The Game-based Methodology for Computational Security Proofs

David Pointcheval

Ecole normale supérieure, CNRS & INRIA

Computational and Symbolic Proofs of Security
Atagawa Heights – Japan
April 6th, 2009

Outline

1 Cryptography
 • Introduction
 • Provable Security

2 Game-based Methodology
 • Game-based Approach
 • Transition Hops

3 Assumptions

4 Identity-Based Encryption
 • Definition
 • Description of BF
 • Security Proof

5 Conclusion

Cryptography

Introduction

Provable Security

Game-based Methodology

Game-based Approach

Transition Hops

Assumptions

Identity-Based Encryption

Definition

Description of BF

Security Proof

Conclusion

Asymmetric cryptography

Encryption

Signature

Encryption guarantees privacy

Signature guarantees authentication, and even non-repudiation by the sender
Introduction

Strong Security Notions

Signature

Existential Unforgeability under Chosen-Message Attacks

An adversary, allowed to ask for signature on any message of its choice, cannot generate a new valid message-signature pair.

Encryption

Semantic Security against Chosen-Ciphertext Attacks

An adversary that chooses 2 messages, and receives the encryption of one of them, is not able to guess which message has been encrypted, even if it is able to ask for decryption of any ciphertext of its choice (except the challenge ciphertext).

Provable Security

One can prove that:

- if an adversary is able to break the cryptographic scheme
- then one can break the underlying problem
 (integer factoring, discrete logarithm, 3-SAT, etc)

Game-based Methodology

Illustration: OAEP

- Reduction proven indistinguishable for an IND-CCA adversary (actually IND-CCA1, and not IND-CCA2) but widely believed for IND-CCA2, without any further analysis of the reduction

 The direct-reduction methodology

- Shoup showed the gap for IND-CCA2, under the OWP

 Granted his new game-based methodology

- FOPS proved the security for IND-CCA2, under the PD-OWP

 Using the game-based methodology

Unfortunately

- Security may rely on several assumptions
- Proving that the view of the adversary, generated by the simulator, in the reduction is the same as in the real attack game is not easy to do in such a one big step
Game-based Approach

Sequence of Games

Real Attack Game
The adversary plays a game, against a challenger (security notion)

Simulation
The adversary plays a game, against a sequence of simulators
The output of the simulator in Game 1 is related to the output of the challenger in Game 0 (adversary’s winning probability).
• The output of the simulator in Game 3 is easy to evaluate (e.g., always zero, always 1, probability of one-half).
• The gaps (Game 1 \leftrightarrow Game 2, Game 2 \leftrightarrow Game 3, etc.) are clearly identified with specific events.

Two Simulators

- Perfectly identical behaviors
- Different behaviors, only if event Ev happens
 - Ev is negligible
 - Ev is non-negligible and independent of the output in Game_A
 - Simulator B terminates in case of event Ev

- Transition Hops
 - Hop-S-Perfect
 - Hop-S-Negl
 - Hop-S-Non-Negl

Two Distributions

- Perfectly identical input distributions
- Different distributions
 - Statistically close
 - Computationally close

- Transition Hops
 - Hop-D-Perfect
 - Hop-D-Stat
 - Hop-D-Comp
Two Simulations

- Identical behaviors: $Pr[\text{Game}_A] - Pr[\text{Game}_B] = 0$
- The behaviors differ only if Ev happens:
 - Ev is negligible, one can ignore it
 - Ev is non-negligible and independent of the output in Game_A

$$Pr[\text{Game}_A] - Pr[\text{Game}_B] \\ = \left| Pr[\text{Game}_A|Ev] Pr[Ev] + Pr[\text{Game}_A|\neg Ev] Pr[\neg Ev] \right| - \left| Pr[\text{Game}_B|Ev] Pr[Ev] - Pr[\text{Game}_B|\neg Ev] Pr[\neg Ev] \right| \\ = \left| Pr[\text{Game}_A|Ev] - Pr[\text{Game}_B|Ev] \right| Pr[Ev] + \left| Pr[\text{Game}_A|\neg Ev] - Pr[\text{Game}_B|\neg Ev] \right| Pr[\neg Ev] \\ \leq |1 \times Pr[Ev] + 0 \times Pr[\neg Ev]| \leq Pr[Ev]$$

- Ev is non-negligible and independent of the output in Game_A
- Simulator B terminates in case of event Ev

Event Ev

- Either Ev is negligible, or the output is independent of Ev
- For being able to terminate simulation B in case of event Ev, this event must be efficiently detectable
- For evaluating $Pr[Ev]$, one re-iterates the above process, with an initial game that outputs 1 when event Ev happens

$$Pr[\text{Game}_A] - Pr[\text{Game}_B] \leq Adv(D_{\text{oracles}})$$
Two Distributions

Pr[Game_A] − Pr[Game_B] ≤ Adv(D^oracles)

- For identical/statistically close distributions, for any oracle:
 Pr[Game_A] − Pr[Game_B] = Dist(Distrib_A, Distrib_B) = negl()

- For computationally close distributions, in general, we need to exclude additional oracle access:
 Pr[Game_A] − Pr[Game_B] ≤ Adv(Distrib(t))
 where t is the computational time of the distinguisher

