III – Pairing-based Cryptography

David Pointcheval

Ecole normale supérieure, CNRS & INRIA

ENS – Paris – 2016/2017

Outline

1 Introduction
 - Gap Groups
 - Pairings
 - Short Signatures

2 Identity-Based Encryption
 - Security

3 Without Random Oracles
 - BB Signature/IBE
 - Extension

Gap Groups

Definition (Pairing Setting)

- Let G_1 and G_2 be two cyclic groups of prime order p.
- Let g_1 and g_2 be generators of G_1 and G_2 respectively.
- Let $e : G_1 \times G_2 \rightarrow G^T$, be a bilinear map.

Definition (Various Cases)

1. The symmetric case: $G_1 = G_2$.
2. There exists an isomorphism ψ, from G_2 onto G_1:
 - ψ is efficiently computable; as well as ψ^{-1}
 - ψ is efficiently computable;
 but no efficient isomorphism from G_1 onto G_2
 - no efficiently computable isomorphism in any direction
Definition (co-Diffie-Hellman Problems)

Let \((p, G_1, g_1, G_2, g_2, G_T, e)\) be a pairing setting

- **co-CDH in \((G_1, G_2)\)**: Given \(g, g^a \in G_2\) and \(h \in G_1\), compute \(h^a\)
- **co-DDH in \((G_1, G_2)\)**: Given \(g, g^a \in G_2\) and \(h, h^b \in G_1\), decide whether \(a = b\) or not

Note: when \(G_1 = G_2 = G\), **co-CDH in \((G_1, G_2)\)** is **CDH** in \(G\), and **co-DDH in \((G_1, G_2)\)** is **DDH** in \(G\)

Definition (Gap Groups)

We say that a group \(G\) is a **gap group** if **CDH** in \(G\) is hard, whereas **DDH** in \(G\) is simple.

Admissible Bilinear Map

Definition (Admissible Bilinear Map)

Let \((p, G_1, g_1, G_2, g_2, G_T, e)\) be a pairing setting, with \(e: G_1 \times G_2 \rightarrow G_T\) a non-degenerated bilinear map

- **Bilinear**: for any \(g \in G_1\), \(h \in G_2\) and \(u, v \in Z\),
 \[e(g^u, h^v) = e(g, h)^{uv}\]
- **Non-degenerated**: \(e(g_1, g_2) \neq 1\)

co-DDH in \((G_1, G_2)\) easy

Given \(g, g^a \in G_2\) and \(h^b \in G_1\)

\[a = b \mod p \iff e(h, g^a) = e(h^b, g)\]

Bilinear Diffie-Hellman Problems

We now focus on the symmetric case: \(G_1 = G_2 = G\).

Diffie-Hellman Problems

- **CDH** in \(G\): Given \(g, g^a, g^b \in G\), compute \(g^{ab}\)
- **DDH** in \(G\): Given \(g, g^a, g^b, g^c \in G\), decide whether \(c = ab\) or not

CDH can be hard to solve, but **DDH** is easy in gap-groups.

Bilinear Diffie-Hellman Problems

- **CBDH** in \(G\): Given \(g, g^a, g^b, g^c \in G\), compute \(e(g, g)^{abc}\)
- **DBDH** in \(G\): Given \(g, g^a, g^b, g^c \in G\) and \(h \in G^T\), decide whether \(h = e(g, g)^{abc}\)
Let \mathbb{G} be a gap-group of prime order p, with a generator g.

Signature Scheme

- **Key generation:** choose $x \in \mathbb{Z}_p$, and set $y = g^x$;
- **Signature of $M \in \mathbb{G}$:** $\sigma = M^x$;
- **Verification of (M, σ):** check $\text{DDH}(g, y, M, \sigma)$.

Full-Domain Hash

\[\mathcal{H} : \{0, 1\}^* \rightarrow \mathbb{G} \]

- In order to sign m, one first computes $M = \mathcal{H}(m) \in \mathbb{G}$
- then $\sigma = M^x = \text{CDH}(g, y, \mathcal{H}(m))$

The signature of a message m is thus an element $\sigma \in \mathbb{G}$.
Identity-Based Encryption

Setup
The authority generates a master secret key msk, and publishes the public parameters, PK.

Extraction
Given an identity ID, the authority computes the private key sk granted the master secret key msk.

Encryption
Any one can encrypt a message m to a user ID using only m, ID and the public parameters PK.

Decryption
Given a ciphertext, user ID can recover the plaintext, with his secret key sk.

Security Model: IND – ID – CCA

Definition (IND – ID – CCA Security)
The adversary
- receives the global parameters
- asks any extraction-query, and any decryption-query
- outputs a target identity ID^*
 and two messages (m_0, m_1)
The challenger flips a bit b, and encrypts m_b for ID^* into c^*, then the adversary
- asks any extraction-query, and any decryption-query
- outputs its guess b' for b

$$Adv^{ind-id-cca} = 2 \times \Pr[b' = b] - 1$$

Restrictions
- IND
Setup

- The authority sets up a gap-group framework: a group G of prime order p, with a generator g, with an admissible bilinear map $e : G \times G \rightarrow G^T$
- It selects a master secret $msk = s \in \mathbb{Z}_p$
- It publishes the public parameters: $PK = (p, G, e, g, P = g^s)$

Extraction

Given an identity ID, the authority compute the private key $sk = H(ID)^s$

Note that sk is a BLS signature of ID, which can be checked by the user: $e(sk, g) \overset{?}{=} e(H(ID), P)$

Encryption

In order to encrypt a message m to a user ID
- one chooses a random $r \in \mathbb{Z}_p$
- computes $A = g^r$ and $K = e(P, H(ID)^r)$
- sends $(A, B = K \times m)$

$$K = e(P, H(ID)^r) = e(g^s, H(ID)^r)$$
$$= e(g^r, H(ID)^s) = e(A, sk)$$

Decryption

Upon reception of (A, B), user ID
- computes $K = e(A, sk)$
- gets $m = B / K$

BF IBE Security Analysis

Theorem

The BF IBE is IND – ID – CPA secure under the DBDH problem, in the random oracle model.

