II – Distributed Cryptography

David Pointcheval

Ecole normale supérieure, CNRS & INRIA

ENS – Paris – 2016/2017

Outline

1 Secret Sharing
 ■ Introduction
 ■ Shamir Secret Sharing
 ■ Verifiable Secret Sharing

2 Distributed Cryptography
 ■ Introduction
 ■ Distributed Decryption
 ■ Distributed Signature
 ■ Distributed Key Generation

Key Management

In case of a critical private key (decryption or signing key)

- **Abuse**: one user can use the secret key alone
- **Loss**: in case of loss of the key (destruction)

⇒ share the secret key between several users
Secret Sharing Schemes

Let $S \in \{0,1\}^\ell$ be a secret bit-string to be shared between two people (Alice and Bob):
- one chooses a random $S_1 \in \{0,1\}^\ell$, and sends it to Alice
- one computes $S_2 = S \oplus S_1$, and sends it to Bob

Security:
- Alice knows a random value
- Bob knows a value masked by a random value: a random value!

⇒ individually, they have no information on S

Together, they can recover $S = S_1 \oplus S_2$

Unconditional Security

Any subgroup of $(n-1)$ people has no information on S!
⇒ if one people does not want / is not able to cooperate:

S is lost forever!

Threshold Secret Sharing

(n,k)-Threshold Secret Sharing

A secret S is shared among n users:
- any subgroup of k people (or more) can recover S
- any subgroup of less than k people has no information about S
Lagrange Interpolation of Polynomials

Let us be given \(k \) points \((x_1, y_1), \ldots, (x_k, y_k)\), with distinct abscissa. There exists a unique polynomial \(P \) of degree \(k - 1 \)
- such that \(P(x_i) = y_i \) for \(i = 1, \ldots, k \)
\[
L_j(X) = \prod_{i=1 \atop i \neq j}^{k} \frac{X - x_i}{x_j - x_i} \quad \text{for all } i \neq j
\]

As a consequence:
\[
P(X) = \sum_{j=1}^{k} y_j L_j(X) \quad \text{satisfies}\end{align}
\[
\begin{align*}
\deg(P) &= k - 1 \\
P(x_i) &= y_i \quad \forall i = 1, \ldots, k
\end{align*}
\]

For any subset \(S \) of \(k \) indices:
\[
L_{S,j}(x) = \prod_{i \in S \atop i \neq j} \frac{X - x_i}{x_j - x_i} \quad \text{for } \forall i \in S \\
L_{S,j}(x_i) = 1 \quad \text{for } i \neq j
\]

and
\[
P(X) = \sum_{j \in S} y_j L_{S,j}(X): \quad S = P(0) = \sum_{j \in S} y_j L_{S,j}(0)
\]

If one notes \(\lambda_{S,j} = L_{S,j}(0) \) (that can be publicly computed)
\[
x = \sum_{j \in S} y_j \lambda_{S,j}.
\]

Outline

1 Secret Sharing
 - Introduction
 - Shamir Secret Sharing
 - Verifiable Secret Sharing

2 Distributed Cryptography

Verifiable Secret Sharing

If Eve claims she shared her decryption key: how can we trust her?
- we try to recover the key?
- how to do without revealing additional information?

\[\Rightarrow \text{Verifiable Secret Sharing}\]

For DL Keys

Eve’s keys are, in a group \(\mathbb{G} = \langle g \rangle \) of prime order \(q \),
\[
\begin{align*}
sk &= x \\
pk &= y = g^x
\end{align*}
\]

\((n, k)\)-Secret sharing:
\[
x = P(0) \quad \text{for } P(X) = \sum_{i=0}^{k-1} a_i X^i
\]

\[\Rightarrow S_i = P(i) \quad \text{for } i = 1, \ldots, n
\]

For any subset \(S \) of \(k \) indices:
- \(x = \sum_{j \in S} S_j \lambda_{S,j} \)
- \(y = g^x = g^{\sum_{j \in S} S_j} = \prod_{j \in S} (g^{S_j})^{\lambda_{S,j}} = \prod_{j \in S} v_j^{\lambda_{S,j}} \quad \text{for } v_j = g^{S_j} \)
Verifiable Secret Sharing for DL Keys

For DL Keys

[Feldman – FOCS ’87]

Eve’s keys are, in a group $\mathbb{G} = \langle g \rangle$ of prime order q,

$$sk = x \quad pk = y = g^x$$

(n, k)-Secret sharing: $x = P(0)$ for $P(X) = \sum_{i=0}^{k-1} a_i X^i$

- Eve computes $S_i = P(i)$ for $i = 1 \ldots, n$ and $v_i = g^{S_i}$
- Eve sends each S_i privately to each U_i
- Eve publishes $v_i = g^{S_i}$ for $i = 1, \ldots, n$
- Each U_i can then check its own v_i w.r.t. to its S_i
- Anybody can check

$$y = \prod_{j \in S} v_j^{\lambda_{S,j}}$$

for any subset S of size k

Secret Sharing vs. Distributed Cryptography

If Eve shares her decryption key sk, the (U_i) will have to cooperate to recover the key sk and then decrypt the ciphertext

But then, they all know the decryption key sk!

How can the (U_i) use their shares (S_i) to decrypt (or sign), without leaking any additional information about sk?

