Outline

1 Secure Function Evaluation
 - Introduction
 - Examples
 - Malicious Setting

2 Oblivious Transfer
 - Definition
 - Examples

3 Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness

Secure Function Evaluation

Multi-Party Computation

n players P_i want to jointly evaluate $y_i = f_i(x_1, \ldots, x_n)$, for public functions f_i so that

- x_i is the private input of P_i
- P_i eventually learns $y_i = f_i(x_1, \ldots, x_n)$
- ... and nothing else about x_j for $j \notin i$

Security Notions

- Privacy
- Correctness
- Fairness (much harder to get)
Secure Function Evaluation

t-Privacy

If t parties collude, they cannot learn more on the other inputs than from their own/known inputs and outputs.

Note that the knowledge of y_i can leak some information on the x_j's.

Security Models

- **Honest-but-curious**: all the players follow the protocol honestly, but the adversary knows all the inputs/outputs from t users.
- **Malicious users**: the adversary controls a fixed set of t players.
- **Dynamic adversary**: the adversary dynamically chooses the (up to) t players it controls.

Outline

1. **Secure Function Evaluation**
 - Introduction
 - Examples
 - Malicious Setting
2. **Oblivious Transfer**
3. **Garbled Circuits**

Electronic Voting

Private Evaluation of the Sum

For all i: $x_i \in \{0, 1\}$ and $f_i(x_1, \ldots, x_n) = \sum_j x_j$

Example (Homomorphic Encryption)

- P_i encrypts $C_i = E(x_i)$ with an additively homomorphic encryption scheme.
- They all compute $C = E(\sum x_i)$.
- They jointly decrypt C to get $y = \sum x_i$ using a distributed decryption.

Privacy: Limitations

In case of unanimity (i.e. $\sum x_i = n$), one learns all the x_i's, even in the honest-but-curious setting.

This is not a weakness of the protocol, but of the functionality: one should just reveal the winner.

Replay Attacks

A malicious adversary could try to amplify P_1's vote, replaying its message C_1 by t corrupted players: this can leak P_1's vote x_1.

This can be avoided with non-malleable encryption.
Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else.

Equality Test

Alice owns a value $x \in [A, B]$ and Bob owns a value $y \in [A, B]$, in the end, they both learn whether $x = y$ or not.

With Homomorphic Encryption

- Alice encrypts $C = E(x)$ with an additively homomorphic encryption scheme.
- Bob computes $C' = E(r(x - y))$, for a random element r.
- Alice computes $C'' = E(r'(x - y))$, for a random element r'.
- They jointly decrypt C'': the value is 0 iff $x = y$ (or random).

Yao Millionaires’ Problem

Alice owns an integer x and Bob owns an integer y, in the end, they both learn whether $x \leq y$ or not.

Theorem

Given $x = x_{n-1} \ldots x_0$, $y = y_{n-1} \ldots y_0 \in \{0, 1\}^n$, and denoting

$T_x^1 = \{x_{n-1} \ldots x_i | x_i = 1\}$ \hspace{1cm} $T_y^0 = \{y_{n-1} \ldots y_i+1 | y_i = 0\}$

$x > y \iff T_x^1 \cap T_y^0 \neq \emptyset$

We fill and order the sets by length: $\tilde{T}_x^1 = \{X_i\}$ and $\tilde{T}_y^0 = \{Y_i\}$ where for $i = 0, \ldots, n$:

- if $x_i = 0$, $X_i = 2^n$, otherwise $X_i = x_{n-1} \ldots x_i \in [0, 2^{n-i}]$.
- if $y_i = 1$, $Y_i = 2^n + 1$, otherwise $Y_i = y_{n-1} \ldots y_i+1 \in [0, 2^{n-i}]$.

$x > y \iff \exists i < n, X_i = Y_i$

Yao Millionaires’ Problem

With Homomorphic Encryption

- Alice encrypts $C_i = E(X_i)$ with an additively homomorphic encryption scheme.
- Bob computes $C'_i = E(r_i(x_i - y_i))$, for random elements r_i and sends them in random order.
- Alice computes $C''_i = E(r'_i(X_i - Y_i))$, for random elements r'_i.
- They jointly decrypt the C''_i’s: one value is 0 iff $x > y$.

