Efficient Smooth Projective Hash Functions and Applications

David Pointcheval

Joint work with Olivier Blazy, Céline Chevalier and Damien Vergnaud

Ecole Normale Supérieure

Motivation

Certification of Public Keys: ZKPoK

In the registered key setting, a user can ask for the certification of a public key pk, but only if he knows the associated secret key sk:

With an Interactive Zero-Knowledge Proof of Knowledge

- the user U sends his public key pk;
- U and the authority A run a ZK proof of knowledge of sk
- if convinced, A generates and sends the certificate Cert for pk

For extracting sk (required in some security proofs), the reduction has to make a rewind (that is not always allowed: e.g., in the UC Framework)

And the authority learns the final status!
Certification of Public Keys: ZK and NIZK Proofs

In the registered key setting, a user can ask for the certification of a public key \(pk \), but only if he knows the associated secret key \(sk \):

With an Interactive Zero-Knowledge Proof of Membership
- the user \(U \) sends his public key \(pk \), and an encryption \(C \) of \(sk \);
- \(U \) and the authority \(A \) run a ZK proof that \(C \) contains the secret key \(sk \) associated to \(pk \);
- if convinced, \(A \) generates and sends the certificate \(Cert \) for \(pk \).

With a Non-Interactive Zero-Knowledge Proof of Membership
- the user \(U \) sends his public key \(pk \), and an encryption \(C \) of \(sk \) together with a NIZK proof that \(C \) contains the secret key \(sk \) associated to \(pk \);
- if convinced, \(A \) generates and sends the certificate \(Cert \) for \(pk \).

Certification of Public Keys: SPHF

In the registered key setting, a user can ask for the certification of a public key \(pk \), but only if he knows the associated secret key \(sk \):

With a Smooth Projective Hash Function
- The user \(U \) and the authority \(A \) use a smooth projective hash system for \(L: pk \) and \(C = \varepsilon_{pk}(sk; r) \) are associated to the same \(sk \);
- the user \(U \) sends his public key \(pk \), and an encryption \(C \) of \(sk \);
- \(A \) generates the certificate \(Cert \) for \(pk \), and sends it, masked by \(Hash = \text{Hash}(hk; (pk, C)) \);
- \(U \) computes \(Hash = \text{ProjHash}(hp; (pk, C), r) \), and gets Cert.

Implicit proof of knowledge of \(sk \)
\[\rightarrow \quad \text{the authority does not learn the final status!} \]
Examples

DH Language [Cramer, Shoup, 2002]

\[L_{gh} = \{(u, v)\} \text{ where } (g, h, u, v) \text{ is DH tuple:} \\
\text{there exists } r \text{ such that } u = g^r \text{ and } v = h^r \]

→ Public-key Encryption with IND-CCA Security

General Tools: Signature

Definition (Signature Scheme)

\[S = (\text{Setup}, \text{KeyGen}, \text{Sign}, \text{Verif}): \]

\[\text{Setup}(1^k) \rightarrow \text{global parameters } \text{param} \]

\[\text{KeyGen}(\text{param}) \rightarrow \text{pair of keys } (sk, vk) \]

\[\text{Sign}(sk, m; s) \rightarrow \text{signature } \sigma, \text{using the random coins } s \]

\[\text{Verif}(vk, m, \sigma) \rightarrow \text{validity of } \sigma \]

Definition (Security: EF-CMA) [Goldwasser, Micali, Rivest, 1984]

An adversary should not be able to generate a new valid message-signature pair for a new message (Existential Forgery)

\[(U, V, T) \text{ is (or not) a linear tuple w.r.t. } (u, v, g) \]

An even when having access to any signature of its choice (Chosen-Message Attack).

Applications

Commitment/Encryption [Gennaro, Lindell, 2003]

\[L_{pk, m} = \{c\} \text{ where } c \text{ is an encryption of } m \text{ under } pk: \\
\text{there exists } r \text{ such that } c = \mathcal{E}_{pk}(m; r) \]

→ Password-Authenticated Key Exchange in the Standard Model

Labeled Encryption [Canetti, Halevi, Katz, Lindell, MacKenzie, 2005]

\[L_{pk(\ell), m} = \{c\} \text{ where } c \text{ is an encryption of } m \text{ under } pk, \text{ with label } \ell \]

→ PAKE in the UC Framework (passive corruptions)

Extractable/Equivocable Commitment [Abdalla, Chevalier, Pointcheval, 2009]

\[L_{pk, m} = \{c\} \text{ where } c \text{ is an equivocable/extractable commitment of } m \]

→ PAKE in the UC Framework with Adaptive Corruptions

Assumptions: CDH and DLin

\(G \) a cyclic group of prime order \(p \) (with or without bilinear map).

