II – Distributed Cryptography

David Pointcheval
Ecole normale supérieure, CNRS & INRIA

ENS – Paris – 2016/2017

Outline

1 Secret Sharing
- Introduction
- Shamir Secret Sharing
- Verifiable Secret Sharing

2 Distributed Cryptography
- Introduction
- Distributed Decryption
- Distributed Signature
- Distributed Key Generation

Key Management

In case of a critical private key (decryption or signing key)
- Abuse: one user can use the secret key alone
- Loss: in case of loss of the key (destruction)
⇒ share the secret key between several users
Secret Sharing Schemes

Let $S \in \{0, 1\}^\ell$ be a secret bit-string to be shared between two people (Alice and Bob):
- one chooses a random $S_1 \in \{0, 1\}^\ell$, and sends it to Alice
- one computes $S_2 = S \oplus S_1$, and sends it to Bob

Security:
- Alice knows a random value
- Bob knows a value masked by a random value: a random value!

\Rightarrow individually, they have no information on S

Together, they can recover $S = S_1 \oplus S_2$

Unconditional Security

Any subgroup of $(n - 1)$ people has no information on S!

\Rightarrow if one people does not want / is not able to cooperate:

S is lost forever!

Threshold Secret Sharing

(n, k)-Threshold Secret Sharing

A secret S is shared among n users:
- any subgroup of k people (or more) can recover S
- any subgroup of less than k people has no information about S
Shamir Secret Sharing

Lagrange Interpolation of Polynomials

Let us be given \(k \) points \((x_1, y_1), \ldots, (x_k, y_k)\), with distinct abscissa. There exists a unique polynomial \(P \)

- of degree \(k - 1 \)
- such that \(P(x_i) = y_i \) for \(i = 1, \ldots, k \)

\[
L_j(X) = \prod_{i=1}^{k} \frac{X - x_i}{x_j - x_i} \quad \begin{cases} \
L_j(x_j) = 1 \\
L_j(x_i) = 0 & \text{for all } i \neq j
\end{cases}
\]

As a consequence:

\[
P(X) = \sum_{j=1}^{k} y_j L_j(X) \quad \begin{cases} \n\deg(P) = k - 1 \\
P(x_i) = y_i & \forall i = 1, \ldots, k
\end{cases}
\]

Shamir Secret Sharing: \((n, k)\)-Threshold

For any subset \(S \) of \(k \) indices:

\[
L_{S,j}(X) = \prod_{i \in S, i \neq j} \frac{X - x_i}{x_j - x_i} \quad \begin{cases} \nL_{S,j}(x_j) = 1 \\
L_{S,j}(x_i) = 0 & \text{for all } i \in S, i \neq j
\end{cases}
\]

and

\[
P(X) = \sum_{j \in S} y_j L_{S,j}(X) : S = P(0) = \sum_{j \in S} y_j L_{S,j}(0)
\]

If one notes \(\lambda_{S,j} = L_{S,j}(0) \) (that can be publicly computed)

\[
x = \sum_{j \in S} y_j \lambda_{S,j}.
\]

Outline

1 Secret Sharing
 - Introduction
 - Shamir Secret Sharing
 - Verifiable Secret Sharing

2 Distributed Cryptography

Verifiable Secret Sharing

[Chor-Goldwasser-Micali-Awerbuch – FOCS '85]

If Eve claims she shared her decryption key: how can we trust her?

- we try to recover the key?
- how to do without revealing additional information?

\(\Rightarrow \) Verifiable Secret Sharing

For DL Keys

[Feldman – FOCS ’87]

Eve’s keys are, in a group \(\mathbb{G} = \langle g \rangle \) of prime order \(q \),

\[
sk = x \quad pk = y = g^x
\]

\((n, k)\)-Secret sharing: \(x = P(0) \) for \(P(X) = \sum_{i=0}^{k-1} a_i X^i \)

\(\Rightarrow \) \(S_i = P(i) \) for \(i = 1, \ldots, n \)

For any subset \(S \) of \(k \) indices:

- \(x = \sum_{j \in S} S_j \lambda_{S,j} \)
- \(y = g^x = \prod_{j \in S} (g^{S_j})^{\lambda_{S,j}} = \prod_{j \in S} v_j^{\lambda_{S,j}} \) for \(v_j = g^{S_j} \)
Verifiable Secret Sharing for DL Keys

For DL Keys [Feldman – FOCS ‘87]

