III – Distributed Cryptography

David Pointcheval Ecole normale supérieure/PSL, CNRS & INRIA

Outline

Secret Sharing

Introduction

Shamir Secret Sharing

Verifiable Secret Sharing

Distributed Cryptography

Introduction

Distributed Decryption

Distributed Signature

Distributed Key Generation

Introduction

Shamir Secret Sharing

Verifiable Secret Sharing

Distributed Cryptography

Key Management

In case of a critical private key (decryption or signing key)

- Abuse: one user can use the secret key alone
- Loss: in case of loss of the key (destruction)

 \implies share the secret key between several users

In case of a critical private key (decryption or signing key)

- Abuse: one user can use the secret key alone
- Loss: in case of loss of the key (destruction)
- \implies share the secret key between several users

Let $S \in \{0,1\}^{\ell}$ be a secret bit-string to be shared between two people (Alice and Bob):

- one chooses a random $S_1 \in \{0,1\}^\ell$, and sends it to Alice
- one computes $S_2 = S \oplus S_1$, and sends it to Bob

Security:

- Alice knows a random value
- Bob knows a value masked by a random value: a random value!
- \Longrightarrow individually, they have no information on S

Together, they can recover $S = S_1 \oplus S_2$

ENS/PSL/CNRS/INRIA Cascade

Let $S \in \{0,1\}^{\ell}$ be a secret bit-string to be shared between two people (Alice and Bob):

- one chooses a random $S_1 \in \{0,1\}^\ell$, and sends it to Alice
- one computes $S_2 = S \oplus S_1$, and sends it to Bob

Security:

- Alice knows a random value
- Bob knows a value masked by a random value: a random value!
- \implies individually, they have no information on S

```
Together, they can recover S=S_1\oplus S_2
```

ENS/PSL/CNRS/INRIA Cascade

Let $S \in \{0,1\}^{\ell}$ be a secret bit-string to be shared between *n* people (U_1, \ldots, U_n) :

- one chooses random values $S_i \in \{0,1\}^\ell$, for $i=1,\ldots,n-1$ and sends S_i to U_i
- one computes $S_n = S \oplus S_1 \oplus \ldots \oplus S_{n-1}$, and sends it to U_n

Security:

- U_1, \ldots, U_{n-1} know random values
- U_n knows a value masked by random values: a random value!
- \implies individually, they have no information on S
- \Longrightarrow but also, any subgroup of (n-1) people has no information on S

All together, they can recover $S = S_1 \oplus \ldots \oplus S_n$

ENS/PSL/CNRS/INRIA Cascade

Let $S \in \{0,1\}^{\ell}$ be a secret bit-string to be shared between *n* people (U_1, \ldots, U_n) :

- one chooses random values $S_i \in \{0,1\}^\ell$, for $i = 1, \ldots, n-1$ and sends S_i to U_i
- one computes $S_n = S \oplus S_1 \oplus \ldots \oplus S_{n-1}$, and sends it to U_n

Security:

- U_1, \ldots, U_{n-1} know random values
- U_n knows a value masked by random values: a random value!
- \implies individually, they have no information on S
- \implies but also, any subgroup of (n-1) people has no information on S

All together, they can recover $S = S_1 \oplus \ldots \oplus S_n$ ENS/PSL/CNRS/INRIA Cascade David Pointcheval Any subgroup of (n-1) people has no information on S! \implies if one people does not want / is not able to cooperate:

S is lost forever!

Threshold Secret Sharing

(n, k)-Threshold Secret Sharing

A secret S is shared among n users:

any subgroup of k people (or more) can recover S

• any subgroup of less than k people has no information about S

Any subgroup of (n-1) people has no information on S!

 \implies if one people does not want / is not able to cooperate:

S is lost forever!

