Provable Security for Public-Key Schemes

II – Encryption

Provable Security

One can prove that:
- if an adversary is able to break the cryptographic scheme
 then one can break the underlying problem
 (integer factoring, discrete logarithm, 3-SAT, etc)

Outline

1. Game-based Proofs
 - Provable Security
 - Game-based Approach
 - Transition Hops

2. Advanced Security for Encryption
 - Advanced Security Notions
 - Cramer-Shoup Encryption Scheme

3. Conclusion
Direct Reduction

Unfortunately

- Security may rely on several assumptions
- Proving that the view of the adversary, generated by the simulator, in the reduction is the same as in the real attack game is not easy to do in such a one big step

Sequence of Games

Real Attack Game
The adversary plays a game, against a challenger (security notion)

Simulation
The adversary plays a game, against a sequence of simulators
Output

- The output of the simulator in Game 1 is related to the output of the challenger in Game 0 (adversary's winning probability).
- The output of the simulator in Game 3 is easy to evaluate (e.g., always zero, always 1, probability of one-half).
- The gaps (Game 1 ↔ Game 2, Game 2 ↔ Game 3, etc.) are clearly identified with specific events.

Outline

1. Game-based Proofs
 - Provable Security
 - Game-based Approach
 - Transition Hops

2. Advanced Security for Encryption

3. Conclusion
Two Simulations

- Identical behaviors: \(\Pr[\text{Game}_A] - \Pr[\text{Game}_B] = 0 \)
- The behaviors differ only if \(\text{Ev} \) happens:
 - \(\text{Ev} \) is negligible, one can ignore it
 - Shoup's Lemma: \(\Pr[\text{Game}_A] - \Pr[\text{Game}_B] \leq \Pr[\text{Ev}] \)

\[
|\Pr[\text{Game}_A] - \Pr[\text{Game}_B]| \\
= |\Pr[\text{Game}_A|\text{Ev}] \Pr[\text{Ev}] + \Pr[\text{Game}_A|\neg\text{Ev}] \Pr[\neg\text{Ev}] - \Pr[\text{Game}_B|\text{Ev}] \Pr[\text{Ev}] - \Pr[\text{Game}_B|\neg\text{Ev}] \Pr[\neg\text{Ev}]| \\
= (\Pr[\text{Game}_A|\text{Ev}] - \Pr[\text{Game}_B|\text{Ev}]) \times \Pr[\text{Ev}] + (\Pr[\text{Game}_A|\neg\text{Ev}] - \Pr[\text{Game}_B|\neg\text{Ev}]) \times \Pr[\neg\text{Ev}] \\
\leq |1 \times \Pr[\text{Ev}] + 0 \times \Pr[\neg\text{Ev}]| \leq \Pr[\text{Ev}] \\
\]

- \(\text{Ev} \) is non-negligible and independent of the output in \(\text{Game}_A \), Simulator B terminates in case of event \(\text{Ev} \)

Two Distributions

- Identical behaviors: \(\Pr[\text{Game}_A] - \Pr[\text{Game}_B] = 0 \)
- The behaviors differ only if \(\text{Ev} \) happens:
 - \(\text{Ev} \) is negligible, one can ignore it
 - \(\text{Ev} \) is non-negligible and independent of the output in \(\text{Game}_A \), Simulator B terminates and outputs 0, in case of event \(\text{Ev} \):

\[
\Pr[\text{Game}_B] = \Pr[\text{Game}_B|\text{Ev}] \Pr[\text{Ev}] + \Pr[\text{Game}_B|\neg\text{Ev}] \Pr[\neg\text{Ev}] \\
= 0 \times \Pr[\text{Ev}] + \Pr[\text{Game}_A|\neg\text{Ev}] \times \Pr[\neg\text{Ev}] \\
= \Pr[\text{Game}_A] \times \Pr[\neg\text{Ev}] \\
\]

