II – Password-Authenticated Key Exchange

David Pointcheval

CNRS, Ecole normale supérieure/PSL & INRIA

informatics mathematics

8th BIU Winter School – Key Exchange February 2018

CNRS/ENS/PSL/INRIA

David Pointcheval

1/41

Diffie-Hellman Key Exchange

Diffie-Hellman protocol: allows two parties to agree on a common session key: In a finite cyclic group G, of prime order p, with a generator g

$$\begin{array}{cccc} x \stackrel{s}{\leftarrow} \mathbb{Z}_p, X \leftarrow g^x & \xrightarrow{X} & y \stackrel{s}{\leftarrow} \mathbb{Z}_p, Y \leftarrow g^y \\ K \leftarrow Y^x = g^{xy} & \longleftarrow & Y & K \leftarrow X^y = g^{xy} \end{array}$$

No authentication provided

Authenticated Key Exchange

Semantic security / Implicit Authentication:

the session key should be indistinguishable from a random string to all except the expected players

CNRS/ENS/PSL/INRIA

David Pointcheval

2/41

Authentication Techniques

Asymmetric technique

- Assume the existence of a public-key infrastructure
- Each party holds a pair of secret and public keys

Symmetric technique

Users share a random secret key

Password-based technique

Users share a random low-entropy secret: password

Electronic Passport

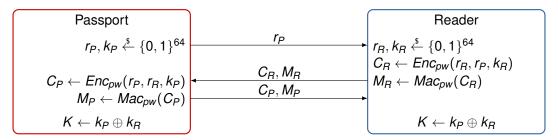
Since 1998, some passports contain digital information on a chip Standards specified by ICAO (International Civil Aviation Organization)

4/41

In 2004, security introduced:

- encrypted communication between the chip and the reader
- access control: BAC (Basic Access Control)

The shared secret is on the MRZ (Machine Readable Zone) It has low entropy: at most 72 bits, but actually approx. 40


 \implies low-entropy shared secret: a password pw

David Pointcheval

BAC: Basic Access Control

The symmetric encryption and MAC keys are deterministically derived from pw

From a pair (C_R, M_R) , one can make an exhaustive search on the password *pw* to check the validity of the Mac M_R After a few eavesdroppings only : password recovery

What can we expect from a low-entropy secret?

CNRS/ENS/PSL/INRIA	David Pointcheval	5/41

Off-line Dictionary Attacks

As in the previous scenario, after having

- eavesdropped some (possibly many) transcripts
- interacted (quite a few times) with players

the adversary accumulates enough information

to take the real password apart from the dictionary

 \implies Efficient password-recovery after off-line exhaustive search

For the BAC: quite a few passive eavesdroppings are enough to recover the password! How many active interactions could one enforce?

On-line Dictionary Attacks

On-line Dictionary Attacks

- The adversary interacts with a player, trying a password
- In case of success: it has guessed the password
- In case of failure: it tries again with another password

In Practice

- This attack is unavoidable
- If the failures for a target user can be detected the impact can be limited by various techniques
- If the failures cannot be detected (anonymity, no check, ...) the impact can be dramatic

CNRS/ENS/PSL/INRIA

David Pointcheval

7/41

Outline

Introduction

1 Security Notions

- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

2 Universal Composability

- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples

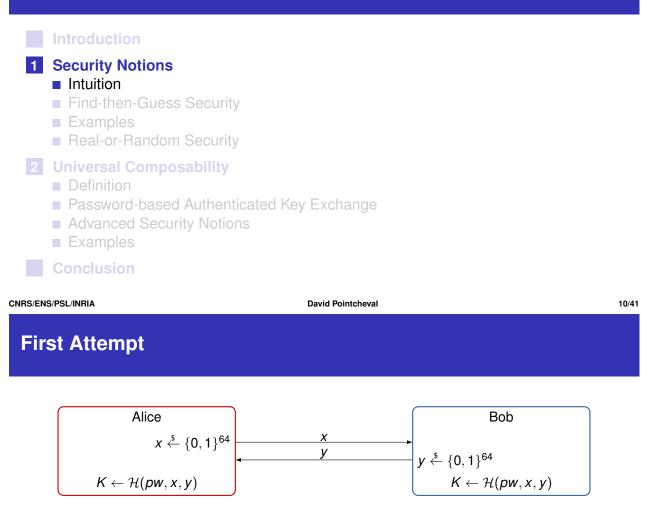
Conclusion

CNRS/ENS/PSL/INRIA

David Pointcheval

8/41

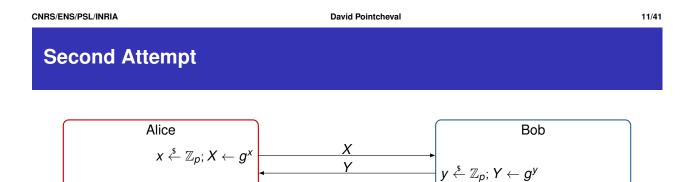
Outline


Introduction

1 Security Notions

- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

2 Universal Composability


- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples
- Conclusion

Seems better than BAC: no information leaks about *K*, so no leakage about *pw* either! But *K* will be later used: $c = E_K(m)$

any information about m leaks about K, and leaks on pw...

