrow O_A^1, J_E^0 \leftarrow O_B^0, J_E^1 \leftarrow O_B^1 \)

\[
E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_E^{00} = \text{Encrypt}(I_E^0||J_E^0, O_E^0) \quad C_E^{01} = \text{Encrypt}(I_E^0||J_E^1, O_E^1) \\
C_E^{10} = \text{Encrypt}(I_E^1||J_E^0, O_E^1) \quad C_E^{11} = \text{Encrypt}(I_E^1||J_E^1, O_E^1)
\]
Evaluation of Internal Gates

- \(E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \)
- \(C_{00}^E = \text{Encrypt}(I_0 \| J_0^E, O_0^E) \)
- \(C_{01}^E = \text{Encrypt}(I_0 \| J_1^E, O_1^E) \)
- \(C_{10}^E = \text{Encrypt}(I_1 \| J_0^E, O_1^E) \)
- \(C_{11}^E = \text{Encrypt}(I_1 \| J_1^E, O_1^E) \)

Output Garbled Gates

- \(G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \)
- \(C_{00}^G = \text{Encrypt}(I_0^G \| J_0^G, 0) \)
- \(C_{01}^G = \text{Encrypt}(I_0^G \| J_1^G, 1) \)
- \(C_{10}^G = \text{Encrypt}(I_1^G \| J_0^G, 1) \)
- \(C_{11}^G = \text{Encrypt}(I_1^G \| J_1^G, 1) \)

Evaluation of Gate E

- Bob knows \(I_y^A = O_y^A \) and \(J_y^B = O_y^B \)
- From the ciphertexts \((C_{bb'}^E)_{bb'} \), Bob gets \(O_y^E \)

Evaluation of Gate G

- Bob knows \(I_y^E = O_y^E \) and \(J_y^F = O_y^F \)
- From the ciphertexts \((C_{bb'}^G)_{bb'} \), Bob gets \(z \in \{0, 1\} \)
- Bob can then transmit \(z \) to Alice

Outline

1. Secure Function Evaluation
2. Oblivious Transfer
3. Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness
Honest-but-Curious and Malicious

The previous construction assumes that
- Bob extracts the correct plaintext among the multiple candidates
 \[\Rightarrow \text{Redundancy is added to the plaintext} \]
 (or authenticated encryption)

They have to trust each other
- Alice correctly builds garbled gates: the ciphertexts are correct
 \[\Rightarrow \text{Cut-and-choose technique} \]
- Alice plays the oblivious transfer protocols with correct inputs
 \[\Rightarrow \text{Inputs are committed, checked during the cut-and-choose,} \]
 and ZK proofs are done during the OT
- Bob sends back the correct value \(z \)
 \[\Rightarrow \text{Random tags are appended to the final results 0 and 1} \]
 that Bob cannot guess