Simulator B terminates and flips a coin, in case of event \(\text{Ev} \):

\[
\Pr[\text{Game}_B] = \Pr[\text{Game}_B|\text{Ev}] \Pr[\text{Ev}] + \Pr[\text{Game}_B|\neg\text{Ev}] \Pr[\neg\text{Ev}] \\
= \frac{1}{2} \times \Pr[\text{Ev}] + \Pr[\text{Game}_A|\neg\text{Ev}] \times \Pr[\neg\text{Ev}] \\
= \frac{1}{2} + (\Pr[\text{Game}_A|\neg\text{Ev}] \times \frac{1}{2}) \times \Pr[\neg\text{Ev}] \\
\]
Two Simulations

- Identical behaviors: $\Pr[\text{Game}_A] - \Pr[\text{Game}_B] = 0$
- The behaviors differ only if Ev happens:
 - Ev is negligible, one can ignore it
 - Ev is non-negligible and independent of the output in Game_A,
 Simulator B terminates in case of event Ev

Event Ev

- Either Ev is negligible, or the output is independent of Ev
- For being able to terminate simulation B in case of event Ev,
 this event must be *efficiently* detectable
- For evaluating $\Pr[\text{Ev}]$, one re-iterates the above process,
 with an initial game that outputs 1 when event Ev happens

Two Distributions

$$\Pr[\text{Game}_A] - \Pr[\text{Game}_B] \leq \text{Adv}(\text{Doracles})$$

- For identical/statistically close distributions, for any oracle:
 $$\Pr[\text{Game}_A] - \Pr[\text{Game}_B] = \text{Dist}(\text{Distrib}_A, \text{Distrib}_B) = \text{negl}()$$
- For computationally close distributions, in general, we need to
 exclude additional oracle access:
 $$\Pr[\text{Game}_A] - \Pr[\text{Game}_B] \leq \text{Adv}^{\text{Distrib}}(t)$$
 where t is the computational time of the distinguisher

Outline

1. Game-based Proofs
2. Advanced Security for Encryption
 - Advanced Security Notions
 - Cramer-Shoup Encryption Scheme
3. Conclusion
Public-Key Encryption

IND – CPA Security Game

The adversary cannot get any information about a plaintext of a specific ciphertext (validity, partial value, etc).

Malleability

Semantic security (ciphertext indistinguishability) guarantees that no information is leaked from c about the plaintext m. But it may be possible to derive a ciphertext c' such that the plaintext m' is related to m in a meaningful way:

- ElGamal ciphertext: $c_1 = g^r$ and $c_2 = m \times y^r$
- Malleability: $c_1' = c_1 = g^r$ and $c_2' = 2 \times c_2 = (2m) \times y^r$

From an encryption of m, one can build an encryption of $2m$, or a random ciphertext of m, etc.

A formal security game for NM – CPA has been defined, but we ignore it for the moment.

Additional Information

More information modeled by oracle access:

- reaction attacks: oracle which answers, on c, whether the ciphertext c is valid or not
- plaintext-checking attacks: oracle which answers, on a pair (m, c), whether the plaintext m is really encrypted in c or not (whether $m = D_{sk}(c)$)
- chosen-ciphertext attacks (CCA): decryption oracle (with the restriction not to use it on the challenge ciphertext) ⇒ the adversary can obtain the plaintext of any ciphertext of its choice (excepted the challenge)
 - non-adaptive (CCA – 1) only before receiving the challenge
 - adaptive (CCA – 2) unlimited oracle access

[Naor-Yung – STOC ’90]
[Rackoff-Simon – Crypto ’91]
The adversary can ask any decryption of its choice: Chosen-Ciphertext Attacks (oracle access)

\[(sk, pk) \leftarrow \mathcal{K}(); (m_0, m_1, \text{state}) \leftarrow \mathcal{A}^D(pk);
\]
\[b \overset{\$}{\leftarrow} \{0, 1\}; \quad c = \varepsilon_{pk}(m_b); \quad b' \leftarrow \mathcal{A}^D(\text{state}, c)\]

\[\text{Adv}^{\text{ind-cca}}_S(\mathcal{A}) = \Pr[b' = 1 | b = 1] - \Pr[b' = 1 | b = 0] = 2 \times \Pr[b' = b] - 1\]

