IV – Secure Function Evaluation and Secure 2-Party Computation

David Pointcheval

Ecole normale supérieure, CNRS & INRIA

ENS – Paris – 2016/2017

Outline

1. Secure Function Evaluation
 - Introduction
 - Examples
 - Malicious Setting

2. Oblivious Transfer
 - Definition
 - Examples

3. Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness

Secure Function Evaluation

Multi-Party Computation

n players P_i want to jointly evaluate $y_i = f_i(x_1, \ldots, x_n)$, for public functions f_i so that

- x_i is the private input of P_i
- P_i eventually learns $y_i = f_i(x_1, \ldots, x_n)$
- \ldots and nothing else about x_j for $j \neq i$

Security Notions

- Privacy
- Correctness
- Fairness (much harder to get)
Electronic Voting

Electronic Voting

Private Evaluation of the Sum
For all i: $x_i \in \{0, 1\}$ and $f_i(x_1, \ldots, x_n) = \sum_j x_j$

Example (Homomorphic Encryption)
- P_i encrypts $C_i = E(x_i)$ with an additively homomorphic encryption scheme
- They all compute $C = E(\sum x_i)$
- They jointly decrypt C to get $y = \sum x_i$ using a distributed decryption

Privacy: Limitations
In case of unanimity (i.e. $\sum x_i = n$), one learns all the x_i's, even in the honest-but-curious setting

This is not a weakness of the protocol, but of the functionality: one should just reveal the winner

Replay Attacks
A malicious adversary could try to amplify P_1's vote, replaying its message C_1 by t corrupted players: this can leak P_1's vote x_1

This can be avoided with non-malleable encryption
Secure 2-Party Computation

The 2-party particular case: on Alice's input x and Bob's input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else.

Equality Test

Alice owns a value x and Bob owns a value y, in the end, they both learn whether $x = y$ or not.

Yao Millionaires' Problem

Alice owns an integer x and Bob owns an integer y, in the end, they both learn whether $x \leq y$ or not.

With Homomorphic Encryption

- Alice encrypts $C = E(x)$ with an additively homomorphic encryption scheme
- Bob computes $C' = E(r(x - y))$, for a random element r
- Alice computes $C'' = E(r'(x - y))$, for a random element r'
- They jointly decrypt C'': the value is 0 iff $x = y$ (or random)

Yao Millionaires' Problem

We fill and order the sets by length: $\overline{T}_x^1 = \{X_i\}$ and $\overline{T}_y^0 = \{Y_i\}$ where for $i = 0, \ldots, n$:

- if $x_i = 0$, $X_i = 2^n$, otherwise $X_i = x_{n-1} \ldots x_i \in [0, 2^{n-i}]$
- if $y_i = 1$, $Y_i = 2^n + 1$, otherwise $Y_i = y_{n-1} \ldots y_i + 1 \in [0, 2^{n-i}[$

$x > y \iff \exists! i < n, X_i = Y_i$

Theorem [Lin-Tzeng – 2005]

Given $x = x_{n-1} \ldots x_0, y = y_{n-1} \ldots y_0 \in \{0, 1\}^n$, and denoting

$T_x^1 = \{x_{n-1} \ldots x_i | x_i = 1\} \quad T_y^0 = \{y_{n-1} \ldots y_i + 1 | y_i = 0\}$

$x > y \iff T_x^1 \cap T_y^0 \neq \emptyset$

$x > y \iff \exists! i < n, (x_i > y_i) \land (\forall j > i, x_j = y_j)$

$\iff \exists! i < n, (x_i = 1) \land (y_i = 0) \land (\forall j > i, x_j = y_j)$

$\iff \exists! i < n, (y_i = 0) \land (x_{n-1} \ldots x_i = y_{n-1} \ldots y_i + 1)$

$\iff |T_x^1 \cap T_y^0| = 1$
Outline

1 Secure Function Evaluation
 - Introduction
 - Examples
 - Malicious Setting

2 Oblivious Transfer

3 Garbled Circuits

Secure 2-Party Computation

The 2-party particular case: on Alice's input x and Bob's input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else.

