Efficient Smooth Projective Hash Functions and Applications

David Pointcheval

Joint work with Olivier Blazy, Céline Chevalier and Damien Vergnaud

Ecole Normale Supérieure

Motivation

Conditional Actions

An authority, or a server, may accept to process a request under some conditions only:

- Certification of public key: if the associated secret key is known
- Transmission of private information: if the receiver owns a credential
- Blind signature on a message: if the user knows the message (for the security proof)

→ Proof of validity/knowledge

Why should the authority learn the final status?

→ Implicit proof of validity/knowledge?

Certification of Public Keys: ZKPoK

In the registered key setting, a user can ask for the certification of a public key pk, but only if he knows the associated secret key sk:

With an Interactive Zero-Knowledge Proof of Knowledge

- the user U sends his public key pk;
- U and the authority A run a ZK proof of knowledge of sk
- if convinced, A
Certification of Public Keys: ZK and NIZK Proofs

In the registered key setting, a user can ask for the certification of a public key pk, but only if he knows the associated secret key sk:

With an Interactive Zero-Knowledge Proof of Membership

- the user U sends his public key pk, and an encryption C of sk;
- U and the authority A run a ZK proof that C contains the secret key sk associated to pk
- if convinced, A generates and sends the certificate Cert for pk

With a Non-Interactive Zero-Knowledge Proof of Membership

- the user U sends his public key pk, and an encryption C of sk together with a NIZK proof that C contains the secret key sk associated to pk
- if convinced, A generates and sends the certificate Cert for pk

Certification of Public Keys: SPHF

In the registered key setting, a user can ask for the certification of a public key pk, but only if he knows the associated secret key sk:

With a Smooth Projective Hash Function

The user U and the authority A use a smooth projective hash system for L: pk and C = \(\mathcal{E}_{pk}^r(\text{sk}; r) \) are associated to the same sk

- the user U sends his public key pk, and an encryption C of sk;
- A generates the certificate Cert for pk, and sends it, masked by Hash = Hash(hk; (pk, C))
- U computes Hash = ProjHash(hp; (pk, C), r)), and gets Cert

Implicit proof of knowledge of sk → the authority does not learn the final status!

Smooth Projective Hash Functions

Definition

[Cramer, Shoup, 2002] [Gennaro, Lindell, 2003]

Let \(\{H\} \) be a family of functions:

- \(X \), domain of these functions
- \(L \), subset (a language) of this domain

such that, for any point x in L, H(x) can be computed by using

- either a secret hashing key hk: \(H(x) = \text{Hash}_L(hk; x) \);
- or a public projected key hp: \(H(x) = \text{ProjHash}_L(hp; x, w) \)

While the former works for all points in the domain X, the latter works for \(x \in L \) only, and requires a witness w to this fact.

Public mapping \(\text{hk} \mapsto \text{hp} = \text{ProjKG}_L(hk, x) \)

Properties

For any \(x \in X \), \(H(x) = \text{Hash}_L(hk; x) \)
For any \(x \in L \), \(H(x) = \text{ProjHash}_L(hp; x, w) \) w witness that \(x \in L \)

Smoothness

For any \(x \notin L \), H(x) and hp are independent

Pseudo-Randomness

For any \(x \in L \), H(x) is pseudo-random, without a witness w

The latter property requires L to be a hard-partitioned subset of X:

Hard-Partitioned Subset

L is a hard-partitioned subset of X if it is computationally hard to distinguish a random element in L from a random element in \(X \setminus L \)
Examples

DH Language

\[L_{g,h} = \{(u, v)\mid (g, h, u, v) \text{ is DH tuple:}\]

\[\text{there exists } r \text{ such that } u = g^r \text{ and } v = h^r \]

