I – Basics

David Pointcheval
Ecole normale supérieure, CNRS & INRIA

IACR-SEAMS School
Cryptographie: Foundations and New Directions
November 2016 – Hanoi – Vietnam

Outline

1 Cryptography
 ■ Introduction
 ■ Formal Notations

2 Provable Security
 ■ Definition
 ■ Computational Assumptions
 ■ Some Reductions

3 Public-Key Encryption
 ■ One-Wayness
 ■ Indistinguishability

4 Conclusion

Secrecy of Communications

One ever wanted to communicate secretly

With the all-digital world, security needs are even stronger
What Does Secrecy Mean?

Shannon provides a definition of secrecy:

Perfect Secrecy

The ciphertext does not reveal any (additional) information about the plaintext: no more than known before

- a priori information about the plaintext, defined by the distribution probability of the plaintext
- a posteriori information about the plaintext, defined by the distribution probability of the plaintext, given the ciphertext

Both distributions should be perfectly identical

Perfect Secrecy vs. Practical Secrecy

- No information about the plaintext \(m \) is in the ciphertext \(c \) without the knowledge of the key \(k \)
 \(\Rightarrow \) information theory

 No information about the plaintext \(m \) can be extracted from the ciphertext \(c \), even for a powerful adversary (unlimited time and/or unlimited power): perfect secrecy

- In practice: adversaries are limited in time/power
 \(\Rightarrow \) complexity theory

Outline

1 Cryptography
 - Introduction
 - Formal Notations

2 Provable Security

3 Public-Key Encryption

4 Conclusion
Asymmetric Encryption: Formalism

Public Key Cryptography – Diffie-Hellman (1976)

- Bob's public key is used by Alice as a parameter to encrypt a message to Bob
- Bob's private key is used by Bob as a parameter to decrypt ciphertexts

Secrecy of the private key $sk \Rightarrow$ secrecy of communications
Because of pk, perfect secrecy is definitely impossible!

Outline

1 Cryptography
2 Provable Security
 - Definition
 - Computational Assumptions
 - Some Reductions
3 Public-Key Encryption
4 Conclusion

What is a Secure Cryptographic Scheme/Protocol?

- Public-key encryption:
 Secrecy of the private key $sk \Rightarrow$ secrecy of communications
- What does mean secrecy?
 → Security notions have to be formally defined
- How to guarantee above security claims for concrete schemes?
 → Provable security

Provable Security

One can prove that:
- if an adversary is able to break the cryptographic scheme
- then one can break a well-known hard problem

hard instance \Rightarrow solution
General Method

Computational Security Proofs

In order to prove the security of a cryptographic scheme/protocol, one needs:
- a formal security model (security notions)
- acceptable computational assumptions (hard problems)
- a reduction: if one can break the security notions, then one can break the hard problem

Outline

1 Cryptography
2 Provable Security
 - Definition
 - Computational Assumptions
 - Some Reductions
3 Public-Key Encryption
4 Conclusion

Integer Factoring

[Lenstra-Verheul 2000]

Integer Factoring

- Given $n = pq$
- Find p and q

<table>
<thead>
<tr>
<th>Year</th>
<th>Required Complexity</th>
<th>n bitlength</th>
</tr>
</thead>
<tbody>
<tr>
<td>before 2000</td>
<td>64</td>
<td>768</td>
</tr>
<tr>
<td>before 2010</td>
<td>80</td>
<td>1024</td>
</tr>
<tr>
<td>before 2020</td>
<td>112</td>
<td>2048</td>
</tr>
<tr>
<td>before 2030</td>
<td>128</td>
<td>3072</td>
</tr>
<tr>
<td></td>
<td>192</td>
<td>7680</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>15360</td>
</tr>
</tbody>
</table>

Note that the reduction may be lossy: extra bits are then required.

Integer Factoring

- Given $n = pq$
- Find p and q

<table>
<thead>
<tr>
<th>Digits</th>
<th>Date</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>129</td>
<td>April 1994</td>
<td>Quadratic Sieve</td>
</tr>
<tr>
<td>130</td>
<td>April 1996</td>
<td>Algebraic Sieve</td>
</tr>
<tr>
<td>140</td>
<td>February 1999</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>August 1999</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>April 2003</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>May 2005</td>
<td>512 bits</td>
</tr>
<tr>
<td>232</td>
<td>December 2009</td>
<td>768 bits</td>
</tr>
</tbody>
</table>
Integer Factoring Variants

RSA

[Rivest-Shamir-Adleman 1978]

- Given \(n = pq, e \) and \(y \in \mathbb{Z}_n^* \)
- Find \(x \) such that \(y = x^e \mod n \)

