About Generic Conversions from any Weakly Secure Encryption Scheme into a Chosen-Ciphertext Secure Scheme

Tokyo University November 24th 2000

David Pointcheval Département d'Informatique ENS - CNRS

David.Pointcheval@ens.fr

http://www.di.ens.fr/~pointche

Overview

- Introduction
- Security arguments
- Encryption
 - Security notions
 - Some examples
 - Previous conversions
 - REACT: new conversion
- Conclusion

Introduction

Tokyo University November 24th 2000

David Pointcheval Département d'Informatique ENS - CNRS

David.Pointcheval@ens.fr

http://www.di.ens.fr/~pointche

Cryptography

Cryptography:

to solve security concerns

Authentication

Integrity

Confidentiality

 \Rightarrow encryption

Authentication/Integrity Authentication Algorithm A Verification Algorithm V σ m True/False m Security: it is impossible to produce a new valid pair (m,σ) David Pointcheval Generic Conversions for Asymmetric Cryptosystems **ENS-CNRS** Tokyo University - November 24th 2000 - 5 Encryption Encryption Algorithm E Decryption Algorithm **D**

Security: it is impossible to get back *m* just from *c*

Security Arguments

Tokyo University November 24th 2000

David Pointcheval Département d'Informatique ENS - CNRS

David.Pointcheval@ens.fr

http://www.di.ens.fr/~pointche

Security Notions

Depending on the security concerns, one defines

- the goals that an adversary may would like to reach
- the means/information available to the adversary

Security Proofs

One provides a reduction from a "difficult" problem *P* to an attack *Atk*:

- A reaches the "prohibited" goals
 ⇒ A can be used to break P
- no further hypothesis: standard model

♦ but that rarely leads to efficiency!
 ⇒ some assumptions

David Pointcheval ENS-CNRS

Generic Conversions for Asymmetric Cryptosystems Tokyo University - November 24th 2000 - 9

Security Arguments

One provides a reduction from a "difficult" problem *P* to an attack *Atk*, under some ideal assumptions:

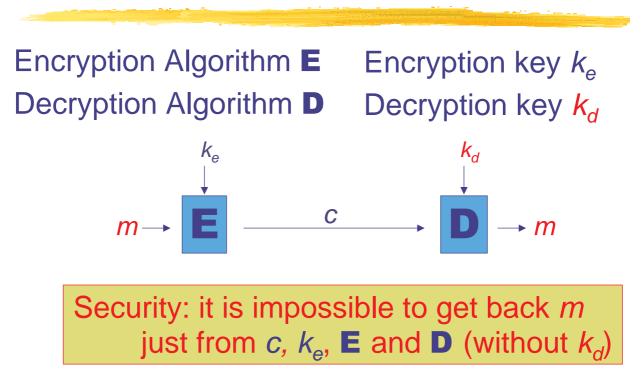
 ideal random hash function: random oracle model

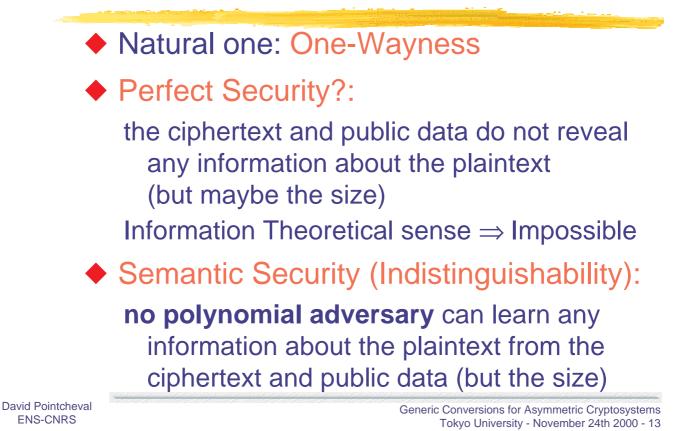
 ideal symmetric encryption: ideal cipher model

 ideal group: generic model (generic adversaries)
 Not perfect proofs ⇒ security arguments