→ Public-key Encryption with IND-CCA Security

Algorithms

- HashKG() = \(hk = (\gamma_1, \gamma_3) \xleftarrow{\$} \mathbb{Z}_p^2 \)
- ProjKG(hk) = \(hp = g^{\gamma_1} h^{\gamma_3} \)
- \(Hash(hk, (u, v)) = u^{\gamma_1} v^{\gamma_3} = hp^r = \text{ProjHash}(hp, (u, v); r) \)

Examples (Con’d)

Commitment/Encryption

\[L_{pk,m} = \{c\} \text{ where } c \text{ is an encryption of } m \text{ under } pk: \]

\[\text{there exists } r \text{ such that } c = \mathcal{E}_{pk}(m; r) \]

→ Password-Authenticated Key Exchange in the Standard Model

Labeled Encryption

\[L_{pk,(\mathcal{E},m)} = \{c\} \text{ where } c \text{ is an encryption of } m \text{ under } pk, \text{ with label } \mathcal{E} \]

→ PAKE in the UC Framework (passive corruptions)

Extractable/Equivocable Commitment

\[L_{pk,m} = \{c\} \text{ where } c \text{ is an equivocable/extractable commitment of } m \]

→ PAKE in the UC Framework with Adaptive Corruptions

Assumptions: **CDH and DLin**

- \(\mathbb{G} \) a cyclic group of prime order \(p \) (with or without bilinear map).

Definition (The Computational Diffie-Hellman problem (CDH))

For any generator \(g \xleftarrow{\$} \mathbb{G} \), and any scalars \(a, b \xleftarrow{\$} \mathbb{Z}_p^* \),

\(\text{given } (g, g^a, g^b) \), compute \(g^{ab} \).

Decision variant easy if a bilinear map is available.

Definition (Decision Linear Problem (DLin))

[Boneh, Boyen, Shacham, 2004]

For any generator \(g \xleftarrow{\$} \mathbb{G} \), and any scalars \(a, b, x, y, c \xleftarrow{\$} \mathbb{Z}_p^* \),

\(\text{given } (g, g^x, g^y, g^xa, g^yb, g^c) \), decide whether \(c = a + b \) or not.

Equivalently, given a reference triple \((u = g^x, v = g^y, g) \)

and a new triple \((U = u^a = g^{xa}, V = v^b = g^{yb}, T = g^c) \),

\(\text{decide whether } T = g^{a+b} \) or not (that is \(c = a + b \)).

\((U, V, T) \) is (or not) a linear tuple w.r.t. \((u, v, g) \)

General Tools: **Signature**

Definition (Signature Scheme)

\(\mathcal{S} = (\text{Setup}, \text{KeyGen}, \text{Sign}, \text{Verif}) \):

- \(\text{Setup}(1^k) \rightarrow \) global parameters \(\text{param} \)
- \(\text{KeyGen}(\text{param}) \rightarrow \) pair of keys \((sk, vk) \)
- \(\text{Sign}(sk, m; s) \rightarrow \) signature \(\sigma \), using the random coins \(s \)
- \(\text{Verif}(vk, m, \sigma) \rightarrow \) validity of \(\sigma \)

Definition (Security: EF-CMA)

[Goldwasser, Micali, Rivest, 1984]

An adversary should not be able to generate a new valid message-signature pair for a new message (Existential Forgery) even when having access to any signature of its choice (Chosen-Message Attack).
Signature: Waters

\[G = \langle g \rangle = \langle h \rangle \text{ group of order } p, \text{ and a bilinear } e : G \times G \rightarrow G_T \]

Waters Signature

For a k-bit message \(M = \langle M_i \rangle \), we define \(F(M) = u_0 \prod_{i=1}^{k} u_{M_i} \)

- Keys: \(vk = Y = g^x, \ sk = X = h^x \), for \(x \leftarrow Z_p \)
- Sign(\(sk = X, M; s \)), for \(M \in \{0, 1\}^k \) and \(s \leftarrow Z_p \)

\[\sigma = (\sigma_1 = X \cdot F(M)^s, \sigma_2 = g^{-s}) \]

Verif(\(vk = X, M, \sigma = (\sigma_1, \sigma_2) \)) checks whether

\[e(g, \sigma_1) \cdot e(F(M), \sigma_2) = e(Y, h) \]

Security

Waters signature reaches EF-CMA under the CDH assumption.

