IV – Secure Function Evaluation and Secure 2-Party Computation

David Pointcheval Ecole normale supérieure/PSL, CNRS & INRIA

ENS/PSL/CNRS/INRIA Cascade

Outline

Secure Function Evaluation

Introduction

Examples

Malicious Setting

Oblivious Transfer

Definition

Examples

Garbled Circuits

Introduction

Garbled Circuits

Correctness

ENS/PSL/CNRS/INRIA Cascade

Secure Function Evaluation

Secure Function Evaluation

Introduction

Examples

Malicious Setting

Oblivious Transfer

Garbled Circuits

ENS/PSL/CNRS/INRIA Cascade

Multi-Party Computation

n players P_i want to jointly evaluate $y_i = f_i(x_1, ..., x_n)$, for public functions f_i so that

- x_i is the private input of P_i
- P_i eventually learns $y_i = f_i(x_1, \ldots, x_n)$
- ... and nothing else about x_j for $j \neq i$

Security Notions

- Privacy
- Correctness
- Fairness (much harder to get)

Multi-Party Computation

n players P_i want to jointly evaluate $y_i = f_i(x_1, ..., x_n)$, for public functions f_i so that

- x_i is the private input of P_i
- P_i eventually learns $y_i = f_i(x_1, \ldots, x_n)$
- ... and nothing else about x_j for $j \neq i$

Security Notions

- Privacy
- Correctness
- Fairness (much harder to get)

t-Privacy

If t parties collude, they cannot learn more on the other inputs than from their own/known inputs and outputs

Note that the knowledge of y_i can leak some information on the x_j 's.

Security Models

- **Honest-but-curious**: all the players follow the protocol honestly, but the adversary knows all the inputs/outputs from *t* users
- Malicious users: the adversary controls a fixed set of t players
- **Dynamic adversary**: the adversary dynamically chooses the (up to) *t* players it controls

t-Privacy

If t parties collude, they cannot learn more on the other inputs than from their own/known inputs and outputs

Note that the knowledge of y_i can leak some information on the x_j 's.

Security Models

- **Honest-but-curious**: all the players follow the protocol honestly, but the adversary knows all the inputs/outputs from *t* users
- Malicious users: the adversary controls a fixed set of t players
- **Dynamic adversary**: the adversary dynamically chooses the (up to) *t* players it controls

Secure Function Evaluation

Introduction

Examples

Malicious Setting

Oblivious Transfer

Garbled Circuits

ENS/PSL/CNRS/INRIA Cascade

Private Evaluation of the Sum

For all $i: x_i \in \{0, 1\}$ and $f_i(x_1, \ldots, x_n) = \sum_j x_j$

Example (Homomorphic Encryption)

•
$$P_i$$
 encrypts $C_i = E(x_i)$

with an additively homomorphic encryption scheme

• They all compute
$$C = E(\sum x_i)$$

Private Evaluation of the Sum For all *i*: $x_i \in \{0, 1\}$ and $f_i(x_1, \dots, x_n) = \sum_i x_i$

Example (Homomorphic Encryption)

•
$$P_i$$
 encrypts $C_i = E(x_i)$

with an additively homomorphic encryption scheme

• They all compute
$$C = E(\sum x_i)$$

• They jointly decrypt C to get
$$y = \sum x_i$$

using a distributed decryption

Privacy: Limitations

In case of unanimity (i.e. $\sum x_i = n$), one learns all the x_i 's, even in the honest-but-curious setting

This is not a weakness of the protocol, but of the functionality: one should just reveal the winner

Replay Attacks

A malicious adversary could try to amplify P_1 's vote, replaying its message C_1 by t corrupted players: this can leak P_1 's vote x_1

This can be avoided with non-malleable encryption

Privacy: Limitations

In case of unanimity (i.e. $\sum x_i = n$), one learns all the x_i 's, even in the honest-but-curious setting

This is not a weakness of the protocol, but of the functionality: one should just reveal the winner

Replay Attacks

A malicious adversary could try to amplify P_1 's vote, replaying its message C_1 by t corrupted players: this can leak P_1 's vote x_1

This can be avoided with non-malleable encryption

Equality Test

Alice owns a value x and Bob owns a value y, in the end, they both learn whether x = y or n

Yao Millionaires' Problem

Alice owns an integer x and Bob owns an integer y, in the end, they both learn whether $x \le y$ or not

Equality Test

Alice owns a value x and Bob owns a value y, in the end, they both learn whether x = y or not