Eve’s keys are, in a group $\mathbb{G} = \langle g \rangle$ of prime order q,

$$
sk = x \quad pk = y = g^x
$$

(n, k)-Secret sharing: $x = P(0)$ for $P(X) = \sum_{i=0}^{k-1} a_i X^i$

- Eve computes $S_i = P(i)$ for $i = 1, \ldots, n$ and $v_i = g^{S_i}$
- Eve sends each S_i privately to each U_i
- Eve publishes $v_i = g^{S_i}$ for $i = 1, \ldots, n$
- Each U_i can then check its own v_i w.r.t. to its S_i
- Anybody can check

$$y = \prod_{j \in S} v_j^{\lambda_{S,j}}$$

for any subset S of size k

Outline

1 Secret Sharing

2 Distributed Cryptography

1 Secret Sharing

2 Distributed Cryptography

Secret Sharing vs. Distributed Cryptography

If Eve shares her decryption key sk,
the (U_i) will have to cooperate to recover the key sk
and then decrypt the ciphertext

But then, they all know the decryption key sk!

How can the (U_i) use their shares (S_i) to decrypt (or sign),
without leaking any additional information about sk?

\Rightarrow Multi-party computation

Let us try on ElGamal decryption (with shared DL keys)
ElGamal Encryption

In a group \(\mathbb{G} = \langle g \rangle \) of order \(q \):
- \(K(\mathbb{G}, g, q): x \overset{R}{\leftarrow} \mathbb{Z}_q \), and \(sk \leftarrow x \) and \(pk \leftarrow y = g^x \)
- \(E_{pk}(m): r \overset{R}{\leftarrow} \mathbb{Z}_q \), \(c_1 \leftarrow g^r \) and \(c_2 \leftarrow y^r \times m \).

Then, the ciphertext is \(c = (c_1, c_2) \).
- \(D_{sk}(c) \) outputs \(c_2/c_1^x \)

We assume an \((n, k)\)-secret sharing of \(x \)
and a qualified set \(S: x = \sum_{j \in S} s_j \lambda_{s,j} \)
\(D_{sk}(c) = c_2/c_1^x \): one needs to compute \(c_1^x \)
\(c_1^x = c_1^{\sum_{j \in S} s_j \lambda_{s,j}} = \prod_{j \in S} (c_1^s_j)^{\lambda_{s,j}} \)

Each user computes \(C_j = c_1^{S_j} \), and then \(c_1^x = \prod_{j \in S} C_j^{\lambda_{s,j}} \)

Robustness

A defrauder can be detected

\(\implies \) Proof of DDH membership for the tuple \((g, c_1, v_1, C_1)\), without leakage of any information about \(S_1 \)

Fraud Detection

Each user computes \(C_j = c_1^{S_j} \), and then \(c_1^x = \prod_{j \in S} C_j^{\lambda_{s,j}} \)

But \(U_1 \), sends a random \(C_1 \): instead of \(c_1^{S_1} \), knowing also \(v_1 = g^{S_1} \)
\(\implies \) Decide a DDH tuple \((g, c_1, v_1, C_1)\)

In a group \(\mathbb{G} = \langle g \rangle \) of order \(q \):
- \(K(\mathbb{G}, g, q): x \overset{R}{\leftarrow} \mathbb{Z}_q \), and \(sk \leftarrow x \) and \(pk \leftarrow y = g^x \)
- \(E_{pk}(m): r \overset{R}{\leftarrow} \mathbb{Z}_q \), \(c_1 \leftarrow g^r \) and \(c_2 \leftarrow y^r \times m \).

Then, the ciphertext is \(c = (c_1, c_2) \).
- \(D_{sk}(c) \) outputs \(c_2/c_1^x \)

Given a qualified set \(S: x = \sum_{j \in S} s_j \lambda_{s,j} \)
Each user computes \(C_j = c_1^{S_j} \), and then \(c_1^x = \prod_{j \in S} C_j^{\lambda_{s,j}} \)

Assume Charlie a.k.a. \(U_1 \), sends a random \(C_1 \):
- the others will compute a wrong decryption
- Charlie will be able to extract the plaintext!