General Tools: Encryption

Definition (Encryption Scheme)

\(E = (\text{Setup}, \text{KeyGen}, \text{Encrypt}, \text{Decrypt}) : \)

- \(\text{Setup}(1^k) \rightarrow \) global parameters \(\text{param} \)
- \(\text{KeyGen}(\text{param}) \rightarrow \) pair of keys \((pk, dk) \)
- \(\text{Encrypt}(pk, m; r) \rightarrow \) ciphertext \(c \), using the random coins \(r \)
- \(\text{Decrypt}(dk, c) \rightarrow \) plaintext, or \(\perp \) if the ciphertext is invalid

Definition (Security: IND-CPA)

An adversary should not be able to distinguish
the encryption of \(m_0 \) from the encryption of \(m_1 \) (Indistinguishability) whereas it can encrypt any message of its choice (Chosen-Plaintext Attack).

Encryption: Linear

\[G = \langle g \rangle \text{ group of order } p \]

Linear Encryption

- Keys: \(dk = (x_1, x_2) \leftarrow Z_p^2, \ pk = (X_1 = g^{x_1}, X_2 = g^{x_2}) \)
- Encrypt(\(pk = (X_1, X_2), M; (r_1, r_2) \)), for \(M \in G \) and \((r_1, r_2) \leftarrow Z_p^2 \)

\[C = (C_1 = X_1^{r_1}, C_2 = X_2^{r_2}, C_3 = g^{r_1+r_2} \cdot M) \]

- Decrypt(\(dk = (x_1, x_2), C = (C_1, C_2, C_3) \)) \rightarrow \(M = C_3/C_1^{1/x_1} C_2^{1/x_2} \)

Security

Linear encryption reaches IND-CPA under the DLin assumption.

Encryption: Linear Cramer-Shoup

\[G \text{ group of order } p, \text{ with three independent generators } g_1, g_2, g_3 \in G \]

Linear Cramer-Shoup Encryption

- Keys: \(dk = (x_1, x_2, x_3, y_1, y_2, y_3, z_1, z_2, z_3) \leftarrow Z_p^9 \)

\[pk = \left(\begin{array}{c} g_1, \ c_1 = g_1^{x_1} g_3^{y_3}, \ c_2 = g_2^{x_2} g_3^{y_3}, \\ g_2, \ d_1 = g_1^{y_1} g_3^{y_3}, \ d_2 = g_2^{y_2} g_3^{y_3}, \\ g_3, \ h_1 = g_1^{y_3}, \ h_2 = g_2^{y_3} \end{array} \right) \]

- Encrypt(\(pk = (g_1, g_2, g_3, c_1, c_2, d_1, d_2, h_1, h_2, \mathcal{H}), m; (r, s) \)), for \(M \in G \):

\[C = (\tilde{u} = (u_1 = g_1^{t_1}, u_2 = g_2^{t_2}, u_3 = g_3^{t_3}), e = M \cdot h_1^s h_2^r, v = v_1^s v_2^r) \]

where \(v_1 = c_1^{d_1}, v_2 = c_2^{d_2}, \) and \(\mathcal{H}(\tilde{u}, e) \)

- Decrypt(\(dk = (x_1, x_2, x_3, y_1, y_2, y_3, z_1, z_2, z_3), C = (\tilde{u}, e, v) \))

one checks \(v = \tilde{u}^{x_1 + \xi y_1} u_2^{x_2 + \xi y_2} u_3^{x_3 + \xi y_3} \rightarrow M = e/u_1^{y_1} u_2^{y_2} u_3^{y_3} \)
Encryption: CCA Security

Definition (Security: IND-CCA) [Rackoff, Simon, 1991]
An adversary should not be able to distinguish the encryption of m_0 from the encryption of m_1 (Indistinguishability) whereas it can encrypt any message of its choice, and ask any decryption of its choice (Chosen-Ciphertext Attack).

