The Game-based Methodology for Computational Security Proofs

David Pointcheval
Ecole normale supérieure, CNRS & INRIA

Computational and Symbolic Proofs of Security
Atagawa Heights – Japan
April 6th, 2009

Outline

1. Cryptography
 - Introduction
 - Provable Security

2. Game-based Methodology
 - Game-based Approach
 - Transition Hops

3. Assumptions

4. Identity-Based Encryption
 - Definition
 - Description of BF
 - Security Proof

5. Conclusion

Introduction

Public-Key Cryptography

Asymmetric cryptography

Encryption guarantees privacy
Signature guarantees authentication, and even non-repudiation by the sender
Introduction

Strong Security Notions

Signature

Existential Unforgeability under Chosen-Message Attacks
An adversary, allowed to ask for signature on any message of its choice, cannot generate a new valid message-signature pair.

Encryption

Semantic Security against Chosen-Ciphertext Attacks
An adversary that chooses 2 messages, and receives the encryption of one of them, is not able to guess which message has been encrypted, even if it is able to ask for decryption of any ciphertext of its choice (except the challenge ciphertext).

Provable Security

One can prove that:
- if an adversary is able to break the cryptographic scheme
- then one can break the underlying problem (integer factoring, discrete logarithm, 3-SAT, etc)

Illustration: OAEP

Reduction proven indistinguishable for an IND-CCA adversary (actually IND-CCA1, and not IND-CCA2) but widely believed for IND-CCA2, without any further analysis of the reduction

The direct-reduction methodology

Shoup showed the gap for IND-CCA2, under the OWP

Granted his new game-based methodology

Unfortunately

- Security may rely on several assumptions
- Proving that the view of the adversary, generated by the simulator, in the reduction is the same as in the real attack game is not easy to do in such a one big step

Game-based Methodology

Illustration: OAEP

[Bellare-Rogaway EC ’94]

Reduction proven indistinguishable for an IND-CCA adversary (actually IND-CCA1, and not IND-CCA2) but widely believed for IND-CCA2, without any further analysis of the reduction

The direct-reduction methodology

[Shoup - Crypto ’01]

Shoup showed the gap for IND-CCA2, under the OWP

Granted his new game-based methodology

[Fujisaki-Okamoto-Pointcheval-Stern – Crypto ’01]

FOPS proved the security for IND-CCA2, under the PD-OWP

Using the game-based methodology
Outline

1. Cryptography
 - Introduction
 - Provable Security

2. Game-based Methodology
 - Game-based Approach
 - Transition Hops

3. Assumptions

4. Identity-Based Encryption
 - Definition
 - Description of BF
 - Security Proof

5. Conclusion

Sequence of Games

Real Attack Game
The adversary plays a game, against a challenger (security notion)

Game 0

Game 1

Simulation
The adversary plays a game, against a sequence of simulators

Game 1

Game 2
Sequence of Games

Simulation
The adversary plays a game, against a sequence of simulators.

- **Output**
 - The output of the simulator in Game 1 is related to the output of the challenger in Game 0 (adversary's winning probability)
 - The output of the simulator in Game 3 is easy to evaluate (e.g. always zero, always 1, probability of one-half)
 - The gaps (Game 1 ↔ Game 2, Game 2 ↔ Game 3, etc) are clearly identified with specific events

Transition Hops

- **Two Simulators**
 - perfectly identical behaviors
 - different behaviors, only if event E_v happens
 - E_v is negligible
 - E_v is non-negligible and independent of the output in Game A → Simulator B terminates in case of event E_v

- **Two Distributions**
 - perfectly identical input distributions
 - different distributions
 - statistically close
 - computationally close
Two Simulations

