Proof of Knowledge

How do I prove that I know a solution s to a problem P?

1. Zero-Knowledge Proofs of Knowledge
 - Introduction
 - 3-Coloring
 - Examples

2. Signatures
 - From Identification to Signature
 - Forking Lemma

3. Zero-Knowledge Proofs of Membership
 - Introduction
 - Example: DH
Proof of Knowledge: Soundness

A knows something... What does it mean?
the information can be extracted: extractor

Proof of Knowledge: Zero-Knowledge

How do I prove that I know a solution s to a problem P?
I reveal the solution...
How can I do it without revealing any information?
Zero-knowledge: simulation and indistinguishability

Outline

1 Zero-Knowledge Proofs of Knowledge
 - Introduction
 - 3-Coloring
 - Examples

2 Signatures

3 Zero-Knowledge Proofs of Membership

Proof of Knowledge

How do I prove that I know a 3-color covering, without revealing any information?
How do I prove that I know a 3-color covering, without revealing any information?

I choose a random permutation on the colors and I apply it to the vertices

I mask the vertices and send it to the verifier

(a)
The verifier chooses an edge
I open it
The verifier checks the validity: 2 different colors

Secure Multiple Proofs of Knowledge: Authentication

If there exists an efficient adversary, then one can solve the underlying problem:
3-Pass Zero-Knowledge Proofs

Generic Proof
- Proof of knowledge of x, such that $R(x, y)$
- P builds a commitment r and sends it to V
- V chooses a challenge $h \overset{R}{\leftarrow}\{0, 1\}^k$ for P
- P computes and sends the answer s
- V checks (r, h, s)

Σ-Protocol
- Proof of knowledge of x
- P sends a commitment r
- V sends a challenge h
- P sends the answer s
- V checks (r, h, s)

Special soundness
If one can answer to two different challenges $h \neq h'$:
$$s \text{ and } s' \text{ for a unique } r \implies \text{one can extract } x$$

SQRT Fiat-Shamir Proof [Fiat-Shamir – Crypto ’86]

- Setting: $n = pq$
 - P knows x, such that $X = x^2 \mod n$ and wants to prove it to V
 - P chooses $r \overset{R}{\leftarrow}\mathbb{Z}_n^*$, sets and sends $R = r^2 \mod n$
 - V chooses $b \overset{R}{\leftarrow}\{0, 1\}$ and sends it to P
 - P computes and sends $s = x^b \times r \mod n$
 - V checks whether $s^2 \overset{?}{=} X^b R \mod n$

One then reiterates t times

For a fixed R, two valid answers s and s' satisfy
$$s^2 / X = R = (s')^2 \mod n \implies X = (s/s')^2 \mod n$$

And thus $x = s / s' \mod n \implies \text{Special Soundness}$
Fiat-Shamir Proof: Simulation

Honest Verifier
Simulation of a triplet: \((R = r^2 \mod n, b, s = x^b \times r \mod n)\)
- for \(r \stackrel{\$}{\in} \mathbb{Z}^*_n\) and \(b \stackrel{\$}{\in} \{0, 1\}\)
- Similar to: \((R = s^2 / X^b \mod n, b, s)\)
 - for \(s \stackrel{\$}{\in} \mathbb{Z}^*_n\) and \(b \stackrel{\$}{\in} \{0, 1\}\)
Simulation: random \(s\) and \(b\), and set \((R = s^2 / X^b \mod n, b, s)\)

Any Verifier
Simulation of a triplet: \((R = r^2 \mod n, b = \mathcal{V}(\text{view}), s = x^b \times r \mod n)\)
- for \(r \stackrel{\$}{\in} \mathbb{Z}^*_n\) only!
- Similar to: \((R = s^2 / X^b \mod n, b = \mathcal{V}(\text{view}), s)\) for \(s \stackrel{\$}{\in} \mathbb{Z}^*_n\)
Simulation: random \(s\) and \(\beta\), and set \(R = s^2 / X^b \mod n\)
 - upon reception of \(b\): if \(b = \beta\), output \(s\), else rewind
 - \(b\) and \(\beta\) independent: rewind once over 2 \(\iff\) linear time

RSA GQ Proof

[Guillou-Quisquater – Crypto ’87 – Eurocrypt ’88]

Setting: \(n = pq\) and an exponent \(e\)
- \(\mathcal{P}\) knows \(x\), such that \(X = x^e \mod n\) and wants to prove it to \(\mathcal{V}\)
- \(\mathcal{P}\) chooses \(r \stackrel{\$}{\in} \mathbb{Z}^*_n\), sets and sends \(R = r^e \mod n\)
- \(\mathcal{V}\) chooses \(b \stackrel{\$}{\in} \{0, 1\}^t\) and sends it to \(\mathcal{P}\)
- \(\mathcal{P}\) computes and sends \(s = x^e \times r \mod n\)
- \(\mathcal{V}\) checks whether \(s^e \stackrel{?}{=} X^b R \mod n\)

For a fixed \(R\), two valid answers \(s\) and \(s'\) satisfy
\[
s^e / X^b = R = (s')^e / X^{b'} \mod n \implies X^{b'^{−b}} = (s'/s)^e \mod n
\]

If \(e\) prime and bigger than \(2^t\), then \(e\) and \(b' − b\) are relatively prime:
Bezout: \(ue + v(b' − b) = 1 \implies X^{v(b' − b)} = (s'/s)^v e = X^{1−ue} \mod n\)
As a consequence: \(X = ((s'/s)X^u)^e \implies \text{Special Soundness}\)