Encryption

Tokyo University November 24th 2000


David Pointcheval Département d'Informatique ENS - CNRS


David.Pointcheval@ens.fr

http://www.di.ens.fr/~pointche

Asymmetric Encryption

Security Notions

Chosen Plaintext: (basic scenario)

in the public-key setting, any adversary can get the encryption of any plaintext of her choice (by encrypting it by herself)

Chosen Ciphertext (adaptively):

the adversary has furthermore access to a decryption oracle which decrypts any ciphertext of her choice (excepted the specific challenge!)

Required Security

OW-CPA: (basic level of security)

- enough in some scenarios
- ont enough in many others:
- CC-Attacks easy to perform
 - \Rightarrow attack to be made unuseful

Plaintext-space often limited

("sell" - "buy" -- "yes" - "no" -- ...)

 \Rightarrow IND very often required

David Pointcheval ENS-CNRS

Generic Conversions for Asymmetric Cryptosystems Tokyo University - November 24th 2000 - 15

Main Security Notions

OW-CPA: (the weakest)

 $\Pr_{m,r}[\mathbf{A}(c) = m | c = \mathbf{E}(m; r)] = \text{Succ negligible}$

IND-CCA: (the strongest - BDPR C '98)

$$2\Pr_{r,b}\left[\mathbf{A}_{2}^{\mathbf{D}}(m_{0},m_{1},c,s)=b\begin{vmatrix}(m_{0},m_{1},s)\leftarrow\mathbf{A}_{1}^{\mathbf{D}}(k_{p})\\c\leftarrow\mathbf{E}(m_{b};r)\end{vmatrix}\right]-1$$

= Adv negligible

Example I: RSA Encryption

- *e*, exponent relatively prime to $\varphi(n) = (p-1)(q-1)$
- *n*, *e* : public key

• $d = e^{-1} \mod \varphi(n)$: secret key

public $\mathbf{E}(m) = m^e \mod n$

secret $\mathbf{D}(c) = c^d \mod n$

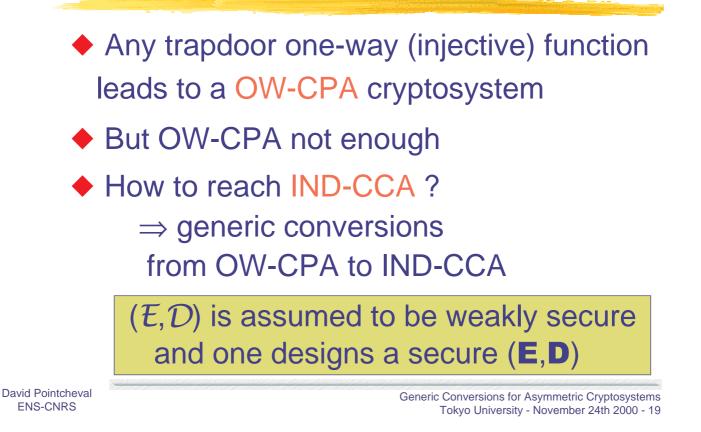
OW-CPA = RSA problem

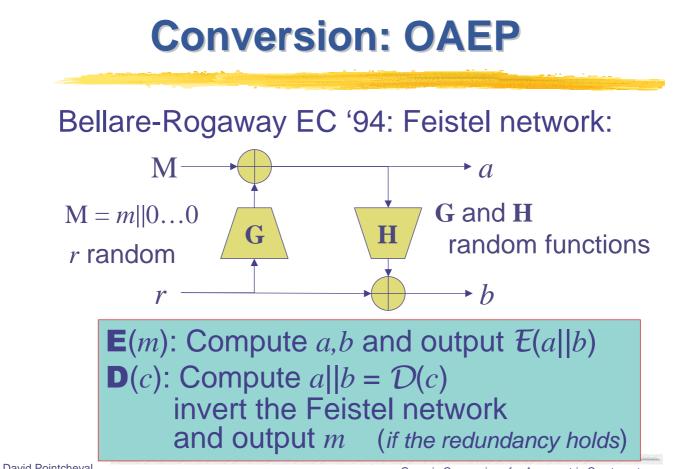
David Pointcheval ENS-CNRS

Generic Conversions for Asymmetric Cryptosystems Tokyo University - November 24th 2000 - 17