Outline

1 Cryptography
 • Introduction
 • Provable Security

2 Game-based Methodology
 • Game-based Approach
 • Transition Hops

3 Assumptions

4 Identity-Based Encryption
 • Definition
 • Description of BF
 • Security Proof

5 Conclusion

Bilinear Maps

Gap Groups

Definition (Pairing Setting)
- Let G_1 and G_2 be two cyclic groups of prime order p
- Let g_1 and g_2 be generators of G_1 and G_2 respectively
- Let e : G_1 × G_2 → G^T, be a bilinear map

Definition (Admissible Bilinear Map)

Let (p, G_1, g_1, G_2, g_2, G^T, e) be a pairing setting, with e : G_1 × G_2 → G^T a non-degenerated bilinear map
- Bilinear: for any g ∈ G_1, h ∈ G_2 and u, v ∈ Z,
 \[e(g^u, h^v) = e(g, h)^{uv} \]
- Non-degenerated: e(g_1, g_2) ≠ 1

Bilinear Diffie-Hellman Problems

We focus on the symmetric case: G_1 = G_2 = G

Diffie-Hellman Problems
- CDH in G: Given g, g^a, g^b ∈ G, compute g^{ab}
- DDH in G: Given g, g^a, g^b, g^c ∈ G, decide whether c = ab or not

CDH can be hard to solve, but DDH is easy in gap-groups

Bilinear Diffie-Hellman Problems

- CBDH in G: Given g, g^a, g^b, g^c ∈ G, compute e(g, g)^{abc}
- DBDH in G: Given g, g^a, g^b, g^c ∈ G and h ∈ G^T, decide whether h ≤ e(g, g)^{abc}
Identity-Based Encryption

Setup
The authority generates a master secret key msk, and publishes the public parameters, PK.

Extraction
Given an identity ID, the authority computes the private key sk granted the master secret key msk.

Encryption
Any one can encrypt a message m to a user ID using only m, ID and the public parameters PK.

Decryption
Given a ciphertext, user ID can recover the plaintext, with sk.

Security Model: IND − ID − CCA

Definition (IND − ID − CCA Security)
- \mathcal{A} receives the global parameters
- \mathcal{A} asks any extraction-query, and any decryption-query
- \mathcal{A} outputs a target identity ID^* and two messages (m_0, m_1)

The challenger flips a bit b, and encrypts m_b for ID^* into c^*:
- \mathcal{A} asks any extraction-query, and any decryption-query
- \mathcal{A} outputs its guess b' for b

Restriction: ID^* never asked to the extraction oracle, and (ID^*, c^*) never asked to the decryption oracle.

CPA: no decryption-oracle access

\[Adv^{\text{ind-id-cca}} = 2 \times Pr[b' = b] - 1 \]
Identity-Based Encryption

[Boneh-Franklin – Crypto ’01]

Setup

- The authority sets up a gap-group framework:
 - a group G of prime order p, with a generator g,
 - equipped with an admissible bilinear map $e : G \times G \rightarrow G^T$
- It selects a master secret key $msk = s \in \mathbb{Z}_p$
- It publishes the public parameters: $PK = (p, G, e, g, P = g^s)$

Extraction

Given an identity ID, the authority computes
the private key $sk = H(ID)^s$

Note that sk is a BLS signature of ID: $e(sk, g) = e(H(ID), P)$

Encryption

In order to encrypt a message m to a user ID
- one chooses a random $r \in \mathbb{Z}_p$
- computes $A = g^r$ and $K = e(P, H(ID)^r)$
- sends $(A, B = K \times m)$

$$K = e(P, H(ID)^r) = e(g^s, H(ID)^r)$$
$$= e(g^r, H(ID)^s) = e(A, sk)$$

Decryption

Upon reception of (A, B), user ID
- computes $K = e(A, sk)$
- gets $m = B/K$

BF IBE Security Analysis

Theorem

The BF IBE is IND – ID – CPA secure
under the DBDH problem, in the random oracle model

By masking m with $H(K)$: $B = m \oplus H(K)$,
the BF IBE is IND – ID – CPA secure
under the CBDH problem, in the random oracle model

Theorem

The BLS signature achieves EUF – CMA security, under the CDH assumption in G, in the Random Oracle Model

Real Attack Game

Game 0

Oracles

Setup, Exp, \mathcal{H}

Challenger

• $(PK, msk) \leftarrow \text{Setup}()$
• Chooses a bit b
• $c \leftarrow \text{Encrypt}(b, m)$
• if $b = b'$: 1
• else 0

Random Oracle

$H(ID) : M \overset{R}{\rightarrow} G$, output M

Setup Oracle

$\text{Setup}() : msk \overset{R}{\rightarrow} \mathbb{Z}_p$, $P = g^{msk}$

Extraction Oracle

$\text{Ext}(ID) : M = H(ID)$, output $sk = M^{msk}$
Simulations

- **Game\(_0\)**: use of the oracles \textit{Setup}, \textit{Ext}, and \(\mathcal{H}\)
- **Game\(_1\)**: use of the \textit{simulation of the Random Oracle}