Definition (The Computational Diffie-Hellman problem (CDH))

For any generator \(g \overset{\$}{\leftarrow} G \), and any scalars \(a, b \overset{\$}{\leftarrow} \mathbb{Z}_p^* \),

\[\text{given } (g, g^a, g^b), \text{ compute } g^{ab}. \]

Decisional variant easy if a bilinear map is available.

Definition (Decision Linear Problem (DLin)) [Boneh, Boyen, Shacham, 2004]

For any generator \(g \overset{\$}{\leftarrow} G \), and any scalars \(a, b, x, y, c \overset{\$}{\leftarrow} \mathbb{Z}_p^* \),

\[\text{given } (g, g^x, g^y, g^{xa}, g^{yb}, g^c), \text{ decide whether } c = a + b \text{ or not.} \]

Equivalently, given a reference triple \((u = g^x, v = g^y, g) \)

\[\text{and a new triple } (U = u^a = g^{xa}, V = v^b = g^{yb}, T = g^c), \]

\[\text{decide whether } T = g^{a+b} \text{ or not (that is } c = a + b). \]

\[(U, V, T) \text{ is (or not) a linear tuple w.r.t. } (u, v, g) \]
Signature: Waters

\[G = \langle g \rangle \] group of order \(p \), and a bilinear map \(e : G \times G \to G_T \)

Waters Signature

For a \(k \)-bit message \(M = (M_i) \), we define \(\mathcal{F}(M) = u_0 \prod_{i=1}^{k} u_i^{M_i} \)

- Keys: \(vk = Y = g^x \), \(sk = X = h^x \), for \(x \overset{\$}{\leftarrow} \mathbb{Z}_p \)
- \(\text{Sign}(sk = X, M; s) \), for \(M \in \{0, 1\}^k \) and \(s \overset{\$}{\leftarrow} \mathbb{Z}_p \)
 \[\sigma = (\sigma_1 = X \cdot \mathcal{F}(M)^s, \sigma_2 = g^{-s}) \]
- \(\text{Verify}(vk = X, M, \sigma = (\sigma_1, \sigma_2)) \) checks whether
 \[e(g, \sigma_1) \cdot e(\mathcal{F}(M), \sigma_2) = e(Y, h) \]

Security

Waters signature reaches EF-CMA under the CDH assumption

General Tools: Encryption

Definition (Encryption Scheme)

\[\mathcal{E} = (\text{Setup}, \text{KeyGen}, \text{Encrypt}, \text{Decrypt}) : \]

- \(\text{Setup}(1^k) \to \) global parameters \(\text{param} \)
- \(\text{KeyGen}(\text{param}) \to \) pair of keys \((pk, dk) \)
- \(\text{Encrypt}(pk, m; r) \to \) ciphertext \(c \), using the random coins \(r \)
- \(\text{Decrypt}(dk, c) \to \) plaintext, or \(\bot \) if the ciphertext is invalid

Definition (Security: IND-CPA)

An adversary should not be able to distinguish the encryption of \(m_0 \) from the encryption of \(m_1 \) (Indistinguishability) whereas it can encrypt any message of its choice (Chosen-Plaintext Attack).

Encryption: Linear

\[G = \langle g \rangle \] group of order \(p \)

Linear Encryption

- Keys: \(dk = (x_1, x_2) \overset{\$}{\leftarrow} \mathbb{Z}_p^2 \), \(pk = (X_1 = g^{x_1}, X_2 = g^{x_2}) \)
- \(\text{Encrypt}(pk = (X_1, X_2), M; (r_1, r_2)) \), for \(M \in G \) and \((r_1, r_2) \overset{\$}{\leftarrow} \mathbb{Z}_p^2 \)
 \[C = (C_1 = X_1^{r_1}, C_2 = X_2^{r_2}, C_3 = g^{r_1 + r_2} \cdot M) \]
- \(\text{Decrypt}(dk = (x_1, x_2), C = (C_1, C_2, C_3)) \to M = C_3 / C_1^{x_1} C_2^{x_2} \)

Security

Linear encryption reaches IND-CPA under the DLin assumption
Encryption: CCA Security

Definition (Security: IND-CCA) [Rackoff, Simon, 1991]
An adversary should not be able to distinguish the encryption of m_0 from the encryption of m_1 (Indistinguishability) whereas it can encrypt any message of its choice, and ask any decryption of its choice (Chosen-Ciphertext Attack).