NIZK Diffie-Hellman Language

In a group \(\mathbb{G} = \langle g \rangle \) of prime order \(q \),
the DDH \((g, h)\) assumption states it is hard to distinguish
\(\mathcal{L} = (u = g^x, v = h^x) \) from \(\mathcal{L}' = (u = g^x, v = h^y) \)
- \(\mathcal{P} \) knows \(x \), such that \((u = g^x, v = h^x)\) and wants to prove it
- \(\mathcal{P} \) chooses \(k \overset{R}{\leftarrow} \mathbb{Z}_q \), sets \(U = g^k \) and \(V = h^k \)
- \(\mathcal{P} \) computes \(h = \mathcal{H}(g, h, u, v, U, V) \in \mathbb{Z}_q \)
- \(\mathcal{P} \) computes \(s = k + xh \mod q \)

The proof consists of the pair \((h, s)\):
anybody can check whether \(h = \mathcal{H}(g, h, u, v, g^s u^h, h^s v^h) \)

This proof allows to detect the defrauder
1 Secret Sharing

2 Distributed Cryptography
 - Introduction
 - Distributed Decryption
 - Distributed Signature
 - Distributed Key Generation

Schnorr Signature

- \(G = \langle g \rangle \) of order \(q \) and \(\mathcal{H}: \{0, 1\}^* \to \mathbb{Z}_q \)
- Key Generation \(\rightarrow (y, x): x \in \mathbb{Z}_q^* \) and \(y = g^{-x} \)
- Signature of \(m \to (r, h, s) \)
 \[\begin{align*}
 k &\overset{\$}{\in} \mathbb{Z}_q^* \quad r = g^k \\
 h &\overset{\$}{=} \mathcal{H}(m, r) \\
 s &\overset{\$}{=} k + xh \mod q
 \end{align*} \]
- Verification of \((m, r, s) \)
 \[h = \mathcal{H}(m, r) \text{ and check } r^2 \overset{\$}{=} g^s y^h \]

We assume an \((n, k)\)-secret sharing of \(x \) (with the \(v_i = g^{S_i} \)) and a qualified set \(S: x = \sum_{j \in S} S_j \lambda_{S,j} \)
The users generate a common \(r \) and then sign \((m, r)\) with a partial signature \(s_i \) under \(v_i \):
\[\implies \text{the linearity leads to a global signature} \]

Distributed Schnorr Signature

- \(G = \langle g \rangle \) of order \(q \) and \(\mathcal{H}: \{0, 1\}^* \to \mathbb{Z}_q \)
- Key Generation \(\rightarrow (y, x): x \in \mathbb{Z}_q^* \) and \(y = g^{-x} \)
- Signature of \(m \to (r, h, s) \)
 \[\begin{align*}
 k &\overset{\$}{\in} \mathbb{Z}_q^* \quad r = g^k \\
 h &\overset{\$}{=} \mathcal{H}(m, r) \\
 s &\overset{\$}{=} k + xh \mod q
 \end{align*} \]
- Verification of \((m, r, s) \)
 \[h = \mathcal{H}(m, r) \text{ and check } r^2 \overset{\$}{=} g^s y^h \]

Each partial signature \((m, r_i, s_i)\) can be checked:
\[r_i^2 \overset{\$}{=} g^s v_i^h \]
Distributed Key Generation

In the previous schemes (ElGamal encryption and Schnorr signature) the keys are generated in a centralized way: someone knows the secret key! Distributed cryptography should include a distributed key generation: the secret key should never exist in one place.

\((n,n)\)-Threshold DL Key Generation

- \(G = \langle g \rangle\) of order \(q\)
- Key Generation \(\rightarrow (y, x)\):
 - each \(U_i\) chooses \(x_i \in \mathbb{Z}_q^*\) and publishes \(y_i = g^{x_i}\)
 - anybody can compute \(y = \prod y_i = g^{\sum x_i}\)

The public key \(y\) corresponds to the “virtual” secret key
\[x = \sum x_i \mod q \]

\((n,k)\)-Threshold DL Key Generation

- \(G = \langle g \rangle\) of order \(q\)
- Key Generation \(\rightarrow (y, x)\):
 - each \(U_i\) chooses a polynomial \(P_i\) of degree \(k - 1\), and sends \(S_{ij} = P_i(j)\) to \(U_j\)
 - each \(U_j\) can then compute \(S_j = \sum_i S_{ij} = \sum_i P_i(j) = P(j)\), where \(P = \sum_i P_i\)
 - each \(U_j\) computes and publishes \(v_j = g^{S_j}\)

The \((S_j)_j\) are an \((n,k)\)-secret sharing of the “virtual” secret key \(x\), corresponding to the public key \(y\), that anybody can compute:

For any qualified set \(S\):
- Secretly: \(x = \sum_{j \in S} S_j \lambda_{S,j} \mod q\)
- Publicly: \(y = \prod_{j \in S} v_j^{\lambda_{S,j}}\)