## II – Zero-Knowledge Proofs and Applications

David Pointcheval Ecole normale supérieure/PSL, CNRS & INRIA







#### Outline

#### Zero-Knowledge Proofs of Knowledge

Introduction

3-Coloring

Examples

#### Signatures

From Identification to Signature

Forking Lemma

#### Zero-Knowledge Proofs of Membership

Introduction

Example: DH

ENS/PSL/CNRS/INRIA Cascade

# Zero-Knowledge Proofs of Knowledge

#### Zero-Knowledge Proofs of Knowledge

#### Introduction

3-Coloring

Examples

Signatures

Zero-Knowledge Proofs of Membership

ENS/PSL/CNRS/INRIA Cascade

#### Proof of Knowledge

How do I prove that I know a solution s to a problem P?

How do I prove that I know a solution s to a problem P?



A knows something... What does it mean? the information can be extracted: extractor

#### Proof of Knowledge: Soundness

A knows something... What does it mean? the information can be extracted: extractor



#### Proof of Knowledge: Zero-Knowledge

How do I prove that I know a solution s to a problem P? I reveal the solution...

#### Proof of Knowledge: Zero-Knowledge

How do I prove that I know a solution s to a problem P? I reveal the solution...

How can I do it without revealing any information? Zero-knowledge: simulation and indistinguishability

### Proof of Knowledge: Zero-Knowledge

How do I prove that I know a solution s to a problem P? I reveal the solution...

How can I do it without revealing any information? Zero-knowledge: simulation and indistinguishability



#### Zero-Knowledge Proofs of Knowledge

Introduction

#### 3-Coloring

Examples

Signatures

Zero-Knowledge Proofs of Membership

ENS/PSL/CNRS/INRIA Cascade





I choose a random permutation on the colors



I choose a random permutation on the colors and I apply it to the vertices

ENS/PSL/CNRS/INRIA Cascade



#### I mask the vertices

ENS/PSL/CNRS/INRIA Cascade



I mask the vertices and send it to the verifier

ENS/PSL/CNRS/INRIA Cascade



The verifier chooses an edge



The verifier chooses an edge I open it



### The verifier chooses an edge I open it The verifier checks the validity: 2 different colors

ENS/PSL/CNRS/INRIA Cascade

If there exists an efficient adversary,

then one can solve the underlying problem:



If there exists an efficient adversary,

then one can solve the underlying problem:



If there exists an efficient adversary,

then one can solve the underlying problem:



#### Zero-Knowledge Proofs of Knowledge

Introduction

3-Coloring

Examples

Signatures

Zero-Knowledge Proofs of Membership

ENS/PSL/CNRS/INRIA Cascade

#### **3-Pass Zero-Knowledge Proofs**

#### **Generic Proof**

- Proof of knowledge of x, such that R(x, y)
- $\mathcal{P}$  builds a commitment rand sends it to  $\mathcal{V}$
- $\mathcal{V}$  chooses a challenge  $h \stackrel{R}{\leftarrow} \{0,1\}^k$  for  $\mathcal{P}$
- $\mathcal{P}$  computes and sends the answer *s*
- *V* checks (*r*, *h*, *s*)

#### $\Sigma$ -Protocol

- Proof of knowledge of x
- $\mathcal{P}$  sends a commitment r
- $\mathcal{V}$  sends a challenge h
- $\mathcal{P}$  sends the answer s
- $\mathcal{V}$  checks (r, h, s)

#### **3-Pass Zero-Knowledge Proofs**

#### **Generic Proof**

- Proof of knowledge of x, such that R(x, y)
- $\mathcal{P}$  builds a commitment rand sends it to  $\mathcal{V}$
- $\mathcal{V}$  chooses a challenge  $h \stackrel{R}{\leftarrow} \{0,1\}^k$  for  $\mathcal{P}$
- $\mathcal{P}$  computes and sends the answer *s*
- *V* checks (*r*, *h*, *s*)

