Outline

	I – Basics	 Cryptography Introduction Formal Notations 		
Ecole ECOLE ENS Cryptographi Noven	David Pointcheval normale supérieure, CNRS & INRIA Constructions IACR-SEAMS School ie: Foundations and New Directions nber 2016 – Hanoi – Vietnam	 2 Provable Security Definition Computational As Some Reductions 3 Public-Key Encryp One-Wayness Indistinguishabilit 4 Conclusion 	ssumptions s otion y	
ENS/CNRS/INRIA Paris, France	David Pointcheval	1/40ENS/CNRS/INRIA Paris, France	David Pointcheval	
Outline		Secrecy of Comm	nunications	

One ever wanted to communicate secretly

With the all-digital world, security needs are even stronger

Cryptography

Introduction

Conclusion

Formal Notations

Provable Security

Public-Key Encryption

1

Shannon provides a definition of secrecy:

Perfect Secrecy

The ciphertext does not reveal any (additional) information about the plaintext: no more than known before

- a priori information about the plaintext, defined by the distribution probability of the plaintext
- a posteriori information about the plaintext, defined by the distribution probability of the plaintext, given the ciphertext

Both distributions should be perfectly identical

Perfect Secrecy vs. Practical Secrecy

- No information about the plaintext *m* is in the ciphertext *c* without the knowledge of the key *k*
 - \Rightarrow information theory

No information about the plaintext *m* can be extracted from the ciphertext *c*, even for a powerful adversary (unlimited time and/or unlimited power): perfect secrecy

■ In practice: adversaries are limited in time/power ⇒ complexity theory

Asymmetric Encryption: Formalism

Public Key Cryptography – Diffie-Hellman (1976)

Outline

Bob's public key is used by Alice as a parameter to encrypt a message to Bob Bob's private key is used by Bob as a parameter to decrypt **Provable Security** 2 ciphertexts Definition Computational Assumptions Some Reductions **Public-Key Encryption** Secrecy of the private key $sk \Rightarrow$ secrecy of communications Because of *pk*, perfect secrecy is definitely impossible! ENS/CNRS/INRIA Paris, France **David Pointcheval** 9/40ENS/CNRS/INRIA Paris, France David Pointcheval What is a Secure Cryptographic Scheme/Protocol? **Provable Security**

- Public-key encryption: Secrecy of the private key sk ⇒ secrecy of communications
- What does mean secrecy?
 - \rightarrow Security notions have to be formally defined
- How to guarantee above security claims for concrete schemes? → Provable security

One can prove that:

- if an adversary is able to break the cryptographic scheme
- then one can break a well-known hard problem

David Pointcheval

General Method

Outline

Computational Security Proofs

In order to prove the security of a cryptographic scheme/protocol, one needs

- a formal security model (security notions)
- acceptable computational assumptions (hard problems)
- a reduction: if one can break the security notions, then one can break the hard problem

1 Cryptography

- 2 Provable Security
 - Definition
 - Computational Assumptions
 - Some Reductions
- **3** Public-Key Encryption

4 Conclusion

Integer Factoring

Given n = pq

Find p and q

Digits

129

130

140

155

160

200

232

Date

April 1994

April 1996

February 1999

August 1999

April 2003

May 2005

December 2009

ENS/CNRS/INRIA Paris, France	David Pointcheval	13/40	ENS/CNRS/INRIA Paris, France	David Pointcheval	14
Integer Factoring		[Lenstra-Verheul 2000]	Integer Factoring	Records	

Integer Factoring

- Given n = pq
- Find p and q

Year	Required Complexity	n bitlength	
before 2000	64	768	
before 2010	80	1024	
before 2020	112	2048	
before 2030	128	3072	
	192	7680	
	256	15360	

Note that the reduction may be lossy: extra bits are then required

ENS/CNRS/INRIA Paris, France

David Pointcheval

15/40ENS/CNRS/INRIA Paris, France

Details

Quadratic Sieve

Algebraic Sieve

512 bits

768 bits

Discrete Logarithm

RSA

[Rivest-Shamir-Adleman 1978]