Note that this problem is hard without the prime factors \(p \) and \(q \), but becomes easy with them: if \(d = e^{-1} \mod \varphi(n) \), then \(x = y^d \mod n \)

Flexible RSA

[Baric-Pfitzmann and Fujisaki-Okamoto 1997]

- Given \(n = pq \) and \(y \in \mathbb{Z}_n^* \)
- Find \(x \) and \(e > 1 \) such that \(y = x^e \mod n \)

Both problems are assumed as hard as integer factoring: the prime factors are a trapdoor to find solutions

Discrete Logarithm

Discrete Logarithm Problem

- Given \(G = \langle g \rangle \) a cyclic group of order \(q \), and \(y \in G \)
- Find \(x \) such that \(y = g^x \)

Possible groups: \(G \in (\mathbb{Z}_p^*, \cdot) \), or an elliptic curve

(Computational) Diffie Hellman Problem

- Given \(G = \langle g \rangle \) a cyclic group of order \(q \), and \(X = g^x, Y = g^y \)
- Find \(Z = g^{xy} \)

The knowledge of \(x \) or \(y \) helps to solve this problem (trapdoor)

Success Probabilities

For any computational problem \(P \), we quantify the quality of an adversary \(A \) by its success probability in finding the solution:

\[
\text{Succ}^P(A) = \Pr[A(\text{instance}) \rightarrow \text{solution}]
\]

We quantify the hardness of the problem by the success probability of the best adversary within time \(t \):

\[
\text{Succ}(t) = \max_{|A| \leq t} \{\text{Succ}(A)\}
\]

Note that the probability space can be restricted:

- some inputs are fixed, and others only are randomly chosen

Discrete Logarithm Problem

We usually fix the group \(G = \langle g \rangle \) of order \(q \), \(X \) is randomly chosen:

\[
\text{Succ}^d_G(A) = \Pr_{x \sim \mathbb{Z}_q^*}[A(g^x) \rightarrow x]
\]

Decisional Problem

** (Decisional) Diffie Hellman Problem**

- Given \(G = \langle g \rangle \) a cyclic group of order \(q \), and \(X = g^x, Y = g^y \), as well as a candidate \(Z \in G \)
- Decide whether \(Z = g^{xy} \)

In such a case, the adversary is called a distinguisher (outputs 1 bit)

A good distinguisher should behave in significantly different manners according to the input distribution:

\[
\text{Adv}^{ddh}_G(A) = \Pr[A(X, Y, Z) = 1 | Z = g^{xy}] - \Pr[A(X, Y, Z) = 1 | Z \sim G]
\]

\[
\text{Adv}^{ddh}(t) = \max_{|A| \leq t} \{\text{Adv}^{ddh}_G(A)\}
\]
Distribution Indistinguishability

Indistinguishabilities

Let D_0 and D_1 be two distributions on a finite set X:

- D_0 and D_1 are perfectly indistinguishable if

$$\text{Dist}(D_0, D_1) = \sum_{x \in X} \left| \Pr_{a \in D_1}[a = x] - \Pr_{a \in D_0}[a = x] \right| = 0$$

- D_0 and D_1 are statistically indistinguishable if

$$\text{Dist}(D_0, D_1) = \sum_{x \in X} \left| \Pr_{a \in D_1}[a = x] - \Pr_{a \in D_0}[a = x] \right| = \text{negl}()$$

Computational Indistinguishability

Let D_0 and D_1 be two distributions on a finite set X, a distinguisher A between D_0 and D_1:

- A’s advantage $\text{Adv}^{D_0, D_1}(A)$ is

$$\text{Adv}^{D_0, D_1}(A) = \Pr_{a \in D_1}[A(a) = 1] - \Pr_{a \in D_0}[A(a) = 1]$$

- The computational indistinguishability of D_0 and D_1 is

$$\text{Adv}^{D_0, D_1}(t) = \max_{|A| \leq t} \{ \text{Adv}^{D_0, D_1}(A) \}$$

Theorem

$$\forall t, \quad \text{Adv}^{D_0, D_1}(t) \leq \text{Dist}(D_0, D_1)$$

Outline

1. Cryptography
2. Provable Security
 - Definition
 - Computational Assumptions
 - Some Reductions
3. Public-Key Encryption
4. Conclusion

DDH \leq CDH \leq DLP

CDH \leq DLP

Let \mathcal{A} be an adversary against the DLP within time t, then we build an adversary B against the CDH: given X and Y, B runs \mathcal{A} on X, that outputs x' (correct or not); then B outputs $Y^{x'}$.