 \implies The security model has to deal with information leakage about K

Passive eavesdropping, even with leakage of K: secure under **CDH**! But the adversary can try to impersonate Bob, and know Z... \implies The security model has to deal with active attacks

 $Z \leftarrow Y^{x}; K \leftarrow \mathcal{H}(pw, X, Y, Z)$

 $Z \leftarrow X^{y}$; $K \leftarrow \mathcal{H}(pw, X, Y, Z)$

Security Models

- Game-based Security
 - Find-then-Guess
 - Real-or-Random
- Simulation-based Security
- Universal Composability

[Bellare-P.-Rogaway – Eurocrypt '00] [Abdalla-Fouque-P. – PKC '05] [Boyko-MacKenzie-Patel – Eurocrypt '00]

[Canetti-Halevi-Katz-Lindell-MacKenzie – Eurocrypt '05]

Where

- The adversary controls the network: it can create, alter, delete, duplicate messages
- Users can participate in concurrent executions of the protocol

On-line dictionary attack should be the best attack

 \implies No adversary should win with probability greater than q_S/N where $q_S = \#$ Active Sessions and N = #Dictionary

CNRS/ENS/PSL/INRIA

David Pointcheval

13/41

Outline

Introduction

1 Security Notions

- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

2 Universal Composability

- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples

Conclusion

CNRS/ENS/PSL/INRIA

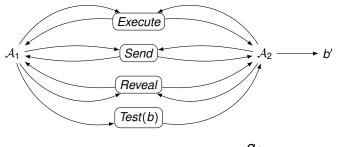
David Pointcheval

14/41

Game-based Security

[Bellare-P.-Rogaway – Eurocrypt '00]

The adversary \mathcal{A} interacts with oracles:


- **Execute** (A^i, B^j)
 - ${\mathcal A}$ gets the transcript of an execution between A and B
 - ⇒ Passive attacks (eavesdropping)
- Send(U^i , m)
 - \mathcal{A} sends the message *m* to the instance U^i
 - \implies Active attacks against U^i (active sessions)
- **Reveal** (U^i)
 - \mathcal{A} gets the session key established by U^i and its partner
 - \Longrightarrow Leakage of the session key, due to a misuse
- **Test** (U^i) a random bit *b* is chosen
 - If b = 0, A gets the session key (*i.e.*, $Reveal(U^i)$)
 - If b = 1, A gets a random key

Security Game: Find-then-Guess

Secrecy of the key: output b', the guess of the bit b involved in the Test-query Is the obtained key real or random?

Constraint: no *Test*-query on a trivially known key

i.e., key already revealed through the instance or its partner

 $Adv^{FtG}(\mathcal{A}) = 2 \times \Pr[b' = b] - 1 \le \frac{q_S}{N} + negl()$

David Pointcheval

CNRS/ENS/PSL/INRIA

Freshness and Partnering

Partners

Two players are partners if they share the same Session ID Where SID should model ideal executions:

- two players with same SID's and same *pw*'s conclude with the same session key
- two players with different SID's or different *pw*'s conclude with independent keys