Example II: El Gamal Encryption

x : secret key


• $y=g^x$: public key


public $\mathbf{E}(m) = (g^a, y^a m) \rightarrow (c, d)$

secret $\mathbf{D}(c,d) = d/c^x$

OW-CPA = CDH problem IND-CPA = DDH problem

Generic Conversions

OAEP (Cont'd)

It provides an optimal conversion of any *trapdoor one-way* **permutation** into an IND-CCA cryptosystem <u>Efficiency:</u> optimal (just 2 more hashings) <u>Application:</u> RSA (the sole candidate as trapdoor one-way permutation!)

David Pointcheval ENS-CNRS

Generic Conversions for Asymmetric Cryptosystems Tokyo University - November 24th 2000 - 21

OAEP-RSA

 $\mathbf{E}(\mathbf{M}, e) = (a = \mathbf{M} \oplus \mathbf{G}(r) || b = r \oplus \mathbf{H}(a))^e \mod n$ $\rightarrow c \qquad \qquad \text{for a random } r$

guess 1 bit of M \Leftrightarrow guess $r \Leftrightarrow$ guess $a \Leftrightarrow$ guess $(a,b) \Leftrightarrow$ invert RSA

 $D(c) = c^{d} \mod n \to (a,b)$ $r = H(a) \oplus b \text{ and } M = a \oplus G(r)$ if M = m || 0...0 then m = x else "reject"

valid ciphertext ⇔ known plaintext Plaintext Awareness

Conversion: FO 99

Fujisaki-Okamoto (PKC '99)

 $E(m,s) = \mathcal{E}(m||s, H(m||s))$ $D(c): \text{ Compute } M = \mathcal{D}(c)$ if $c = \mathcal{E}(M, H(M))$ then split M = m||s and output m

conversion of any *IND-CPA cryptosystem* into an IND-CCA cryptosystem

David Pointcheval ENS-CNRS

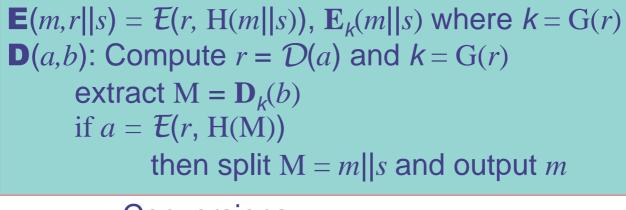
Generic Conversions for Asymmetric Cryptosystems Tokyo University - November 24th 2000 - 23

FO 99 (Cont'd)

Drawback:

based on an IND-CPA scheme \Rightarrow security relative to

decisional problems


Efficiency:

optimal encryption (just 1 more hashing)

non-optimal decryption (1 re-encryption)

Conversions: FO 99b, Po00

Fujisaki-Okamoto (Crypto '99) Pointcheval (PKC '00)

Conversions of any **OW-CPA cryptosystem** into an IND-CCA cryptosystem

David Pointcheval ENS-CNRS

Generic Conversions for Asymmetric Cryptosystems Tokyo University - November 24th 2000 - 25

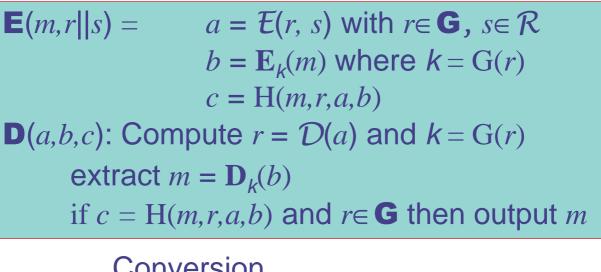
FO 99b, Po 00 (Cont'd)