The running time t' of B is the same as \mathcal{A}, plus one exponentiation:

$$\text{Succ}_{\text{cdh}}^G(t') \geq \text{Succ}_{\text{cdh}}^G(B) = \Pr[B(X, Y) \rightarrow g^{xy} = Y^x] = \Pr[A(X) \rightarrow x] = \text{Succ}_{\text{dlp}}^G(\mathcal{A})$$

Taking the maximum on the adversaries \mathcal{A}:

$$\text{Succ}_{\text{cdh}}^G(t + \tau_{\exp}) \geq \text{Succ}_{\text{dlp}}^G(t)$$
Let A be an adversary against the CDH within time t, we build an adversary B against the DDH: given X, Y and Z, B runs A on (X, Y), that outputs Z'; then B outputs 1 if $Z' = Z$ and 0 otherwise.

The running time of B is the same as A: and $\text{Adv}_{\text{ddh}}^G(t)$ is greater than $\text{Adv}_{\text{cdh}}^G(A)$:

\[
\text{Adv}_{\text{ddh}}^G(B) = \text{Pr}[B \rightarrow 1 | Z = g^{xy}] - \text{Pr}[B \rightarrow 1 | Z \leftarrow G] = \text{Pr}[A(X, Y) \rightarrow Z | Z = g^{xy}] - \text{Pr}[A(X, Y) \rightarrow Z | Z \leftarrow G] = \text{Pr}[A(X, Y) \rightarrow g^{xy}] - \text{Pr}[A(X, Y) \rightarrow Z | Z \leftarrow G] = \text{Succ}_{\text{cdh}}^G(A) - 1/q
\]

Taking the maximum on the adversaries A:

\[
\text{Adv}_{\text{ddh}}^G(t) \geq \text{Succ}_{\text{cdh}}^G(t) - 1/q
\]

OW − CPA

One-Wayness

For a public-key encryption scheme $S = (K, E, D)$, without the secret key sk, it should be computationally impossible to recover the plaintext m from the ciphertext c:

\[
\text{Succ}_{\text{ow}}^S(A) = \text{Pr}[(sk, pk) \leftarrow K(); m \leftarrow M; c = E_{pk}(m) : A(pk, c) \rightarrow m] \text{ should be negligible}
\]

Chosen-Plaintext Attacks

In the public-key setting, the adversary has access to the encryption key (the public key), and thus can encrypt any plaintext of its choice: chosen-plaintext attack.
OW − CPA Security Game

The ElGamal encryption scheme \(E_G \) is defined, in a group \(G = \langle g \rangle \) of order \(q \), for \(m \in G \):

1. \(K_c(G, g, q) : x \overset{R}{\leftarrow} \mathbb{Z}_q \), and \(sk \leftarrow x \) and \(pk \leftarrow y = g^x \)
2. \(E_{pk}(m) : r \overset{R}{\leftarrow} \mathbb{Z}_q \), \(c_1 \leftarrow g^r \) and \(c_2 \leftarrow y^r \times m = pk^r \times m \)
 Then, the ciphertext is \(c = (c_1, c_2) \)
3. \(D_{sk}(c) \) outputs \(c_2 / c_1^x = c_2 / c_1^{sk} \)

Theorem (ElGamal is OW − CPA)

\[
\text{Succ}_{E_G}^{\text{OW−CPA}}(t) \leq \text{Succ}_{G}^{\text{CDH}}(t)
\]

ElGamal is OW − CPA: Proof

Let \(A \) be an adversary against \(E_G \), we build an adversary \(B \) against CDH: let us be given a CDH instance \((X, Y) \):

- \(A \) gets \(pk \leftarrow X \) from \(B \)
- \(B \) sets \(c_1 \leftarrow Y \)
- \(B \) chooses \(c_2 \overset{R}{\leftarrow} G \) (this implicitly defines \(m^* = c_2 / \text{CDH}(X, Y) \)), and sends \(c = (c_1, c_2) \)
- \(B \) receives \(m \) from \(A \) and outputs \(c_2 / m \)
- \(\text{Pr}[m = m^*] = \text{Succ}_{E_G}^{\text{OW−CPA}}(A) \)
 \(= \text{Pr}[c_2 / m = c_2 / m^*] = \text{Pr}[c_2 / m = \text{CDH}(X, Y)] \leq \text{Succ}_{G}^{\text{CDH}}(t) \)

Outline

1. Cryptography
2. Provable Security
3. Public-Key Encryption
 - One-Wayness
 - Indistinguishability
4. Conclusion
Is OW–CPA Enough?

For a yes/no answer or sell/buy order, one bit of information may be enough for the adversary!
How to model that no bit of information leaks?