Threshold Secret Sharing

(n, k)-Threshold Secret Sharing

A secret S is shared among n users:

- any subgroup of k people (or more) can recover S
- any subgroup of less than k people has no information about S

Introduction

Shamir Secret Sharing

Verifiable Secret Sharing

Distributed Cryptography

ENS/PSL/CNRS/INRIA Cascade

Lagrange Interpolation of Polynomials

Let us be given k points $(x_1, y_1), \ldots, (x_k, y_k)$, with distinct abscissa. There exists a unique polynomial P

- of degree k-1
- such that $P(x_i) = y_i$ for $i = 1, \ldots, k$

$$L_j(X) = \prod_{i=1 \atop i \neq j}^{i=k} \frac{X - x_i}{x_j - x_i} \quad \begin{cases} L_j(x_j) = 1\\ L_j(x_i) = 0 & \text{for all } i \neq j \end{cases}$$

As a consequence:

$$\mathcal{P}(X) = \sum_{j=1}^{k} y_j L_j(X) ext{ satisfies } \left\{ egin{array}{c} \deg(P) = k-1 \ P(x_i) = y_i & orall i = 1, \dots, k \end{array}
ight.$$

ENS/PSL/CNRS/INRIA Cascade

For any subset S of k indices:

$$L_{\mathcal{S},j}(X) = \prod_{\substack{i \in \mathcal{S} \\ i \neq j}} \frac{X - x_i}{x_j - x_i} \quad \begin{cases} L_{\mathcal{S},j}(x_j) = 1\\ L_{\mathcal{S},j}(x_i) = 0 & \text{for all } i \in \mathcal{S}, i \neq j \end{cases}$$

and

$$P(X) = \sum_{j \in S} y_j L_{S,j}(X) : S = P(0) = \sum_{j \in S} y_j L_{S,j}(0)$$

If one notes $\lambda_{\mathcal{S},j} = L_{\mathcal{S},j}(0)$ (that can be publicly computed)

$$x=\sum_{j\in\mathcal{S}}y_j\lambda_{\mathcal{S},j}.$$

ENS/PSL/CNRS/INRIA Cascade

Introduction

Shamir Secret Sharing

Verifiable Secret Sharing

Distributed Cryptography

ENS/PSL/CNRS/INRIA Cascade

If Eve claims she shared her decryption key: how can we trust her?

- we try to recover the key?
- how to do without revealing additional information?

\implies Verifiable Secret Sharing

For DL Keys [Feldman – FOCS '87] Eve's keys are, in a group $\mathbb{G} = \langle g \rangle$ of prime order q, $sk = x \quad pk = y = g^{x}$ (n, k)-Secret sharing: x = P(0) for $P(X) = \sum_{i=0}^{k-1} a_{i}X^{i}$ $\Rightarrow S_{i} = P(i)$ for $i = 1 \dots, n$ For any subset S of k indices: • $x = \sum_{j \in S} S_{j}\lambda_{S,j}$ • $y = g^{x} = g^{\sum_{j \in S} S_{j}\lambda_{S,j}} = \prod_{j \in S} (g^{S_{j}})^{\lambda_{S,j}} = \prod_{j \in S} v_{j}^{\lambda_{S,j}}$ for $v_{j} = g^{S_{j}}$

ENS/PSL/CNRS/INRIA Cascade

If Eve claims she shared her decryption key: how can we trust her?

- we try to recover the key?
- how to do without revealing additional information?

\implies Verifiable Secret Sharing

For DL Keys [Feldman – FOCS '87] Eve's keys are, in a group $\mathbb{G} = \langle g \rangle$ of prime order q, sk = x $pk = y = g^x$ (n, k)-Secret sharing: x = P(0) for $P(X) = \sum_{i=0}^{k-1} a_i X^i$ \implies $S_i = P(i)$ for i = 1..., nFor any subset S of k indices: • $x = \sum_{i \in S} S_i \lambda_{S,i}$ • $y = g^{x} = g^{\sum_{j \in S} S_{j}\lambda_{S,j}} = \prod_{i \in S} (g^{S_{j}})^{\lambda_{S,j}} = \prod_{i \in S} v_{i}^{\lambda_{S,j}}$ for $v_{j} = g^{S_{j}}$

ENS/PSL/CNRS/INRIA Cascade

Verifiable Secret Sharing for DL Keys

For DL Keys

[Feldman – FOCS '87]

Eve's keys are, in a group $\mathbb{G} = \langle g \rangle$ of prime order q,

$$sk = x$$
 $pk = y = g^{x}$
 n, k)-Secret sharing: $x = P(0)$ for $P(X) = \sum_{i=0}^{k-1} a_{i}X^{i}$

- Eve computes $S_i = P(i)$ for i = 1..., n and $v_i = g^{S_i}$
- Eve sends each S_i privately to each U_i
- Eve publishes $v_i = g^{S_i}$ for $i = 1, \ldots, n$
- Each U_i can then check its own v_i w.r.t. to its S_i
- Anybody can check $y = \prod_{j \in \mathcal{S}} v_j^{\lambda_{\mathcal{S},j}}$

for any subset S of size k

Distributed Cryptography

Distributed Cryptography

Introduction

Distributed Decryption

Distributed Signature

Distributed Key Generation

Secret Sharing vs. Distributed Cryptography

If Eve shares her decryption key sk, the (U_i) will have to cooperate to recover the key skand then decrypt the ciphertext

But then, they all know the decryption key sk!