Yao Millionaires' Problem

Alice owns an integer x and Bob owns an integer y, in the end, they both learn whether $x \le y$ or not

Equality Test

Alice owns a value x and Bob owns a value y,

in the end, they both learn whether x = y or not

Yao Millionaires' Problem

Alice owns an integer x and Bob owns an integer y,

in the end, they both learn whether $x \leq y$ or not

Equality Test

Alice owns a value $x \in [A, B]$ and Bob owns a value $y \in [A, B]$, in the end, they both learn whether x = y or not

With Homomorphic Encryption

- Bob computes C' = E(r(x y)), for a random element r plus the randomization of the ciphertext
- Alice computes C'' = E(rr'(x y)), for a random element r' plus the randomization of the ciphertext
- They jointly decrypt C'': the value is 0 iff x = y (or random)

Equality Test

Alice owns a value $x \in [A, B]$ and Bob owns a value $y \in [A, B]$, in the end, they both learn whether x = y or not

With Homomorphic Encryption

- Alice encrypts C = E(x)
 with an additively homomorphic encryption scheme
- Bob computes C' = E(r(x y)), for a random element r plus the randomization of the ciphertext
- Alice computes C'' = E(rr'(x y)), for a random element r' plus the randomization of the ciphertext
- They jointly decrypt C'': the value is 0 iff x = y (or random)

Alice owns an integer $x \in [0, 2^n[$ and Bob owns an integer $y \in [0, 2^n[$, in the end, they both learn whether $x \le y$ or not

Theorem [Lin-Tzeng - 2005]
Given
$$x = x_{n-1} \dots x_0, y = y_{n-1} \dots y_0 \in \{0,1\}^n$$
, and denoting
 $T_x^1 = \{x_{n-1} \dots x_i | x_i = 1\}$ $T_y^0 = \{y_{n-1} \dots y_{i+1}1 | y_i = 0\}$
 $x > y \iff T_x^1 \cap T_y^0 \neq \emptyset$

$$\begin{array}{ll} x > y & \iff & \exists ! i < n, (x_i > y_i) \land (\forall j > i, x_j = y_j) \\ \Leftrightarrow & \exists ! i < n, (x_i = 1) \land (y_i = 0) \land (\forall j > i, x_j = y_j) \\ \Leftrightarrow & \exists ! i < n, (y_i = 0) \land (x_{n-1} \dots x_i = y_{n-1} \dots y_{i+1}1) \\ \Leftrightarrow & |T_x^1 \cap T_y^0| = 1 \end{array}$$

Alice owns an integer $x \in [0, 2^n[$ and Bob owns an integer $y \in [0, 2^n[$, in the end, they both learn whether $x \leq y$ or not

Theorem [Lin-Tzeng – 2005]
Given
$$x = x_{n-1} \dots x_0, y = y_{n-1} \dots y_0 \in \{0, 1\}^n$$
, and denoting
 $T_x^1 = \{x_{n-1} \dots x_i | x_i = 1\}$ $T_y^0 = \{y_{n-1} \dots y_{i+1} 1 | y_i = 0\}$
 $x > y \iff T_x^1 \cap T_y^0 \neq \emptyset$

$$\begin{array}{ll} x > y & \iff & \exists ! i < n, (x_i > y_i) \land (\forall j > i, x_j = y_j) \\ \Leftrightarrow & \exists ! i < n, (x_i = 1) \land (y_i = 0) \land (\forall j > i, x_j = y_j) \\ \Leftrightarrow & \exists ! i < n, (y_i = 0) \land (x_{n-1} \dots x_i = y_{n-1} \dots y_{i+1}1) \\ \Leftrightarrow & |T_x^1 \cap T_y^0| = 1 \end{array}$$

ENS/PSL/CNRS/INRIA Cascade

Yao Millionaires' Problem

We fill and order the sets by length: $\overline{T}_{X}^{1} = \{X_{i}\}$ and $\overline{T}_{Y}^{0} = \{Y_{i}\}$ where

• if
$$x_i = 0$$
, $X_i = 2^n$, otherwise $X_i = x_{n-1} \dots x_i \in [0, 2^{n-i}]$

• if
$$y_i = 1$$
, $Y_i = 2^n + 1$, otherwise $Y_i = y_{n-1} \dots y_{i+1} 1 \in [0, 2^{n-i}[$

$$x > y \iff \exists ! i < n, X_i = Y_i$$

With Homomorphic Encryption

• Alice encrypts
$$C_i = E(X_i)$$

with an additively homomorphic encryption scheme

- Bob computes $C'_i = E(r_i(X_i Y_i))$, for random elements r_i randomizes them, and sends them in random order
- Alice computes C''_i = E(r_ir'_i(X_i Y_i)), for random elements r'_i randomizes them, and sends them in random order
- They jointly decrypt the C''_i 's: one value is 0 iff x > y