Security: Non-Malleability [Dolev, Dwork, Naor, 1991]
IND-CCA implies Non-Malleability [Bellare, Desai, Pointcheval, Rogaway, 1998]

Security of the Linear Cramer-Shoup [Shacham, 2007]
Linear Cramer-Shoup encryption reaches IND-CCA under the $DLin$ assumption

Groth-Sahai Methodology

For any pairing product equation of the form:

$$\prod e(A_i, X_i)^{\alpha_i} \prod e(X_i, Y_j)^{\gamma_{ij}} = e(A, B),$$

where the $A, B, A_i \in G$ are constant group elements, $\alpha_i \in \mathbb{Z}_p$, and $\gamma_{ij} \in \mathbb{Z}_p$ are constant scalars, and X_i are unknowns

- either group elements in G,
- or of the form g^{γ_i},

one can make a proof of knowledge of values for the X_i's or X_i's so that the equation is satisfied:

- one first commits these secret values using random coins,
- and then provides proofs, that are group elements, using the above random coins,

\rightarrow Under the $DLin$ assumption: Efficient NIZK

Conjunction of Languages

A hash system for the language $L = L_1 \cap L_2$ is defined as follows, if $c \in L_1 \cap L_2$ and w_i is a witness that $c \in L_i$, for $i = 1, 2$:

$$HashKG_L(r = r_1 || r_2) = hk = (hk_1, hk_2)$$
$$ProjKG_L(hk, c) = hp = (hp_1, hp_2)$$
$$Hash_L(hk, c) = Hash_1(hk_1, c) \oplus Hash_2(hk_2, c)$$
$$ProjHash_L(hp, c; (w_1, w_2)) = ProjHash_1(hp_1, c; w_1) \oplus ProjHash_2(hp_2, c; w_2)$$

- if c is not in one of the languages, then the corresponding hash value is perfectly random: smoothness
- without one of the witnesses, then the corresponding hash value is computationally unpredictable: pseudo-randomness

Notations [Abdalla, Chevalier, Pointcheval, 2009]

We assume that G possesses a group structure, and we denote by \oplus the commutative law of the group (and by \ominus the opposite operation).

We assume to be given two smooth hash systems SHS_1 and SHS_2, on the sets G_1 and G_2 (included in G) corresponding to the languages L_1 and L_2 respectively:

$$SHS_i = \{HashKG_i, ProjKG_i, Hash_i, ProjHash_i\}$$

Let $c \in X$, and r_1 and r_2 two random elements:

$$hk_1 = HashKG_1(r_1) \quad hk_2 = HashKG_2(r_2)$$
$$hp_1 = ProjKG_1(hk_1, c) \quad hp_2 = ProjKG_2(hk_2, c)$$
Conjunctions and Disjunctions

Disjunction of Languages

A hash system for the language $L = L_1 \cup L_2$ is defined as follows, if $c \in L_1 \cup L_2$ and w is a witness that $c \in L_i$ for $i \in \{1, 2\}$:

$$\text{HashKG}_L(r = r_1 || r_2) = h_k = (hk_1, hk_2)$$

$$\text{ProjKG}_L(h_k, c) = h_p = (hp_1, hp_2, hp_\Delta)$$

where $hp_\Delta = \text{Hash}_1(hk_1, c) \oplus \text{Hash}_2(hk_2, c)$

$$\text{Hash}_L(h_k, c) = \text{Hash}_1(hk_1, c)$$

$$\text{ProjHash}_L(hp, c; w) = \text{ProjHash}(hp_1, c; w)$$ if $c \in L_1$

$$\text{ProjHash}_L(hp, c; w) = \text{ProjHash}_L(hp_2, c; w)$$ if $c \in L_2$

hp_Δ helps to compute the missing hash value, if and only if at least one can be computed

$$\bar{c}_i = (u_i^1, u_i^2, g_i^\delta \cdot X_i) \quad \text{for } i = 1, \ldots, m$$

$$\bar{C}_i = (U_i^1, U_i^2, G_i^\delta \cdot Z_i) \quad \text{for } i = m + 1, \ldots, n$$