How can the (U_i) use their shares (S_i) to decrypt (or sign), without leaking any additional information about sk?

 \implies Multi-party computation

Let us try on ElGamal decryption (with shared DL keys)

ENS/PSL/CNRS/INRIA Cascade

Distributed Cryptography

Introduction

Distributed Decryption

Distributed Signature

Distributed Key Generation

ElGamal Encryption

[ElGamal 1985]

ElGamal Encryption

In a group $\mathbb{G}=\langle g
angle$ of order q

- $\mathcal{K}(\mathbb{G}, g, q)$: $x \stackrel{R}{\leftarrow} \mathbb{Z}_q$, and $sk \leftarrow x$ and $pk \leftarrow y = g^x$
- $\mathcal{E}_{pk}(m)$: $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, $c_1 \leftarrow g^r$ and $c_2 \leftarrow y^r \times m$. Then, the ciphertext is $c = (c_1, c_2)$
- $\mathcal{D}_{sk}(c)$ outputs c_2/c_1^x

We assume an (n, k)-secret sharing of x and a qualified set $S: x = \sum_{j \in S} S_j \lambda_{S,j}$

 $\mathcal{D}_{sk}(c) = c_2/c_1^{\scriptscriptstyle X}$: one needs to compute $c_1^{\scriptscriptstyle X}$

$$c_1^x = c_1^{\sum_{j \in S} S_j \lambda_{S,j}} = \prod_{j \in S} (c_1^{S_j})^{\lambda_{S,j}}$$

Each user computes $C_j = c_1^{S_j}$, and then $c_1^x = \prod_{j \in S} C_j^{\lambda_{S,j}}$

ENS/PSL/CNRS/INRIA Cascade

Robustness

In a group $\mathbb{G}=\langle g
angle$ of order q

- $\mathcal{K}(\mathbb{G}, g, q)$: $x \stackrel{R}{\leftarrow} \mathbb{Z}_q$, and $sk \leftarrow x$ and $pk \leftarrow y = g^x$
- $\mathcal{E}_{pk}(m)$: $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, $c_1 \leftarrow g^r$ and $c_2 \leftarrow y^r \times m$. Then, the ciphertext is $c = (c_1, c_2)$
- $\mathcal{D}_{sk}(c)$ outputs c_2/c_1^x

Given a qualified set S: $x = \sum_{j \in S} S_j \lambda_{S,j}$ Each user computes $C_j = c_1^{S_j}$, and then $c_1^x = \prod_{j \in S} C_j^{\lambda_{S,j}}$

Assume Charlie a.k.a. U_1 , sends a random C_1 :

- the others will compute a wrong decryption
- Charlie will be able to extract the plaintext!

ENS/PSL/CNRS/INRIA Cascade

Each user computes
$$\mathit{C}_j = c_1^{\mathit{S}_j}$$
, and then $c_1^{\scriptscriptstyle X} = \prod_{j \in \mathcal{S}} \, C_j^{\lambda_{\mathcal{S},j}}$

But U_1 , sends a random C_1 : instead of $c_1^{S_1}$, knowing also $v_1 = g^{S_1}$ \implies Decide a DDH tuple (g, c_1, v_1, C_1)

Robustness

A defrauder can be detected

⇒ Proof of DDH membership for the tuple (g, c_1, v_1, C_1) , without leakage of any information about S_1 In a group $\mathbb{G} = \langle g \rangle$ of prime order q, the **DDH**(g, h) assumption states it is hard to distinguish $\mathcal{L} = (u = g^x, v = h^x)$ from $\mathbb{G}^2 = (u = g^x, v = h^y)$

- \mathcal{P} knows x, such that $(u = g^x, v = h^x)$ and wants to prove it
- \mathcal{P} chooses $k \stackrel{R}{\leftarrow} \mathbb{Z}_q^{\star}$, sets $U = g^k$ and $V = h^k$
- \mathcal{P} computes $h = \mathcal{H}(g, h, u, v, U, V) \in \mathbb{Z}_q$
- \mathcal{P} computes $s = k xh \mod q$