ENS/PSL/CNRS/INRIA Cascade

Yao Millionaires' Problem

We fill and order the sets by length: $\overline{T}_{X}^{1} = \{X_{i}\}$ and $\overline{T}_{Y}^{0} = \{Y_{i}\}$ where

• if
$$x_i = 0$$
, $X_i = 2^n$, otherwise $X_i = x_{n-1} \dots x_i \in [0, 2^{n-i}]$

• if
$$y_i = 1$$
, $Y_i = 2^n + 1$, otherwise $Y_i = y_{n-1} \dots y_{i+1} 1 \in [0, 2^{n-i}]$

$$x > y \iff \exists ! i < n, X_i = Y_i$$

With Homomorphic Encryption

• Alice encrypts
$$C_i = E(X_i)$$

with an additively homomorphic encryption scheme

- Bob computes $C'_i = E(r_i(X_i Y_i))$, for random elements r_i randomizes them, and sends them in random order
- Alice computes $C''_i = E(r_i r'_i (X_i Y_i))$, for random elements r'_i randomizes them, and sends them in random order
- They jointly decrypt the C''_i 's: one value is 0 iff x > y

ENS/PSL/CNRS/INRIA Cascade

Secure Function Evaluation

Introduction

Examples

Malicious Setting

Oblivious Transfer

Garbled Circuits

ENS/PSL/CNRS/INRIA Cascade

GMW Compiler

GMW Compiler

[Goldreich-Micali-Wigderson - STOC 1987]

- Commitment of the inputs
- Secure coin tossing
- Zero-knowledge proofs of correct behavior

Secure Function Evaluation

Oblivious Transfer

Definition

Examples

Garbled Circuits

ENS/PSL/CNRS/INRIA Cascade

Oblivious Transfer[Rabin - 1981]Alice owns two values x_0, x_1 and Bob owns a bit $b \in \{0, 1\}$,
so that in the end, Bob learns x_b and Alice gets nothing:
 $x = (x_0, x_1)$ and y = b, then $g((x_0, x_1), b) = x_b$ and $f((x_0, x_1), b) = \bot$

Kilian – STOC 1988]

Oblivious Transfer is equivalent to **Secure 2-Party Computation**

From an Oblivious Transfer Protocol, one can implement any 2-Party Secure Function Evaluation

ENS/PSL/CNRS/INRIA Cascade

Oblivious Transfer

[Rabin - 1981]

Alice owns two values x_0, x_1 and Bob owns a bit $b \in \{0, 1\}$, so that in the end, Bob learns x_b and Alice gets nothing: $x = (x_0, x_1)$ and y = b, then $g((x_0, x_1), b) = x_b$ and $f((x_0, x_1), b) = \bot$

Kilian – STOC 1988]

Oblivious Transfer is equivalent to **Secure 2-Party Computation**

From an Oblivious Transfer Protocol, one can implement any 2-Party Secure Function Evaluation

Oblivious Transfer

[Rabin - 1981]

Alice owns two values x_0, x_1 and Bob owns a bit $b \in \{0, 1\}$, so that in the end, Bob learns x_b and Alice gets nothing: $x = (x_0, x_1)$ and y = b, then $g((x_0, x_1), b) = x_b$ and $f((x_0, x_1), b) = \bot$

[Kilian – STOC 1988]

Oblivious Transfer is equivalent to Secure 2-Party Computation

From an Oblivious Transfer Protocol, one can implement any 2-Party Secure Function Evaluation **Secure Function Evaluation**

Oblivious Transfer

Definition

Examples

Garbled Circuits

ENS/PSL/CNRS/INRIA Cascade

Example (Bellare-Micali's Construction – 1992)

In a discrete logarithm setting ($\mathbb{G},g,p)$, for $x_0,x_1\in\mathbb{G}$

- Alice chooses $c \stackrel{R}{\leftarrow} \mathbb{G}$ and sends it to Bob
- Bob chooses k ^R Z_p, sets pk_b ← g^k and pk_{1-b} ← c/pk_b, and sends (pk₀, pk₁) to Alice