Oblivious Transfer

Alice owns two values x_0, x_1 and Bob owns a bit $b \in \{0, 1\}$, so that in the end, Bob learns x_b and Alice gets nothing:

$x = (x_0, x_1)$ and $y = b$, then $f((x_0, x_1), b) = x_b$ and $g((x_0, x_1), b) = \perp$

Oblivious Transfer is equivalent to Secure 2-Party Computation

From an Oblivious Transfer Protocol, one can implement any 2-Party Secure Function Evaluation
Outline

1 Secure Function Evaluation

2 Oblivious Transfer
 - Definition
 - Examples

3 Garbled Circuits

Oblivious Transfer

Example (Bellare-Micali’s Construction – 1992)

In a discrete logarithm setting (G, g, p), for $x_0, x_1 \in G$

- Alice chooses $c \leftarrow G$ and sends it to Bob
- Bob chooses $k \leftarrow \mathbb{Z}_p$, sets $pk_b \leftarrow g^k$ and $pk_{1-b} \leftarrow c/pk_b$, and sends (pk_0, pk_1) to Alice
- Alice checks $pk_0 \cdot pk_1 = c$ and encrypts x_i under pk_i (for $i = 0, 1$) with ElGamal:
 \[C_i \leftarrow g^r_i \text{ and } C_i' \leftarrow x_i \cdot pk_i^r, \text{ for } r_i \leftarrow \mathbb{Z}_p \]
- Bob can decrypt (C_b, C_b') using k

Because of the random c (unknown discrete logarithm), Bob should not be able to infer any information about x_{1-b}
This is provably secure in the honest-but-curious setting

Example (Naor-Pinkas Construction – 2000)

In a discrete logarithm setting (G, g, p), for $x_0, x_1 \in G$

- Bob chooses $r, s, t \leftarrow \mathbb{Z}_p$, sets $X \leftarrow g^r, Y \leftarrow g^s, Z_b \leftarrow g^{rs}$, $Z_{1-b} \leftarrow g^t$, and sends (X, Y, Z_0, Z_1) to Bob
- Alice checks $Z_0 \neq Z_1$, and re-randomizes the tuples:
 $T_0 \leftarrow (X, Y_0' = Y^{v_0}g^{u_0}, Z_0' = Z_0^{v_0}X^{u_0})$ and
 $T_1 \leftarrow (X, Y_1' = Y^{v_1}g^{u_1}, Z_1' = Z_1^{u_1}X^{v_1})$, for $u_0, v_0, u_1, v_1 \leftarrow \mathbb{Z}_p$
- Alice encrypts x_i under T_i: $C_i = Y_i'$ and $C_i' = x_i \cdot Z_i'$
- Bob can decrypt (C_b, C_b') using r

The re-randomization keeps the DH-tuple T_b, but perfectly removes information in T_{1-b}
This is provably secure in the malicious setting
Outline

1. Secure Function Evaluation
2. Oblivious Transfer
3. Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness

Garbled Circuit

Alice converts the circuit into a generic circuit: 1-input or 2-input gates

![Boolean Circuit Diagram](image)

They both learn z

Garbled Gates

Alice generates the garbled gates

1-Input Garbled Gate

For the gate A (not): 4 random secret keys $I_A^0, I_A^1, O_A^0, O_A^1$

\[
A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = Encrypt(I_A^0, O_A^1) \quad C_A^1 = Encrypt(I_A^1, O_A^0)
\]

2-Input Garbled Gate

For the gate B (and): 8 random secret keys $I_B^0, I_B^1, J_B^0, J_B^1, O_B^0, O_B^1$

\[
B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 \end{bmatrix} : C_B^{00} = Encrypt(I_B^0 || J_B^0, O_B^0) \quad C_B^{01} = Encrypt(I_B^0 || J_B^1, O_B^0) \quad C_B^{10} = Encrypt(I_B^1 || J_B^0, O_B^0) \quad C_B^{11} = Encrypt(I_B^1 || J_B^1, O_B^0)
\]
Alice's Inputs

Alice publishes the ciphertexts in random order for each gate.