- Identical behaviors: $\Pr[\text{Game}_A] - \Pr[\text{Game}_B] = 0$
- The behaviors differ only if Ev happens:
 - Ev is negligible, one can ignore it
 - Ev is non-negligible and independent of the output in Game_A
 - Identical behaviors: $\Pr[\text{Game}_A] - \Pr[\text{Game}_B] \leq \Pr[\text{Ev}]$

\[
\begin{align*}
|\Pr[\text{Game}_A] - \Pr[\text{Game}_B]| &= |\Pr[\text{Game}_A|\text{Ev}] \Pr[\text{Ev}] + \Pr[\text{Game}_A|\neg \text{Ev}] \Pr[\neg \text{Ev}]| \\
&\quad - |\Pr[\text{Game}_B|\text{Ev}] \Pr[\text{Ev}] - \Pr[\text{Game}_B|\neg \text{Ev}] \Pr[\neg \text{Ev}]| \\
&= |(\Pr[\text{Game}_A|\text{Ev}] - \Pr[\text{Game}_B|\text{Ev}]) \times \Pr[\text{Ev}] + (\Pr[\text{Game}_A|\neg \text{Ev}] - \Pr[\text{Game}_B|\neg \text{Ev}]) \times \Pr[\neg \text{Ev}]| \\
&\leq |1 \times \Pr[\text{Ev}] + 0 \times \Pr[\neg \text{Ev}]| \leq \Pr[\text{Ev}]
\end{align*}
\]

- Ev is non-negligible and independent of the output in Game_A
- Simulator B terminates in case of event Ev

Event Ev

- Either Ev is negligible, or the output is independent of Ev
- For being able to terminate simulation B in case of event Ev, this event must be efficiently detectable
- For evaluating $\Pr[\text{Ev}]$, one re-iterates the above process, with an initial game that outputs 1 when event Ev happens

Two Distributions

- Identical behaviors: $\Pr[\text{Game}_A] - \Pr[\text{Game}_B] = 0$
- The behaviors differ only if Ev happens:
 - Ev is negligible, one can ignore it
 - Ev is non-negligible and independent of the output in Game_A
 - Simulator B terminates and outputs 0, in case of event Ev:
 \[
 \Pr[\text{Game}_B] = \Pr[\text{Game}_B|\text{Ev}] \Pr[\text{Ev}] + \Pr[\text{Game}_B|\neg \text{Ev}] \Pr[\neg \text{Ev}] = 0 \times \Pr[\text{Ev}] + \Pr[\text{Game}_A|\neg \text{Ev}] \times \Pr[\neg \text{Ev}]
 \]
 - Simulator B terminates and flips a coin, in case of event Ev:
 \[
 \Pr[\text{Game}_B] = \Pr[\text{Game}_B|\text{Ev}] \Pr[\text{Ev}] + \Pr[\text{Game}_B|\neg \text{Ev}] \Pr[\neg \text{Ev}] = \frac{1}{2} \times \Pr[\text{Ev}] + \Pr[\text{Game}_A|\neg \text{Ev}] \times \Pr[\neg \text{Ev}]
 \]
 \[
 = \frac{1}{2} + \left(\Pr[\text{Game}_A] - \frac{1}{2}\right) \times \Pr[\neg \text{Ev}]
 \]

\[\Pr[\text{Game}_A] - \Pr[\text{Game}_B] \leq \text{Adv}(D_{\text{oracles}})\]
Two Distributions

Pr[Game_A] − Pr[Game_B] ≤ Adv(D_oracles)

- For identical/statistically close distributions, for any oracle:
 Pr[Game_A] − Pr[Game_B] = Dist(Distrib_A, Distrib_B) = negl()

- For computationally close distributions, in general, we need to exclude additional oracle access:
 Pr[Game_A] − Pr[Game_B] ≤ Adv(Distrib(t))

 where t is the computational time of the distinguisher

Outline

1 Cryptography
 - Introduction
 - Provable Security

2 Game-based Methodology
 - Game-based Approach
 - Transition Hops

3 Assumptions

4 Identity-Based Encryption
 - Definition
 - Description of BF
 - Security Proof

5 Conclusion

Bilinear Maps

Gap Groups

Definition (Pairing Setting)
- Let G_1 and G_2 be two cyclic groups of prime order p
- Let g_1 and g_2 be generators of G_1 and G_2 respectively
- Let e : G_1 × G_2 → G^T, be a bilinear map