• Alice checks
$$pk_0 \cdot pk_1 = c$$

and encrypts x_i under pk_i (for $i = 0, 1$) with ElGamal
 $C_i \leftarrow g^{r_i}$ and $C'_i \leftarrow x_i \cdot pk_i^{r_i}$, for $r_i \stackrel{R}{\leftarrow} \mathbb{Z}_p$

• Bob can decrypt (C_b, C'_b) using k

Because of the random c (unknown discrete logarithm), Bob should not be able to infer any information about x_{1-b}

This is provably secure in the honest-but-curious setting ENS/PSL/CNRS/INRIA Cascade David Pointcheval

Example (Bellare-Micali's Construction – 1992)

In a discrete logarithm setting ($\mathbb{G},g,p)$, for $x_0,x_1\in\mathbb{G}$

- Alice chooses $c \xleftarrow{R}{\leftarrow} \mathbb{G}$ and sends it to Bob
- Bob chooses k ^R Z_p, sets pk_b ← g^k and pk_{1-b} ← c/pk_b, and sends (pk₀, pk₁) to Alice

• Alice checks
$$pk_0 \cdot pk_1 = c$$

and encrypts x_i under pk_i (for $i = 0, 1$) with ElGamal
 $C_i \leftarrow g^{r_i}$ and $C'_i \leftarrow x_i \cdot pk_i^{r_i}$, for $r_i \stackrel{R}{\leftarrow} \mathbb{Z}_p$

• Bob can decrypt (C_b, C'_b) using k

Because of the random c (unknown discrete logarithm), Bob should not be able to infer any information about x_{1-b}

This is provably secure in the honest-but-curious setting ENS/PSL/CNRS/INRIA Cascade David Pointcheval

Example (Bellare-Micali's Construction – 1992)

In a discrete logarithm setting (\mathbb{G}, g, p), for $x_0, x_1 \in \mathbb{G}$

- Alice chooses $c \stackrel{R}{\leftarrow} \mathbb{G}$ and sends it to Bob
- Bob chooses k ^R Z_p, sets pk_b ← g^k and pk_{1-b} ← c/pk_b, and sends (pk₀, pk₁) to Alice

• Alice checks
$$pk_0 \cdot pk_1 = c$$

and encrypts x_i under pk_i (for $i = 0, 1$) with ElGamal
 $C_i \leftarrow g^{r_i}$ and $C'_i \leftarrow x_i \cdot pk_i^{r_i}$, for $r_i \stackrel{R}{\leftarrow} \mathbb{Z}_p$

• Bob can decrypt (C_b, C'_b) using k

Because of the random c (unknown discrete logarithm), Bob should not be able to infer any information about x_{1-b}

This is provably secure in the **honest-but-curious setting** ENS/PSL/CNRS/INRIA Cascade David Pointcheval

Example (Naor-Pinkas Construction – 2000)

In a discrete logarithm setting (\mathbb{G}, g, p), for $x_0, x_1 \in \mathbb{G}$

- Bob chooses $r, s, t \stackrel{R}{\leftarrow} \mathbb{Z}_p$, sets $X \leftarrow g^r$, $Y \leftarrow g^s$, $Z_b \leftarrow g^{rs}$, $Z_{1-b} \leftarrow g^t$, and sends (X, Y, Z_0, Z_1) to Alice
- Alice checks $Z_0 \neq Z_1$, and re-randomizes the tuples: $T_0 \leftarrow (X, Y'_0 = Y^{u_0} g^{v_0}, Z'_0 = Z_0^{u_0} X^{v_0})$ and $T_1 \leftarrow (X, Y'_1 = Y^{u_1} g^{v_1}, Z'_1 = Z_1^{u_1} X^{v_1})$, for $u_0, v_0, u_1, v_1 \xleftarrow{R} \mathbb{Z}_p$
- Alice encrypts x_i under T_i : $C_i = Y'_i$ and $C'_i = x_i \cdot Z'_i$
- Bob can decrypt (C_b, C'_b) using r

The re-randomization keeps the DH-tuple T_b , but perfectly removes information in T_{1-b}

This is provably secure in the malicious setting ENS/PSL/CNRS/INRIA Cascade David Pointcheval

Example (Naor-Pinkas Construction – 2000)

In a discrete logarithm setting (\mathbb{G}, g, p), for $x_0, x_1 \in \mathbb{G}$

