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Secrecy of Communications

One ever wanted to communicate secretly

Bob
Alice

The treasure
is under 

…/...

With the all-digital world, security needs are even stronger
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What Does Secrecy Mean?

Shannon provides a definition of secrecy:

Perfect Secrecy

The ciphertext does not reveal any (additional) information
about the plaintext: no more than known before

a priori information about the plaintext,
defined by the distribution probability of the plaintext
a posteriori information about the plaintext,
defined by the distribution probability of the plaintext,
given the ciphertext

Both distributions should be perfectly identical
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Practical Secrecy

Perfect Secrecy vs. Practical Secrecy

No information about the plaintext m is in the ciphertext c
without the knowledge of the key k
⇒ information theory
No information about the plaintext m can be extracted
from the ciphertext c, even for a powerful adversary
(unlimited time and/or unlimited power): perfect secrecy
In practice: adversaries are limited in time/power
⇒ complexity theory
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Asymmetric Encryption: Intuition [Diffie-Hellman 1976]

Secrecy

The recipient only should be able to open the message
No requirement about the sender

Why would the sender need a secret key to encrypt a message?

Alice

Bob

The treasure
is under 

…/...
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Asymmetric Encryption: Formalism

Public Key Cryptography – Diffie-Hellman (1976)

Bob’s public key is used by Alice as a parameter to encrypt a
message to Bob
Bob’s private key is used by Bob as a parameter to decrypt
ciphertexts

skpk

E Dm c m

(pk,sk)G1k

Secrecy of the private key sk ⇒ secrecy of communications
Because of pk , perfect secrecy is definitely impossible!
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What is a Secure Cryptographic Scheme/Protocol?

Public-key encryption:
Secrecy of the private key sk ⇒ secrecy of communications

What does mean secrecy?
→ Security notions have to be formally defined
How to guarantee above security claims for concrete schemes?
→ Provable security
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Provable Security

One can prove that:
if an adversary is able to break the cryptographic scheme
then one can break a well-known hard problem

hard →
instance

→solution
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General Method

Computational Security Proofs

In order to prove the security of a cryptographic scheme/protocol,
one needs

a formal security model (security notions)
acceptable computational assumptions (hard problems)
a reduction: if one can break the security notions,
then one can break the hard problem

Oracles

ChallengerAdversary 0 / 1

Security Game
Oracles

ChallengerAdversary

Instance

Sim
ulator

Solution

Reduction
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Integer Factoring [Lenstra-Verheul 2000]

Integer Factoring

Given n = pq
Find p and q

Year Required Complexity n bitlength
before 2000 64 768
before 2010 80 1024
before 2020 112 2048
before 2030 128 3072

192 7680
256 15360

Note that the reduction may be lossy: extra bits are then required
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Integer Factoring Records

Integer Factoring

Given n = pq
Find p and q

Digits Date Details
129 April 1994 Quadratic Sieve
130 April 1996 Algebraic Sieve
140 February 1999
155 August 1999 512 bits
160 April 2003
200 May 2005
232 December 2009 768 bits
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Integer Factoring Variants

RSA [Rivest-Shamir-Adleman 1978]

Given n = pq, e and y ∈ Z?
n

Find x such that y = xe mod n

Note that this problem is hard without the prime factors p and q, but
becomes easy with them: if d = e−1 mod ϕ(n), then x = yd mod n

Flexible RSA [Baric-Pfitzmann and Fujisaki-Okamoto 1997]

Given n = pq and y ∈ Z?
n

Find x and e > 1 such that y = xe mod n

Both problems are assumed as hard as integer factoring:
the prime factors are a trapdoor to find solutions
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Discrete Logarithm

Discrete Logarithm Problem

Given G = 〈g〉 a cyclic group of order q, and y ∈ G
Find x such that y = gx

Possible groups: G ∈ (Z?
p,×), or an elliptic curve

(Computational) Diffie Hellman Problem

Given G = 〈g〉 a cyclic group of order q, and X = gx , Y = gy

Find Z = gxy

The knowledge of x or y helps to solve this problem (trapdoor)
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Success Probabilities

For any computational problem P, we quantify the quality of an
adversary A by its success probability in finding the solution:

SuccP(A) = Pr[A(instance)→ solution]