- Given n = pq, e and $y \in \mathbb{Z}_n^*$
- Find x such that $y = x^e \mod n$

Note that this problem is hard without the prime factors p and q, but becomes easy with them: if $d = e^{-1} \mod \varphi(n)$, then $x = y^d \mod n$

Flexible RSA

[Baric-Pfitzmann and Fujisaki-Okamoto 1997]

- Given n = pq and $y \in \mathbb{Z}_n^*$
- Find x and e > 1 such that $y = x^e \mod n$

Both problems are assumed as hard as integer factoring: the prime factors are a trapdoor to find solutions ENS/CNRS/INRIA Paris, France David Pointcheval

Success Probabilities

For any computational problem P, we quantify the quality of an adversary A by its success probability in finding the solution:

 $Succ^{P}(\mathcal{A}) = \Pr[\mathcal{A}(\text{instance}) \rightarrow \text{solution}]$

We quantify the hardness of the problem by the success probability of the best adversary within time t: $Succ(t) = \max_{|\mathcal{A}| \le t} \{Succ(\mathcal{A})\}$ Note that the probability space can be restricted:

some inputs are fixed, and others only are randomly chosen

Discrete Logarithm Problem

We usually fix the group $\mathbb{G} = \langle g \rangle$ of order q, X is randomly chosen:

$$\operatorname{Succ}_{\mathbb{G}}^{\operatorname{\mathsf{dlp}}}(\mathcal{A}) = \Pr_{x \stackrel{R}{\leftarrow} \mathbb{Z}_q} [\mathcal{A}(g^x) o x]$$

Discrete Logarithm Problem

• Given $\mathbb{G} = \langle g
angle$ a cyclic group of order q, and $y \in \mathbb{G}$

Find x such that $y = g^x$

Possible groups: $\mathbb{G}\in (\mathbb{Z}_{p}^{\star},\times),$ or an elliptic curve

(Computational) Diffie Hellman Problem

Given G = (g) a cyclic group of order q, and X = g^x, Y = g^y
Find Z = g^{xy}

The knowledge of *x* or *y* helps to solve this problem (trapdoor)

17/40ENS/CNRS/INRIA Paris, France

David Pointcheval

18/40

Decisional Problem

(Decisional) Diffie Hellman Problem

- Given $\mathbb{G} = \langle g \rangle$ a cyclic group of order q, and $X = g^x$, $Y = g^y$, as well as a candidate $Z \in \mathbb{G}$
- Decide whether $Z = g^{xy}$

In such a case, the adversary is called a distinguisher (outputs 1 bit) A good distinguisher should behave in significantly different manners according to the input distribution:

$$\operatorname{Adv}_{\mathbb{G}}^{\operatorname{ddh}}(\mathcal{A}) = \Pr[\mathcal{A}(X, Y, Z) = 1 | Z = g^{xy}] - \Pr[\mathcal{A}(X, Y, Z) = 1 | Z \stackrel{R}{\leftarrow} \mathbb{G}]$$

$$\operatorname{Adv}_{\mathbb{G}}^{\operatorname{ddh}}(t) = \max_{|\mathcal{A}| \leq t} \{\operatorname{Adv}_{\mathbb{G}}^{\operatorname{ddh}}(\mathcal{A})\}$$

Distribution Indistinguishability

Distribution Indistinguishability

Indistinguishabilities

Let \mathcal{D}_0 and \mathcal{D}_1 , two distributions on a finite set *X*:

D₀ and \mathcal{D}_1 are perfectly indistinguishable if

$$\mathsf{Dist}(\mathcal{D}_0, \mathcal{D}_1) = \sum_{x \in X} \left| \Pr_{a \in \mathcal{D}_1}[a = x] - \Pr_{a \in \mathcal{D}_0}[a = x] \right| = 0$$

D₀ and \mathcal{D}_1 are statistically indistinguishable if

$$\mathsf{Dist}(\mathcal{D}_0, \mathcal{D}_1) = \sum_{x \in \mathcal{X}} \left| \Pr_{a \in \mathcal{D}_1}[a = x] - \Pr_{a \in \mathcal{D}_0}[a = x] \right| = \mathsf{negl}()$$