Simulation of \(\mathcal{H}\)

\(\mathcal{H}(ID): \mu \overset{R}{\leftarrow} \mathbb{Z}_p\), output \(M = g^\mu\)

\(\Rightarrow\) **Hop-D-Perfect**: \(\text{Pr}[\text{Game}_1] = \text{Pr}[\text{Game}_0]\)

- **Game\(_2\)**: use of the \textit{simulation of the Extraction Oracle}

Simulation of \textit{Ext}\)

\textit{Ext}(ID): find \(\mu\) such that \(M = \mathcal{H}(ID) = g^\mu\), output \(sk = P^\mu\)

\(\Rightarrow\) **Hop-S-Perfect**: \(\text{Pr}[\text{Game}_2] = \text{Pr}[\text{Game}_1]\)

\(\mathcal{H}\)-Query Selection

- **Game\(_3\)**: random index \(t \overset{R}{\leftarrow} \{1, \ldots, q_H\}\)

Event \(Ev\)

If the \(t\)-th query to \(\mathcal{H}\) is not the challenge \(ID\)

We terminate the game and flip a coin if \(Ev\) happens

\(\Rightarrow\) **Hop-S-Non-Negl**

\[
\text{Pr}[\text{Game}_3] = \frac{1}{2} + \left(\frac{\text{Pr}[\text{Game}_2] - \frac{1}{2}}{\text{Pr}[-Ev]}\right) \times \frac{1}{q_H} \\
\text{Pr}[\text{Ev}] = 1 - \frac{1}{q_H}
\]

Challenge \(ID\)

- **Game\(_4\)**: True DBDH instance \((g, g^\alpha, g^\beta, g^\gamma)\) with \(h = e(g, g)^{\alpha\beta\gamma}\)
 Use of the \textit{simulation of the Setup Oracle}

Simulation of \textit{Setup}\)

\textit{Setup}(): set \(P \leftarrow g^\alpha\)

Modification of the \textit{simulation of the Random Oracle}

Simulation of \(\mathcal{H}\)

If this is the \(t\)-th query, \(\mathcal{H}(ID): M \leftarrow g^\beta\), output \(M\)

Difference for the \(t\)-th simulation of the random oracle: we cannot extract the secret key. Since this is the challenge \(ID\), it cannot be queried to the extraction oracle:

\(\Rightarrow\) **Hop-D-Perfect**: \(\text{Pr}[\text{Game}_4] = \text{Pr}[\text{Game}_3]\)

Challenge Ciphertext

- **Game\(_5\)**: True DBDH instance \((g, g^\alpha, g^\beta, g^\gamma)\) with \(h = e(g, g)^{\alpha\beta\gamma}\)
 We have set \(P \leftarrow g^\alpha\), and for the \(t\)-th query to \(\mathcal{H}\): \(M = g^\beta\)

Ciphertext

Set \(A \leftarrow g^\gamma\) and \(K \leftarrow h\) to generate the encryption of \(m_b\) under \(ID\)

\(\Rightarrow\) **Hop-D-Perfect**: \(\text{Pr}[\text{Game}_5] = \text{Pr}[\text{Game}_4]\)

- **Game\(_6\)**: Random DBDH instance \((g, g^\alpha, g^\beta, g^\gamma)\) with \(h \overset{R}{\leftarrow} \mathbb{G}^T\)

\(\Rightarrow\) **Hop-D-Comp**:

\[
|\text{Pr}[\text{Game}_6] - \text{Pr}[\text{Game}_5]| \leq \text{Adv}^{\text{dbdh}}(t + q_{H^T_e})
\]
Conclusion

In this last Game$_6$, it is clear that $\Pr[\text{Game}_6] = \frac{1}{2}$

$$|\Pr[\text{Game}_6] - \Pr[\text{Game}_5]| \leq \text{Adv}^{dbdh}(t + q_H \tau_e)$$

$$\Pr[\text{Game}_5] = \Pr[\text{Game}_4]$$

$$\Pr[\text{Game}_4] = \Pr[\text{Game}_3]$$

$$\Pr[\text{Game}_3] = \frac{1}{2} + (\Pr[\text{Game}_2] - \frac{1}{2}) \times \frac{1}{q_H}$$

$$\Pr[\text{Game}_2] = \Pr[\text{Game}_1]$$

$$\Pr[\text{Game}_1] = \Pr[\text{Game}_0]$$

$$\Pr[\text{Game}_0] = \frac{1}{2} + \text{Adv}^{\text{ind}-\text{id}-\text{cpa}}(A)$$

$$\text{Adv}^{\text{ind}-\text{id}-\text{cpa}}(A) \leq q_H \times \text{Adv}^{dbdh}(t + q_H \tau_e)$$

Outline

1. **Cryptography**
 - Introduction
 - Provable Security

2. **Game-based Methodology**
 - Game-based Approach
 - Transition Hops

3. **Assumptions**

4. **Identity-Based Encryption**
 - Definition
 - Description of BF
 - Security Proof

5. **Conclusion**

The game-based methodology uses a sequence of games

- The transition hops
 - are simple
 - easy to check