\Rightarrow Multi-party computation

Let us try on ElGamal decryption (with shared DL keys)
ElGamal Encryption

In a group $\mathbb{G} = \langle g \rangle$ of order q

- $K(G, g, q): x \overset{R}{\leftarrow} \mathbb{Z}_q$, and $sk \leftarrow x$ and $pk \leftarrow y = g^x$

- $E_{pk}(m): r \overset{R}{\leftarrow} \mathbb{Z}_q$, $c_1 \leftarrow g^r$ and $c_2 \leftarrow y^r \times m$.

Then, the ciphertext is $c = (c_1, c_2)$

- $D_{sk}(c)$ outputs c_2/c_1^x

We assume an (n, k)-secret sharing of x

and a qualified set S: $x = \sum_{j \in S} S_j \lambda_{S,j}$

$D_{sk}(c) = c_2/c_1^x$: one needs to compute c_1^x

$$c_1^x = \sum_{j \in S} S_j \lambda_{S,j} = \prod_{j \in S} (c_1^S_j) \lambda_{S,j}$$

Each user computes $C_j = c_1^S_j$, and then $c_1^x = \prod_{j \in S} C_j^{\lambda_{S,j}}$

Fraud Detection

Each user computes $C_j = c_1^S_j$, and then $c_1^x = \prod_{j \in S} C_j^{\lambda_{S,j}}$

But U_1, sends a random C_1: instead of $c_1^S_1$, knowing also $v_1 = g^{S_1}$

\implies Decide a DDH tuple (g, c_1, v_1, C_1)

Robustness

A defrauder can be detected

\implies Proof of DDH membership for the tuple (g, c_1, v_1, C_1),

without leakage of any information about S_1

NIZK Diffie-Hellman Language

In a group $\mathbb{G} = \langle g \rangle$ of prime order q,

- $K(G, g, q): x \overset{R}{\leftarrow} \mathbb{Z}_q$, and $sk \leftarrow x$ and $pk \leftarrow y = g^x$

- $E_{pk}(m): r \overset{R}{\leftarrow} \mathbb{Z}_q$, $c_1 \leftarrow g^r$ and $c_2 \leftarrow y^r \times m$.

Then, the ciphertext is $c = (c_1, c_2)$

- $D_{sk}(c)$ outputs c_2/c_1^x

Given a qualified set S: $x = \sum_{j \in S} S_j \lambda_{S,j}$

Each user computes $C_j = c_1^S_j$, and then $c_1^x = \prod_{j \in S} C_j^{\lambda_{S,j}}$

Assume Charlie a.k.a. U_1, sends a random C_1:

- the others will compute a wrong decryption

- Charlie will be able to extract the plaintext!
Outline

1 Secret Sharing

2 Distributed Cryptography
 - Introduction
 - Distributed Decryption
 - Distributed Signature
 - Distributed Key Generation

Distributed Schnorr Signature

- $G = \langle g \rangle$ of order q and $H: \{0, 1\}^* \rightarrow \mathbb{Z}_q$
- Key Generation $\rightarrow (y, x): x \in \mathbb{Z}_q^*$ and $y = g^{-x}$

We assume an (n, k)-secret sharing of x (with the $v_i = g^{S_i}$) and a qualified set S: $x = \sum_{j \in S} S_i \lambda_{S, j}$

- Signature of $m \rightarrow (r, h, s)$
 - each U_i chooses $k_i \overset{R}{\leftarrow} \mathbb{Z}_q^*$ and publishes $r_i = g^{k_i}$
 - they all compute $r = \prod r_i \lambda_{S, j}$ and $h = H(m, r)$
 - each U_i computes and publishes $s_i = k_i + S_i h \mod q$

Then, $s = \sum s_i \lambda_{S, i}$

- Verification of (m, r, s)
 - compute $h = H(m, r)$ and check $r \overset{?}{=} g^s y^h$

Each partial signature (m, r, s, i) can be checked: $r_i \overset{?}{=} g^{s_i v_i^h}$
Distributed Key Generation

In the previous schemes (ElGamal encryption and Schnorr signature) the keys are generated in a centralized way: someone knows the secret key! Distributed cryptography should include a distributed key generation: the secret key should never exist in one place.

\((n, n)\)-Threshold DL Key Generation

- \(G = \langle g \rangle\) of order \(q\)
- Key Generation \(\rightarrow (y, x)\):
 - each \(U_i\) chooses \(x_i \in \mathbb{Z}_q^*\) and publishes \(y_i = g^{x_i}\)
 - anybody can compute \(y = \prod y_i = g^{\sum x_i}\)

The public key \(y\) corresponds to the “virtual” secret key \(x = \sum x_i \mod q\)

\((n, k)\)-Threshold DL Key Generation

- \(G = \langle g \rangle\) of order \(q\)
- Key Generation \(\rightarrow (y, x)\):
 - each \(U_i\) chooses a polynomial \(P_i\) of degree \(k - 1\), and sends \(S_{i,j} = P_i(j)\) to \(U_j\)
 - each \(U_j\) can then compute \(S_j = \sum_i S_{i,j} = \sum_i P_i(j) = P(j)\), where \(P = \sum_i P_i\)
 - each \(U_j\) computes and publishes \(v_j = g^{S_j}\)

The \((S_j)_j\) are an \((n, k)\)-secret sharing of the “virtual” secret key \(x\), corresponding to the public key \(y\), that anybody can compute:

For any qualified set \(S\):

- Secretly: \(x = \sum_{j \in S} S_j \lambda_{S, j} \mod q\)
- Publicly: \(y = \prod_{j \in S} v_j^{\lambda_{S, j}}\)