$\exists i < n, (x_i > y_i) \land (\forall j \geq i, x_j = y_j)$

$\iff \exists i < n, (x_i = 1) \land (y_i = 0) \land (\forall j > i, x_j = y_j)$

$\iff \exists i < n, (y_i = 0) \land (x_{n-1} \ldots x_i = y_{n-1} \ldots y_{i+1})$

$\iff |T_x^1 \cap T_y^0| = 1$
1 Secure Function Evaluation
 - Introduction
 - Examples
 - Malicious Setting

2 Oblivious Transfer

3 Garbled Circuits

Outline

GMW Compiler
[Goldreich-Micali-Wigderson – STOC 1987]

- Commitment of the inputs
- Secure coin tossing
- Zero-knowledge proofs of correct behavior

Secure 2-Party Computation

The 2-party particular case: on Alice’s input \(x\) and Bob’s input \(y\), Alice gets \(f(x, y)\) and Bob gets \(g(x, y)\), but nothing else

Oblivious Transfer
[View original text]
Outline

1 Secure Function Evaluation

2 Oblivious Transfer
 - Definition
 - Examples

3 Garbled Circuits

Example (Bellare-Micali’s Construction – 1992)

In a discrete logarithm setting (\mathbb{G}, g, p), for $x_0, x_1 \in \mathbb{G}$
- Alice chooses $c \overset{R}{\leftarrow} \mathbb{G}$ and sends it to Bob
- Bob chooses $k \overset{R}{\leftarrow} \mathbb{Z}_p$, sets $pk_b \leftarrow g^k$ and $pk_{1-b} \leftarrow c/pk_b$, and sends (pk_0, pk_1) to Alice
- Alice checks $pk_0 \cdot pk_1 = c$ and encrypts x_i under pk_i (for $i = 0, 1$) with ElGamal:
 \[C_i \leftarrow g^{r_i} \text{ and } C'_i \leftarrow x_i \cdot pk_i^{r_i}, \text{ for } r_i \overset{R}{\leftarrow} \mathbb{Z}_p \]
- Bob can decrypt (C_b, C'_b) using k

Because of the random c (unknown discrete logarithm),
Bob should not be able to infer any information about x_{1-b}
This is provably secure in the honest-but-curious setting

Example (Naor-Pinkas Construction – 2000)

In a discrete logarithm setting (\mathbb{G}, g, p), for $x_0, x_1 \in \mathbb{G}$
- Bob chooses $r, s, t \overset{R}{\leftarrow} \mathbb{Z}_p$, sets $X \leftarrow g^r$, $Y \leftarrow g^s$, $Z_b \leftarrow g^{rs}$, $Z_{1-b} \leftarrow g^t$, and sends (X, Y, Z_0, Z_1) to Bob
- Alice checks $Z_0 \not\equiv Z_1$, and re-randomizes the tuples:
 \[T_0 \leftarrow (X, Y'_0 = Y u_0 g^{v_0}, Z'_0 = Z_0 u_0 X^{v_0}) \text{ and } T_1 \leftarrow (X, Y'_1 = Y u_1 g^{v_1}, Z'_1 = Z_1 u_1 X^{v_1}) \]
 for $u_0, v_0, u_1, v_1 \overset{R}{\leftarrow} \mathbb{Z}_p$
- Alice encrypts x_i under T_i: $C_i = Y'_i$ and $C'_i = x_i \cdot Z'_i$
- Bob can decrypt (C_b, C'_b) using r

The re-randomization keeps the DH-tuple T_b,
but perfectly removes information in T_{1-b}
This is provably secure in the malicious setting

Outline

1 Secure Function Evaluation

2 Oblivious Transfer

3 Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness
Boolean circuit, Alice’s inputs \((x_1, x_2, x_3)\), and Bob’s inputs \((y_1, y_2, y_3)\):

They both learn \(z\) in the end, but nothing else.

Outline

1. Secure Function Evaluation
2. Oblivious Transfer
3. Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness

Garbled Circuit

Alice converts the circuit into a generic circuit: 1-input or 2-input gates:

- \(A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\) not
- \(B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\) and
- \(C = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}\) or
- \(D = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}\) line
- \(E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}\) or
- \(F = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\) and
- \(G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}\) or

Garbled Gates

Alice generates the garbled gates:

1. **1-Input Garbled Gate**
 - For the gate \(A\) (not):
 - 4 random secret keys \(I_A^0, I_A^1, O_A^0, O_A^1\)
 - \(A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\) : \(C_A^0 = \text{Encrypt}(I_A^0, O_A^1)\)
 - \(C_A^1 = \text{Encrypt}(I_A^1, O_A^0)\)

