Proof of Knowledge

How do I prove that I know a solution s to a problem P?

1. **Zero-Knowledge Proofs of Knowledge**
 - Introduction
 - 3-Coloring
 - Examples

2. **Signatures**
 - From Identification to Signature
 - Forking Lemma

3. **Zero-Knowledge Proofs of Membership**
 - Introduction
 - Example: DH
Proof of Knowledge: Soundness

A knows something... What does it mean?
the information can be extracted: extractor

Proof of Knowledge: Zero-Knowledge

How do I prove that I know a solution s to a problem P?
I reveal the solution...
How can I do it without revealing any information?
Zero-knowledge: simulation and indistinguishability

Outline

1 Zero-Knowledge Proofs of Knowledge
 - Introduction
 - 3-Coloring
 - Examples

2 Signatures

3 Zero-Knowledge Proofs of Membership
Proof of Knowledge

How do I prove that I know a 3-color covering, without revealing any information?

I choose a random permutation on the colors and I apply it to the vertices

I mask the vertices and send it to the verifier

(a)

The verifier chooses an edge
I open it
The verifier checks the validity: 2 different colors

Secure Multiple Proofs of Knowledge: Authentication

If there exists an efficient adversary, then one can solve the underlying problem:
3-Pass Zero-Knowledge Proofs

Generic Proof
- Proof of knowledge of x, such that $R(x, y)$
- P builds a commitment r and sends it to V
- V chooses a challenge $h \stackrel{R}{\leftarrow} \{0, 1\}^k$ for P
- P computes and sends the answer s
- V checks (r, h, s)

Special soundness
If one can answer to two different challenges $h \neq h'$:

$$s \neq s'$$

for a unique r

$$\implies$$

one can extract x

SQRT Fiat-Shamir Proof [Fiat-Shamir – Crypto ‘86]

- Setting: $n = pq$
 - P knows x, such that $X = x^2 \mod n$ and wants to prove it to V
 - P chooses $r \stackrel{R}{\leftarrow} \mathbb{Z}_n^*$, sets and sends $R = r^2 \mod n$
 - V chooses $b \stackrel{R}{\leftarrow} \{0, 1\}$ and sends it to P
 - P computes and sends $s = x^b \times r \mod n$
 - V checks whether $s^2 \equiv X^b R \mod n$

One then reiterates t times

For a fixed R, two valid answers s and s' satisfy

$$s^2 / X = R = (s')^2 \mod n \implies X = (s/s')^2 \mod n$$

And thus $x = s / s' \mod n \implies$ Special Soundness

Fiat-Shamir Proof: Extraction

More precisely: the execution of t repetitions depends on

- (b_1, \ldots, b_t) from the verifier V
- ω that (together with the previous b_i $(i < k)$) determines R_k from the prover P

If $\Pr_{\omega, (b_i)}[V \text{ accepts } P] > 1/2^t + \varepsilon$,

there is a good fraction of ω (more than $\varepsilon/2$)

such that $\Pr_{(b_i)}[V \text{ accepts } S] \geq 1/2^t + \varepsilon/2$.

For such a good ω: a good node along the successful path
Fiat-Shamir Proof: Simulation

Honest Verifier

Simulation of a triplet: \((R = r^2 \mod n, b, s = x^b \times r \mod n)\)
- for \(r \stackrel{R}{\leftarrow} \mathbb{Z}_n^*\) and \(b \stackrel{R}{\leftarrow} \{0, 1\}\)
- Similar to: \((R = s^2 / X^b \mod n, b, s)\)
- for \(s \stackrel{R}{\leftarrow} \mathbb{Z}_n^*\) and \(b \stackrel{R}{\leftarrow} \{0, 1\}\)
- Simulation: random \(s\) and \(b\), and set \((R = s^2 / X^b \mod n, b, s)\)

Any Verifier

Simulation of a triplet: \((R = r^2 \mod n, b = V(\text{view}), s = x^b \times r \mod n)\)
- for \(r \stackrel{R}{\leftarrow} \mathbb{Z}_n^*\) only!
- Similar to: \((R = s^2 / X^b \mod n, b = V(\text{view}), s)\) for \(s \stackrel{R}{\leftarrow} \mathbb{Z}_n^*\)
- Simulation: random \(s\) and \(b\), and set \(R = s^2 / X^b \mod n\)
 - upon reception of \(b\): if \(b = \beta\), output \(s\), else rewind
 - \(b\) and \(\beta\) independent: rewind once over 2 \(\Rightarrow\) linear time

RSA GQ Proof

[Guillou-Quisquater – Crypto ’87 – Eurocrypt ’88]