Semantic Security / Indistinguishability

After having chosen two plaintexts \(m_0 \) and \(m_1 \), upon receiving the encryption of \(m_b \) (for a random bit \(b \)), it should be hard to guess which message has been encrypted:

\[
\begin{align*}
(sk, pk) & \leftarrow \mathcal{K}(); (m_0, m_1, \text{state}) \leftarrow \mathcal{A}(pk); \\
 b & \overset{\$}{\leftarrow} \{0, 1\}; c = \mathcal{E}_{pk}(m_b); b' \leftarrow \mathcal{A}(.c, \text{state})
\end{align*}
\]

\[
\text{Adv}^{\text{ind–cpa}}_S(\mathcal{A}) = \Pr[b' = 1|b = 1] - \Pr[b' = 1|b = 0]
\]

ElGamal Encryption

The ElGamal encryption scheme \(\mathcal{E}_G \) is defined, in a group \(\mathbb{G} = \langle g \rangle \) of order \(q \), for \(m \in \mathbb{G} \):

- \(\mathcal{K}(\mathbb{G}, g, q): x \overset{\$}{\leftarrow} \mathbb{Z}_q \), and \(sk \leftarrow x \) and \(pk \leftarrow y = g^x \)
- \(\mathcal{E}_{pk}(m): r \overset{\$}{\leftarrow} \mathbb{Z}_q, c_1 \leftarrow g^r \) and \(c_2 \leftarrow y^r \times m = pk^r \times m \)
- Then, the ciphertext is \(c = (c_1, c_2) \)
- \(\mathcal{D}_{sk}(c) \) outputs \(c_2/c_1^{sk} \)

Theorem (ElGamal is IND – CPA)

\[
\text{Adv}^{\text{ind–cpa}}_{\mathcal{E}_G}(t) \leq 2 \times \text{Adv}^{\text{ddh}}_G(t)
\]

ElGamal is IND – CPA: Proof

Let \(\mathcal{A} \) be an adversary against \(\mathcal{E}_G \), we build an adversary \(\mathcal{B} \) against DDH: let us be given a DDH instance \((X, Y, Z)\)

- \(\mathcal{A} \) gets \(pk \leftarrow X \) from \(\mathcal{B} \), and outputs \((m_0, m_1) \)
- \(\mathcal{B} \) sets \(c_1 \leftarrow Y \)
- \(\mathcal{B} \) chooses \(b \overset{\$}{\leftarrow} \{0, 1\} \), sets \(c_2 \leftarrow Z \times m_b \), and sends \(c = (c_1, c_2) \)
- \(\mathcal{B} \) receives \(b' \) from \(\mathcal{A} \) and outputs \(d = (b' = b) \)
- \(2 \times \Pr[b' = b] - 1 = \text{Adv}^{\text{ind–cpa}}_{\mathcal{E}_G}(t), \text{ if } Z = \text{CDH}(X, Y) \)
 \(= 0, \text{ otherwise} \)
ElGamal is IND – CPA: Proof

As a consequence,

\[2 \times \Pr[b' = b | Z = CDH(X, Y)] - 1 = \text{Adv}^{\text{ind-cpa}}_{\mathcal{E}_G}(A) \]

\[2 \times \Pr[b' = b | Z \overset{R}{\leftarrow} \mathcal{G}] - 1 = 0 \]

\[\text{Adv}^{\text{ind-cpa}}_{\mathcal{E}_G}(A) = 2 \times \left(\Pr[d = 1 | Z = CDH(X, Y)] - \Pr[d = 1 | Z \overset{R}{\leftarrow} \mathcal{G}] \right) \]

\[= 2 \times \text{Adv}^{\text{ddh}}_{\mathcal{G}}(B) \leq 2 \times \text{Adv}^{\text{ddh}}_{\mathcal{G}}(t) \]

\[\text{Theorem (RSA is OW – CPA, but...)} \]

\[\text{Succ}^{\text{OW-CPA}}_{\mathcal{RSA}}(t) \leq \text{Succ}^{\text{rsa}}(t) \]

A deterministic encryption scheme cannot be IND – CPA

Outline

1 Cryptography
 ■ Introduction
 ■ Formal Notations

2 Provable Security
 ■ Definition
 ■ Computational Assumptions
 ■ Some Reductions

3 Public-Key Encryption
 ■ One-Wayness
 ■ Indistinguishability

4 Conclusion

Global methodology for provable security:

■ a formal security model (security notions)
■ acceptable computational assumptions (hard problems)
■ a reduction: if one can break the security notions, then one can break the hard problem

We will apply this methodology

■ on advanced security notions for encryption
■ to signature schemes