Provable Security and Ideal Models

Workshop on Provable Security
eCrypt – AZTEC

Versailles – France – November 2004

David Pointcheval
CNRS-ENS, Paris, France

Summary

- Introduction to Provable Security
- The Random-Oracle Model
- The Ideal-Cipher Model
- The Generic Model
- Comparisons

Algorithmic Assumptions necessary

- \(n = pq \): public modulus
- \(e \): public exponent
- \(d = e^{-1} \mod \varphi(n) \): private

RSA Encryption

- \(E(m) = m^e \mod n \)
- \(D(c) = c^d \mod n \)

If the RSA problem is easy, privacy is not satisfied: anybody may recover \(m \) from \(c \).
Algorithmic Assumptions sufficient?

Security proofs give the guarantee that the assumption is **enough** for security:
- if an adversary can break the security
- one can break the assumption
⇒ “reductionist” proof

Proof by Reduction

Reduction of a problem P to an attack Atk:
- Let A be an adversary that breaks the scheme
- Then A can be used to solve P

Instance
\textbf{I} of P
\rightarrow
Solution
of \textbf{I}

Proof by Reduction

Reduction of a problem P to an attack Atk:
- Let A be an adversary that breaks the scheme
- Then A can be used to solve P

Instance
\textbf{I} of P
\rightarrow
Solution
of \textbf{I}

P intractable \Rightarrow scheme unbreakable
Complexity Theory

- **Adversary within \(t \)**
- **Algorithm against \(\mathbf{P} \) within \(t' = T(t) \)**
 - **Assumption:**
 - \(\mathbf{P} \) is hard = no polynomial algorithm
 - **Reduction:**
 - polynomial = \(T' \) is a polynomial
 - **Security result:**
 - no polynomial adversary
 - \(\Rightarrow \) no attack for parameters large enough

Exact Security

- **Adversary within \(t \)**
- **Algorithm against \(\mathbf{P} \) within \(t' = T(t) \)**
 - **Assumption:**
 - Solving \(\mathbf{P} \) requires \(N \) operations (or time \(\tau \))
 - **Reduction:**
 - Exact cost for \(T' \)
 - in \(t \), and some other parameters
 - **Security result:**
 - no adversary within time \(t \) such that \(T(t) \leq \tau \)

Strong Security Notions

- Strong security (IND-CCA2, EF-CMA, ...)
 - hard to achieve under standard assumptions
- There are candidates, but they are not as efficient as one would like
- **Efficiency**
 - is a requirement
 - security must be transparent
 - also means
 - efficient reduction
 - bad reduction \(\Rightarrow \) larger parameters \(\Rightarrow \) inefficient in practice

Ideal Models

- One makes some ideal assumptions:
 - ideal random hash function:
 - random-oracle model (ROM)
 - ideal symmetric encryption:
 - ideal-cipher model (ICM)
 - ideal group:
 - generic model (GM = generic adversaries)
- They help to prove efficient schemes or to get efficient reductions
Summary

- Introduction to Provable Security
- The Random-Oracle Model
 - The Ideal-Cipher Model
 - The Generic Model
 - Comparisons

The Random-Oracle Model

Bellare-Rogaway 1993

- The most admitted model
- It consists in considering some functions as perfectly random functions, or replacing them by random oracles:
 - each new query is returned a random answer
 - a same query asked twice receives twice the same answer

f-OAEP Construction

Bellare-Rogaway 1994

\[
\begin{align*}
M &= m \parallel 0^k \\
& \text{then invert OAEP, if the redundancy is satisfied, one returns } m
\end{align*}
\]

- **E(m):** \(c = f(s \parallel t)\)
- **D(c):** \(s \parallel t = f^{-1}(c)\)

f-OAEP IND-CCA2: Result

Fujisaki-Okamoto-Pointcheval-Stern 2001

In the ROM for \(G\) and \(H\), for any partial-domain T-OWP \(f:\)

\[
Adv^{ind}_{\text{CCA2}}(t) \leq 2q_H \times \text{Succ}^{ind-ow}(t + q_Gq_HT_f \cdot q_H) + 2 \times \left(\frac{q_D}{2^k} + \frac{q_G + q_D + q_Gq_H}{2^t}\right)
\]