Advantage:

based on OW-CPA schemes

 \Rightarrow security relative to computational problems

Efficiency:


- optimal encryption (just 2 more hashings)
- non-optimal decryption (1 re-encryption)

Hybridity:

 $(\mathbf{E}_k, \mathbf{D}_k)$ any symmetric encryption scheme (weakly secure :

semantically secure against passive attacks)

New Conversion: REACT (Okamoto-Pointcheval RSA '01)

Conversion of any **OW-PCA cryptosystem** into an IND-CCA cryptosystem

David Pointcheval ENS-CNRS

Generic Conversions for Asymmetric Cryptosystems Tokyo University - November 24th 2000 - 27

A New Attack: PCA

Plaintext Checking Attack: the adversary

- can get the encryption of any plaintext of her choice (by encrypting it by herself)
- has furthermore access to an oracle which, on input a pair (*m*,*c*), answers whether *c* encrypts *m*, or not

Remark: IND-PCA cannot be achieved

 \Rightarrow we will just be interested in OW-PCA

Symmetric Encryption Scheme

One just need a symmetric encryption ($\mathbf{E}_k, \mathbf{D}_k$) semantically secure against passive attacks: • One-Time Pad: perfectly secure (Adv^E = 0) Any classical scheme (DES, IDEA, AES,...)

 $Adv^{E} = v$ (very small)

David Pointcheval ENS-CNRS

Generic Conversions for Asymmetric Cryptosystems Tokyo University - November 24th 2000 - 29

Security Result

$G: \mathbf{G} \to \{0,1\}^{\ell_G} H: \{0,1\}^* \to \{0,1\}^{\ell_H} E_{k}: \{0,1\}^{\ell_E} \to \{0,1\}^{\ell_E}$

If an adversary A against IND-CCA reaches an advantage $Adv^A > Adv^E$ after $q_{\rm G}$, $q_{\rm H}$ and $q_{\rm D}$ queries to G, H and **D** resp. one can break the OW-PCA of $(\mathcal{F}, \mathcal{D})$ with probability greater than $Adv^{A} - Adv^{E}$

Semantic Security (OTP)

Given (a,b,c) such that $a = \mathcal{E}(r,s)$, $k = G(r), b = k \oplus m, c = H(m,r,a,b)$ In order to guess the bit d such that $m = m_d$ an adversary has to ask either • r to G to get k (and check b) • (m_0,r,a,b) or (m_1,r,a,b) to H (and check c)

because of the randomness of G and H

David Pointcheval ENS-CNRS

Generic Conversions for Asymmetric Cryptosystems Tokyo University - November 24th 2000 - 31

Semantic Security (OTP Cont'd)

Probability that $r (= \mathcal{D}(a))$ has been asked to G or H greater than $Adv^{A}/2$

Simply find the good one with the PC-oracle, to all the G queries and the H queries $\Rightarrow q_{\rm G} + q_{\rm H}$ queries to the PC-oracle

