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Summary

Algorithmic Assumptions
necessary
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= The Random-Oracle Model

= The Ideal-Cipher Model

» The Generic Model

= Comparisons

RSA Encryption

s n=pq . public modulus
= ¢ : public exponent
s d=e' mod ¢(n) : private  * D(c) = c’mod n
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s E(m) = m°*mod n




Algorithmic Assumptions
sufficient?

Security proofs give the guarantee that the
assumption is enough for security:

= if an adversary can break the security
= one can break the assumption
= “reductionist” proof
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Proof by Reduction

Reduction of a problem P to an attack Atk:
= Let A be an adversary that breaks the scheme

s Then A can be used to solve P

G

sA
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Proof by Reduction

Reduction of a problem P to an attack Atk:
* | et A be an adversary that breaks the scheme

s Then A can be used to solve P
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Proof by Reduction

Reduction of a problem P to an attack Atk:
* et A be an adversary that breaks the scheme

s Then A can be used to solve P

Instance
Solution

L P O
\ ()
lof P — 1 Sy
— ofl
P intractable = scheme unbreakable
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Exact Security

Complexity Theory
= .
Adversary @ Algo'rlthm
o against P
within ¢ Pk © within " = T'(7)

s Assumption:
@ P is hard = no polynomial algorithm
= Reduction:
@ polynomial = T'is a polynomial
s Security result:
@ no polynomial adversary
= no attack for parameters large enough

e q
Adversary @ Alggrlthm
within ¢ ® against P
S within = T (?)
s Assumption:
@ Solving P requires N operations (or time 1)
= Reduction:

@ Exact cost for 7,
in z, and some other parameters

s Security result:
@ no adversary within time 7 such that 7' () <t
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Strong Security Notions

Ideal Models

s Strong security (IND-CCA2, EF-CMA, ...)
hard to achieve under standard assumptions

= There are candidates, but they are not
as efficient as one would like
s Efficiency
@ s arequirement
security must be transparent

@ also means
efficient reduction

bad reduction = larger parameters = inefficient in practice

— One makes some ideal assumptions:
= ideal random hash function:
» random-oracle model (ROM)
= ideal symmetric encryption:
@ ideal-cipher model (ICM)
= ideal group:
@ generic model (GM = generic adversaries)

— They help to prove efficient schemes
or to get efficient reductions
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The Random-Oracle Model

Bellare-Rogaway 1993

» The most admitted model
= |t consists in considering some functions
as perfectly random functions,
or replacing them by random oracles:
@ each new query is returned a random answer

@ a same query asked twice receives twice
the same answer
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f-OAEP Construction
Bellare-Rogaway 1994
M=m| 0 rrandom
E(m): c=f(s]|t) PH— G |«
D(c) :s|t=f"*c)
then invert OAEP,
if the redundancy » H
is satisfied, one returns m
VS t

G, H: hash functions
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f-OAEP IND-CCA2: Result

Fujisaki-Okamoto-Pointcheval-Stern 2001

s |n the ROM for G and H,
for any partial-domain T-OWP £

Advi"d(t)s2qH><Succ;id_”W(t+quHTf,qH)

qD qG+qD+quD

+2XF+ 2€

= Main contribution in the cost: the simulation of the
decryption oracle on ¢'is in quadratic time
» For all 4-tuples (v, g=G(r), s, h=H(s)) : q.. q,, possibilities
s Complete into (r, g, s, h, c=f(s,1)) for t = r&h
2 On ¢, look for (', g, s", k', ¢"), get/icheck M =s'®g’'=m || 0*
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f-OAEP IND-CCA2: Exact Security

Adv™(t)<2 X\/Succofw(2t-|-qH(2qG-l-qH) K.q,)
s Security bound: 2%, and 2% hash queries

= |f one can break the scheme
within time T, one can invert / within time 7~
<2T+2q,(2q,+q,)K
(orjust2T+2gq, (29, +q,) K*with small e)
< 276 + 6 2110K2 < 2113 K2

s RSA: 1024 bits — 2'3 (NFS: 2%)  «x
2048 bits — 215 (NFS: 2'1)  x
4096 bits — 2137 (NFS: 214)

Improvement: OAEP™

Jonsson 2002
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M=m| 0 rrandom
D )
The one-time pad is SZARIC
replaced by a strong
block cipher E v
»H —pE
VS tl

G, H: hash functions
E: block cipher
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The Ideal-Cipher Model
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It consists in considering a cipher E as a family of

perfectly random and independent permutations:
s For each key Kk, E|< is a random permutation:
» Maintain of a list Ag = {(km,c= E (m))} set to empty
» For each query E (m), check whether there is ¢
such that (km,c)eA,, answer c
s For each query D (c) = Ek'l(c), check whether there is m

such that (km,c)eA,, answer m
a Answer a random element and update A,
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f-OAEP": Decryption Simulation

s |[CM + ROM = the simulation of the decryption
oracle on ¢ becomes linear:
For all 4-tuples (s,4,7,7) such that 7=H(s) and 7 = E (r)
less than ¢, possibilities (unless H-collision)
e Complete into (s,4,7,t,c = f(s,1))

@ Upon receiving ¢', look for (s’ h', ¥’ t', ¢'),
get/check M =s'®@g'=m | 0*

f-OAEP"™ IND-CCA2: Exact Security

s Security bound: 27, and 2% hash queries

s |f one can break the scheme
within time T, one can invert / within time T~
<T+q,K<2F°+2°K?

