I – Zero-Knowledge Proofs and Applications

David Pointcheval
Ecole normale supérieure, CNRS & INRIA

ENS – Paris – 2016/2017

Outline

1 Zero-Knowledge Proofs of Knowledge
 ■ Introduction
 ■ 3-Coloring
 ■ Examples

2 Signatures
 ■ From Identification to Signature
 ■ Forking Lemma

3 Zero-Knowledge Proofs of Membership
 ■ Introduction
 ■ Example: DH

Proof of Knowledge

How do I prove that I know a solution \(s \) to a problem \(P \)?

1 Zero-Knowledge Proofs of Knowledge
 ■ Introduction
 ■ 3-Coloring
 ■ Examples

2 Signatures

3 Zero-Knowledge Proofs of Membership
Proof of Knowledge: Soundness

A knows something... What does it mean?

the information can be extracted: extractor

![Diagram](Proof of Knowledge: Soundness)

Outline

1. **Zero-Knowledge Proofs of Knowledge**
 - Introduction
 - 3-Coloring
 - Examples

2. **Signatures**

3. **Zero-Knowledge Proofs of Membership**

Proof of Knowledge: Zero-Knowledge

How do I prove that I know a solution s to a problem P?

I reveal the solution...

How can I do it without revealing any information?

Zero-knowledge: simulation and indistinguishability

![Diagram](Proof of Knowledge: Zero-Knowledge)

Proof of Knowledge

How do I prove that I know a 3-color covering, without revealing any information?
How do I prove that I know a 3-color covering, without revealing any information?

I choose a random permutation on the colors and I apply it to the vertices

I mask the vertices and send it to the verifier

The verifier chooses an edge
I open it
The verifier checks the validity: 2 different colors

If there exists an efficient adversary, then one can solve the underlying problem:
Outline

1 Zero-Knowledge Proofs of Knowledge
 - Introduction
 - 3-Coloring
 - Examples

2 Signatures

3 Zero-Knowledge Proofs of Membership

3-Pass Zero-Knowledge Proofs

Generic Proof

- Proof of knowledge of \(x\), such that \(R(x, y)\)
- \(P\) builds a commitment \(r\) and sends it to \(V\)
- \(V\) chooses a challenge \(h\) \(\overset{R}{\leftarrow}\{0, 1\}^k\) for \(P\)
- \(P\) computes and sends the answer \(s\)
- \(V\) checks \((r, h, s)\)

\(\Sigma\)-Protocol

- Proof of knowledge of \(x\)
- \(P\) sends a commitment \(r\)
- \(V\) sends a challenge \(h\)
- \(P\) sends the answer \(s\)
- \(V\) checks \((r, h, s)\)

Special soundness

If one can answer to two different challenges \(h \neq h'\):
\[s \quad \text{and} \quad s' \quad \text{for a unique} \quad r\]
\[\implies \text{one can extract} \quad x\]

SQRT Fiat-Shamir Proof

[Fiat-Shamir – Crypto '86]

Setting: \(n = pq\)
- \(P\) knows \(x\), such that \(X = x^2 \mod n\) and wants to prove it to \(V\)
- \(P\) chooses \(r \overset{R}{\leftarrow} \mathbb{Z}_n^*\), sets and sends \(R = r^2 \mod n\)
- \(V\) chooses \(b \overset{R}{\leftarrow} \{0, 1\}\) and sends it to \(P\)
- \(P\) computes and sends \(s = x^b \times r \mod n\)
- \(V\) checks whether \(s^2 \overset{?}{=} X^b R \mod n\)

One then reiterates \(t\) times

For a fixed \(R\), two valid answers \(s\) and \(s'\) satisfy
\[s^2 / X = R = (s')^2 \mod n \implies X = (s / s')^2 \mod n\]

And thus \(x = s / s' \mod n \implies \text{Special Soundness}\)

Fiat-Shamir Proof: Extraction

More precisely: the execution of \(t\) repetitions depends on
- \((b_1, \ldots, b_t)\) from the verifier \(V\)
- \(\omega\) that (together with the previous \(b_i (i < k)\)) determines \(R_k\) from the prover \(P\)

If \(Pr_{\omega,(b_i)}[V \text{ accepts } P] > 1/2^t + \varepsilon\),
there is a good fraction of \(\omega\) (more than \(\varepsilon/2\))
such that \(Pr_{(b_i)}[V \text{ accepts } S] \geq 1/2^t + \varepsilon/2\).
For such a good \(\omega\): a good node along the successful path
Fiat-Shamir Proof: Simulation

Honest Verifier

Simulation of a triplet: \((R = r^2 \mod n, b, s = x^b \times r \mod n) \)

- for \(r \overset{R}{\leftarrow} \mathbb{Z}_n^* \) and \(b \overset{R}{\leftarrow} \{0,1\} \)

Similar to: \((R = s^2 / X^b \mod n, b, s) \)

- for \(s \overset{R}{\leftarrow} \mathbb{Z}_n^* \) and \(b \overset{R}{\leftarrow} \{0,1\} \)

Simulation: random \(s \) and \(b \), and set \((R = s^2 / X^b \mod n, b, s) \)

Any Verifier

Simulation of a triplet: \((R = r^2 \mod n, b = V(\text{view}), s = x^b \times r \mod n) \)

- for \(r \overset{R}{\leftarrow} \mathbb{Z}_n^* \) only!