Computational Indistinguishability

Let \mathcal{D}_0 and \mathcal{D}_1 , two distributions on a finite set *X*,

 \blacksquare a distinguisher $\mathcal A$ between $\mathcal D_0$ and $\mathcal D_1$

$$\operatorname{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) = \Pr_{a \in \mathcal{D}_1}[\mathcal{A}(a) = 1] - \Pr_{a \in \mathcal{D}_0}[\mathcal{A}(a) = 1]$$

 \blacksquare the computational indistinguishability of \mathcal{D}_0 and \mathcal{D}_1 is

$$\mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(t) = \max_{|\mathcal{A}| \le t} \{ \mathbf{Adv}^{\mathcal{D}_0,\mathcal{D}_1}(\mathcal{A}) \}$$

Theorem

$$\forall t, \quad \mathbf{Adv}^{\mathcal{D}_0, \mathcal{D}_1}(t) \leq \mathbf{Dist}(\mathcal{D}_0, \mathcal{D}_1)$$

NS/CNRS/INRIA Paris, France	David Pointcheval	21/40ENS/CNRS/INRIA Paris, France	David Pointcheval	2
Outline		$DDH \leq CDH \leq DLP$		

1 Cryptography

2 Provable Security

- Definition
- Computational Assumptions
- Some Reductions

3 Public-Key Encryption

4 Conclusion

$CDH \leq DLP$

Let \mathcal{A} be an adversary against the **DLP** within time *t*, then we build an adversary \mathcal{B} against the **CDH**: given *X* and *Y*, \mathcal{B} runs \mathcal{A} on *X*, that outputs *x*' (correct or not); then \mathcal{B} outputs $Y^{x'}$

The running time t' of \mathcal{B} is the same as \mathcal{A} , plus one exponentiation:

$$\begin{split} \mathbf{Succ}^{\mathsf{cdh}}_{\mathbb{G}}(t') \geq \mathbf{Succ}^{\mathsf{cdh}}_{\mathbb{G}}(\mathcal{B}) &= \mathsf{Pr}[\mathcal{B}(X,Y) \to g^{xy} = Y^x] \\ &= \mathsf{Pr}[\mathcal{A}(X) \to x] = \mathbf{Succ}^{\mathsf{dlp}}_{\mathbb{G}}(\mathcal{A}) \end{split}$$

Taking the maximum on the adversaries \mathcal{A} :

$$\operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t + au_{\operatorname{exp}}) \geq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{dlp}}(t)$$

$\text{DDH} \leq \text{CDH} \leq \text{DLP}$

Outline

$\text{DDH} \leq \text{CDH}$

Let \mathcal{A} be an adversary against the **CDH** within time t, we build an adversary \mathcal{B} against the **DDH**: given X, Y and Z, \mathcal{B} runs \mathcal{A} on (X, Y), that outputs Z'; then \mathcal{B} outputs 1 if Z' = Z and 0 otherwise The running time of \mathcal{B} is the same as \mathcal{A} : and $\operatorname{Adv}_{\mathbb{G}}^{\operatorname{ddh}}(t)$ is greater than $\operatorname{Adv}_{\mathbb{G}}^{\operatorname{ddh}}(\mathcal{B}) = \Pr[\mathcal{B} \to 1 | Z = g^{xy}] - \Pr[\mathcal{B} \to 1 | Z \stackrel{R}{\leftarrow} \mathbb{G}]$

$$= \Pr[\mathcal{A}(X, Y) \to Z | Z = g^{xy}] - \Pr[\mathcal{A}(X, Y) \to Z | Z \stackrel{H}{\leftarrow} \mathbb{G}$$
$$= \Pr[\mathcal{A}(X, Y) \to g^{xy}] - \Pr[\mathcal{A}(X, Y) \to Z | Z \stackrel{R}{\leftarrow} \mathbb{G}]$$
$$= \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(\mathcal{A}) - 1/q$$

Taking the maximum on the adversaries \mathcal{A} :

$$\operatorname{Adv}_{\mathbb{G}}^{\operatorname{ddh}}(t) \geq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{cdh}}(t) - 1/q$$