Security: Non-Malleability [Dolev, Dwork, Naor, 1991]
IND-CCA implies Non-Malleability [Bellare, Desai, Pointcheval, Rogaway, 1998]

Security of the Linear Cramer-Shoup [Shacham, 2007]
Linear Cramer-Shoup encryption reaches IND-CCA under the DLin assumption

Groth-Sahai Proofs [Groth, Sahai, 2008]

For any pairing product equation of the form:

$$\prod e(A_i, X_i)^{\alpha_i} \prod e(X_i, X_j)^{\gamma_{ij}} = e(A, B),$$

where the $A, B, A_i \in G$ are constant group elements, $\alpha_i \in \mathbb{Z}_p$, and $\gamma_{ij} \in \mathbb{Z}_p$ are constant scalars, and X_i are unknowns

- either group elements in G,
- or of the form g^{ξ_i},

one can make a proof of knowledge of values for the X_i’s or ξ_i’s so that the equation is satisfied:

- one first commits these secret values using random coins,
- and then provides proofs, that are group elements, using the above random coins,

→ Under the DLin assumption: Efficient NIZK

Notations [Abdalla, Chevalier, Pointcheval, 2009]

We assume that G possesses a group structure, and we denote by \oplus the commutative law of the group (and by \ominus the opposite operation). We assume to be given two smooth hash systems SHS_1 and SHS_2, on the sets G_1 and G_2 (included in G) corresponding to the languages L_1 and L_2 respectively:

$$SHS_i = \{\text{HashKG}_i, \text{ProjKG}_i, \text{Hash}_i, \text{ProjHash}_i\}$$

Let $c \in X$, and r_1 and r_2 two random elements:

$$\begin{align*}
\text{hk}_1 &= \text{HashKG}_1(r_1) \\
\text{hk}_2 &= \text{HashKG}_2(r_2) \\
\text{hp}_1 &= \text{ProjKG}_1(\text{hk}_1, c) \\
\text{hp}_2 &= \text{ProjKG}_2(\text{hk}_2, c)
\end{align*}$$

Conjunction of Languages

A hash system for the language $L = L_1 \cap L_2$ is defined as follows, if $c \in L_1 \cap L_2$ and w_i is a witness that $c \in L_i$, for $i = 1, 2$:

$$\begin{align*}
\text{HashKG}_L(r = r_1 \parallel r_2) &= \text{hk} = (\text{hk}_1, \text{hk}_2) \\
\text{ProjKG}_L(\text{hk}, c) &= \text{hp} = (\text{hp}_1, \text{hp}_2) \\
\text{Hash}_L(\text{hk}, c) &= \text{Hash}_1(\text{hk}_1, c) \oplus \text{Hash}_2(\text{hk}_2, c) \\
\text{ProjHash}_L(\text{hp}, c; (w_1, w_2)) &= \text{ProjHash}_1(\text{hp}_1, c; w_1) \oplus \text{ProjHash}_2(\text{hp}_2, c; w_2)
\end{align*}$$

- if c is not in one of the languages, then the corresponding hash value is perfectly random: smoothness
- without one of the witnesses, then the corresponding hash value is computationally unpredictable: pseudo-randomness
Conjunctions and Disjunctions