We quantify the hardness of the problem by the success probability of
the best adversary within time t : Succ(t) = max|A|≤t{Succ(A)}
Note that the probability space can be restricted:

some inputs are fixed, and others only are randomly chosen

Discrete Logarithm Problem

We usually fix the group G = 〈g〉 of order q, X is randomly chosen:

Succdlp
G (A) = Pr

x R←Zq

[A(gx)→ x ]
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Decisional Problem

(Decisional) Diffie Hellman Problem

Given G = 〈g〉 a cyclic group of order q, and X = gx , Y = gy ,
as well as a candidate Z ∈ G
Decide whether Z = gxy

In such a case, the adversary is called a distinguisher (outputs 1 bit)
A good distinguisher should behave in significantly different manners
according to the input distribution:

Advddh
G (A)=Pr[A(X ,Y ,Z ) = 1|Z = gxy ]− Pr[A(X ,Y ,Z ) = 1|Z R← G]

Advddh
G (t) = max

|A|≤t
{Advddh

G (A)}
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Distribution Indistinguishability

Indistinguishabilities

Let D0 and D1, two distributions on a finite set X :
D0 and D1 are perfectly indistinguishable if

Dist(D0,D1) =
∑

x∈X

∣∣∣∣ Pra∈D1
[a = x ]− Pr

a∈D0
[a = x ]

∣∣∣∣ = 0

D0 and D1 are statistically indistinguishable if

Dist(D0,D1) =
∑

x∈X

∣∣∣∣ Pra∈D1
[a = x ]− Pr

a∈D0
[a = x ]

∣∣∣∣ = negl()
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Distribution Indistinguishability

Computational Indistinguishability

Let D0 and D1, two distributions on a finite set X ,
a distinguisher A between D0 and D1

AdvD0,D1(A) = Pr
a∈D1

[A(a) = 1]− Pr
a∈D0

[A(a) = 1]

the computational indistinguishability of D0 and D1 is

AdvD0,D1(t) = max
|A|≤t
{AdvD0,D1(A)}

Theorem

∀t , AdvD0,D1(t) ≤ Dist(D0,D1)
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DDH ≤ CDH ≤ DLP

CDH ≤ DLP

Let A be an adversary against the DLP within time t , then we build
an adversary B against the CDH: given X and Y , B runs A on X , that
outputs x ′ (correct or not); then B outputs Y x ′

The running time t ′ of B is the same as A, plus one exponentiation:

Succcdh
G (t ′) ≥ Succcdh

G (B) = Pr[B(X ,Y )→ gxy = Y x ]

= Pr[A(X )→ x ] = Succdlp
G (A)

Taking the maximum on the adversaries A:

Succcdh
G (t + τexp) ≥ Succdlp

G (t)
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DDH ≤ CDH ≤ DLP

DDH ≤ CDH

Let A be an adversary against the CDH within time t , we build an
adversary B against the DDH: given X ,Y and Z , B runs A on (X ,Y ),
that outputs Z ′; then B outputs 1 if Z ′ = Z and 0 otherwise
The running time of B is the same as A: and Advddh

G (t) is greater than

Advddh
G (B) = Pr[B → 1|Z = gxy ]− Pr[B → 1|Z R← G]

= Pr[A(X ,Y )→ Z |Z = gxy ]− Pr[A(X ,Y )→ Z |Z R← G]

= Pr[A(X ,Y )→ gxy ]− Pr[A(X ,Y )→ Z |Z R← G]

= Succcdh
G (A)− 1/q

Taking the maximum on the adversaries A:

Advddh
G (t) ≥ Succcdh

G (t)− 1/q
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Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext
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OW− CPA

One-Wayness

For a public-key encryption scheme S = (K, E ,D), without the
secrete key sk , it should be computationally impossible to recover the
plaintext m from the ciphertext c:

Succow
S (A) = Pr[(sk ,pk)← K();m R←M; c = Epk (m) : A(pk , c)→ m]

should be negligible

Chosen-Plaintext Attacks

In the public-key setting, the adversary has access to the encryption
key (the public key), and thus can encrypt any plaintext of its choice:
chosen-plaintext attack
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OW− CPA Security Game

A

kdke G

m

m* random
r* random

m* = m
?