Main contribution in the cost: the simulation of the decryption oracle on \(c'\) is in quadratic time:

- For all 4-tuples \((r, g=G(r), s, h=H(s))\) : \(q_Gq_H\) possibilities
 - Complete into \((r, g, s, h, c=f(s, i))\) for \(t = r \oplus h\)
 - On \(c'\), look for \((r', g', s', h', c')\), get/check \(M = s' \oplus g' = m \parallel 0^k\)
f-OAEP IND-CCA2: Exact Security

\[
\text{Adv}^{ind}(t) \leq 2 \times \sqrt{\text{Succ}_f^{ow} \left(2t + q_H \left(2q_G + q_H \right) K^3 \right)},
\]

- Security bound: \(2^{75}\), and \(2^{55}\) hash queries
- If one can break the scheme within time \(T\), one can invert \(f\) within time \(T'\)
 \[\leq 2T + 2q_H \left(2q_G + q_H \right) K^3\]
 (or just \(2T + 2q_H \left(2q_G + q_H \right) K^2\) with small \(e\))
- RSA:
 - 1024 bits \(\rightarrow 2^{133}\) (NFS: \(2^{80}\)) ×
 - 2048 bits \(\rightarrow 2^{135}\) (NFS: \(2^{111}\)) ×
 - 4096 bits \(\rightarrow 2^{137}\) (NFS: \(2^{149}\)) ✓

Summary

- Introduction to Provable Security
- The Random-Oracle Model
 - The Ideal-Cipher Model
- The Generic Model
- Comparisons

Improvement: OAEP

Jonsson 2002

The one-time pad is replaced by a strong block cipher \(E\)

\[
M = m \parallel 0^k r \text{ random}
\]

\[
\begin{align*}
G & \rightarrow & H & \rightarrow & E \\
& & & & \text{G, H: hash functions} \\
& & & & E: \text{block cipher}
\end{align*}
\]

The Ideal-Cipher Model

It consists in considering a cipher \(E_k\) as a family of perfectly random and independent permutations:

- For each key \(k\), \(E_k\) is a random permutation:
 - Maintain a list \(\Lambda_E = \{(k,m,c) = E_k(m)\}\) set to empty
 - For each query \(E_k(m)\), check whether there is \(c\) such that \((k,m,c) \in \Lambda_E\), answer \(c\)
 - For each query \(D_k(c) = E_k^{-1}(c)\), check whether there is \(m\) such that \((k,m,c) \in \Lambda_E\), answer \(m\)
 - Answer a random element and update \(\Lambda_E\)
f-OAEP: Decryption Simulation

- ICM + ROM ⇒ the simulation of the decryption oracle on c becomes linear:
 - For all 4-tuples (s, h, r, t) such that $h = H(s)$ and $t = E_b(r)$ less than q_E possibilities (unless H-collision)
 - Complete into $(s, h, r, t, c = f(s, t))$
 - Upon receiving c', look for (s', h', r', t', c'), get/check $M = s' \oplus g' = m || 0^k$

f-OAEP IND-CCA2: Exact Security

- Security bound: 2^{75}, and 2^{55} hash queries
- If one can break the scheme within time T, one can invert f within time T'
 \[T + q_E K^2 \leq 2^{75} + 2^{55} K^2 \]
- RSA: 1024 bits $→ 2^{75}$ (NFS: 2^{80}) ✔
 - 2048 bits $→ 2^{77}$ (NFS: 2^{111}) ✔
 - 4096 bits $→ 2^{79}$ (NFS: 2^{149}) ✔

Summary

- Introduction to Provable Security
- The Random-Oracle Model
- The Ideal-Cipher Model
- The Generic Model
- Comparisons

Schnorr Signature (1989)

G, g and q: common elements

x: private key \quad $y = g^x$: public key

- Signing m:
 - choose $k \in \mathbb{Z}_q$
 - compute $r = g^k$ as well as $e = H(m, r)$
 - and $s = k - xe \mod q$
- Verifying (m, σ):
 - $u = g^s y^e$ ($= g^{ke} g^{xe}$) \quad test if $e = H(m, r)$ and $r = u$
The Forking Lemma
Pointcheval-Stern 1996