Disjunction of Languages

A hash system for the language $L = L_1 \cup L_2$ is defined as follows, if $c \in L_1 \cup L_2$ and w is a witness that $c \in L_i$ for $i \in \{1, 2\}$:

$$\text{HashKG}_L(r = r_1 || r_2) = hk = (hk_1, hk_2)$$
$$\text{ProjKG}_L(hk, c) = hp = (hp_1, hp_2, hp_\Delta)$$
where $hp_\Delta = \text{Hash}_1(hk_1, c) \oplus \text{Hash}_2(hk_2, c)$

$$\text{Hash}_L(hk, c) = \text{Hash}_1(hk_1, c)$$

$$\text{ProjHash}_L(hp, c; w) = \text{ProjHash}(hp_1, c; w) \text{ if } c \in L_1$$

or $hp_\Delta \oplus \text{ProjHash}_2(hp_2, c; w) \text{ if } c \in L_2$

hp_Δ helps to compute the missing hash value, if and only if at least one can be computed.

Pairing Product Equations

$$A_i \in \mathbb{G} \ (i = 1, \ldots, m), \ c_i \in \mathbb{Z}_p \ (i = m + 1, \ldots, n), \text{ and } B \in \mathbb{G}_T$$

One wants to show its knowledge of $X_i \in \mathbb{G}$ (for $i = 1, \ldots, m$) and $Z_i \in \mathbb{G}_T$ (for $i = m + 1, \ldots, n$) that simultaneously satisfy

$$\left(\prod_{i=1}^{m} e(X_i, A_i) \right) \cdot \left(\prod_{i=m+1}^{n} Z_i^{c_i} \right) = B$$

One thus commits X_i (linear encryption) in \mathbb{G}, into \tilde{c}_i, for $i = 1, \ldots, m$, encrypted under $pk = (g, u_1, u_2)$, and Z_i (linear encryption) in \mathbb{G}_T, into \tilde{C}_i, for $i = m + 1, \ldots, n$, encrypted under $PK_i = (G, U_1, U_2)$ where $G = e(g, g), U_1 = e(u_1, g), U_2 = e(u_2, g)$.

Ecole Normale Supérieure

David Pointcheval

21/41Ecole Normale Supérieure

David Pointcheval

22/41

Pairing Product Equations

Commissents

$$\tilde{c}_i = (u_1^{r_i}, u_2^{s_i}, g^{r_i + s_i} \cdot X_i) \text{ for } i = 1, \ldots, m$$
$$\tilde{C}_i = (U_1^{r_i}, U_2^{s_i}, G^{r_i + s_i} \cdot Z_i) \text{ for } i = m + 1, \ldots, n$$

The \tilde{c}_i's can be transposed into \mathbb{G}_T, for $i = 1, \ldots, m$:

$$\tilde{C}_i = (U_1^{r_i}, U_2^{s_i}, G^{r_i + s_i} \cdot Z_i)$$

where $U_{i,1} = e(u_1, A_i), U_{i,2} = e(u_2, A_i), G_i = e(g, A_i)$

but also, $Z_i = e(X_i, A_i)$, for $i = 1, \ldots, m$

We also denote $U_{i,1} = U_1, U_{i,2} = U_2, G_i = G$, for $i = m + 1, \ldots, n$

Smooth Projective Hash Function

$$(\lambda, (\eta_i, \theta_i)_{i=1,\ldots,n}) \leftarrow \mathbb{Z}_p^{2n+1}, \text{ one sets } hk_i = (\eta_i, \theta_i, \lambda)$$

and $hp_i = (u_1^{\eta_i} g^{\theta_i}, u_2^{\eta_i} g^{\theta_i} \lambda) \in \mathbb{G}^2$

where $\tilde{c}_i = 1$ for $i = 1, \ldots, m$

The associated projection keys in \mathbb{G}_T are

$$HP_i = (e(hp_{i,1}, A_i), e(hp_{i,2}, A_i)), \text{ for } i = 1, \ldots, n,$$

where $A_i = g$ for $i = m + 1, \ldots, n$.