Definition (Admissible Bilinear Map)
Let (p, G_1, g_1, G_2, g_2, G^T, e) be a pairing setting, with e : G_1 × G_2 → G^T, a non-degenerated bilinear map

- Bilinear: for any g ∈ G_1, h ∈ G_2 and u, v ∈ Z,
 e(g^u, h^v) = e(g, h)^{uv}

- Non-degenerated: e(g_1, g_2) ≠ 1

Bilinear Diffie-Hellman Problems

We focus on the symmetric case: G_1 = G_2 = G

Diffie-Hellman Problems
- CDH in G: Given g, g^a, g^b ∈ G, compute g^{ab}
- DDH in G: Given g, g^a, g^b, g^c ∈ G, decide whether c = ab or not

CDH can be hard to solve, but DDH is easy in gap-groups

Bilinear Diffie-Hellman Problems
- CBDH in G: Given g, g^a, g^b, g^c ∈ G, compute e(g, g)^{abc}
- DBDH in G: Given g, g^a, g^b, g^c ∈ G and h ∈ G^T, decide whether h ≥ e(g, g)^{abc}
Identity-Based Encryption

Setup
The authority generates a master secret key msk, and publishes the public parameters, PK

Extraction
Given an identity ID, the authority computes the private key sk granted the master secret key msk

Encryption
Any one can encrypt a message m to a user ID using only m, ID and the public parameters PK

Decryption
Given a ciphertext, user ID can recover the plaintext, with sk

Security Model: IND − ID − CCA

Definition (IND − ID − CCA Security)
- A receives the global parameters
- A asks any extraction-query, and any decryption-query
- A outputs a target identity ID^* and two messages (m_0, m_1)

The challenger flips a bit b, and encrypts m_b for ID^* into c^*
- A asks any extraction-query, and any decryption-query
- A outputs its guess b' for b

Restriction: ID^* never asked to the extraction oracle, and (ID^*, c^*) never asked to the decryption oracle.

CPA: no decryption-oracle access

$$Adv^{\text{ind−id−cca}} = 2 \times \Pr[b' = b] - 1$$
Identity-Based Encryption

[Boneh-Franklin – Crypto '01]

Setup
- The authority sets up a gap-group framework: a group G of prime order p, with a generator g, equipped with an admissible bilinear map $e : G \times G \to G^T$
- It selects a master secret key $msk = s \in \mathbb{Z}_p$
- It publishes the public parameters: $PK = (p, G, e, g, P = g^s)$

Extraction
- Given an identity ID, the authority computes the private key $sk = H(ID)^s$
- Note that sk is a BLS signature of ID: $e(sk, g) = e(H(ID), P)$

BF IBE Security Analysis

Theorem

The BF IBE is IND – ID – CPA secure under the DBDH problem, in the random oracle model

By masking m with $H(K)$: $B = m \oplus H(K)$, the BF IBE is IND – ID – CPA secure under the CBDH problem, in the random oracle model

Theorem

The BLS signature achieves EUF – CMA security, under the CDH assumption in G, in the Random Oracle Model

BF IBE (Cont’d)

Encryption
- In order to encrypt a message m to a user ID
 - one chooses a random $r \in \mathbb{Z}_p$
 - computes $A = g^r$ and $K = e(P, H(ID)^r)$
 - sends $(A, B = K \times m)$

 $$K = e(P, H(ID)^r) = e(g^s, H(ID)^r) = e(g^s, H(ID)^s) = e(A, sk)$$

Decryption
- Upon reception of (A, B), user ID
 - computes $K = e(A, sk)$
 - gets $m = B/K$
Simulations

- **Game₀**: use of the oracles Setup, Ext, and H
- **Game₁**: use of the simulation of the Random Oracle

Simulation of H

$H(ID): \mu \overset{R}{\in} \mathbb{Z}/p$, output $M = g^\mu$

\Rightarrow **Hop-D-Perfect**: $\Pr[Game_1] = \Pr[Game_0]$
- **Game₂**: use of the simulation of the Extraction Oracle