Plaintext Extractor

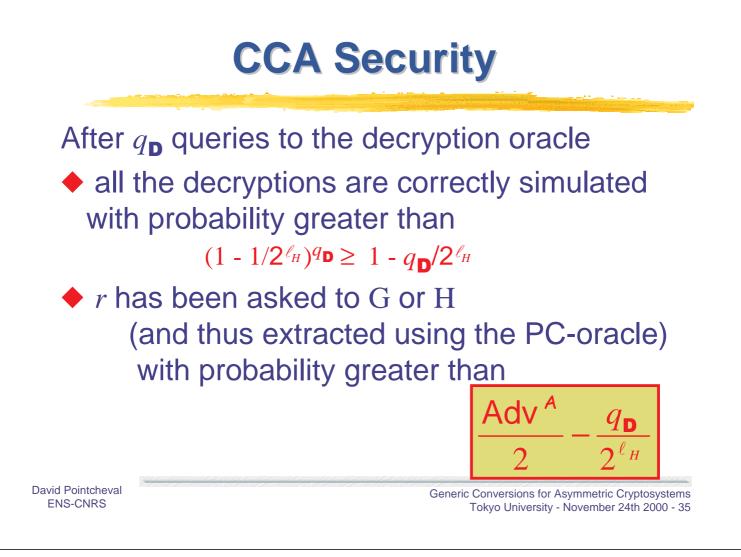
(a,b,c) valid ciphertext \Rightarrow one has asked for (m,r,a,b) to H to get a valid cor has guessed c, but with probability less than $1/2^{\ell_H}$

David Pointcheval ENS-CNRS

Generic Conversions for Asymmetric Cryptosystems Tokyo University - November 24th 2000 - 33

Plaintext Extractor

The plaintext extractor, to decrypt a given ciphertext (a,b,c), looks for any query (m,r,a,b) to H such that


 $\mathbf{H}(m,r,a,b) = c$

and checks whether

• $r = \mathcal{D}(a)$ (thanks to the PC-oracle)

• $b = \mathbf{E}_{k}(m)$ for $k = \mathbf{G}(r)$

Correct extraction with probability greater than 1 - $1/2^{\ell_H}$

The Diffie-Hellman Problems

 computational 		
		 ◆ Given A=g^a and B=g^b ◆ Compute DH(A,B) = C=g^{ab}
decision	onal 🗖	
		Given A, B and C in $\langle g \rangle$ Decide whether $C = DH(A,B)$
	Solve the computational problem, with access to a decisional oracle	
ointcheval		Generic Conversions for Asymmetric Cryptosystems

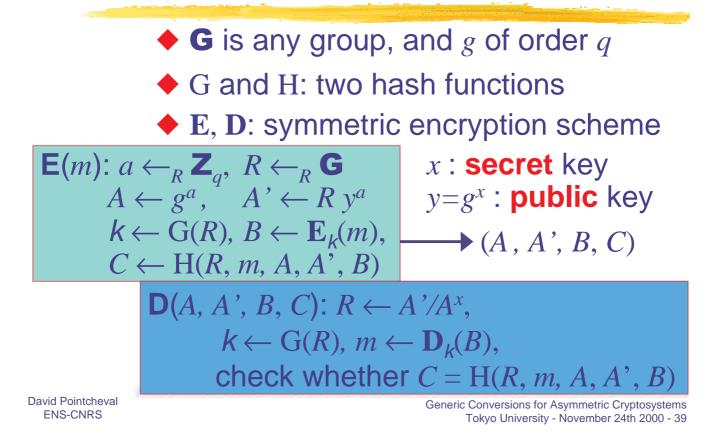
David Pointcheva ENS-CNRS

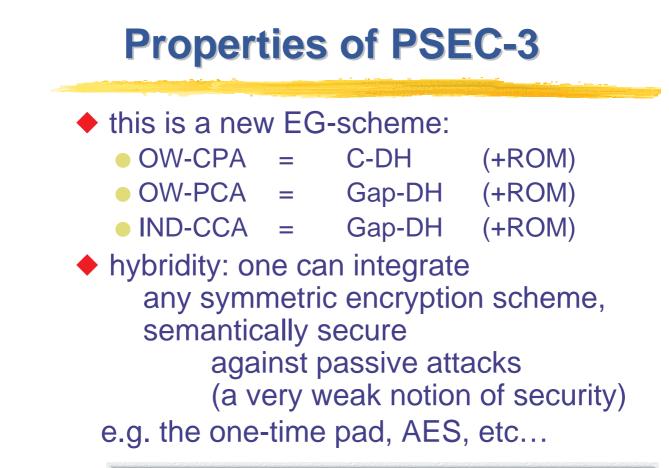
Generic Conversions for Asymmetric Cryptosystems Tokyo University - November 24th 2000 - 36