The hash value is

$$H = \left(\prod_{i=1}^{n} C_{i,1}^{s_i} \cdot C_{i,2}^{s_i} \cdot C_{i,3}^{\lambda} \right) \times B^{-\lambda}$$

$$= \left(\prod_{i=1}^{m} HP_{i,1}^{\eta_i} HP_{i,2}^{\eta_i} \right) \times \left(\prod_{i=1}^{m} e(X_i, A_i) \prod_{i=m+1}^{n} Z_i^{c_i} / B \right)^{\lambda}$$

Equality indeed holds if and only if the equation is satisfied.
Multiple Equations

We have X_i committed in G, in \tilde{G}_i, for $i = 1, \ldots, m$ and Z_i committed in G_T, in \tilde{C}_i, for $i = m + 1, \ldots, n$. We want to show they simultaneously satisfy

$$\left(\prod_{i \in A_k} e(X_i, A_{k,i}) \right) \cdot \left(\prod_{i \in B_k} Z_i^{\zeta_{k,i}} \right) = B_k, \text{ for } k = 1, \ldots, t$$

where $A_{k,i} \in G$, $B_k \in G_T$, and $\zeta_{k,i} \in \mathbb{Z}_p$ are public, as well as $A_k \subseteq \{1, \ldots, m\}$ and $B_k \subseteq \{m+1, \ldots, n\}$

This is a conjunction of languages

\rightarrow Similar Hash Proofs on Linear Cramer-Shoup Commitments

Blind RSA

The easiest way for blind signatures, is to blind the message: To get an RSA signature on m under public key (n, e),

- The user computes a blind version of the hash value: $M = H(m)$ and $M' = M \cdot r^e \mod n$
- The signer signs M' into $\sigma' = M'^d \mod n$
- The user unblinds the signature: $\sigma = \sigma'/r \mod n$

Indeed,

$$\sigma = \sigma'/r = M'^d/r = (M \cdot r^e)^d/r = M^d \cdot r/r = M^d \mod n$$

\rightarrow Proven under the One-More RSA

[Blay, Naemi, Pointcheval, Semanko, 2001]

Blind Signatures

Randomizable Commutative Signature/Encryption

[Blay, Fuchs, Pointcheval, Vergnaud, 2011]

- The user "blinds" M into C, under random coins r
- The signer signs C into $\sigma(C)$, under random coins s
- The user "unblinds" the signature $\sigma(M)$, granted the coins r

Weakness

The signer can recognize his signature: the random coins s in $\sigma(M)$

\rightarrow Randomizable Signature

Security

- Encryption hides M (blinding of the message)
- Re-randomization hides $\sigma(M)$ (blinding of the signature)
Blind Signatures

Such a primitive can be used for a Waters Blind Signature, by encrypting $F(M)$:

- Unforgeability: one-more forgery would imply a forgery against the signature scheme (CDH assumption)
- Blindness: a distinguisher would break indistinguishability of the encryption scheme (DLin assumption)

Efficiency

One obtains a plain Waters Signature

Limitation

A proof of knowledge of M in $C = \mathcal{E}_{pk}(F(M))$ has to be sent

Blind Signature

In order to get the ℓ-bit message $M = \{M_i\}$ blindly signed:

With Groth-Sahai NIZKP

- the user U encrypts M into C_1, and $F(M)$ into C_2;
- U produces a Groth-Sahai NIZK Proof that C_1 and C_2 contain the same M (bit-by-bit proof)
- if convinced, A generates a signature on C_2
- granted the commutativity, U decrypts it into a Waters signature of M, and eventually re-randomizes the signature

$9\ell + 24$ group elements have to be sent:

→ Why NIZK, since there are already two flows?