#### $\Sigma$ -Protocol

- Proof of knowledge of x
- $\mathcal{P}$  sends a commitment r
- $\mathcal{V}$  sends a challenge h
- ${\mathcal P}$  sends the answer  ${\boldsymbol s}$
- *V* checks (*r*, *h*, *s*)

#### Special soundness

If one can answer to two different challenges  $h \neq h'$ :  $\implies s$  and s' for a unique r

 $\implies$  one can extract x

Setting: n = pq
 \$\mathcal{P}\$ knows x, such that X = x<sup>2</sup> mod n and wants to prove it to \$\mathcal{V}\$

- $\mathcal{P}$  chooses  $r \stackrel{R}{\leftarrow} \mathbb{Z}_n^{\star}$ , sets and sends  $R = r^2 \mod n$
- $\mathcal{V}$  chooses  $b \stackrel{R}{\leftarrow} \{0,1\}$  and sends it to  $\mathcal{P}$
- $\mathcal{P}$  computes and sends  $s = x^b \times r \mod n$
- $\mathcal{V}$  checks whether  $s^2 \stackrel{?}{=} X^b R \mod n$

One then reiterates t times

For a fixed *R*, two valid answers *s* and *s'* satisfy

 $s^2/X = R = (s')^2 \mod n \Longrightarrow X = (s/s')^2 \mod n$ 

#### And thus $x = s/s' \mod n \Longrightarrow$ Special Soundness

ENS/PSL/CNRS/INRIA Cascade

Setting: n = pq
 \$\mathcal{P}\$ knows x, such that X = x<sup>2</sup> mod n and wants to prove it to \$\mathcal{V}\$

- $\mathcal{P}$  chooses  $r \stackrel{R}{\leftarrow} \mathbb{Z}_n^{\star}$ , sets and sends  $R = r^2 \mod n$
- $\mathcal{V}$  chooses  $b \stackrel{R}{\leftarrow} \{0,1\}$  and sends it to  $\mathcal{P}$
- $\mathcal{P}$  computes and sends  $s = x^b \times r \mod n$
- $\mathcal{V}$  checks whether  $s^2 \stackrel{?}{=} X^b R \mod n$

One then reiterates t times

For a fixed R, two valid answers s and s' satisfy

$$s^2/X = R = (s')^2 \mod n \Longrightarrow X = (s/s')^2 \mod n$$

And thus  $x = s/s' \mod n \Longrightarrow$  Special Soundness

ENS/PSL/CNRS/INRIA Cascade

More precisely: the execution of t repetitions depends on

- $(b_1, \ldots, b_t)$  from the verifier  $\mathcal{V}$
- ω that (together with the previous b<sub>i</sub> (i < k)) determines R<sub>k</sub> from the prover P
- If  $\Pr_{\omega,(b_i)}[\mathcal{V} \text{ accepts } \mathcal{P}] > 1/2^t + \varepsilon$ , there is a good fraction of  $\omega$  (more than  $\varepsilon/2$ ) such that  $\Pr_{(b_i)}[\mathcal{V} \text{ accepts } \mathcal{S}] \ge 1/2^t + \varepsilon/2$ .

For such a good  $\omega:$  a good node along the successful path



ENS/PSL/CNRS/INRIA Cascade

#### **Fiat-Shamir Proof: Simulation**

#### **Honest Verifier**

Simulation of a triplet: 
$$(R = r^2 \mod n, b, s = x^b \times r \mod n)$$
  
for  $r \stackrel{R}{\leftarrow} \mathbb{Z}_n^*$  and  $b \stackrel{R}{\leftarrow} \{0, 1\}$   
Similar to:  $(R = s^2/X^b \mod n, b, s)$   
for  $s \stackrel{R}{\leftarrow} \mathbb{Z}_n^*$  and  $b \stackrel{R}{\leftarrow} \{0, 1\}$   
Simulation: random s and b, and set  $(R = s^2/X^b \mod n, b, s)$   
**Any Verifier**  
Simulation of a triplet:  $(R = r^2 \mod n, b = \mathcal{V}(\text{view}), s = x^b \times r \mod n)$   
for  $r \stackrel{R}{\leftarrow} \mathbb{Z}_n^*$  only!  
Similar to:  $(R = s^2/X^b \mod n, b = \mathcal{V}(\text{view}), s)$  for  $s \stackrel{R}{\leftarrow} \mathbb{Z}_n^*$   
Simulation: random s and  $\beta$ , and set  $R = s^2/X^\beta \mod n$   
upon reception of b: if  $b = \beta$ , output s, else rewind  
b and  $\beta$  independent: rewind once over  $2 \implies$  linear time