DL Schnorr Proof

[Schnorr – Eurocrypt ’89 - Crypto ’89]

Setting: \(G = \langle g \rangle\) of order \(q\)
- \(\mathcal{P}\) knows \(x\), such that \(y = g^−x\) and wants to prove it to \(\mathcal{V}\)
- \(\mathcal{P}\) chooses \(k \stackrel{\$}{\in} \mathbb{Z}^*_q\), sets and sends \(r = g^k\)
- \(\mathcal{V}\) chooses \(h \stackrel{\$}{\in} \{0, 1\}^t\) and sends it to \(\mathcal{P}\)
- \(\mathcal{P}\) computes and sends \(s = k + xh \mod q\)
- \(\mathcal{V}\) checks whether \(r \equiv g^s y^h\)

For a fixed \(r\), two valid answers \(s\) and \(s'\) satisfy
\[
g^s y^h = r = g^{s'} y^{h'} \implies y^{h'−h} = g^{s−s'}
\]

And thus \(x = (s − s')(h' − h)^{−1} \mod q \implies \text{Special Soundness}\)

Outline

1 Zero-Knowledge Proofs of Knowledge

2 Signatures
- From Identification to Signature
 - Forking Lemma

3 Zero-Knowledge Proofs of Membership
Generic Zero-Knowledge Proofs

Zero-Knowledge Proof
- Proof of knowledge of \(x \), such that \(\mathcal{R}(x, y) \)
- \(\mathcal{P} \) builds a commitment \(r \) and sends it to \(\mathcal{V} \)
- \(\mathcal{V} \) chooses a challenge \(h \)
- \(h \overset{\$}{\leftarrow} \{0, 1\}^k \) for \(\mathcal{P} \)
- \(\mathcal{P} \) computes and sends the answer \(s \)
- \(\mathcal{V} \) checks \((r, h, s)\)

Signature
- \(\mathcal{H} \) viewed as a random oracle
- Key Generation \(\rightarrow (y, x) \)
 - private: \(x \) public: \(y \)
- Signature of \(m \rightarrow (r, h, s) \)
 - Commitment \(r \)
 - Challenge \(h = \mathcal{H}(m, r) \)
 - Answer \(s \)
- Verification of \((m, r, s)\)
 - compute \(h = \mathcal{H}(m, r) \)
 - and check \((r, h, s)\)

Special soundness
- If one can answer to two different challenges \(h \neq h' \): \(s \) and \(s' \) for a unique commitment \(r \), one can extract \(x \)

Σ-Protocols

Zero-Knowledge Proof
- Key Generation \(\rightarrow (y, x) \)
- Signature of \(m \rightarrow (r, h, s) \)
- Commitment \(r \)
- Challenge \(h = \mathcal{H}(m, r) \)
- Answer \(s \)
- Verification of \((m, r, s)\)
 - compute \(h = \mathcal{H}(m, r) \)
 - and check \((r, h, s)\)

Signature
- Proof of knowledge of \(x \)
- \(\mathcal{P} \) sends a commitment \(r \)
- \(\mathcal{V} \) sends a challenge \(h \)
- \(\mathcal{P} \) sends the answer \(s \)
- \(\mathcal{V} \) checks \((r, h, s)\)

Outline

1. Zero-Knowledge Proofs of Knowledge
2. Signatures
 - From Identification to Signature
 - Forking Lemma
3. Zero-Knowledge Proofs of Membership

Forking Lemma

The Forking Lemma shows an efficient reduction between the signature scheme and the identification scheme, but basically, if an adversary \(\mathcal{A} \) produces, with probability \(\varepsilon \geq 2/2^k \), a valid signature \((m, r, h, s)\), then within \(T' = 2T \), one gets two valid signatures \((m, r, h, s)\) and \((m, r, h', s')\), with \(h \neq h' \) with probability \(\varepsilon' \geq \varepsilon^2 / 32q_\mathcal{H}^3 \).

The special soundness provides the secret key.
Proof of Membership

How do I prove that a word w lies in a language $L: P = (w, L)$?

- if $L \in BPP$: anybody can publicly check it
- if $L \in NP \setminus BPP$: a witness s can help prove that $w \in L$

If $w \notin L$:
- Proof (perfect soundness): a powerful A cannot cheat
- Argument (computational soundness): a limited A cannot cheat

Soundness

$w \in L \ldots$ what does it mean?

- a witness exists, different from knowing it: no need of extractor

Zero-Knowledge

How do I prove there exists a witness s? I reveal it \ldots

How can I do it without revealing any information?

Zero-knowledge:
- simulation
- indistinguishability
Diffie-Hellman Language

In a group $G = \langle g \rangle$ of prime order q, the DDH(g, h) assumption states it is hard to distinguish $L = (u = g^x, v = h^x)$ from $G^2 = (u = g^x, v = h^y)$.

- P knows x, such that $(u = g^x, v = h^x)$ and wants to prove it to V.
- P chooses $k \leftarrow \mathbb{Z}_q^*$, sets and sends $U = g^k$ and $V = h^k$.
- V chooses $h \leftarrow \{0, 1\}^t$ and sends it to P.
- P computes and sends $s = k + xh \mod q$.
- V checks whether $U \not= g^s u^h$ and $V \not= h^s v^h$.

For a fixed (U, V), two valid answers s and s' satisfy

$$g^s u^h = U = g^{s'} u^{h'} \quad h^s v^h = V = h^{s'} v^{h'}$$

- if one sets $y = (s - s')(h' - h)^{-1} \mod q \implies u = g^y$ and $v = h^y$.
- there exists a witness: Perfect Soundness.