Blind Signature

Oblivious Transfers

In order to get the ℓ-bit message $M = \{M_i\}$ blindly signed:

With SPHF

The user U and the authority A use a smooth projective hash system for L: $C_1 = \mathcal{E}_{pk_1}(M; r)$ and $C_2 = \mathcal{E}_{pk_2}(F(M); s)$ contain the same M

- U sends encryptions of M, into C_1, and $F(M)$, into C_2;
- A generates
 - a signature σ on C_2,
 - masks it using $\text{Hash} = \text{Hash}(hk; (C_1, C_2))$
- U computes $\text{Hash} = \text{ProjHash}(hp; (C_1, C_2), (r, s))$, and gets σ. Granted the commutativity, U decrypts it into a Waters signature of M, and eventually re-randomizes it

Such a protocol requires $8\ell + 12$ group elements in total only!
Oblivious Signature-Based Envelope

A sender \(S \) wants to send a message \(M \) to \(U \) such that

- \(U \) gets \(M \) if and only if it owns a signature \(\sigma \) on a message \(m \) valid under \(vk \)
- \(S \) does not learn whereas \(U \) gets the message \(M \) or not

Correctness: if \(U \) owns a valid signature, he learns \(M \)

Security Notions

- Oblivious: \(S \) does not know whether \(U \) owns a valid signature (and thus gets the message)
- Semantic Security: \(U \) does not learn any information about \(M \) if he does not own a valid signature

A New OSBE

[Blazy, Pointcheval, Vergnaud, 2012]

\(S \) wants to send a message \(M \) to \(U \), if \(U \) owns a valid signature \(\sigma \) on \(m \) under \(vk \):

- With a Smooth Projective Hash Function

The user \(U \) and the sender \(S \) use a smooth projective hash system for \(L \): \(C = E_{pk}(\sigma;r) \) contains a valid signature \(\sigma \) of \(m \) under \(vk \)

- the user \(U \) sends an encryption \(C \) of \(\sigma \);
- \(S \) generates a \(h \) and the associated \(hp \), computes \(Hash = Hash(hk; C) \), and sends \(hp \) together with \(c = M \oplus Hash \);
- \(U \) computes \(Hash = \text{ProjHash}(hp; C; r) \), and gets \(M \).
General Construction

- The user U sends a commitment C of a word w
- S generates a hk and the associated hp, computes $Hash = Hash(hk; C)$, and sends hp together with $c = M \oplus Hash$;
- U computes $Hash = ProjHash(hp; C, r)$, and gets M.

U gets M iff w is in the appropriate language:
- a signature on a public message: OSBE
- a signature on a private message: Anonymous Credential
- a private message (low entropy): Password

Password-based Authenticated Key Exchange

GL – Generic Approach

Additional tricks are required for the security!

- Alice
 - $C_1 = Commit(pw; r_1)$
 - $C_2 = Commit(pw; r_2)$
- Bob
 - hk_1, hp_1 on C_1
 - hk_2, hp_2 on C_2

$$
ProjHash(hp_1; C_1, r_1) = H_1 = Hash(hk_1; C_1) \\
Hash(hk_2; C_2) = H_2 = ProjHash(hp_2; C_2, r_2)
$$

$$
K = H_1 \cdot H_2
$$

The language is: valid commitments of pw

Our Construction

Language-based Authenticated Key Exchange

Our Construction

- With a Linear Cramer-Shoup UC commitment
- Using the GL approach

\rightarrow UC Secure LAKE

Languages

- Password: PAKE secure under DLin
- Waters Signature: Secret Handshake, Credentials secure under DLin + CDH

Any Linear Pairing Product Equation Systems in both G and G_T
Conclusion

Smooth Projective Hash Functions can be used as implicit proofs of knowledge or membership.

Various Applications
- IND-CCA [Cramer, Shoup, 2002]
- PAKE [Gennaro, Lindell, 2003]
- Certification of Public Keys [Abdalla, Chevalier, Pointcheval, 2009]

Privacy-preserving protocols
- Blind signatures [Blazy, Pointcheval, Vergnaud, 2012]
- Oblivious Signature-Based Envelope
 → Round optimal!

More general: Language-based Authenticated Key Exchange