The \bar{c}_i’s can be transposed into \mathbb{G}_T, for $i = 1, \ldots, m$:

$$\bar{c}_i = (U_i^1, U_i^2, G_i^\delta \cdot Z_i)$$

where $U_{i,1} = e(u_1, A_i), U_{i,2} = e(u_2, A_i), G_i = e(g, A_i)$,

but also, $Z_i = e(X_i, A_i)$, for $i = 1, \ldots, m$

We also denote $U_{i,1} = U_1, U_{i,2} = U_2, G_i = G$, for $i = m + 1, \ldots, n$

ECO Normale Superieure

Pairing Product Equations

Commitments

$$\bar{c}_i = (u_i^1, u_i^2, g_i^\delta \cdot X_i) \quad \text{for } i = 1, \ldots, m$$

$$\bar{C}_i = (U_i^1, U_i^2, G_i^\delta \cdot Z_i) \quad \text{for } i = m + 1, \ldots, n$$

The \bar{c}_i’s can be transposed into \mathbb{G}_T, for $i = 1, \ldots, m$:

$$\bar{c}_i = (U_i^1, U_i^2, G_i^\delta \cdot Z_i)$$

where $U_{i,1} = e(u_1, A_i), U_{i,2} = e(u_2, A_i), G_i = e(g, A_i)$,

but also, $Z_i = e(X_i, A_i)$, for $i = 1, \ldots, m$

We also denote $U_{i,1} = U_1, U_{i,2} = U_2, G_i = G$, for $i = m + 1, \ldots, n$

Smooth Projective Hash Function

$$(\lambda, (\eta_i, \theta_i)_{i=1,\ldots,n}) \xleftarrow{\$} \mathbb{Z}_p^{2n+1}, \text{ one sets } h_{k_i} = (\eta_i, \theta_i, \lambda)$$

and $hp_i = (u_i^1 g_i^\lambda, u_i^2 g_i^\lambda) \in \mathbb{G}_2$

where $\zeta_i = 1$ for $i = 1, \ldots, m$.

The associated projection keys in \mathbb{G}_T are

$$\text{HP}_i = e(hp_{i,1}, A_i), e(hp_{i,2}, A_i)), \text{ for } i = 1, \ldots, n,$$

where $A_i = g$ for $i = m + 1, \ldots, n$.

The hash value is

$$H = \left(\prod_{i=1}^{n} C_{i,1}^{\eta_i} \cdot C_{i,2}^{\theta_i} \cdot C_{i,3}^{\zeta_i} \right) \times B^{-\lambda}$$

$$= \left(\prod_{i=1}^{n} \text{HP}_{i,1} \text{HP}_{i,2} \right) \times \left(\prod_{i=1}^{m} e(X_i, A_i) \prod_{i=m+1}^{n} Z_i^{\zeta_i} / B \right)^{\lambda}$$

Equality indeed holds if and only if the equation is satisfied

Ecole Normale Superieure

Pairing Product Equations

Commitments

$$\bar{c}_i = (u_i^1, u_i^2, g_i^\delta \cdot X_i) \quad \text{for } i = 1, \ldots, m$$

$$\bar{C}_i = (U_i^1, U_i^2, G_i^\delta \cdot Z_i) \quad \text{for } i = m + 1, \ldots, n$$

The \bar{c}_i’s can be transposed into \mathbb{G}_T, for $i = 1, \ldots, m$:

$$\bar{c}_i = (U_i^1, U_i^2, G_i^\delta \cdot Z_i)$$

where $U_{i,1} = e(u_1, A_i), U_{i,2} = e(u_2, A_i), G_i = e(g, A_i)$,

but also, $Z_i = e(X_i, A_i)$, for $i = 1, \ldots, m$

We also denote $U_{i,1} = U_1, U_{i,2} = U_2, G_i = G$, for $i = m + 1, \ldots, n$

Smooth Projective Hash Function

$$(\lambda, (\eta_i, \theta_i)_{i=1,\ldots,n}) \xleftarrow{\$} \mathbb{Z}_p^{2n+1}, \text{ one sets } h_{k_i} = (\eta_i, \theta_i, \lambda)$$

and $hp_i = (u_i^1 g_i^\lambda, u_i^2 g_i^\lambda) \in \mathbb{G}_2$

where $\zeta_i = 1$ for $i = 1, \ldots, m$.