2. **2-Input Garbled Gate**
 - For the gate \(B\) (and):
 - 8 random secret keys \(I_B^0, I_B^1, J_B^0, J_B^1, O_B^0, O_B^1\)
 - \(B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\) : \(C_B^{00} = \text{Encrypt}(I_B^0||J_B^0, O_B^0)\)
 - \(C_B^{01} = \text{Encrypt}(I_B^0||J_B^1, O_B^0)\)
 - \(C_B^{10} = \text{Encrypt}(I_B^1||J_B^0, O_B^0)\)
 - \(C_B^{11} = \text{Encrypt}(I_B^1||J_B^1, O_B^0)\)
Alice’s Inputs

Alice publishes the ciphertexts in random order for each gate

Alice publishes the keys corresponding to her inputs:
- For x_1, she sends $I_A^{x_1}$
- For x_2, she sends $J_B^{x_2}$
- For x_3, she sends $J_C^{x_3}$

Bob’s Inputs

$A = [1 \ 0] : C_A^0 = \text{Encrypt}(I_A^0, O_A^0) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0)$

Oblivious Transfer

Alice owns I_A^0, I_A^1 and Bob owns $y_1 \in \{0, 1\}$
- Using an OT, Bob gets $I_A^{y_1}$, while Alice learns nothing
- From the ciphertexts $(C_A^b)_B$, Bob gets $O_A^{y_A}$

Bob’s Inputs

$B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : C_B^{00} = \text{Encrypt}(I_B^0||J_B^0, O_B^0) \quad C_B^{01} = \text{Encrypt}(I_B^0||J_B^1, O_B^0) \quad C_B^{10} = \text{Encrypt}(I_B^1||J_B^0, O_B^0) \quad C_B^{11} = \text{Encrypt}(I_B^1||J_B^1, O_B^0)$

Internal Garbled Gates

Oblivious Transfer

Alice owns I_B^0, I_B^1, and Bob owns $y_2 \in \{0, 1\}$
- Using an OT, Bob gets $I_B^{y_2}$, while Alice learns nothing
- Bob additionally knows $J_B^{y_2}$
- From the ciphertexts $(C_B^{bb^0})_B$, Bob gets $O_B^{y_B}$

Internal Garbled Gate

For the gate E (or): 2 new random secret keys O_E^0, O_E^1
while $I_E^0 \leftrightarrow O_A^0, I_E^1 \leftrightarrow O_A^1, J_E^0 \leftrightarrow O_B^0, J_E^1 \leftrightarrow O_B^1$

$E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_E^{00} = \text{Encrypt}(I_E^0||J_E^0, O_E^0) \quad C_E^{01} = \text{Encrypt}(I_E^0||J_E^1, O_E^1) \quad C_E^{10} = \text{Encrypt}(I_E^1||J_E^0, O_E^1) \quad C_E^{11} = \text{Encrypt}(I_E^1||J_E^1, O_E^1)$
Evaluation of Internal Gates

\[E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_E^{00} = \text{Encrypt}(l_E^0||J_E^0, O_E^0) \quad C_E^{01} = \text{Encrypt}(l_E^0||J_E^1, O_E^2) \]
\[C_E^{10} = \text{Encrypt}(l_E^1||J_E^0, O_E^2) \quad C_E^{11} = \text{Encrypt}(l_E^1||J_E^1, O_E^2) \]

Evaluation of Gate E

Bob knows \(l_E^A = O_E^A \) and \(J_E^B = O_E^B \)

From the ciphertexts \((C_E^{bb^0})_{bb^0} \), Bob gets \(O_E^{Y_E} \)

Output Garbled Gates

\[G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_G^{00} = \text{Encrypt}(l_G^0||J_G^0, 0) \quad C_G^{01} = \text{Encrypt}(l_G^0||J_G^1, 1) \]
\[C_G^{10} = \text{Encrypt}(l_G^1||J_G^0, 1) \quad C_G^{11} = \text{Encrypt}(l_G^1||J_G^1, 1) \]

Evaluation of Gate G

Bob knows \(l_G^E = O_G^E \) and \(J_G^F = O_G^F \)

From the ciphertexts \((C_G^{bb^0})_{bb^0} \), Bob gets \(z \in \{0, 1\} \)

Bob can then transmit \(z \) to Alice

Outline

1. Secure Function Evaluation
2. Oblivious Transfer
3. Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness
Honest-but-Curious and Malicious

The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 ⇒ Redundancy is added to the plaintext
 (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
 ⇒ Cut-and-choose technique

- Alice plays the oblivious transfer protocols with correct inputs
 ⇒ Inputs are committed, checked during the cut-and-choose,
 and ZK proofs are done during the OT

- Bob sends back the correct value z
 ⇒ Random tags are appended to the final results 0 and 1
 that Bob cannot guess