Simulation of Ext

Ext(ID): find μ such that $M = H(ID) = g^\mu$, output $sk = P^\mu$

\Rightarrow **Hop-S-Perfect**: $\Pr[Game_2] = \Pr[Game_1]$

\mathcal{H}-Query Selection

- **Game₃**: random index $t \overset{R}{\in} \{1, \ldots, q_H\}$

Event Ev

If the t-th query to \mathcal{H} is not the challenge ID

We terminate the game and flip a coin if Ev happens

\Rightarrow **Hop-S-Non-Negl**

\[
\Pr[Game_3] = \frac{1}{2} + \left(\Pr[Game_2] - \frac{1}{2} \right) \times \Pr[\neg Ev] \quad \Pr[Ev] = 1 - \frac{1}{q_H}
\]

Challenge ID

- **Game₄**: True DBDH instance $(g, g^\alpha, g^\beta, g^\gamma)$ with $h = e(g, g)^{\alpha\beta\gamma}$
 Use of the simulation of the Setup Oracle

Simulation of Setup

Setup(): set $P \leftarrow g^\alpha$

Modification of the simulation of the Random Oracle

Simulation of H

If this is the t-th query, $H(ID): M \leftarrow g^\beta$, output M

Difference for the t-th simulation of the random oracle: we cannot extract the secret key. Since this is the challenge ID, it cannot be queried to the extraction oracle:

\Rightarrow **Hop-D-Perfect**: $\Pr[Game_4] = \Pr[Game_3]$

Challenge Ciphertext

- **Game₅**: True DBDH instance $(g, g^\alpha, g^\beta, g^\gamma)$ with $h = e(g, g)^{\alpha\beta\gamma}$
 We have set $P \leftarrow g^\alpha$, and for the t-th query to \mathcal{H}: $M = g^\beta$

Ciphertext

Set $A \leftarrow g^\beta$ and $K \leftarrow h$ to generate the encryption of m_b under ID

\Rightarrow **Hop-D-Perfect**: $\Pr[Game_5] = \Pr[Game_4]$

- **Game₆**: Random DBDH instance $(g, g^\alpha, g^\beta, g^\gamma)$ with $h \overset{R}{\in} \mathbb{G}^T$
 \Rightarrow **Hop-D-Comp**:

\[
|\Pr[Game_6] - \Pr[Game_5]| \leq \text{Adv}^{\text{dbdh}}(t + q_H^T)
\]
Conclusion

In this last Game\(_6\), it is clear that \(\Pr[\text{Game}_6] = \frac{1}{2} \)

\[
|\Pr[\text{Game}_6] - \Pr[\text{Game}_5]| \leq \text{Adv}_\text{dbdh}(t + q_H \tau_e)
\]

\[
\begin{align*}
\Pr[\text{Game}_5] &= \Pr[\text{Game}_4] \\
\Pr[\text{Game}_4] &= \Pr[\text{Game}_3] \\
\Pr[\text{Game}_3] &= \frac{1}{2} + (\Pr[\text{Game}_2] - \frac{1}{2}) \times \frac{1}{q_H} \\
\Pr[\text{Game}_2] &= \Pr[\text{Game}_1] \\
\Pr[\text{Game}_1] &= \Pr[\text{Game}_0] \\
\Pr[\text{Game}_0] &= \frac{1}{2} + \text{Adv}_\text{ind-id-cpa}(A)
\end{align*}
\]

\[
\text{Adv}_\text{ind-id-cpa}(A) \leq q_H \times \text{Adv}_\text{dbdh}(t + q_H \tau_e)
\]

Conclusion

- The game-based methodology uses a sequence of games
- The transition hops are simple and easy to check

It leads to easy-to-read and easy-to-verify security proofs:
- Some mistakes have been found granted this methodology
- Some security analyses became possible to handle

This approach can be automized

Outline

1. **Cryptography**
 - Introduction
 - Provable Security
2. **Game-based Methodology**
 - Game-based Approach
 - Transition Hops
3. **Assumptions**
4. **Identity-Based Encryption**
 - Definition
 - Description of BF
 - Security Proof
5. **Conclusion**