The associated projection keys in \mathbb{G}_T are

$$\text{HP}_i = e(hp_{i,1}, A_i), e(hp_{i,2}, A_i)), \text{ for } i = 1, \ldots, n,$$

where $A_i = g$ for $i = m + 1, \ldots, n$.

The hash value is

$$H = \left(\prod_{i=1}^{n} C_{i,1}^{\eta_i} \cdot C_{i,2}^{\theta_i} \cdot C_{i,3}^{\zeta_i} \right) \times B^{-\lambda}$$

$$= \left(\prod_{i=1}^{n} \text{HP}_{i,1} \text{HP}_{i,2} \right) \times \left(\prod_{i=1}^{m} e(X_i, A_i) \prod_{i=m+1}^{n} Z_i^{\zeta_i} / B \right)^{\lambda}$$

Equality indeed holds if and only if the equation is satisfied

Ecole Normale Superieure

Pairing Product Equations
Multiple Equations

We have X_i committed in \mathbb{G}, in \tilde{C}_i, for $i = 1, \ldots, m$ and Z_i committed in \mathbb{G}_T, in \tilde{C}_i, for $i = m + 1, \ldots, n$. We want to show they simultaneously satisfy

$$\left(\prod_{i \in A_k} e(X_i, A_{k,i}) \right) \cdot \left(\prod_{i \in B_k} Z_i^{k,i} \right) = B_k, \text{ for } k = 1, \ldots, t$$

where $A_{k,i}, B_k \in \mathbb{G}_T$, and $\zeta_{k,i} \in \mathbb{Z}_p$ are public, as well as $A_k \subseteq \{1, \ldots, m\}$ and $B_k \subseteq \{m + 1, \ldots, n\}$

This is a conjunction of languages

→ Similar Hash Proofs on Linear Cramer-Shoup Commitments

Blind RSA

The easiest way for blind signatures, is to blind the message:

To get an RSA signature on m under public key (n, e),

- The user computes a blind version of the hash value: $M = H(m)$ and $M' = M \cdot r^e \mod n$
- The signer signs M' into $\sigma' = M'^d \mod n$
- The user unblinds the signature: $\sigma = \sigma'/r \mod n$

Indeed,

$$\sigma = \sigma'/r = M'^d/r = (M \cdot r^e)^d/r = M^d \cdot r/r = M^d \mod n$$

→ Proven under the One-More RSA

[Blazy, Namprempre, Pointcheval, Semanko, 2001]

Randomizable Commutative Signature/Encryption

Randomizable Commutative Signature/Encryption

- The user "blinds" M into C, under random coins r
- The signer signs C into $\sigma(C)$, under random coins s
- The user "unblinds" the signature $\sigma(M)$, granted the coins r

Weakness

The signer can recognize his signature: the random coins s in $\sigma(M)$

→ Randomizable Signature

Security

- Encryption hides M (blinding of the message)
- Re-randomization hides $\sigma(M)$ (blinding of the signature)
Blind Signatures

Such a primitive can be used for a Waters Blind Signature, by encrypting $\mathcal{F}(M)$:

- Unforgeability: one-more forgery would imply a forgery against the signature scheme (CDH assumption)
- Blindness: a distinguisher would break indistinguishability of the encryption scheme ($DLin$ assumption)

Efficiency

One obtains a plain Waters Signature

Limitation

A proof of knowledge of M in $C = E_{pk}(\mathcal{F}(M))$ has to be sent

Blind Signature

In order to get the ℓ-bit message $M = \{M_i\}$ blindly signed:

With Groth-Sahai NIZKP

- the user U encrypts M into C_1, and $\mathcal{F}(M)$ into C_2;
- U produces a Groth-Sahai NIZK Proof that C_1 and C_2 contain the same M (bit-by-bit proof)
- if convinced, A generates a signature on C_2
- granted the commutativity, U decrypts it into a Waters signature of M, and eventually re-randomizes the signature

9ℓ + 24 group elements have to be sent:

→ It was the most efficient blind signature up to 2011

Why NIZK, since there are already two flows?