Similar to: \((R = s^2 / X^b \mod n, b = V(\text{view}), s) \) for \(s \overset{R}{\leftarrow} \mathbb{Z}_n^* \)

Simulation: random \(s \) and \(\beta \), and set \(R = s^2 / X^\beta \mod n \)

upon reception of \(b \): if \(b = \beta \), output \(s \), else rewind \(b \) and \(\beta \) independent: rewind once over 2 \(\implies \) linear time

RSA GQ Proof

[Guillou-Quisquater – Crypto ’87 – Eurocrypt ’88]

Setting: \(n = pq \) and an exponent \(e \)

- \(\mathcal{P} \) knows \(x \), such that \(X = x^e \mod n \) and wants to prove it to \(\mathcal{V} \)

- \(\mathcal{P} \) chooses \(r \overset{R}{\leftarrow} \mathbb{Z}_n^* \), sets and sends \(R = r^e \mod n \)

- \(\mathcal{V} \) chooses \(b \overset{R}{\leftarrow} \{0,1\}^t \) and sends it to \(\mathcal{P} \)

- \(\mathcal{P} \) computes and sends \(s = x^e \times r \mod n \)

- \(\mathcal{V} \) checks whether \(s^e \overset{?}{=} X^b R \mod n \)

For a fixed \(R \), two valid answers \(s \) and \(s' \) satisfy

\[
s^e / X^b = R = (s')^e / X^{b'} \mod n \implies X^{b'-b} = (s'/s)^e \mod n
\]

If \(e \) prime and bigger than \(2^t \), then \(e \) and \(b' - b \) are relatively prime:
Bezout: \(ue + v(b' - b) = 1 \implies X^{vb'(b'-b)} = (s'/s)^{ue} X^{1-ue} \mod n \)
As a consequence: \(X = ((s'/s)^v X^u)^e \implies \text{Special Soundness} \)

DL Schnorr Proof

[Schnorr – Eurocrypt ’89 - Crypto ’89]

Setting: \(\mathbb{G} = \langle g \rangle \) of order \(q \)

- \(\mathcal{P} \) knows \(x \), such that \(y = g^{-x} \) and wants to prove it to \(\mathcal{V} \)

- \(\mathcal{P} \) chooses \(k \overset{R}{\leftarrow} \mathbb{Z}_q^* \), sets and sends \(r = g^k \)

- \(\mathcal{V} \) chooses \(h \overset{R}{\leftarrow} \{0,1\}^t \) and sends it to \(\mathcal{P} \)

- \(\mathcal{P} \) computes and sends \(s = k + xh \mod q \)

- \(\mathcal{V} \) checks whether \(r \overset{?}{=} g^s y^h \)

For a fixed \(r \), two valid answers \(s \) and \(s' \) satisfy

\[
g^s y^h = r = g^{s'} y^{h'} \implies y^{h'-h} = g^{s-s'}
\]

And thus \(x = (s - s')(h' - h)^{-1} \mod q \implies \text{Special Soundness} \)

Outline

1 Zero-Knowledge Proofs of Knowledge
2 Signatures
 - From Identification to Signature
 - Forking Lemma
3 Zero-Knowledge Proofs of Membership
3-Signatures

3.1 Key Generation

3.2 Signature

3.3 Verification

Special Soundness

If one can answer to two different challenges \(h \neq h' \): \(s \) and \(s' \) for a unique commitment \(r \), one can extract \(x \).

Forking Lemma

The Forking Lemma shows an efficient reduction between the signature scheme and the identification scheme, but basically, if an adversary \(A \) produces, with probability \(\varepsilon \geq 2/2^k \), a valid signature \((m, r, h, s)\), then within \(T' = 2T \), one gets two valid signatures \((m, r, h, s)\) and \((m, r, h', s')\), with \(h \neq h' \) with probability \(\varepsilon' \geq \varepsilon^2/32q^3_H \).

The special soundness provides the secret key.
Proof of Membership

How do I prove that a word w lies in a language L: $P = (w, L)$?

- if $L \in BPP$: anybody can publicly check it
- if $L \in NP \setminus BPP$: a witness s can help prove that $w \in L$

If $w \notin L$:
- Proof (perfect soundness): a powerful A cannot cheat
- Argument (computational soundness): a limited A cannot cheat

Outline

1. Zero-Knowledge Proofs of Knowledge
2. Signatures
3. Zero-Knowledge Proofs of Membership

Proof of Membership

Soundness

$w \in L$... what does it mean?
- a witness exists, different from knowing it: no need of extractor

Zero-Knowledge

How do I prove there exists a witness s? I reveal it...
How can I do it without revealing any information?

Zero-knowledge:
- simulation
- indistinguishability
In a group $G = \langle g \rangle$ of prime order q, the DDH(g, h) assumption states it is hard to distinguish $L = (u = g^x, v = h^x)$ from $G^2 = (u = g^y, v = h^y)$.

- \mathcal{P} knows x, such that $(u = g^x, v = h^x)$ and wants to prove it to \mathcal{V}
- \mathcal{P} chooses $k \leftarrow \mathbb{Z}_q^*$, sets and sends $U = g^k$ and $V = h^k$
- \mathcal{V} chooses $h \leftarrow \{0, 1\}^t$ and sends it to \mathcal{P}
- \mathcal{P} computes and sends $s = k + xh \mod q$
- \mathcal{V} checks whether $U \overset{?}{=} g^s u^h$ and $V \overset{?}{=} h^s v^h$

For a fixed (U, V), two valid answers s and s' satisfy

$$g^s u^h = U = g^{s'} u^{h'} \quad h^s v^h = V = h^{s'} v^{h'}$$

- if one sets $y = (s - s')(h' - h)^{-1} \mod q \implies u = g^y$ and $v = h^y$

there exists a witness: Perfect Soundness