Freshness

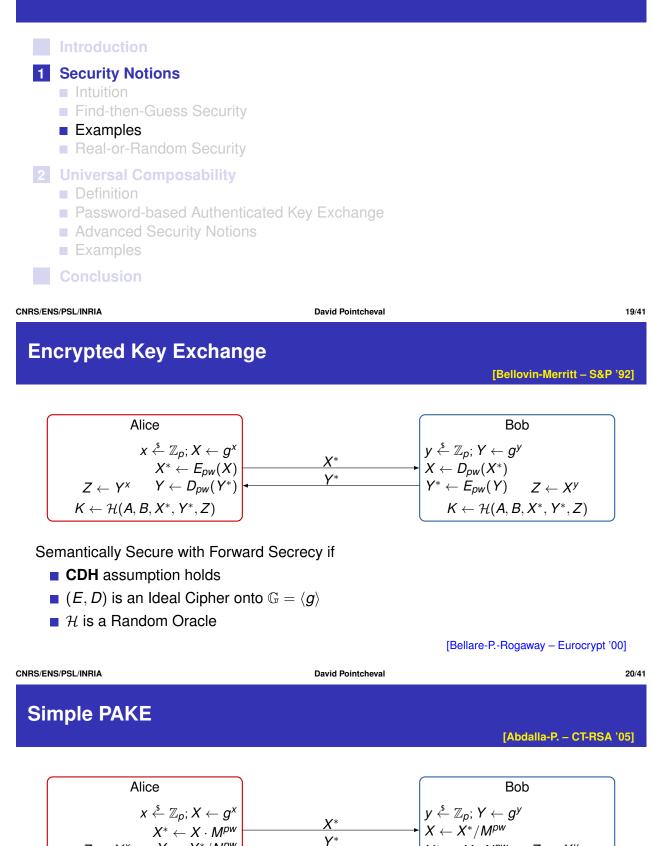
A key or a player is fresh if none of the key/player or the partner's key/player has been revealed/tested

Only fresh keys/players can be revealed/tested

CNRS/ENS/PSL/INRIA

David Pointcheval

17/41


16/41

Security Notions: Forward Secrecy

Semantic Security

The Find-then-Guess game models the secrecy of the key

- \implies the session key is unknown to the other players
 - What about this secrecy after the corruption of a player?
 - What about the knowledge of the two players?
- Forward Secrecy
 - An additional oracle: Corrupt(U) provides the password pw of the player U to the adversary
 - A new constraint: For any *Test*(Uⁱ), player U was not corrupted when Uⁱ was involved in its session

 $Z \leftarrow Y^x$ $Y \leftarrow Y^*/N^{pw}$

 $K \leftarrow \mathcal{H}(A, B, pw, X^*, Y^*, Z)$

CDH(M, N) hard to break
H is a Random Oracle

Semantically Secure if

 $Y^* \leftarrow Y \cdot N^{pw}$

 $Z \leftarrow X^y$

 $K \leftarrow \mathcal{H}(A, B, pw, X^*, Y^*, Z)$

Introduction

1 Security Notions

- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

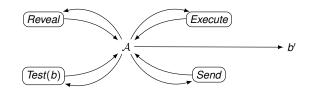
2 Universal Composability

- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples

Conclusion

CNRS/ENS/PSL/INRIA

David Pointcheval


22/41

Security Game: Real-or-Random

[Abdalla-Fouque-P. – PKC '05]

Secrecy/independence of all the keys: many Test-queries with the same bit b

- If no key defined by the protocol yet: output \perp
- If dishonest/corrupted partner: output the real key
- If player/partner already tested (not fresh): output the same key
- If b = 0: output the real key
- If b = 1: output a random key

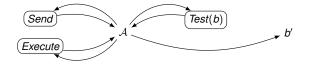
 $Adv^{RoR}(\mathcal{A}) = 2 \times \Pr[b' = b] - 1$

CNRS/ENS/PSL/INRIA

David Pointcheval

23/41

Security Game: Real-or-Random


Semantic Security (Encryption)

[Bellare-Desai-Jokipii-Rogaway – FOCS '97]

Find-then-Guess and Real-or-Random are polynomially equivalent $Adv^{RoR}(t, q_T) \leq q_T \times Adv^{FtG}(t)$

where q_T is the number of Test-queries

- For Password-based Authenticated Key Exchange:
 - $Adv^{FtG}(t) \leq \frac{q_s}{N} \neq Adv^{RoR}(t, q_T) \leq \frac{q_s}{N} \Longrightarrow$ Stronger notion
- No need of Reveal-queries ⇒ Simpler security notion [Abdalla-Fouque-P PKC '05]

Game-based Security: Limitations

- Proven bounds: O(q_S)/N, but almost never q_S/N
 hard to get optimal bound!

