Outline

1. **Secret Sharing**
 - Introduction
 - Shamir Secret Sharing
 - Verifiable Secret Sharing

2. **Distributed Cryptography**
 - Introduction
 - Distributed Decryption
 - Distributed Signature
 - Distributed Key Generation

Key Management

In case of a critical private key (decryption or signing key):

- **Abuse**: one user can use the secret key alone
- **Loss**: in case of loss of the key (destruction)

⇒ share the secret key between several users
Secret Sharing Schemes

Let $S \in \{0, 1\}^\ell$ be a secret bit-string to be shared between two people (Alice and Bob):
- one chooses a random $S_1 \in \{0, 1\}^\ell$, and sends it to Alice
- one computes $S_2 = S \oplus S_1$, and sends it to Bob

Security:
- Alice knows a random value
- Bob knows a value masked by a random value: a random value!

\implies individually, they have no information on S

Together, they can recover $S = S_1 \oplus S_2$

Unconditional Security

Any subgroup of $(n - 1)$ people has no information on S!
\implies if one people does not want / is not able to cooperate:

S is lost forever!

Threshold Secret Sharing

(n, k)-Threshold Secret Sharing

A secret S is shared among n users:
- any subgroup of k people (or more) can recover S
- any subgroup of less than k people has no information about S
Lagrange Interpolation of Polynomials

Let us be given \(k \) points \((x_1, y_1), \ldots, (x_k, y_k)\), with distinct abscissa. There exists a unique polynomial \(P \) of degree \(k - 1 \)

- such that \(P(x_i) = y_i \) for \(i = 1, \ldots, k \)

\[
L_j(X) = \prod_{i \neq j} \frac{X - x_i}{x_j - x_i} \quad L_j(x_j) = 1 \\
L_j(x_i) = 0 \quad \text{for all } i \neq j
\]

As a consequence:

\[
P(X) = \sum_{j=1}^{k} y_j L_j(X)
\]

satisfies

- \(\deg(P) = k - 1 \)
- \(P(x_i) = y_i \quad \forall i = 1, \ldots, k \)

For any subset \(S \) of \(k \) indices:

\[
L_{S,j}(X) = \prod_{i \in S \text{ and } i \neq j} \frac{X - x_i}{x_j - x_i} \\
\quad \quad L_{S,j}(x_j) = 1 \\
\quad \quad L_{S,j}(x_i) = 0 \quad \text{for all } i \in S, i \neq j
\]

and

\[
P(X) = \sum_{j \in S} y_j L_{S,j}(X)
\]

\(S = P(0) = \sum_{j \in S} y_j L_{S,j}(0) \)

If one notes \(\lambda_{S,j} = L_{S,j}(0) \) (that can be publicly computed)

\[
x = \sum_{j \in S} y_j \lambda_{S,j}
\]
Secret Sharing vs. Distributed Cryptography

If Eve shares her decryption key sk, the (U_i) will have to cooperate to recover the key sk and then decrypt the ciphertext.

But then, they all know the decryption key sk!

How can the (U_i) use their shares (S_i) to decrypt (or sign), without leaking any additional information about sk?

⇒ Multi-party computation

Let us try on ElGamal decryption (with shared DL keys)

For DL Keys

Eve’s keys are, in a group \(G = \langle g \rangle \) of prime order q,

\[
\begin{align*}
\text{sk} & = x \\
\text{pk} & = y = g^x
\end{align*}
\]

(n, k)-Secret sharing: \(x = P(0) \) for \(P(X) : x \)
ElGamal Encryption

In a group $G = \langle g \rangle$ of order q
- $K(G, g, q): x \xleftarrow{\$} \mathbb{Z}_q$, and $sk \leftarrow x$ and $pk \leftarrow y = g^x$
- $E_{pk}(m): r \xleftarrow{\$} \mathbb{Z}_q$, $c_1 \leftarrow g^r$ and $c_2 \leftarrow y^r \times m$. Then, the ciphertext is $c = (c_1, c_2)$
- $D_{sk}(c)$ outputs c_2/c_1^x

We assume an (n, k)-secret sharing of x
and a qualified set S: $x = \prod_{j \in S} S_j \lambda S_j$
$D_{sk}(c) = c_2/c_1^x$: one needs to compute $c_1^x = \sum_{j \in S} S_j \lambda S_j = Y (c_1^S_j)^{\lambda S_j}$

Each user computes $C_j = c_1^{S_j}$, and then $c_1^x = \prod_{j \in S} C_j^{\lambda S_j}$

Fraud Detection

Each user computes $C_j = c_1^{S_j}$, and then $c_1^x = \prod_{j \in S} C_j^{\lambda S_j}$

But U_1, sends a random C_1: instead of $c_1^{S_1}$, knowing also $v_1 = g^{S_1}$
\implies Decide a DDH tuple (g, c_1, v_1, C_1)