Cramer-Shoup Encryption Scheme

Key Generation

- \(G = (\langle g \rangle, \times)\) group of order \(q\)
- \(sk = (x_1, x_2, y_1, y_2, z)\), where \(x_1, x_2, y_1, y_2, z \overset{\$}{\leftarrow} \mathbb{Z}_q\)
- \(pk = (g_1, g_2, \mathcal{H}, c, d, h)\), where
 - \(g_1, g_2\) are independent elements in \(G\)
 - \(\mathcal{H}\) a hash function (second-preimage resistant)
 - \(c = g_1^{x_1} g_2^{x_2}, \quad d = g_1^{y_1} g_2^{y_2}\), and \(h = g_1^z\)

Encryption

\[u_1 = g_1^r, \quad u_2 = g_2^r, \quad e = m \times h^r, \quad v = c^r d^\alpha \text{ where } \alpha = \mathcal{H}(u_1, u_2, e)\]
Cramer-Shoup Encryption Scheme vs. ElGamal

\[u_1 = g_1^e, \quad u_2 = g_2^e, \quad e = m \times h^f, \quad v = c^f d^r \alpha \quad \text{where} \quad \alpha = \mathcal{H}(u_1, u_2, e) \]

\((u_1, e)\) is an ElGamal ciphertext, with public key \(h = g_1^x \)

Decryption

- Since \(h = g_1^x, h^f = u_1^x, \) thus \(m = e / u_1^x \)
- Since \(c = g_1^{x_1} g_2^{x_2} \) and \(d = g_1^{y_1} g_2^{y_2} \)

\[c' = g_1^{r x_1} g_2^{r x_2} = u_1^{x_1} u_2^{x_2}, \quad d' = u_1^{y_1} u_2^{y_2} \]

One thus first checks whether

\[v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2} \quad \text{where} \quad \alpha = \mathcal{H}(u_1, u_2, e) \]

Security of the Cramer-Shoup Encryption Scheme

Theorem

The Cramer-Shoup encryption scheme achieves IND−CCA security, under the DDH assumption, and the second-preimage resistance of \(\mathcal{H} \):

\[
\text{Adv}_{\mathcal{C}S}^{\text{IND−CCA}}(t) \leq 2 \times \text{Adv}_{\mathcal{C}S}^{\text{ddh}}(t) + \text{Succ}^{\mathcal{H}}(t) + 3q_D / q
\]

Let us prove this theorem, with a sequence of games, in which \(A \) is an IND−CCA adversary against the Cramer-Shoup encryption scheme.

Real Attack Game

Proof: Invalid ciphertexts

- **Game_0**: use of the oracles \(\mathcal{K}, \mathcal{D} \)
- **Game_1**: we abort (with a random output \(b' \))

 in case of bad (invalid) accepted ciphertext,

 where invalid ciphertext means \(\log_{g_1} u_1 \neq \log_{g_2} u_2 \)

Event F

\(A \) submits a bad accepted ciphertext

(note: this is not computationally detectable)

The advantage in \(\text{Game}_1 \) is:

\[
\Pr_{\text{Game}_1}[b' = b | F] = 1/2
\]

\[
\Pr_{\text{Game}_0}[F] = \Pr_{\text{Game}_1}[F]
\]

\[
\Pr_{\text{Game}_1}[b' = b | \neg F] = \Pr_{\text{Game}_0}[b' = b | \neg F]
\]

\(\implies \text{Hop-S-Negl}: \text{Adv}_{\text{Game}_1} \geq \text{Adv}_{\text{Game}_0} - \text{Pr}[F] \)
Proof: Simulations

Game 2: we use the simulations

Key Generation Simulation

$$x_1, x_2, y_1, y_2, z_1, z_2 \overset{R}{\leftarrow} \mathbb{Z}_q, g_1, g_2 \overset{R}{\leftarrow} \mathbb{G}: sk = (x_1, x_2, y_1, y_2, z_1, z_2)$$

$$c = g_1^{x_1} g_2^{x_2}, d = g_1^{y_1} g_2^{y_2}, \text{ and } h = g_1^{z_1} g_2^{z_2}: pk = (g_1, g_2, \mathcal{H}, c, d, h)$$

Decryption Simulation

If $$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$ where $$\alpha = \mathcal{H}(u_1, u_2, e): m = e/u_1^{z_1} u_2^{z_2}$$