 This means: a few passwords can be excluded by each active attack
 But q_S is sometimes the number of Send-queries
 which is more than the number of Active Sessions
- Passwords chosen from pre-determined, known distributions
- Different passwords are assumed to be independent
- No security guarantees under arbitrary compositions
- → Universal Composability more appropriate [Canetti FOCS '01]

[Canetti-Halevi-Katz-Lindell-MacKenzie – Eurocrypt '05]

Outli	ine		
ln In	ntroduction		
	Security Notions Intuition Find-then-Guess Security Examples Real-or-Random Security		
	Iniversal Composability Definition Password-based Authenticated Advanced Security Notions Examples	Key Exchange	
C	conclusion		
CNRS/ENS/PS	SL/INRIA	David Pointcheval	26/41
Outli	ine		
ln	ntroduction		
	ecurity Notions		

Real-or-Random Security

2 Universal Composability

Definition

- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples
- Conclusion

Definition

Real Protocol

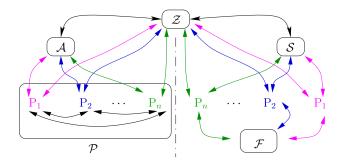
The real protocol \mathcal{P} is run by players P_1, \ldots, P_n , with their own private inputs x_1, \ldots, x_n . After interactions, they get outputs y_1, \ldots, y_n

Ideal Functionality

An ideal function \mathcal{F} is defined:

- it takes as input x₁,..., x_n, the private information of each player,
- **and outputs** y_1, \ldots, y_n , given privately to each player
- The players get their results, without interacting: this is a "by definition" secure primitive

CNRS/ENS/PSL/INRIA


David Pointcheval

28/41

Simulator

 \mathcal{P} emulates \mathcal{F} if, for any environment \mathcal{Z} , for any adversary \mathcal{A} ,

- there exists a simulator ${\mathcal S}$ so that, the view of ${\mathcal Z}$ is the same for
 - A attacking the real protocol \mathcal{P}
 - $\blacksquare \ \mathcal{S}$ attacking the ideal functionality \mathcal{F}

CNRS/ENS/PSL/INRIA

David Pointcheval

29/41

Outline

Introduction

1 Security Notions

- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

2 Universal Composability

- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples
- Conclusion

PAKE Ideal Functionality

Queries

- NewSession = a player joins the system with a password
- TestPwd = A attempts to guess a password (one per session) The adversary learns whether the guess was correct or not
- NewKey = A asks for the session key to be computed and delivered to the player

Corruption-Query

- \blacksquare A gets the long-term secrets (*pw*) and the internal state
- A takes the entire control on the player and plays on its behalf

Corruptions can occur **before the execution**: Static Corruptions Corruptions can occur **at any moment**: Adaptive Corruptions

CNRS/ENS/PSL/INRIA

David Pointcheval

31/41

PAKE Ideal Functionality

[Canetti-Halevi-Katz-Lindell-MacKenzie – Eurocrypt '05]

Session Key

- No corrupted players, same passwords
 ⇒ same key, randomly chosen
- No corrupted players, different passwords independent keys, randomly chosen
- A corrupted player
 key chosen by the adversary
- Correct password guess (TestPwd-query)
 key chosen by the adversary
- Incorrect password guess (TestPwd-query) ⇒ independent keys, randomly chosen

CNRS/ENS/PSL/INRIA

David Pointcheval

32/41

PAKE Ideal Functionality

Properties

- The TestPwd-query models the on-line dictionary attacks
- The Corruption-query includes forward secrecy

Advantages wrt Game-based Security

- No assumption on the distribution of passwords (chosen by the environment)
- Passwords can be related (it models mistyping)
- Security under arbitrary compositions secure channels

Game-based Security vs. Universal Composability

Game-based Security

In the reduction, the simulator has to emulate the protocol execution **only** up to an evidence the adversary has won ($pw \implies$ not negl.)

In the global system, the simulation fails when the adversary breaks one sub-protocol whereas other parts could provide protection ($pw \implies weak \text{ proof!}$)

UC Security

Simulation handles compositions, but proofs are more complex: the simulator must have an indistinguishable behavior, even when the adversary wins!

In the case of password-based cryptography: the adversary can win with non-negligible probability!

CNRS/ENS/PSL/INRIA	David Pointcheval	34/41
Outline		
 Introduction Security Notions Intuition Find-then-Guess Secur Examples Real-or-Random Secur Universal Composability Definition Password-based Auther Advanced Security Notion Examples 	ity y nticated Key Exchange	
CNRS/ENS/PSL/INRIA	David Pointcheval	35/41
Properties of the NewK Session Key: NewKey-Query		

- A corrupted player ⇒ key chosen by the adversary
- Correct password guess ⇒ key chosen by the adversary

The NewKey-query models possible Key Distribution:

 \Longrightarrow the session key can be controlled by one of the players

The contributiveness property models Key Agreement [Adalla-Catalano-Chevalier-P. – CT-RSA '09] \implies no player can decide on the key

. . .