- Bob chooses $r, s, t \stackrel{R}{\leftarrow} \mathbb{Z}_p$, sets $X \leftarrow g^r$, $Y \leftarrow g^s$, $Z_b \leftarrow g^{rs}$, $Z_{1-b} \leftarrow g^t$, and sends (X, Y, Z_0, Z_1) to Alice
- Alice checks $Z_0 \neq Z_1$, and re-randomizes the tuples: $T_0 \leftarrow (X, Y'_0 = Y^{u_0} g^{v_0}, Z'_0 = Z_0^{u_0} X^{v_0})$ and $T_1 \leftarrow (X, Y'_1 = Y^{u_1} g^{v_1}, Z'_1 = Z_1^{u_1} X^{v_1})$, for $u_0, v_0, u_1, v_1 \xleftarrow{R} \mathbb{Z}_p$
- Alice encrypts x_i under T_i : $C_i = Y'_i$ and $C'_i = x_i \cdot Z'_i$
- Bob can decrypt (C_b, C'_b) using r

The re-randomization keeps the DH-tuple T_b , but perfectly removes information in T_{1-b}

Example (Naor-Pinkas Construction – 2000)

In a discrete logarithm setting (\mathbb{G}, g, p), for $x_0, x_1 \in \mathbb{G}$

- Bob chooses $r, s, t \stackrel{R}{\leftarrow} \mathbb{Z}_p$, sets $X \leftarrow g^r$, $Y \leftarrow g^s$, $Z_b \leftarrow g^{rs}$, $Z_{1-b} \leftarrow g^t$, and sends (X, Y, Z_0, Z_1) to Alice
- Alice checks $Z_0 \neq Z_1$, and re-randomizes the tuples: $T_0 \leftarrow (X, Y'_0 = Y^{u_0} g^{v_0}, Z'_0 = Z_0^{u_0} X^{v_0})$ and $T_1 \leftarrow (X, Y'_1 = Y^{u_1} g^{v_1}, Z'_1 = Z_1^{u_1} X^{v_1})$, for $u_0, v_0, u_1, v_1 \xleftarrow{R} \mathbb{Z}_p$
- Alice encrypts x_i under T_i : $C_i = Y'_i$ and $C'_i = x_i \cdot Z'_i$
- Bob can decrypt (C_b, C'_b) using r

The re-randomization keeps the DH-tuple T_b , but perfectly removes information in T_{1-b}

This is provably secure in the malicious setting ENS/PSL/CNRS/INRIA Cascade David Pointcheval

Garbled Circuits

Secure Function Evaluation

Oblivious Transfer

Garbled Circuits

Introduction

Garbled Circuits

Correctness

ENS/PSL/CNRS/INRIA Cascade

Boolean circuit, Alice's inputs (x_1, x_2, x_3) , and Bob's inputs (y_1, y_2, y_3) :

They both learn z in the end, but nothing else ENS/PSL/CNRS/INRIA Cascade David Pointcheval **Secure Function Evaluation**

Oblivious Transfer

Garbled Circuits

Introduction

Garbled Circuits

Correctness

ENS/PSL/CNRS/INRIA Cascade

Alice converts the circuit into a generic circuit: 1-input or 2-input gates

23/33

Garbled Gates

Alice generates the garbled gates

1-Input Garbled Gate

For the gate A (not): 4 random secret keys I_A^0 , I_A^1 , O_A^0 , O_A^1

$$A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0)$$

2-Input Garbled Gate

For the gate B (and): 8 random secret keys I_B^0 , I_B^1 , J_B^0 , J_B^1 , O_B^0 , O_B^1

$$B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : C_B^{00} = \text{Encrypt}(I_B^0 || J_B^0, O_B^0) \quad C_B^{01} = \text{Encrypt}(I_B^0 || J_B^1, O_B^0)$$
$$C_B^{10} = \text{Encrypt}(I_B^1 || J_B^0, O_B^0) \quad C_B^{11} = \text{Encrypt}(I_B^1 || J_B^1, O_B^1)$$

ENS/PSL/CNRS/INRIA Cascade

Garbled Gates

Alice generates the garbled gates

1-Input Garbled Gate

For the gate A (not): 4 random secret keys I_A^0 , I_A^1 , O_A^0 , O_A^1

$$A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0)$$

2-Input Garbled Gate

For the gate B (and): 8 random secret keys I_B^0 , I_B^1 , J_B^0 , J_B^1 , O_B^0 , O_B^1

$$B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : C_B^{00} = \text{Encrypt}(I_B^0 || J_B^0, O_B^0) \quad C_B^{01} = \text{Encrypt}(I_B^0 || J_B^1, O_B^0)$$
$$C_B^{10} = \text{Encrypt}(I_B^1 || J_B^0, O_B^0) \quad C_B^{11} = \text{Encrypt}(I_B^1 || J_B^1, O_B^1)$$