The proof consists of the pair (h, s): anybody can check whether $h = \mathcal{H}(g, h, u, v, g^s u^h, h^s v^h)$

This proof allows to detect the defrauder

ENS/PSL/CNRS/INRIA Cascade

Distributed Cryptography

Introduction

Distributed Decryption

Distributed Signature

Distributed Key Generation

ENS/PSL/CNRS/INRIA Cascade

Schnorr Signature

- $\mathbb{G} = \langle g \rangle$ of order q and \mathcal{H} : $\{0,1\}^{\star} \to \mathbb{Z}_q$
- Key Generation ightarrow (y,x): $x\in \mathbb{Z}_q^{\star}$ and $y=g^{-x}$

• Signature of
$$m \to (r, h, s)$$

 $k \stackrel{R}{\leftarrow} \mathbb{Z}_q^*$ $r = g^k$ $h = \mathcal{H}(m, r)$ $s = k + xh \mod q$

We assume an (n, k)-secret sharing of x (with the v_i) and a qualified set $S: x = \sum_{j \in S} S_j \lambda_{S,j}$

The users generate a common r and then sign (m, r)with a partial signature s_i under v_i : \implies the linearity leads to a global signature

ENS/PSL/CNRS/INRIA Cascade

Distributed Schnorr Signature

- $\mathbb{G} = \langle g \rangle$ of order q and \mathcal{H} : $\{0,1\}^{\star} \to \mathbb{Z}_q$
- Key Generation → (y, x): x ∈ Z_q^{*} and y = g^{-x}
 We assume an (n, k)-secret sharing of x (with the v_i = g^{S_i}) and a qualified set S: x = ∑_{j∈S} S_jλ_{S,j}

• Signature of
$$m \rightarrow (r, h, s)$$

- each U_i chooses $k_i \stackrel{R}{\leftarrow} \mathbb{Z}_q^{\star}$ and publishes $r_i = g^{k_i}$
- they all compute $r = \prod r_i^{\lambda_{\mathcal{S},j}}$ and $h = \mathcal{H}(m,r)$
- each U_i computes and publishes $s_i = k_i + S_i h \mod q$

Then, $s = \sum s_i \lambda_{\mathcal{S},i}$

 Verification of (m, r, s) compute h = H(m, r) and check r [?]= g^sy^h

Each partial signature (m, r_i, s_i) can be checked: $r_i \stackrel{?}{=} g^{s_i} v_i^h$

ENS/PSL/CNRS/INRIA Cascade

Distributed Cryptography

Introduction

Distributed Decryption

Distributed Signature

Distributed Key Generation

In the previous schemes (ElGamal encryption and Schnorr signature) the keys are generated in a centralized way: someone knows the secret key!

Distributed cryptography should include a distributed key generation: the secret key should never exist in one place.

(n, n)-Threshold DL Key Generation

- $\mathbb{G} = \langle g \rangle$ of order q
- Key Generation $\rightarrow (y, x)$:
 - each U_i chooses $x_i \stackrel{R}{\leftarrow} \mathbb{Z}_q^{\star}$ and publishes $y_i = g^{\star_i}$
 - anybody can compute $y = \prod y_i = g^{\sum x_i}$

The public key y corresponds to the "virtual" secret key

$$x = \sum x_i \mod q$$

ENS/PSL/CNRS/INRIA Cascade

Distributed Key Generation

(n, k)-Threshold DL Key Generation

- $\mathbb{G} = \langle g \rangle$ of order q
- Key Generation $\rightarrow (y, x)$:
 - each U_i chooses a polynomial P_i of degree k 1, and sends S_{i,j} = P_i(j) to U_j
 - each U_j can then compute $S_j = \sum_i S_{i,j} = \sum_i P_i(j) = P(j)$, where $P = \sum_i P_i$
 - each U_j computes and publishes $v_j = g^{S_j}$

The $(S_j)_j$ are an (n, k)-secret sharing of the "virtual" secret key x, corresponding to the public key y, that anybody can compute: For any qualified set S:

• Secretly:
$$x = \sum_{j \in S} S_j \lambda_{S,j} \mod q$$

• Publicly:
$$y = \prod_{j \in S} v_j^{\lambda_S}$$