Alice publishes the keys corresponding to her inputs:
- For \(x_1 \), she sends \(I_{x_1} \)
- For \(x_2 \), she sends \(J_{x_2} \)
- For \(x_3 \), she sends \(J_{x_3} \)

Bob's Inputs

\[
A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0)
\]

Oblivious Transfer

Alice owns \(I_A^0, I_A^1 \) and Bob owns \(y_1 \in \{0, 1\} \)
- Using an OT, Bob gets \(I_{y_1}^A \), while Alice learns nothing.
- From the ciphertexts \((C_A^b)_{bb} \), Bob gets \(O_{y_A}^A \)

Internal Garbled Gates

Internal Garbled Gate

For the gate \(E \) (or): 2 new random secret keys \(O_E^0, O_E^1 \) while \(I_E^0 \leftarrow O_A^0, I_E^1 \leftarrow O_A^1, J_E^0 \leftarrow O_B^0, J_E^1 \leftarrow O_B^1 \)

\[
E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_E^{00} = \text{Encrypt}(I_E^0 || J_E^0, O_E^0) \quad C_E^{01} = \text{Encrypt}(I_E^0 || J_E^1, O_E^1) \\
C_E^{10} = \text{Encrypt}(I_E^1 || J_E^0, O_E^1) \quad C_E^{11} = \text{Encrypt}(I_E^1 || J_E^1, O_E^1)
\]
Evaluation of Internal Gates

\[E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \]

\[C_{E}^{00} = \text{Encrypt}(I_{E}^{0} \parallel J_{E}^{0}, O_{E}^{0}) \]
\[C_{E}^{01} = \text{Encrypt}(I_{E}^{0} \parallel J_{E}^{1}, O_{E}^{1}) \]
\[C_{E}^{10} = \text{Encrypt}(I_{E}^{1} \parallel J_{E}^{0}, O_{E}^{1}) \]
\[C_{E}^{11} = \text{Encrypt}(I_{E}^{1} \parallel J_{E}^{1}, O_{E}^{1}) \]

Evaluation of Gate E

Bob knows \(I_{E}^{y_{A}} = O_{E}^{y_{A}} \) and \(J_{E}^{y_{B}} = O_{E}^{y_{B}} \)

From the ciphertexts \((C_{E}^{bb})_{bb} \), Bob gets \(O_{E}^{y_{E}} \)

Output Garbled Gates

\[G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \]

\[C_{G}^{00} = \text{Encrypt}(I_{G}^{0} \parallel J_{G}^{0}, 0) \]
\[C_{G}^{01} = \text{Encrypt}(I_{G}^{0} \parallel J_{G}^{1}, 1) \]
\[C_{G}^{10} = \text{Encrypt}(I_{G}^{1} \parallel J_{G}^{0}, 1) \]
\[C_{G}^{11} = \text{Encrypt}(I_{G}^{1} \parallel J_{G}^{1}, 1) \]

Evaluation of Gate G

Bob knows \(I_{G}^{y_{E}} = O_{G}^{y_{E}} \) and \(J_{G}^{y_{F}} = O_{G}^{y_{F}} \)

From the ciphertexts \((C_{G}^{bb})_{bb} \), Bob gets \(z \in \{0, 1\} \)

Bob can then transmit \(z \) to Alice

Outline

1. Secure Function Evaluation
2. Oblivious Transfer
3. Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness
The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 \[\implies\text{Redundancy is added to the plaintext}
 \text{(or authenticated encryption)}\]

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
 \[\implies\text{Cut-and-choose technique}\]

- Alice plays the oblivious transfer protocols with correct inputs
 \[\implies\text{Inputs are committed, checked during the cut-and-choose,}
 \text{and ZK proofs are done during the OT}\]

- Bob sends back the correct value \(z\)
 \[\implies\text{Random tags are appended to the final results 0 and 1}
 \text{that Bob cannot guess}\]