Under the assumption of $$\neg F$$, perfect simulation

$$\Rightarrow \text{Hop-S-Perfect: } \text{Adv}_{\text{Game}_2} = \text{Adv}_{\text{Game}_1}$$

Details: Shoup’s Lemma

Let us move to the exponents, in basis $$g_1$$, with $$g_2 = g_1^s$$:

$$\log c = x_1 + sx_2$$

$$\log d = y_1 + sy_2$$

$$\log v = r_1(x_1 + \alpha y_1) + sr_2(x_2 + \alpha y_2)$$

The system is under-defined: for any $$v$$, there are $$(x_1, x_2, y_1, y_2)$$ that satisfy the system $$\Rightarrow v$$ is unpredictable

$$\Rightarrow \Pr[F] \leq q_d/q \quad \Rightarrow \text{Adv}_{\text{Game}_1} \geq \text{Adv}_{\text{Game}_0} - q_d/q$$

Details: Bad Accept

In order to evaluate $$\Pr[F]$$, we study the probability that

- $$r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$$,
- whereas $$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$

The adversary just knows the public key:

$$c = g_1^{x_1} g_2^{x_2}, d = g_1^{y_1} g_2^{y_2}$$

Let us move to the exponents, in basis $$g_1$$, with $$g_2 = g_1^s$$:

$$\log c = x_1 + sx_2$$

$$\log d = y_1 + sy_2$$

$$\log v = r_1(x_1 + \alpha y_1) + sr_2(x_2 + \alpha y_2)$$

The system is under-defined: for any $$v$$, there are $$(x_1, x_2, y_1, y_2)$$ that satisfy the system $$\Rightarrow v$$ is unpredictable

$$\Rightarrow \Pr[F] \leq q_d/q \quad \Rightarrow \text{Adv}_{\text{Game}_1} \geq \text{Adv}_{\text{Game}_0} - q_d/q$$

Proof: Computable Adversary

- **Game 3**: we do no longer exclude bad accepted ciphertexts

 $$\Rightarrow \text{Hop-S-Negl!}$$

- **Game 3**: we do no longer exclude bad accepted ciphertexts

 $$\Rightarrow \text{Hop-S-Perfect: } \text{Adv}_{\text{Game}_3} \geq \text{Adv}_{\text{Game}_2} - \Pr[F] \geq \text{Adv}_{\text{Game}_2} - q_d/q$$

 This is technical: to make the simulator/adversary computable
Proof: DDH Assumption

- **Game**₄: we modify the generation of the challenge ciphertext:

 Original Challenge

 Random choice: \(b \overset{R}{\leftarrow} \{0, 1\} \), \(r \overset{R}{\leftarrow} \mathbb{Z}_q \) \[\alpha = \mathcal{H}(u_1, u_2, e)\]

 \(u_1 = g_{1}^{r}, \ u_2 = g_{2}^{r}, \ e = m_b \times h^r, \ v = c^d f^\alpha \)

 New Challenge 1

 Given \((U = g_{1}^{r}, V = g_{2}^{r})\) from outside, and random choice \(b \overset{R}{\leftarrow} \{0, 1\} \)

 \(u_1 = U, \ u_2 = V, \ e = m_b \times U^{z_1} V^{z_2}, \ v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2} \)

 With \((U = g_{1}^{r}, V = g_{2}^{r})\): \(U^{z_1} V^{z_2} = h^r \) and \(U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2} = c^d f^\alpha \)

 \(\implies\) **Hop-S-Perfect**: \(\text{Adv}_{\text{Game}_4} = \text{Adv}_{\text{Game}_3} \)

Proof: DDH Assumption

- **Game**₅: we modify the generation of the challenge ciphertext:

 Previous Challenge 1

 Given \((U = g_{1}^{r}, V = g_{2}^{r})\) from outside, and random choice \(b \overset{R}{\leftarrow} \{0, 1\} \)

 \(u_1 = U, \ u_2 = V, \ e = m_b \times U^{z_1} V^{z_2}, \ v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2} \)