Garbled Gates

Alice generates the garbled gates

1-Input Garbled Gate

For the gate A (not): 4 random secret keys I_A^0 , I_A^1 , O_A^0 , O_A^1

$$A = \begin{vmatrix} 1 & 0 \end{vmatrix} : C_A^0 = \mathsf{Encrypt}(I_A^0, O_A^1) & C_A^1 = \mathsf{Encrypt}(I_A^1, O_A^0) \end{vmatrix}$$

2-Input Garbled Gate

For the gate B (and): 8 random secret keys I_B^0 , I_B^1 , J_B^0 , J_B^1 , O_B^0 , O_B^1

$$\begin{split} \mathsf{B} &= \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : C_B^{00} = \mathsf{Encrypt}(I_B^0 || J_B^0, O_B^0) \quad C_B^{01} = \mathsf{Encrypt}(I_B^0 || J_B^1, O_B^0) \\ C_B^{10} &= \mathsf{Encrypt}(I_B^1 || J_B^0, O_B^0) \quad C_B^{11} = \mathsf{Encrypt}(I_B^1 || J_B^1, O_B^1) \end{split}$$

ENS/PSL/CNRS/INRIA Cascade

Alice publishes the ciphertexts in random order for each gate

Alice publishes the keys corresponding to her inputs:

- for x_1 , she sends $I_D^{x_1}$
- for x_2 , she sends $J_B^{x_2}$
- for x_3 , she sends $J_C^{x_3}$

Alice publishes the ciphertexts in random order for each gate

Alice publishes the keys corresponding to her inputs:

- for x_1 , she sends $I_D^{x_1}$
- for x_2 , she sends $J_B^{x_2}$
- for x_3 , she sends $J_C^{x_3}$

$$A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0)$$

Oblivious Transfer

Alice owns I^0_A , I^1_A and Bob owns $y_1 \in \{0, 1\}$

- Using an OT, Bob gets $I_A^{y_1}$, while Alice learns nothing
- From the ciphertexts $(C_A^b)_b$, Bob gets $O_A^{Y_A}$

ENS/PSL/CNRS/INRIA Cascade

$$A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0)$$

Oblivious Transfer

Alice owns I_A^0 , I_A^1 and Bob owns $y_1 \in \{0, 1\}$

- Using an OT, Bob gets $I_A^{\gamma_1}$, while Alice learns nothing
- From the ciphertexts $(C_A^b)_b$, Bob gets $O_A^{y_A}$

ENS/PSL/CNRS/INRIA Cascade

Bob's Inputs

$$B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : C_B^{00} = \text{Encrypt}(I_B^0 || J_B^0, O_B^0) \quad C_B^{01} = \text{Encrypt}(I_B^0 || J_B^1, O_B^0)$$
$$C_B^{10} = \text{Encrypt}(I_B^1 || J_B^0, O_B^0) \quad C_B^{11} = \text{Encrypt}(I_B^1 || J_B^1, O_B^1)$$

Oblivious Transfer

Alice owns $\mathit{I}^0_{\mathcal{B}}, \, \mathit{I}^1_{\mathcal{B}}$, and Bob owns $\mathit{y}_2 \in \{0,1\}$

- Using an OT, Bob gets $I_B^{\gamma_2}$, while Alice learns nothing
- Bob additionally knows J[×]_B
- From the ciphertexts $(C_B^{bb'})_{bb'}$, Bob gets $O_B^{\gamma_B}$

ENS/PSL/CNRS/INRIA Cascade

Bob's Inputs

$$B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : C_B^{00} = \text{Encrypt}(I_B^0 || J_B^0, O_B^0) \quad C_B^{01} = \text{Encrypt}(I_B^0 || J_B^1, O_B^0)$$
$$C_B^{10} = \text{Encrypt}(I_B^1 || J_B^0, O_B^0) \quad C_B^{11} = \text{Encrypt}(I_B^1 || J_B^1, O_B^1)$$

Oblivious Transfer

Alice owns I_B^0 , I_B^1 , and Bob owns $y_2 \in \{0, 1\}$

- Using an OT, Bob gets $I_B^{y_2}$, while Alice learns nothing
- Bob additionally knows J^{x2}_B
- From the ciphertexts $(C_B^{bb'})_{bb'}$, Bob gets $O_B^{y_B}$