Oblivious Transfers

In order to get the ℓ-bit message $M = \{M_i\}$ blindly signed:

With SPHF

The user U and the authority A use a smooth projective hash system for L: $C_1 = E_{pk_1}(M; r)$ and $C_2 = E_{pk_2}(\mathcal{F}(M); s)$ contain the same M

- U sends encryptions of M, into C_1, and $\mathcal{F}(M)$, into C_2;
- A generates
 - a signature σ on C_2,
 - masks it using $\text{Hash} = \text{Hash}(hk; (C_1, C_2))$
- U computes $\text{Hash} = \text{ProjHash}(hp; (C_1, C_2), (r, s))$, and gets σ. Granted the commutativity, U decrypts it into a Waters signature of M, and eventually re-randomizes it

Such a protocol requires $8\ell + 12$ group elements in total only!
A sender S wants to send a message M to U such that

- U gets M if and only if it owns a signature σ on a message m valid under vk
- S does not learn whereas U gets the message M or not

Correctness: if U owns a valid signature, he learns M

Security Notions

- **Oblivious:** S does not know whether U owns a valid signature (and thus gets the message);
- **Semantic Security:** U does not learn any information about M if he does not own/use a valid signature

A New OSBE

[Blazy, Pointcheval, Vergnaud, 2012]

S wants to send a message M to U, if U owns/uses a valid signature σ on m under vk:

With a Smooth Projective Hash Function

The user U and the sender S use a smooth projective hash system for L: $C = E_{sk}(\sigma; r)$ contains a valid signature σ of m under vk

- The user U sends an encryption C of σ;
- S generates a hk and the associated hp, computes $\text{Hash} = \text{Hash}(hk; C)$, and sends hp together with $c = M \oplus \text{Hash}$;
- U computes $\text{Hash} = \text{ProjHash}(hp; C, r)$, and gets M.

Security Properties

- **Oblivious (even w.r.t. the Authority):**
 - IND-CPA of the encryption scheme (Hard-partitioned Subset of the SPHF);
- **Semantic Security:** Smoothness of the SPHF
- **Semantic Security w.r.t. the Authority:**
 - Pseudo-randomness of the SPHF

Semantic Security w.r.t. the Authority requires one interaction

→ round-optimal

Standard model with Waters Signature + Linear Encryption

→ CDH and DLin assumptions
General Construction

- The user U sends a commitment C of a word w.
- S generates a hk and the associated hp, computes $\text{Hash} = \text{Hash}(hk; C)$, and sends hp together with $c = M \oplus \text{Hash}$.
- U computes $\text{Hash} = \text{ProjHash}(hp; C, r)$, and gets M.

U gets M iff w is in the appropriate language:
- a signature on a public message: OSBE
- a signature on a private message: Anonymous Credential
- a private message (low entropy): Password

Password-based Authenticated Key Exchange

Definition

- Alice owns a word w_1 is a language $L_1(Pub_1, Priv_1)$;
- Bob owns a word w_2 is a language $L_2(Pub_2, Priv_2)$;
- If Alice and Bob agree on the languages, and actually own valid words (implicit authentication), they will agree on a common session key (semantic security).

Our Construction

- With a Linear Cramer-Shoup UC commitment [Lindell, 2011]
- Using the GL approach [Gennaro, Lindell, 2003]

Languages

- Password: PAKE secure under $DLin$
- Waters Signature: Secret Handshake, Credentials secure under $DLin + CDH$
- Any Linear Pairing Product Equation Systems in both G and GT
Smooth Projective Hash Functions can be used as implicit proofs of knowledge or membership.

Various Applications
- IND-CCA [Cramer, Shoup, 2002]
- PAKE [Gennaro, Lindell, 2003]
- Certification of Public Keys [Abdalla, Chevalier, Pointcheval, 2009]

Privacy-preserving protocols
- Blind signatures [Blazy, Pointcheval, Vergnaud, 2012]
- Oblivious Signature-Based Envelope
 → Round optimal!

More general: Language-based Authenticated Key Exchange