The input from outside changes from \((U = g_{1}^{r}, V = g_{2}^{r})\) (a CDH tuple) to \((U = g_{1}^{r}, V = g_{2}^{r})\) (a random tuple):

\[
\Pr_{\text{Game}_4}[b' = b] - \Pr_{\text{Game}_5}[b' = b] \leq \text{Adv}^{ddh}_{G}(t)
\]

\(\implies\) **Hop-D-Comp**: \(\text{Adv}_{\text{Game}_5} \geq \text{Adv}_{\text{Game}_4} - 2 \times \text{Adv}^{ddh}_{G}(t) \)

(Since \(\text{Adv} = 2 \times \Pr[b' = b] - 1 \))

Proof: Collision

- **Game**₆: we abort (with a random output \(b' \)) in case of second pre-image with a decryption query

 \(\mathcal{A} \) submits a ciphertext with the same \(\alpha \) as the challenge ciphertext, but a different initial triple: \((u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)\), but \(\alpha = \alpha^* \), were \(^* \) are for all the elements related to the challenge ciphertext

Event \(F_H \)

Second pre-image of \(\mathcal{H} \):

\[
\implies \Pr[F_H] \leq \text{Succ}^H(t)
\]

The advantage in **Game**₆ is:

\[
\Pr_{\text{Game}_6}[b' = b | F_H] = 1/2
\]

\[
\Pr_{\text{Game}_6}[b' = b | \neg F_H] = \Pr_{\text{Game}_6}[b' = b | \neg F_H]
\]

\(\implies\) **Hop-S-Negl**: \(\text{Adv}_{\text{Game}_6} \geq \text{Adv}_{\text{Game}_5} - \Pr[F_H] \)

\[
\text{Adv}_{\text{Game}_6} \geq \text{Adv}_{\text{Game}_5} - \text{Succ}^H(t)
\]
Proof: Invalid ciphertexts

- **Game**\(_7\): we abort (with a random output \(b'\)) in case of bad accepted ciphertext, we do as in **Game**\(_1\)

Details: Bad Accept

- **Event** \(F'\)

\\(\mathcal{A}\) submits a bad accepted ciphertext (note: this is not computationally detectable)

The advantage in **Game**\(_7\) is: \(\Pr_{\text{Game}_7}[b' = b|F'] = 1/2\)

\[
\Pr_{\text{Game}_6}[F'] = \Pr_{\text{Game}_7}[F'] - \Pr_{\text{Game}_6}[b' = b|\neg F'] \Rightarrow \text{Hop-S-Negl: } Adv_{\text{Game}_7} \geq Adv_{\text{Game}_6} - \Pr[F']
\]

Details: Bad Accept (Case 3)

The adversary knows the public key, and the (invalid) challenge ciphertext:

\[
c = g_1^{x_1} g_2^{x_2} \quad d = g_1^{y_1} g_2^{y_2}
\]

\[
v^* = U^{x_1 + y_1} v^{x_2 + y_2} = g_1^{r_1^*(x_1 + y_1)} g_2^{r_2^*(x_2 + y_2)}
\]

Let us move to the exponents, in basis \(g_1\), with \(g_2 = g_1^s\):

\[
\log c = x_1 + sx_2
\]

\[
\log d = y_1 + sy_2
\]

\[
\log v^* = r_1^*(x_1 + y_1) + sr_2^*(x_2 + y_2)
\]

\[
\log v = r_1(x_1 + y_1) + sr_2(x_2 + y_2)
\]

Details: Bad Accept (Case 3)

In order to evaluate \(\Pr[F']\), we study the probability that

- \(r_1 = \log g_1, u_1 \neq \log g_2, u_2 = r_2,\)
- whereas \(v = u_1^{x_1 + y_1} u_2^{x_2 + y_2}\)

Let us use \(**\) for all the elements related to the challenge ciphertext:

Three cases may appear:

- **Case 1**: \((u_1, u_2, e) = (u_1^*, u_2^*, e^*), \) then necessarily

\[
v^* = U^{x_1 + y_1} v^{x_2 + y_2} = u_1^{x_1 + y_1} u_2^{x_2 + y_2}
\]

Then, the ciphertext is rejected

\[
\Rightarrow \Pr[F'_1] = 0
\]

- **Case 2**: \((u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)\), but \(\alpha = \alpha^*\): From the previous game, Aborts

\[
\Rightarrow \Pr[F'_2] = 0
\]