ENS/PSL/CNRS/INRIA Cascade

Internal Garbled Gates

Internal Garbled Gate

For the gate E (or): 2 new random secret keys O_E^0 , O_E^1 while $I_E^0 \leftarrow O_A^0$, $I_E^1 \leftarrow O_A^1$, $J_E^0 \leftarrow O_B^0$, $J_E^1 \leftarrow O_B^1$

$$E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_E^{00} = \text{Encrypt}(I_E^0 || J_E^0, O_E^0) \quad C_E^{01} = \text{Encrypt}(I_E^0 || J_E^1, O_E^1)$$
$$C_E^{10} = \text{Encrypt}(I_E^1 || J_E^0, O_E^1) \quad C_E^{11} = \text{Encrypt}(I_E^1 || J_E^1, O_E^1)$$

ENS/PSL/CNRS/INRIA Cascade

Internal Garbled Gates

Internal Garbled Gate

For the gate E (or): 2 new random secret keys O_E^0 , O_E^1 while $I_E^0 \leftarrow O_A^0$, $I_E^1 \leftarrow O_A^1$, $J_E^0 \leftarrow O_B^0$, $J_E^1 \leftarrow O_B^1$

$$\mathbf{E} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_E^{00} = \mathsf{Encrypt}(I_E^0 || J_E^0, O_E^0) \quad C_E^{01} = \mathsf{Encrypt}(I_E^0 || J_E^1, O_E^1)$$
$$C_E^{10} = \mathsf{Encrypt}(I_E^1 || J_E^0, O_E^1) \quad C_E^{11} = \mathsf{Encrypt}(I_E^1 || J_E^1, O_E^1)$$

ENS/PSL/CNRS/INRIA Cascade

Evaluation of Internal Gates

$$E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_E^{00} = \text{Encrypt}(I_E^0 || J_E^0, O_E^0) \quad C_E^{01} = \text{Encrypt}(I_E^0 || J_E^1, O_E^1) \\ C_E^{10} = \text{Encrypt}(I_E^1 || J_E^0, O_E^1) \quad C_E^{11} = \text{Encrypt}(I_E^1 || J_E^1, O_E^1)$$

Evaluation of Gate E

Bob knows
$$I_E^{y_A} = O_A^{y_A}$$
 and $J_E^{y_B} = O_B^{y_B}$
From the ciphertexts $(C_E^{bb'})_{bb'}$, Bob gets $O_E^{y_E}$

ENS/PSL/CNRS/INRIA Cascade

Evaluation of Internal Gates

$$\mathsf{E} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_E^{00} = \mathsf{Encrypt}(I_E^0 || J_E^0, O_E^0) \quad C_E^{01} = \mathsf{Encrypt}(I_E^0 || J_E^1, O_E^1) \\ C_E^{10} = \mathsf{Encrypt}(I_E^1 || J_E^0, O_E^1) \quad C_E^{11} = \mathsf{Encrypt}(I_E^1 || J_E^1, O_E^1)$$

Evaluation of Gate E

Bob knows
$$I_E^{y_A} = O_A^{y_A}$$
 and $J_E^{y_B} = O_B^{y_B}$
From the ciphertexts $(C_E^{bb'})_{bb'}$, Bob gets $O_E^{y_E}$

ENS/PSL/CNRS/INRIA Cascade

Output Garbled Gates

Output Garbled Gate

For the gate G (or): $I_G^0 \leftarrow O_E^0$, $I_G^1 \leftarrow O_E^1$, $J_G^0 \leftarrow O_F^0$, $J_G^1 \leftarrow O_F^1$

$$G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_G^{00} = \text{Encrypt}(I_G^0 || J_G^0, 0) \quad C_G^{01} = \text{Encrypt}(I_G^0 || J_G^1, 1)$$
$$C_G^{10} = \text{Encrypt}(I_G^1 || J_G^0, 1) \quad C_G^{11} = \text{Encrypt}(I_G^1 || J_G^1, 1)$$

ENS/PSL/CNRS/INRIA Cascade

Output Garbled Gates

Output Garbled Gate

For the gate G (or):
$$I_G^0 \leftarrow O_E^0$$
, $I_G^1 \leftarrow O_E^1$, $J_G^0 \leftarrow O_F^0$, $J_G^1 \leftarrow O_F^1$

$$\mathbf{G} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_G^{00} = \mathsf{Encrypt}(I_G^0 || J_G^0, 0) \quad C_G^{01} = \mathsf{Encrypt}(I_G^0 || J_G^1, 1) \\ C_G^{10} = \mathsf{Encrypt}(I_G^1 || J_G^0, 1) \quad C_G^{11} = \mathsf{Encrypt}(I_G^1 || J_G^1, 1)$$