Properties of the TestPwd-Query

Dictionary Attack: TestPwd-Query

- Correct password guess ⇒ key chosen by the adversary
- Incorrect password guess ⇒ random key

And adversary informed of correct/incorrect guess

The TestPwd-query models Explicit Authentication:

 \implies the players are informed of success/failure

Implicit-Only PAKE models Implicit Authentication [Dupont-Hesse-P.-Reyzin-Yakoubov – Eurocrypt '18] \implies the keys have to be used to test success/failure

CNRS/ENS/PSL	/INRIA David Poir	tcheval 37/41
Outlin	ne	
1 Se	troduction curity Notions Intuition Find-then-Guess Security	
	Examples Real-or-Random Security	
	niversal Composability Definition Password-based Authenticated Key Excha Advanced Security Notions Examples	inge
Co	onclusion	
CNRS/ENS/PSL	/INRIA David Poir	tcheval 38/41
UC-S	David Poir	tcheval 38/41 [Abdalla-Catalano-Chevalier-P. – CT-RSA '08]
UC-S With a	ecure PAKE	[Abdalla-Catalano-Chevalier-P. – CT-RSA '08]
UC-S With a ⇒ Fi In the	ecure PAKE	[Abdalla-Catalano-Chevalier-P. – CT-RSA '08]
UC-S With a \Rightarrow Fi In the \Rightarrow BI \blacksquare w	ecure PAKE a random oracle and an ideal cipher: EKE rst efficient scheme secure against Adapt standard model, based on GL (abstraction PR-security using SPHFs ith SS - $ZK \implies$ Static corruptions	[Abdalla-Catalano-Chevalier-P. – CT-RSA '08] ive Corruptions in of KOY) [Gennaro-Lindell – Eurocrypt '03] Canetti-Halevi-Katz-Lindell-MacKenzie – Eurocrypt '05]
UC-S With a \Rightarrow Fi In the \Rightarrow Bl \blacksquare w \blacksquare w	ecure PAKE a random oracle and an ideal cipher: EKE rst efficient scheme secure against Adapt standard model, based on GL (abstraction PR-security using SPHFs	[Abdalla-Catalano-Chevalier-P. – CT-RSA '08] ive Corruptions in of KOY) [Gennaro-Lindell – Eurocrypt '03] Canetti-Halevi-Katz-Lindell-MacKenzie – Eurocrypt '05]
UC-S With $a \Rightarrow Fi$ In the $\Rightarrow BI$ a w a w a w	ecure PAKE a random oracle and an ideal cipher: EKE rst efficient scheme secure against Adapt standard model, based on GL (abstraction PR-security using SPHFs ith SS - $ZK \implies$ Static corruptions ith an equivocable/extractable commitmer \Rightarrow Adaptive corruptions ith KV-SPHF and SS-NIZK \implies One-roun	[Abdalla-Catalano-Chevalier-P. – CT-RSA '08] ive Corruptions in of KOY) [Gennaro-Lindell – Eurocrypt '03] Canetti-Halevi-Katz-Lindell-MacKenzie – Eurocrypt '05] of [Abdalla-Chevalier-P. – Crypto '09]
UC-S With $a \Rightarrow Fi$ In the $\Rightarrow BI$ a w a w a w a w a w a w	ecure PAKE a random oracle and an ideal cipher: EKE rst efficient scheme secure against Adapt standard model, based on GL (abstraction PR-security using SPHFs ith SS - $ZK \implies$ Static corruptions ith an equivocable/extractable commitmen \Rightarrow Adaptive corruptions	[Abdalla-Catalano-Chevalier-P. – CT-RSA '08] ive Corruptions in of KOY) [Gennaro-Lindell – Eurocrypt '03] Canetti-Halevi-Katz-Lindell-MacKenzie – Eurocrypt '05] of [Abdalla-Chevalier-P. – Crypto '09] d only [Katz-Vaikuntanathan – TCC '11] [Abdalla-Benhamouda-P. – PKC '17]

Introduction

1 Security Notions

- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

2 Universal Composability

- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples

Conclusion

CNRS/ENS/PSL/INRIA

David Pointcheval

40/41

Conclusion

EKE is a secure PAKE in the ROM+ICM:

- BPR secure
- UC secure
- Withstands adaptive corruptions
- Provides forward secrecy
- Can guarantee Explicit or Implicit-Only authentication

All the constructions in the standard model exploit SPHFs:

based on the KOY protocol [Katz-Ostrovsky-Yung – Crypto '01]
 extend the GL protocol [Gennaro-Lindell – Eurocrypt '03]

Let us see SPHF-based PAKE Protocols

CNRS/ENS/PSL/INRIA

David Pointcheval

41/41