- **Case 3**: \((u_1, u_2, e) \neq (u_1^*, u_2^*, e^*), \) and \(\alpha \neq \alpha^*\)

The determinant of the system is

\[
\Delta = \begin{vmatrix}
1 & s & 0 & 0 \\
0 & 0 & 1 & s \\
r_1^* & sr_2^* & r_1^* \alpha^* & sr_2^* \alpha^* \\
r_1 & sr_2 & r_1 \alpha & sr_2 \alpha \\
\end{vmatrix}
\]

\[
= s^2 \times ((r_2 - r_1) \times (r_2^* - r_1^*) \times \alpha^* - (r_2^* - r_1^*) \times (r_2 - r_1) \times \alpha)
\]

\[
= s^2 \times (r_2 - r_1) \times (r_2^* - r_1^*) \times (\alpha^* - \alpha)
\]

\[
\neq 0
\]

The system is under-defined: for any \(v\), there are \((x_1, x_2, y_1, y_2)\) that satisfy the system

\[
\Rightarrow \nu \text{ is unpredictable} \quad \Rightarrow \Pr[F'_3] \leq q_D/q
\]

\[
\Rightarrow Adv_{\text{Game}_7} \geq Adv_{\text{Game}_6} - q_D/q
\]
Proof: Analysis of the Final Game

In the final Game$_7$:
- only valid ciphertexts are decrypted
- the challenge ciphertext contains
 \[e = m_b \times U^{z_1} V^{z_2} \]
- the public key contains
 \[h = g_1^{z_1} g_2^{z_2} \]

Again, the system is under-defined:
for any m_b, there are (z_1, z_2) that satisfy the system
\[\implies m_b \text{ is unpredictable} \quad \implies b \text{ is unpredictable} \]
\[\implies \text{Adv}_{\text{Game}_7} = 0 \]

\[
\begin{align*}
\text{Adv}_{\text{Game}_7} &= 0 \\
\text{Adv}_{\text{Game}_7} &\geq \text{Adv}_{\text{Game}_6} - \frac{q_D}{q} \\
\text{Adv}_{\text{Game}_6} &\geq \text{Adv}_{\text{Game}_5} - \text{Succ}^H(t) \\
\text{Adv}_{\text{Game}_5} &\geq \text{Adv}_{\text{Game}_4} - 2 \times \text{Adv}_{\text{ddh}}^G(t) \\
\text{Adv}_{\text{Game}_4} &= \text{Adv}_{\text{Game}_3} \\
\text{Adv}_{\text{Game}_3} &\geq \text{Adv}_{\text{Game}_2} - \frac{q_D}{q} \\
\text{Adv}_{\text{Game}_2} &= \text{Adv}_{\text{Game}_1} \\
\text{Adv}_{\text{Game}_1} &\geq \text{Adv}_{\text{Game}_0} - \frac{q_D}{q} \\
\text{Adv}_{\text{Game}_0} &= \text{Adv}_{\text{ind–cca}}^G (\mathcal{A}) \\
\text{Adv}_{\text{ind–cca}}^G (\mathcal{A}) &\leq 2 \times \text{Adv}_{\text{ddh}}^G(t) + \text{Succ}^H(t) + 3\frac{q_D}{q}
\end{align*}
\]

Conclusion

Game-based Methodology: the story of OAEP

[Bellare-Rogaway EC ’94]

- Reduction proven indistinguishable for an IND-CCA adversary
 (actually IND-CCA1, and not IND-CCA2) but widely believed for
 IND-CCA2, without any further analysis of the reduction
 The direct-reduction methodology

[Shoup - Crypto ’01]

Shoup showed the gap for IND-CCA2, under the OWP
Granted his new game-based methodology

[Fujisaki-Okamoto-Pointcheval-Stern – Crypto ’01]

FOPS proved the security for IND-CCA2, under the PD-OWP
Using the game-based methodology

Outline

1. Game-based Proofs
 - Provable Security
 - Game-based Approach
 - Transition Hops

2. Advanced Security for Encryption
 - Advanced Security Notions
 - Cramer-Shoup Encryption Scheme

3. Conclusion