#### ENS/PSL/CNRS/INRIA Cascade

- Setting: n = pq and an exponent e
  P knows x, such that X = x<sup>e</sup> mod n and wants to prove it to V
- $\mathcal{P}$  chooses  $r \stackrel{R}{\leftarrow} \mathbb{Z}_n^{\star}$ , sets and sends  $R = r^e \mod n$
- $\mathcal{V}$  chooses  $b \stackrel{R}{\leftarrow} \{0,1\}^t$  and sends it to  $\mathcal{P}$
- $\mathcal{P}$  computes and sends  $s = x^b \times r \mod n$
- $\mathcal{V}$  checks whether  $s^e \stackrel{?}{=} X^b R \mod n$

For a fixed R, two valid answers s and s' satisfy

$$s^e/X^b = R = (s')^e/X^{b'} \mod n \Longrightarrow X^{b'-b} = (s'/s)^e \mod n$$

If e prime and bigger than  $2^t$ , then e and b' - b are relatively prime: Bezout:  $ue + v(b' - b) = 1 \Longrightarrow X^{v(b'-b)} = (s'/s)^{ve} = X^{1-ue} \mod n$ As a consequence:  $X = ((s'/s)^v X^u)^e \Longrightarrow$  Special Soundness

ENS/PSL/CNRS/INRIA Cascade

#### **DL Schnorr Proof**

- $\mathcal{P}$  chooses  $k \stackrel{R}{\leftarrow} \mathbb{Z}_q^{\star}$ , sets and sends  $r = g^k$
- $\mathcal{V}$  chooses  $h \stackrel{R}{\leftarrow} \{0,1\}^t$  and sends it to  $\mathcal{P}$
- $\mathcal{P}$  computes and sends  $s = k + xh \mod q$

• 
$$\mathcal{V}$$
 checks whether  $r \stackrel{?}{=} g^s y^h$ 

For a fixed r, two valid answers s and s' satisfy

$$g^{s}y^{h} = r = g^{s'}y^{h'} \Longrightarrow y^{h'-h} = g^{s-s'}$$

And thus  $x = (s - s')(h' - h)^{-1} \mod q \Longrightarrow$  Special Soundness

ENS/PSL/CNRS/INRIA Cascade

## Signatures

Zero-Knowledge Proofs of Knowledge

#### Signatures

From Identification to Signature

Forking Lemma

Zero-Knowledge Proofs of Membership

ENS/PSL/CNRS/INRIA Cascade

#### $\Sigma$ -Protocols

#### Zero-Knowledge Proof

- Proof of knowledge of x
- $\mathcal{P}$  sends a commitment r
- $\mathcal{V}$  sends a challenge h
- $\mathcal{P}$  sends the answer s
- $\mathcal{V}$  checks (r, h, s)

#### Signature

- Key Generation  $\rightarrow (y, x)$
- Signature of  $m \rightarrow (r, h, s)$ Commitment rChallenge  $h = \mathcal{H}(m, r)$ Answer s
- Verification of (m, r, s)compute  $h = \mathcal{H}(m, r)$ and check (r, h, s)

#### **Special soundness**

If one can answer to two different challenges  $h \neq h'$ : s and s' for a unique commitment r, one can extract x

#### $\Sigma$ -Protocols

#### Zero-Knowledge Proof

- Proof of knowledge of x
- $\mathcal{P}$  sends a commitment r
- $\mathcal{V}$  sends a challenge h
- $\mathcal{P}$  sends the answer s
- $\mathcal{V}$  checks (r, h, s)