- Setting: \(n = pq\) and an exponent \(e\)
 - \(P\) knows \(x\), such that \(X = x^e \mod n\) and wants to prove it to \(V\)
- \(P\) chooses \(r \stackrel{R}{\leftarrow} \mathbb{Z}_n^*\), sets and sends \(R = r^e \mod n\)
- \(V\) chooses \(b \stackrel{R}{\leftarrow} \{0, 1\}^t\) and sends it to \(P\)
- \(P\) computes and sends \(s = x^e \times r \mod n\)
- \(V\) checks whether \(s^e = X R^b \mod n\)

For a fixed \(R\), two valid answers \(s\) and \(s'\) satisfy

\[s^e / X^b = R = (s')^e / X^{b'} \mod n \implies X^{b' - b} = (s'/s)^e \mod n\]

If \(e\) prime and bigger than \(2^t\), then \(e\) and \(b' - b\) are relatively prime:

\(\text{Bezout: } ue + v(b' - b) = 1 \implies X^{v(b' - b)} = (s'/s)^e = X^{1 - ve} \mod n\)

As a consequence: \(X = ((s'/s)^v X^u)^e = \text{Special Soundness}\)

Outline

1. Zero-Knowledge Proofs of Knowledge
2. Signatures
 - From Identification to Signature
 - Forking Lemma
3. Zero-Knowledge Proofs of Membership
Generic Zero-Knowledge Proofs

Zero-Knowledge Proof
- Proof of knowledge of x, such that $\mathcal{R}(x, y)$
- \mathcal{P} builds a commitment r and sends it to \mathcal{V}
- \mathcal{V} chooses a challenge $h \sim \{0, 1\}^k$ for \mathcal{P}
- \mathcal{P} computes and sends the answer s
- \mathcal{V} checks (r, h, s)

Signature
- \mathcal{H} viewed as a random oracle
- Key Generation $\rightarrow (y, x)$
 - private: x
 - public: y
- Signature of $m \rightarrow (r, h, s)$
 - Commitment r
 - Challenge $h = \mathcal{H}(m, r)$
 - Answer s
- Verification of (m, r, s)
 - compute $h = \mathcal{H}(m, r)$
 - and check (r, h, s)

Special soundness
If one can answer to two different challenges $h \neq h'$: s and s' for a unique commitment r, one can extract x

Outline

1. Zero-Knowledge Proofs of Knowledge
2. Signatures
 - From Identification to Signature
 - Forking Lemma
3. Zero-Knowledge Proofs of Membership

Σ-Protocols

Zero-Knowledge Proof
- Proof of knowledge of x
- \mathcal{P} sends a commitment r
- \mathcal{V} sends a challenge h
- \mathcal{P} sends the answer s
- \mathcal{V} checks (r, h, s)

Signature
- Key Generation $\rightarrow (y, x)$
- Signature of $m \rightarrow (r, h, s)$
 - Commitment r
 - Challenge $h = \mathcal{H}(m, r)$
 - Answer s
- Verification of (m, r, s)
 - compute $h = \mathcal{H}(m, r)$
 - and check (r, h, s)

Forking Lemma

The Forking Lemma shows an efficient reduction between the signature scheme and the identification scheme, but basically, if an adversary \mathcal{A} produces, with probability $\varepsilon \geq 2/2^k$, a valid signature (m, r, h, s), then within $T' = 2T$, one gets two valid signatures (m, r, h, s) and (m, r, h', s'), with $h \neq h'$ with probability $\varepsilon' \geq \varepsilon^2/32q_H^3$.

The special soundness provides the secret key.
Proof of Membership

Soundness

If \(w \in \mathcal{L} \)… what does it mean?
- a witness exists, different from knowing it: no need of extractor

Zero-Knowledge

How do I prove there exists a witness \(s \)? I reveal it…
How can I do it without revealing any information?

Zero-knowledge: simulation and indistinguishability

Outline

1. Zero-Knowledge Proofs of Knowledge
2. Signatures
3. Zero-Knowledge Proofs of Membership
 - Introduction
 - Example: DH
In a group $G = \langle g \rangle$ of prime order q, the DDH(g, h) assumption states it is hard to distinguish $L = (u = g^x, v = h^y)$ from $\mathbb{G}^2 = (u = g^x, v = h^y)$.

- P knows x, such that $(u = g^x, v = h^y)$ and wants to prove it to V.
- P chooses $k \xleftarrow{R} \mathbb{Z}_q^*$, sets and sends $U = g^k$ and $V = h^k$.
- V chooses $h \xleftarrow{R} \{0, 1\}$ and sends it to P.
- P computes and sends $s = k + xh \mod q$.
- V checks whether $U \overset?= g^s u^h$ and $V \overset?= h^s v^h$.

For a fixed (U, V), two valid answers s and s' satisfy

\[g^s u^h = U = g^{s'} u^{h'} \quad h^s v^h = V = h^{s'} v^{h'} \]

if one sets $y = (s - s')(h' - h)^{-1} \mod q \implies u = g^y$ and $v = h^y$.

There exists a witness: **Perfect Soundness**