« RSA: 1024 bits — 275 (NFS: 2%)
2048 bits — 277 (NFS: 2!'1)
4096 bits — 27 (NFS: 2%)
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Summary

Schnorr Signature (1989)

s |ntroduction to Provable Security
s The Random-Oracle Model

= The Ideal-Cipher Model

The Generic Model

= Comparisons

G, g and ¢: common elements

x: private key y=g*: public key

s Signing m:
® choose ke Z,
e compute r=g*as well as e=H(m,r)
@ and s = k-xemod g
s Verifying (m,0):
du=gy (=g~ ge)

c = (re,s)

test if e=H(m,r) and r=u
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The Forking Lemma

Pointcheval-Stern 1996

In the ROM, EF-CMA = DL problem
= Run A until one gets a success:
on average = 1/ iterations

= Run A again with same beginning, but random end
until a success: on average ¢, / ¢ times

= On average: "= (g, + 1) t/¢

Hmn o gy ~r=gy
A (r’ e, S) gs—s’ — ye e

> (re’s’)

Security Result

= Security bound: 27
@ and 2% hash queries
= |f one can break the scheme
within time T = ¢/z,
one can extract two tuples within time
T°'<q,tle=q, T<2V°
= Discrete Log (with same bounds as Fact)
s 1024 bits — 230 (NFS: 2%)  x
o 2048 bits — 2130 (NFS: 2!11)  x
o 4096 bits — 213 (NFS: 214)
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The Generic Model

Naechev 1994 — Shoup 1997

Schnorr Signature in ROM+GM

= |t consists in considering the underlying group
as a generic one: (G,+)~(Z )

s But the adversary has access to
the encoding E(Q) of elements via an oracle

* |f one assumes that G = <P>,
we define o(x) = E(x.P)

o(x+ty)=E((x£y).P)=Ex.P+y.P)

Generic group: the encoding is a random oracle

= |f the group is of prime order g:
one cannot break the scheme with less
than Vg queries to the group-law oracle

s |f g is a 160-bit prime, then 7> 2%

° as soon as the best attack in the group
IS a generic one
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The Random-Oracle Model

Canetti-Goldreich-Halevi 1998

The ROM is strictly stronger
than the standard model
@ Several counter-examples
= Canetti-Goldreich-Halevi '98 (signature scheme)
= Nielsen '02 (non-committing encryption scheme)
» Goldwasser-Tauman '03 (signature scheme)
= Bellare-Boldyreva-Palacio '03 (IND-CCA-preserving encryption)

@ But still no practical attack against a “reasonable”
scheme “provably secure in the random-oracle model’
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The Generic Model

Stern-Pointcheval-Malone-Lee-Smart 2002

“Generic group: the encoding is a random oracle”
= a stronger assumption than the ROM

Several counter-examples
@ Index-calculs = non-generic attacks

But not available everywhere:
on some well-chosen elliptic curves
» ECDSA [Stern-Pointcheval-Malone-Lee-Smart '02]:
s Provably non-malleable in the generic model
= Malleable with any elliptic curve

= to be used very carefully
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The Ideal-Cipher Model

s Seems to be stronger than the ROM
@ a family of random permutations vs. a random function

= Maybe more realistic, when one looks at
the goals in the design of a block cipher

But no formal result in either direction

s Candidates (none is proven):

@ ideal cipher — random oracle: CBC-MAC
» random oracle — ideal cipher: Luby-Rackoff (Feistel)
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Feistel Network: Not That Easy!

= |uby-Rackoff 1988: a 4-round Feistel network
@ a family of pseudo-random functions
— a family of super pseudo-random permutations

= j.e. indistinguishable from a random permutation, with access
to both the permutation and its inverse but as black boxes

@ in the ROM, the adversary has access
to the inner functions!

s Coron 2002: no black-box reduction
s from an attack in the ICM

@ into an attack in the ROM
if the cipher is instantiated with less
than 6 rounds of random oracles

Conclusion
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s I[mprovements to combine the standard model
with efficient schemes

@ Cramer-Shoup 1998 (IND-CCA encryption
EF-CMA signature)

@ Boneh-Boyen 2004 (EF-CMA signature)

s Still
@ either not as efficient as schemes proven in the ROM
@ or under stronger algorithmic assumptions

stronger model vs.
stronger algorithmic assumption
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