ENS/PSL/CNRS/INRIA Cascade

Evaluation of Internal Gates

$$G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_G^{00} = \text{Encrypt}(I_G^0 || J_G^0, 0) \quad C_G^{01} = \text{Encrypt}(I_G^0 || J_G^1, 1)$$
$$C_G^{10} = \text{Encrypt}(I_G^1 || J_G^0, 1) \quad C_G^{11} = \text{Encrypt}(I_G^1 || J_G^1, 1)$$

Evaluation of Gate G

Bob knows $I_G^{\gamma_E} = O_E^{\gamma_E}$ and $J_G^{\gamma_F} = O_F^{\gamma_F}$ From the ciphertexts $(C_G^{bb'})_{bb'}$, Bob gets $z \in \{0, 1\}$ Bob can then transmit z to Alice

ENS/PSL/CNRS/INRIA Cascade

Evaluation of Internal Gates

$$G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_G^{00} = \text{Encrypt}(I_G^0 || J_G^0, 0) \quad C_G^{01} = \text{Encrypt}(I_G^0 || J_G^1, 1)$$
$$C_G^{10} = \text{Encrypt}(I_G^1 || J_G^0, 1) \quad C_G^{11} = \text{Encrypt}(I_G^1 || J_G^1, 1)$$

Evaluation of Gate G

Bob knows $I_G^{y_E} = O_E^{y_E}$ and $J_G^{y_F} = O_F^{y_F}$ From the ciphertexts $(C_G^{bb'})_{bb'}$, Bob gets $z \in \{0, 1\}$ Bob can then transmit z to Alice **Secure Function Evaluation**

Oblivious Transfer

Garbled Circuits

Introduction

Garbled Circuits

Correctness

ENS/PSL/CNRS/INRIA Cascade

• Bob extracts the correct plaintext among the multiple candidates

⇒ Redundancy is added to the plaintext (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct.
- Alice plays the oblivious transfer protocols with correct inputs.

Bob sends back the correct value z

 Bob extracts the correct plaintext among the multiple candidates
 Redundancy is added to the plaintext (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct.
- Alice plays the oblivious transfer protocols with correct inputs

Bob sends back the correct value z

 Bob extracts the correct plaintext among the multiple candidates
 Redundancy is added to the plaintext (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct —> Cut-and-choose technique
- Alice plays the oblivious transfer protocols with correct inputs
- Bob sends back the correct value z

Random tags are appended to the final results 0 and 1.

 Bob extracts the correct plaintext among the multiple candidates
 Redundancy is added to the plaintext (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct —> Cut-and-choose technique
- Alice plays the oblivious transfer protocols with correct inputs
 Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT
- Bob sends back the correct value z

 \longrightarrow Random tags are appended to the final results 0 and 1.

 Bob extracts the correct plaintext among the multiple candidates
 Redundancy is added to the plaintext (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct —> Cut-and-choose technique
- Alice plays the oblivious transfer protocols with correct inputs
 Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT
- Bob sends back the correct value z

⇒ Random tags are appended to the final results 0 and 1 that Bob cannot guess

ENS/PSL/CNRS/INRIA Cascade

 Bob extracts the correct plaintext among the multiple candidates
 Redundancy is added to the plaintext (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct \implies Cut-and-choose technique
- Alice plays the oblivious transfer protocols with correct inputs
 Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT
- Bob sends back the correct value *z*

⇒ Random tags are appended to the final results 0 and 1 that Bob cannot guess

ENS/PSL/CNRS/INRIA Cascade

 Bob extracts the correct plaintext among the multiple candidates
 Redundancy is added to the plaintext (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct \implies Cut-and-choose technique
- Alice plays the oblivious transfer protocols with correct inputs
 Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT
- Bob sends back the correct value z

⇒ Random tags are appended to the final results 0 and 1 that Bob cannot guess

ENS/PSL/CNRS/INRIA Cascade

 Bob extracts the correct plaintext among the multiple candidates
 Redundancy is added to the plaintext (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct \implies Cut-and-choose technique
- Alice plays the oblivious transfer protocols with correct inputs
 Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT
- Bob sends back the correct value z

 \Longrightarrow Random tags are appended to the final results 0 and 1

that Bob cannot guess

ENS/PSL/CNRS/INRIA Cascade