1 Cryptography

2 Provable Security

3 Public-Key Encryption

- One-Wayness
- Indistinguishability

4 Conclusion

ENS/CNRS/INRIA Paris, France

David Pointcheval

OW – CPA

25/40ENS/CNRS/INRIA Paris, France

David Pointcheval

26/40

Public-Key Encryption

One-Wayness

For a public-key encryption scheme $S = (\mathcal{K}, \mathcal{E}, \mathcal{D})$, without the secrete key *sk*, it should be computationally impossible to recover the plaintext *m* from the ciphertext *c*:

 $\mathbf{Succ}^{\mathsf{ow}}_{\mathcal{S}}(\mathcal{A}) = \Pr[(sk, pk) \leftarrow \mathcal{K}(); m \stackrel{R}{\leftarrow} \mathcal{M}; c = \mathcal{E}_{pk}(m) : \mathcal{A}(pk, c) \rightarrow m]$ should be negligible

Chosen-Plaintext Attacks

In the public-key setting, the adversary has access to the encryption key (the public key), and thus can encrypt any plaintext of its choice: chosen-plaintext attack

Goal: Privacy/Secrecy of the plaintext

David Pointcheval

$$\operatorname{Succ}_{\mathcal{EG}}^{\operatorname{\mathsf{ow-cpa}}}(t) \leq \operatorname{Succ}_{\mathbb{G}}^{\operatorname{\mathsf{cdh}}}(t)$$

Let \mathcal{A} be an adversary against \mathcal{EG} , we build an adversary \mathcal{B} against **CDH**: let us be given a **CDH** instance (*X*, *Y*)

- \mathcal{A} gets $pk \leftarrow X$ from \mathcal{B}
- $\blacksquare \ \mathcal{B} \text{ sets } c_1 \leftarrow Y$
- \mathcal{B} chooses $c_2 \stackrel{R}{\leftarrow} \mathbb{G}$ (this implicitly defines $m^* = c_2/\mathsf{CDH}(X, Y)$), and sends $c = (c_1, c_2)$
- \mathcal{B} receives *m* from \mathcal{A} and outputs c_2/m
- Pr[$m = m^*$] = Succ^{ow-cpa}_{\mathcal{EG}} (\mathcal{A}) = Pr[$c_2/m = c_2/m^*$] = Pr[$c_2/m = CDH(X, Y)$] \leq Succ^{cdh}_{\mathbb{G}}(t)

- 1 Cryptography
- **2** Provable Security
- **3** Public-Key Encryption
 - One-Wayness
 - Indistinguishability
- 4 Conclusion

Is OW – CPA Enough?

IND – CPA Security Game

For a yes/no answer or sell/buy order,

one bit of information may be enough for the adversary! How to model that no bit of information leaks?

Semantic Security / Indistinguishability

[Goldwasser-Micali 1984]

After having chosen two plaintexts m_0 and m_1 , upon receiving the encryption of m_b (for a random bit *b*), it should be hard to guess which message has been encrypted:

 $(sk, pk) \leftarrow \mathcal{K}(); (m_0, m_1, \text{state}) \leftarrow \mathcal{A}(pk);$ $b \stackrel{R}{\leftarrow} \{0, 1\}; c = \mathcal{E}_{pk}(m_b); b' \leftarrow \mathcal{A}(\text{state}, c)$

$$\operatorname{Adv}^{\operatorname{\mathsf{ind-cpa}}}_{\mathcal{S}}(\mathcal{A}) = \operatorname{Pr}[b'=1|b=1] - \operatorname{Pr}[b'=1|b=0]$$

ENS/CNRS/INRIA Paris	, France	David Pointcheval	33/40ENS/CNRS/INRIA Paris, France	David Pointcheval

ElGamal Encryption

ElGamal is IND - CPA: Proof

ElGamal Encryption

The ElGamal encryption scheme \mathcal{EG} is defined, in a group $\mathbb{G} = \langle g \rangle$ of order q, for $m \in \mathbb{G}$