Er*
m* c*
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ElGamal Encryption [ElGamal 1985]

ElGamal Encryption

The ElGamal encryption scheme EG is defined,
in a group G = 〈g〉 of order q, for m ∈ G

K(G,g,q): x R← Zq, and sk ← x and pk ← y = gx

Epk (m): r R← Zq, c1 ← gr and c2 ← y r ×m = pk r ×m
Then, the ciphertext is c = (c1, c2)

Dsk (c) outputs c2/cx
1 = c2/csk

1

Theorem (ElGamal is OW− CPA)

Succow−cpa
EG (t) ≤ Succcdh

G (t)
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ElGamal is OW− CPA: Proof

Succow−cpa
EG (t) ≤ Succcdh

G (t)

Let A be an adversary against EG, we build an adversary B against
CDH: let us be given a CDH instance (X ,Y )

A gets pk ← X from B

B sets c1 ← Y

B chooses c2
R← G (this implicitly defines m∗ = c2/CDH(X ,Y )),

and sends c = (c1, c2)

B receives m from A and outputs c2/m

Pr[m = m∗] = Succow−cpa
EG (A)

= Pr[c2/m = c2/m∗] = Pr[c2/m = CDH(X ,Y )] ≤ Succcdh
G (t)
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Is OW− CPA Enough?

For a yes/no answer or sell/buy order,
one bit of information may be enough for the adversary!

How to model that no bit of information leaks?

Semantic Security / Indistinguishability [Goldwasser-Micali 1984]

After having chosen two plaintexts m0 and m1, upon receiving the
encryption of mb (for a random bit b), it should be hard to guess
which message has been encrypted:

(sk ,pk)← K();(m0,m1, state)← A(pk);

b R← {0,1};c = Epk (mb);b′ ← A(state, c)

Advind−cpa
S (A) = Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

ENS/CNRS/INRIA Paris, France David Pointcheval 33/40

IND− CPA Security Game

A

m1

m0

kdke G

Er
mb c*

b’

b∈{0,1}
r random

b’ = b?
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ElGamal Encryption

ElGamal Encryption

The ElGamal encryption scheme EG is defined,
in a group G = 〈g〉 of order q, for m ∈ G

K(G,g,q): x R← Zq, and sk ← x and pk ← y = gx

Epk (m): r R← Zq, c1 ← gr and c2 ← y r ×m = pk r ×m
Then, the ciphertext is c = (c1, c2)

Dsk (c) outputs c2/cx
1 = c2/csk

1

Theorem (ElGamal is IND− CPA)

Advind−cpa
EG (t) ≤ 2× Advddh

G (t)
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ElGamal is IND− CPA: Proof

Let A be an adversary against EG, we build an adversary B against
DDH: let us be given a DDH instance (X ,Y ,Z )

A gets pk ← X from B, and outputs (m0,m1)

B sets c1 ← Y

B chooses b R← {0,1}, sets c2 ← Z ×mb,
and sends c = (c1, c2)

B receives b′ from A and outputs d = (b′ = b)

2× Pr[b′ = b]− 1

= Advind−cpa
EG (A), if Z = CDH(X ,Y )

= 0, otherwise
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ElGamal is IND− CPA: Proof

As a consequence,
2× Pr[b′ = b|Z = CDH(X ,Y )]− 1 = Advind−cpa

EG (A)

2× Pr[b′ = b|Z R← G]− 1 = 0

Advind−cpa
EG (A) = 2×

(
Pr[d = 1|Z = CDH(X ,Y )]

−Pr[d = 1|Z R← G]

)

= 2× Advddh
G (B) ≤ 2× Advddh

G (t)
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RSA Encryption [Rivest-Shamir-Adleman 1978]

RSA Encryption

The RSA encryption scheme RSA is defined by
K(1k ): p and q two random k -bit prime integers,
and an exponent e (possibly fixed, or not):
sk ← d = e−1 mod ϕ(n) and pk ← (n,e)
Epk (m): the ciphertext is c = me mod n
Dsk (c): the plaintext is m = cd mod n

Theorem (RSA is OW− CPA, but. . . )

Succow−cpa
RSA (t) ≤ Succrsa(t)

A deterministic encryption scheme cannot be IND− CPA
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Conclusion

Global methodology for provable security:
a formal security model (security notions)
acceptable computational assumptions (hard problems)
a reduction: if one can break the security notions,
then one can break the hard problem

We will apply this methodology
on advanced security notions for encryption
to signature schemes

ENS/CNRS/INRIA Paris, France David Pointcheval 40/40