In the ROM, EF-CMA = DL problem
- Run A until one gets a success: on average = $1/\varepsilon$ iterations
- Run A again with same beginning, but random end until a success: on average q^*_H / ε times
- On average: $T' \approx (q^*_H + 1) t / \varepsilon$

\[e^g y^s = r = e^{g^{s'}} y^{s'} \]
\[e^{g^{s''}} = y^{s''} \]

The Generic Model
Naechev 1994 – Shoup 1997

- It consists in considering the underlying group as a generic one: $(G,+) \approx (\mathbb{Z}_{q^*},+)$
- But the adversary has access to the encoding $E(Q)$ of elements via an oracle
- If one assumes that $G = \langle P \rangle$, we define $\sigma(x) = E(x.P)$

$$\sigma(x \pm y) = E((x \pm y).P) = E(x.P \pm y.P)$$

Generic group: the encoding is a random oracle

Security Result

- Security bound: 2^{75}
 - and 2^{55} hash queries
- If one can break the scheme within time $T = t/\varepsilon$, one can extract two tuples within time $T' \leq q^*_H t/\varepsilon = q^*_H T \leq 2^{130}$
- Discrete Log (with same bounds as Fact)
 - 1024 bits $\rightarrow 2^{130}$ (NFS: 2^{80}) \times
 - 2048 bits $\rightarrow 2^{130}$ (NFS: 2^{111}) \times
 - 4096 bits $\rightarrow 2^{130}$ (NFS: 2^{140}) \checkmark

Schnorr Signature in ROM+GM

- If the group is of prime order q: one cannot break the scheme with less than \sqrt{q} queries to the group-law oracle
- If q is a 160-bit prime, then $T \geq 2^{80}$
 - as soon as the best attack in the group is a generic one
Summary

- Introduction to Provable Security
- The Random-Oracle Model
- The Ideal-Cipher Model
- The Generic Model

Comparisons

The Random-Oracle Model
Canetti-Goldreich-Halevi 1998

The ROM is strictly stronger than the standard model
- Several counter-examples
 - Canetti-Goldreich-Halevi '98 (signature scheme)
 - Nielsen '02 (non-committing encryption scheme)
 - Goldwasser-Tauman '03 (signature scheme)
 - Bellare-Boldyrev-Palacio '03 (IND-CCA-preserving encryption)
- But still no practical attack against a “reasonable” scheme “provably secure in the random-oracle model”

The Generic Model
Stern-Pointcheval-Malone-Lee-Smart 2002

“Generic group: the encoding is a random oracle”
⇒ a stronger assumption than the ROM
Several counter-examples
- Index-calculs = non-generic attacks
- But not available everywhere: on some well-chosen elliptic curves
- ECDSA [Stern-Pointcheval-Malone-Lee-Smart '02]:
 - Provably non-malleable in the generic model
 - Malleable with any elliptic curve
⇒ to be used very carefully

The Ideal-Cipher Model

- Seems to be stronger than the ROM
 - a family of random permutations vs. a random function
- Maybe more realistic, when one looks at the goals in the design of a block cipher
But no formal result in either direction
- Candidates (none is proven):
 - ideal cipher → random oracle: CBC-MAC
 - random oracle → ideal cipher: Luby-Rackoff (Feistel)
Feistel Network: Not That Easy!

- Luby-Rackoff 1988: a 4-round Feistel network
 - a family of pseudo-random functions
 - a family of super pseudo-random permutations
 - i.e. indistinguishable from a random permutation, with access to both the permutation and its inverse but as black boxes
 - in the ROM, the adversary has access to the inner functions!
- Coron 2002: no black-box reduction
 - from an attack in the ICM
 - into an attack in the ROM
 - if the cipher is instantiated with less than 6 rounds of random oracles

Conclusion

- Improvements to combine the standard model with efficient schemes
 - Cramer-Shoup 1998 (IND-CCA encryption EF-CMA signature)
 - Boneh-Boyen 2004 (EF-CMA signature)
- Still
 - either not as efficient as schemes proven in the ROM
 - or under stronger algorithmic assumptions

stronger model vs. stronger algorithmic assumption