- $\mathcal{K}(\mathbb{G}, g, q)$: $x \stackrel{R}{\leftarrow} \mathbb{Z}_q$, and $sk \leftarrow x$ and $pk \leftarrow y = g^x$
- $\mathcal{E}_{pk}(m)$: $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, $c_1 \leftarrow g^r$ and $c_2 \leftarrow y^r \times m = pk^r \times m$ Then, the ciphertext is $c = (c_1, c_2)$
- $\mathcal{D}_{sk}(c)$ outputs $c_2/c_1^x = c_2/c_1^{sk}$

Theorem (ElGamal is IND – CPA)

$$\operatorname{Adv}_{\mathcal{EG}}^{\operatorname{ind-cpa}}(t) \leq 2 imes \operatorname{Adv}_{\mathbb{G}}^{\operatorname{ddh}}(t)$$

Let A be an adversary against \mathcal{EG} , we build an adversary B against **DDH**: let us be given a **DDH** instance (X, Y, Z)

- \mathcal{A} gets $pk \leftarrow X$ from \mathcal{B} , and outputs (m_0, m_1)
- $\blacksquare \ \mathcal{B} \text{ sets } c_1 \leftarrow Y$
- \mathcal{B} chooses $b \stackrel{R}{\leftarrow} \{0, 1\}$, sets $c_2 \leftarrow Z \times m_b$, and sends $c = (c_1, c_2)$
- \mathcal{B} receives *b*′ from \mathcal{A} and outputs d = (b' = b)

•
$$2 \times \Pr[b' = b] - 1$$

= $Adv_{\mathcal{EG}}^{ind-cpa}(\mathcal{A})$, if $Z = CDH(X, Y)$
= 0, otherwise

ENS/CNRS/INRIA Paris, France

\mathcal{RSA} Encryption

As a consequence,

- $\blacksquare 2 \times \Pr[b' = b | Z = CDH(X, Y)] 1 = \mathrm{Adv}_{\mathcal{EG}}^{\mathrm{ind-cpa}}(\mathcal{A})$
- $2 \times \Pr[b' = b | Z \stackrel{R}{\leftarrow} \mathbb{G}] 1 = 0$

$$\begin{aligned} \mathbf{Adv}_{\mathcal{EG}}^{\mathsf{ind-cpa}}(\mathcal{A}) &= 2 \times \begin{pmatrix} \Pr[d=1|Z=\mathsf{CDH}(X,Y)] \\ -\Pr[d=1|Z \xleftarrow{R}{\mathbb{G}}] \\ &= 2 \times \mathsf{Adv}_{\mathbb{G}}^{\mathsf{ddh}}(\mathcal{B}) \leq 2 \times \mathsf{Adv}_{\mathbb{G}}^{\mathsf{ddh}}(t) \end{aligned}$$

\mathcal{RSA} Encryption

The RSA encryption scheme \mathcal{RSA} is defined by

- *K*(1^k): *p* and *q* two random *k*-bit prime integers, and an exponent *e* (possibly fixed, or not):
 sk ← *d* = *e*⁻¹ mod φ(*n*) and *pk* ← (*n*, *e*)
- $\mathcal{E}_{pk}(m)$: the ciphertext is $c = m^e \mod n$
- $\mathcal{D}_{sk}(c)$: the plaintext is $m = c^d \mod n$

Theorem (\mathcal{RSA} is OW – CPA, but...)

$$\operatorname{Succ}_{\mathcal{RSA}}^{\operatorname{ow-cpa}}(t) \leq \operatorname{Succ}^{\operatorname{rsa}}(t)$$

A deterministic encryption scheme cannot be IND – CPA

ENS/CNRS/INRIA Paris, France David Pointcheval 37/40ENS/CNRS/INRIA Paris, France David Pointcheval David Pointcheval

Outime

1 Cryptography

- Introduction
- Formal Notations

2 Provable Security

- Definition
- Computational Assumptions
- Some Reductions

3 Public-Key Encryption

- One-Wayness
- Indistinguishability

4 Conclusion

Global methodology for provable security:

- a formal security model (security notions)
- acceptable computational assumptions (hard problems)
- a reduction: if one can break the security notions, then one can break the hard problem

We will apply this methodology

- on advanced security notions for encryption
- to signature schemes