#### Signature

- Key Generation  $\rightarrow (y, x)$
- Signature of  $m \rightarrow (r, h, s)$ Commitment rChallenge  $h = \mathcal{H}(m, r)$ Answer s
- Verification of (m, r, s)compute  $h = \mathcal{H}(m, r)$ and check (r, h, s)

#### **Special soundness**

If one can answer to two different challenges  $h \neq h'$ : s and s' for a unique commitment r, one can extract x

Zero-Knowledge Proofs of Knowledge

#### Signatures

From Identification to Signature

Forking Lemma

Zero-Knowledge Proofs of Membership

ENS/PSL/CNRS/INRIA Cascade

The Forking Lemma shows an efficient reduction between the signature scheme and the identification scheme, but basically, if an adversary  $\mathcal{A}$  produces, with probability  $\varepsilon \geq 2/2^k$ , a valid signature (m, r, h, s), then within T' = 2T, one gets two valid signatures (m, r, h, s) and (m, r, h', s'), with  $h \neq h'$  with probability  $\varepsilon' \geq \varepsilon^2/32q_H^3$ .

The special soundness provides the secret key.

## Zero-Knowledge Proofs of Membership

#### Zero-Knowledge Proofs of Knowledge

Signatures

#### Zero-Knowledge Proofs of Membership

Introduction

Example: DH

ENS/PSL/CNRS/INRIA Cascade

#### **Proof of Membership**

How do I prove that a word w lies in a language  $\mathcal{L}$ :  $P = (w, \mathcal{L})$ ?

• if  $\mathcal{L} \in \mathcal{NP}$ : a witness *s* can help prove that  $w \in \mathcal{L}$ 



If  $w \notin \mathcal{L}$ :

- Proof (perfect soundess): a powerful  $\mathcal{A}$  cannot cheat
- Argument (computational soundness): a limited  $\mathcal A$  cannot cheat

ENS/PSL/CNRS/INRIA Cascade

#### **Proof of Membership**

#### Soundness

 $w \in \mathcal{L}$ ... what does it mean?

a witness exists, different from knowing it: no need of extractor

#### Zero-Knowledge

How do I prove there exists a witness s? I reveal it...

How can I do it without revealing any information?

Zero-knowledge: simulation and indistinguishability



Zero-Knowledge Proofs of Knowledge

Signatures

#### Zero-Knowledge Proofs of Membership

Introduction

Example: DH

ENS/PSL/CNRS/INRIA Cascade

#### Diffie-Hellman Language

In a group  $\mathbb{G} = \langle g \rangle$  of prime order q, the **DDH**(g, h) assumption states it is hard to distinguish  $\mathcal{L} = (u = g^x, v = h^x)$  from  $\mathbb{G}^2 = (u = g^x, v = h^y)$ 

- $\mathcal{P}$  knows x, such that  $(u = g^x, v = h^x)$  and wants to prove it to  $\mathcal{V}$
- $\mathcal{P}$  chooses  $k \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{\star}$ , sets and sends  $U = g^{k}$  and  $V = h^{k}$
- $\mathcal{V}$  chooses  $h \stackrel{R}{\leftarrow} \{0,1\}^t$  and sends it to  $\mathcal{P}$
- $\mathcal{P}$  computes and sends  $s = k xh \mod q$
- $\mathcal{V}$  checks whether  $U \stackrel{?}{=} g^{s} u^{h}$  and  $V \stackrel{?}{=} h^{s} v^{h}$

For a fixed (U, V), two valid answers s and s' satisfy

$$g^{s}u^{h} = U = g^{s'}u^{h'}$$
  $h^{s}v^{h} = V = h^{s'}v^{h'}$ 

- if one sets  $y = (s s')(h' h)^{-1} \mod q \implies u = g^y$  and  $v = h^y$
- there exists a witness: Perfect Soundness

ENS/PSL/CNRS/INRIA Cascade