Robustness

A defrauder can be detected

\implies Proof of DDH membership for the tuple (g, c_1, v_1, C_1), without leakage of any information about S_1

NIZK Diffie-Hellman Language

In a group $G = \langle g \rangle$ of prime order q,
the DDH(g, h) assumption states it is hard to distinguish
$L = (u = g^x, v = h^x)$ from $\mathbb{G}^2 = (u = g^x, v = h^y)$
- P knows x, such that $(u = g^x, v = h^x)$ and wants to prove it
- P chooses $k \xleftarrow{\$} \mathbb{Z}_q^*$, sets $U = g^k$ and $V = h^k$
- P computes $h = \mathcal{H}(g, h, u, v, U, V) \in \mathbb{Z}_q$
- P computes $s = k + xh \mod q$

The proof consists of the pair (h, s):
anybody can check whether $h = \mathcal{H}(g, h, u, v, g^s u^h, h^sv^h)$

This proof allows to detect the defrauder
Outline

1 Secret Sharing

2 Distributed Cryptography
 - Introduction
 - Distributed Decryption
 - Distributed Signature
 - Distributed Key Generation

Schnorr Signature

- $G = \langle g \rangle$ of order q and $H: \{0, 1\}^* \rightarrow \mathbb{Z}_q$
- Key Generation $\rightarrow (y, x): x \in \mathbb{Z}_q^*$ and $y = g^{-x}$
- Signature of $m \rightarrow (r, h, s)$
 - $k \overset{R}{\leftarrow} \mathbb{Z}_q^*$
 - $r = g^k$
 - $h = H(m, r)$
 - $s = k + xh \mod q$
- Verification of (m, r, s)
 - compute $h = H(m, r)$ and check $r^2 \equiv g^s y^h$

We assume an (n, k)-secret sharing of x (with the $v_i = g^{S_i}$) and a qualified set $S: x = \sum_{j \in S} S_j \lambda_{S,j}$

The users generate a common r and then sign (m, r) with a partial signature s_i under v_i:

\[\Rightarrow \text{ the linearity leads to a global signature} \]

Distributed Schnorr Signature

- $G = \langle g \rangle$ of order q and $H: \{0, 1\}^* \rightarrow \mathbb{Z}_q$
- Key Generation $\rightarrow (y, x): x \in \mathbb{Z}_q^*$ and $y = g^{-x}$
- Signature of $m \rightarrow (r, h, s)$
 - each U_i chooses $k_i \overset{R}{\leftarrow} \mathbb{Z}_q^*$ and publishes $r_i = g^{k_i}$
 - they all compute $r = \prod r_i^{\lambda_{S,j}}$ and $h = H(m, r)$
 - each U_i computes and publishes $s_i = k_i + S_i h \mod q$
- Then, $s = \sum s_i \lambda_{S,i}$
- Verification of (m, r, s)
 - compute $h = H(m, r)$ and check $r^2 \equiv g^s y^h$

Each partial signature (m, r_i, s_i) can be checked: $r_i^2 \equiv g^s v_i^h$
Distributed Key Generation

In the previous schemes (ElGamal encryption and Schnorr signature) the keys are generated in a centralized way: someone knows the secret key! Distributed cryptography should include a distributed key generation: the secret key should never exist in one place.

\((n,n)\)-Threshold DL Key Generation

- \(G = \langle g \rangle\) of order \(q\)
- Key Generation \(\rightarrow (y, x)\):
 - each \(U_i\) chooses \(x_i \in \mathbb{Z}_q \) and publishes \(y_i = g^{x_i}\)
 - anybody can compute \(y = \prod y_i = g^{\sum x}\)

The public key \(y\) corresponds to the “virtual” secret key
\[x = \sum x_i \mod q \]

\((n,k)\)-Threshold DL Key Generation

- \(G = \langle g \rangle\) of order \(q\)
- Key Generation \(\rightarrow (y, x)\):
 - each \(U_i\) chooses a polynomial \(P_i\) of degree \(k - 1\), and sends \(S_{ij} = P_i(j)\) to \(U_j\)
 - each \(U_j\) can then compute \(S_j = \prod S_{ij} = \prod P_i(j) = P(j)\),
 - where \(P = \prod P_i\)
 - each \(U_j\) computes and publishes \(v_j = g^{S_j}\)

The \((S_j)\) are an \((n,k)\)-secret sharing of the “virtual” secret key \(x\), corresponding to the public key \(y\), that anybody can compute:

For any qualified set \(S\):
- Secretly: \(x = \sum_{j \in S} S_j \lambda_{S,j} \mod q\)
- Publicly: \(y = \prod_{j \in S} v_j^{\lambda_{S,j}}\)