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Cryptography Provable Security Encryption Assumptions

Security of Communications

One ever wanted to exchange information securely

With the all-digital world, security needs are even stronger. . .

In your pocket

But also at home
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First Encryption Mechanisms

The goal of encryption is to hide a message

Scytale
Permutation

Substitutions and permutations
Security relies on

the secrecy of the mechanism

⇒ How to widely use them?

Alberti’s disk
Mono-alphabetical Substitution

c© www.maritime.org

Wheel – M 94 (CSP 488)
Poly-alphabetical Substitution
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Common Parameter

A shared information (secret key) between the sender
and the receiver parameterizes the public mechanism

Enigma:
choice of the connectors
and the rotors

Security looks better: but broken (Alan Turing et al.)
⇒ Security analysis is required
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Practical Secrecy

Perfect Secrecy vs. Practical Secrecy
No information about the plaintext m can be extracted
from the ciphertext c, even for a powerful adversary
(unlimited time and/or unlimited power): perfect secrecy
⇒ information theory
In practice: adversaries are limited in time/power
⇒ complexity theory

We thus model all the players (the legitimate ones and the adversary)
as Probabilistic Polynomial Time Turing Machines:

computers that run programs
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What is a Secure Cryptographic Scheme?
What does security mean? → Formal security notions
How to guarantee above security claims? → Provable security

Computational Security Proofs
a formal security model (security notions)
a reduction: if one (Adversary) can break the security notions,
then one (Simulator + Adversary) can break a hard problem
acceptable computational assumptions (hard problems)

Oracles

ChallengerAdversary 0 / 1

Security Game
Oracles

ChallengerAdversary

Instance

Sim
ulator

Solution

Reduction

Proof by contradiction
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Cryptography Provable Security Encryption Assumptions

Integer Factoring

Records
Given n = pq −→ Find p and q

Digits Date Bit-Length
130 April 1996 431 bits
140 February 1999 465 bits
155 August 1999 512 bits
160 April 2003 531 bits
200 May 2005 664 bits
232 December 2009 768 bits

Complexity

768 bits→ 264 op. 3072 bits→ 2128 op.
1024 bits→ 280 op. 4096 bits→ 2150 op.
2048 bits→ 2112 op. 7680 bits→ 2192 op.
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Reduction

Oracles

ChallengerAdversary 0 / 1

Security Game
Oracles

ChallengerAdversary

Instance

Sim
ulator

Solution

Reduction

Adversary running time t Algorithm running time T = f (t)

Lossy reduction: T = k3 × t
Modulus Adversary Algorithm Best Known
Bit-length Complexity Complexity Complexity
k = 2048 t < 2110 T < 2143 2112

k = 3072 t < 2110 T < 2146 2128

k = 4096 t < 2110 T < 2146 2150

Tight reduction: T ≈ t
With k = 2048 and t < 2110, one gets T < 2110
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Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext

AEr
mb c*

b∈{0,1}
r random

m1

m0

kdke G

D
c

m

D
c ≠ c*

m
b’b’ = b?

No adversary can distinguish
a ciphertext of m0 from a ciphertext of m1. IND-CPA

Even with an access to the decryption oracle
(to model leakage of information). IND-CCA
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RSA-OAEP (PKCS #1 v2.1) [Bellare-Rogaway – Eurocrypt ’94]

The Plain RSA Encryption [Rivest-Shamir-Adleman 1978]

G(1k ): n = pq, sk ← d = e−1 mod ϕ(n) and pk ← (n,e)
E(pk ,m) = c = me mod n ; D(sk , c) = m = cd mod n

Deterministic and malleable: randomness and redundancy

m is the message to encrypt
r is the additional randomness to
make encryption probabilistic
00 . . . 00 is redundancy to be
checked at decryption time

Then, c = RSA(X‖Y )

Theorem (IND-CCA Security [Fujisaki-Okamoto-Pointcheval-Stern – Crypto ’01])
RSA-OAEP is IND-CCA secure under the RSA assumption
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RSA-OAEP Security Proof [Fujisaki-Okamoto-Pointcheval-Stern – Crypto ’01]

c = f (X‖Y )
To get information on m, H(X ) queried
=⇒ partial inversion of f
c = RSA(X‖Y )
RSA: partial inversion and full inversion
are equivalent (but at a loss)

If an adversary breaks IND-CCA within time t , one can break RSA
within time T ≈ 2t + 3qH

2k3 (qH = number of Hashing queries ≈ 260)
k = 2048 (2112) t < 2110 T < 2155

k = 4096 (2150) t < 2110 T < 2158 =⇒ large modulus:
> 4096 bits!

REACT-RSA [Okamoto-Pointcheval – CT-RSA ’01]

E(pk ,m, r) = (c1 = re mod n, c2 = G(r)⊕m, c3 = H(r ,m, c1, c2))

Security reduction between IND− CCA and the RSA assumption:
T ≈ t =⇒ 2048-bit RSA moduli provide 2110 security
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Classical Assumptions

Main Assumptions
Integer Factoring
Modular Roots (Square roots and e-th roots)
Discrete Logarithm (in Finite Fields and in Elliptic Curves)

Properties
Advantages: easy to implement, and widely used
Drawbacks:

Factoring and DL in finite fields require larger and larger keys
They are all subject to quantum attacks [Shor 1997]

Alternatives: Post-Quantum Cryptography
Error-Correcting Codes
Systems of Multi-Variate Equations
Lattices

David Pointcheval – ENS Fondation Sciences Mathématiques de Paris 12/14
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Lattice-Based Cryptography

Lattice Problems
Shortest Vector
Small Basis (Reduced)
Closest Vector

Properties
Worst-case/Average-case
Reductions
No quantum attack known

Related Problems
Learning With Errors
Knapsack Problem

Cryptographic Primitives
Identity Based Encryption
Fully Homomorphic Encryption
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Conclusion

With provable security, one can precisely get:
the security games one wants to resist against any adversary
the security level, according to the resources of the adversary

But, it is under some assumptions:
the best attacks against the underlying problems
no leakage of information excepted from the given oracles

Cryptographers’ goals are thus
analysis of the underlying problems / new problems
realistic and strong security notions (games)
accurate model for leakage of information (oracle access)
tight security reductions

Implementations and uses must satisfy the constraints!
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