Intractability of the Gap-DH (Okamoto-Pointcheval PKC '2001)

The Computational Diffie-Hellman problem is believed intractable for suitable groups Gap-DH easy \Rightarrow D-DH = C-DH D-DH easy \Rightarrow G-DH = C-DH C-DH is believed strictly stronger than D-DH \Rightarrow G-DH intractable

David Pointcheval ENS-CNRS


Generic Conversions for Asymmetric Cryptosystems Tokyo University - November 24th 2000 - 37


Recall: El Gamal Encryption

- **G** = ($\langle g \rangle$, ×) group of order q
- x : secret key
- $y=g^x$: public key
- **public** $\mathbf{E}(m) = (g^a, y^a m) \rightarrow (c, d)$
- secret $\mathbf{D}(c,d) = d/c^x$

OW-CPA = CDH problem IND-CPA = DDH problem OW-PCA = GDH problem

PSEC - 3

Efficiency

It just requires 2 exp./Enc, and 1 exp./Dec \Rightarrow one of the most efficient variant

Other variants:

Tsiounis-Yung (PKC '98) D-DH + ROM + Other
 = Jakobsson-Schnorr (AC '00) ROM + GM
 3 exp./Enc - 3 exp./Dec

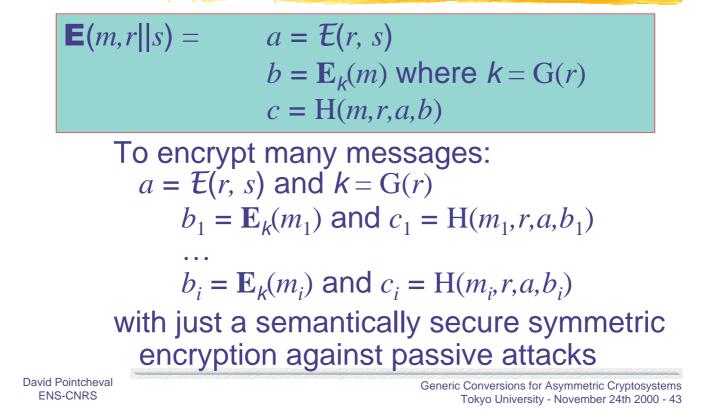
Shoup-Gennaro (EC '98) D-DH + ROM
 5 exp./Enc - 7 exp./Dec

Cramer-Shoup (Crypto '98) D-DH
 5 exp./Enc - 3 exp./Dec

David Pointcheval ENS-CNRS

Generic Conversions for Asymmetric Cryptosystems Tokyo University - November 24th 2000 - 41

Efficiency (Cont'd)


Recent variants:

 PSEC-1 (Fujisaki-Okamoto - PKC '99) D-DH + ROM 2 exp./Enc - 3 exp./Dec
 PSEC-2 (Fujisaki-Okamoto - Crypto '99) C-DH + ROM

2 exp./Enc - 3 exp./Dec

 DHAES (Abdalla-Bellare-Rogaway) New assumption DH-Oracle (RSA '2001) similar to DDH + ROM + MAC 2 exp./Enc - 1 exp./Dec

More About Efficiency

Conclusion

Tokyo University November 24th 2000

David Pointcheval Département d'Informatique ENS - CNRS

David.Pointcheval@ens.fr

http://www.di.ens.fr/~pointche

Conclusion

REACT is a new conversion:
From any OW-PCA scheme, one makes an IND-CCA scheme ⇒ the best security level
The cost is just:
2 more hashings in encryption/decryption ⇒ almost optimal
Can integrate symmetric encryption ⇒ improved efficiency

David Pointcheval ENS-CNRS

Generic Conversions for Asymmetric Cryptosystems Tokyo University - November 24th 2000 - 45