By masking m with $H(K) : B = m \oplus H(K)$, the BF IBE is IND – ID – CPA secure under the CBDH problem, in the random oracle model.

CCA Security

[Fujisaki-Okamoto – Crypto ’01]

Usual tricks in the random oracle model to achieve IND – ID – CCA.

- How to avoid the random oracle model?
- How to avoid a full-domain hash function onto G?
Boneh-Boyen’s Signature

Let G be a cyclic group of prime order p, with two independent generators g, h, equipped with an admissible bilinear map

$e : G \times G \rightarrow G_T$

For any message $m \in \mathbb{Z}_p$ (output by a hash function), we define $F(m) = uv^m$, where u and v are independent public elements in G.

Boneh-Boyen’s Signature (Cont’d)

Signature Scheme

- Key generation: choose $x \in \mathbb{Z}_p$, and set $G = g^x$ as well as $H = h^x$; The public key is G, whereas H is kept private.
- Signature of $m \in \mathbb{Z}_p$: $\sigma = (H \times F(m)^r, g^r)$, for a random $r \in \mathbb{Z}_p$;
 Here, $F(m) = G^m \times u$
- Verification of $(m, (\sigma_1, \sigma_2))$: check whether

$$e(g, \sigma_1) = e(g, h^x \times F(m)^r)$$
$$= e(g, h^x) \times e(g, F(m)^r) = e(g^x, h) \times e(g^r, F(m))$$
$$\overset{?}{=} e(G, h) \times e(\sigma_2, F(m))$$

Boneh-Boyen’s Signature: Security Analysis

Theorem (Selected-Message CMA)

For a message m^* chosen ahead, before having seen the parameters and the public key, signing m^* under a chosen-message attack is intractable under the CDH problem in G.

Simulation: CMA

For any query $m \neq m^*$, we simulate a signature:

$\sigma_1 = h^{-\beta/(m-m^*)} F(m)^r$ and $\sigma_2 = g^r h^{1/(m^*-m)}$

Let us set $\rho = r - b/(m - m^*)$:

$$\sigma_1 = h^{-\beta/(m-m^*)} \times F(m)^r$$
$$= h^{-\beta/(m-m^*)} \times (G^{m-m^*} g^\beta)^{\rho+b/(m-m^*)}$$
$$= h^{-\beta/(m-m^*)} \times G^{\rho(m-m^*)} \times G^b \times g^{\beta \rho} \times h^{\beta/(m-m^*)}$$
$$= h^a \times G^{\rho(m-m^*)} \times g^{\beta \rho}$$
$$= h^a \times F(m)^\rho$$

$$\sigma_2 = g^r \times h^{1/(m^*-m)} = g^{r-b/(m-m^*)} = g^\rho$$
BB IBE (Cont’d)

Setup

- The authority sets up a gap-group framework:
 a group G of prime order p,
 with three independent generators g, h and u,
 with an admissible bilinear map $e : G \times G \rightarrow G^T$
- It selects a master secret key $s \in \mathbb{Z}_p$, and keeps $H = h^s$
- It publishes the parameters: $(p, G, e, g, h, G = g^s)$

Extraction

Given an identity ID, the authority computes the key
$sk = (sk_1 = H \times F(ID)^r, sk_2 = g^r)$, where $F(x) = uG^x$

Note that sk is a BB signature of ID: $e(g, sk_1)^r = e(G, h) \times e(sk_2, F(ID))$

Encryption

In order to encrypt a message $m \in G^T$ to a user ID

- one chooses a random $t \in \mathbb{Z}_p$
- computes $A = F(ID)^t$, $B = g^t$ and $K = e(G, h)^t$
- sends $(A, B, C = K \times m)$

$$K = e(G, h)^t = e(g^s, h)^t = e(g^t, h^s) = e(g^t, H) = e(g^t, sk_1/F(ID)^t) = e(B, sk_1)/e(g^t, F(ID)^t)$$

Decryption

Upon reception of (A, B, C), user ID computes $K = e(B, sk_1)/e(A, sk_2)$ and gets $m = C/K$

Outline

1. Introduction
2. Identity-Based Encryption
3. Without Random Oracles
 - BB Signature/IBE
 - Extension
Let \mathbb{G} be a cyclic group of prime order p, with two independent generators g, h, equipped with an admissible bilinear map
\[e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}^T \]

For any message $m \in \{0, 1\}^k$ (output by a hash function), we define
\[F(m) = u'(\prod u_i^m), \quad m = m_1 \ldots m_k, \]

where u' and u_1, \ldots, u_k are independent public elements in \mathbb{G}

Signature Scheme

- **Key generation**: choose $x \in \mathbb{Z}_p$,
 and set $G = g^x$ as well as $H = h^x$;
 The public key is G, whereas H is kept private.
- **Signature of $m \in \{0, 1\}^k$**: $\sigma = (H \times F(m)^r, g^r)$, for a random $r \in \mathbb{Z}_p$;
- **Verification of $(m, (\sigma_1, \sigma_2))$**: check whether
 \[e(g, \sigma_1) = e(g, h^x \times F(m)^r) = e(g, h^x) \times e(g^r, F(m)) \]
 \[\equiv e(G, h) \times e(\sigma_2, F(m)) \]

Theorem

The Water’s IBE is IND – ID – CPA secure under the **DBDH** problem