Cryptography
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Security of Communications

What Can Cryptography Guarantee?

e oY One ever wanted to exchange information securely

With the all-digital world, security needs are even stronger. ..
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G srephy oo Srephy
First Encryption Mechanisms Common Parameter
The goal of encryption is to hide a message A shared information (secret key) between the sender
and the receiver parameterizes the public mechanism
ey - . Enigma:
. Substitutions and permutations :
. . choice of the connectors
Security relies on
: and the rotors
the secrecy of the mechanism

Scytale

Permutation = How to widely use them?

K Security looks better: but broken (Alan Turing et al.)

Alberti's disk Wheel — M 94 (CSP 488) = Security analysis is required
Mono-alphabetical Substitution Poly-alphabetical Substitution
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Cryptography Provable Security
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Practical Secrecy What is a Secure Cryptographic Scheme?

@ What does security mean? — Formal security notions

Perfect Secrecy vs. Practical Secrecy @ How to guarantee above security claims?  — Provable security

@ No information about the plaintext m can be extracted
from the ciphertext ¢, even for a powerful adversary
(unlimited time and/or unlimited power): perfect secrecy

Computational Security Proofs

@ a formal security model (security notions)

= information theory @ areduction: if one (Adversary) can break the security notions,
o In practice: adversaries are limited in time/power then one (Simulator + Adversary) can break a hard problem
= complexity theory @ acceptable computational assumptions (hard problems)
We thus model all the players (the legitimate ones and the adversary) securty Gane s Recueton %%%%%;%”/////
. . | . 4 |
as Probabilistic Polynomial Time Turing Machines: Q Q Q %%{(//////Z{//////Z{{/////ﬁ% |

7

computers that run programs / \

*):"> Challenger ) E==> 0/1

Proof by contradiction
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Provable Security Provable Security
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Integer Factoring Reduction

Given n = pq — Find pand g 00 %ﬁé//éﬁ%/
Digits Date Bit-Length / \ // 7 Cj’%

130 April 1996 431 bits * * -

<:> Challenger |::>0/1 -g//////////, i
140 | February 1999 | 465 bits - .
155 August 1999 512 bits

) : Adversary running time ¢ Algorithm running time T = 1(t)
160 April 2003 531 bits o 3
200 May 2005 664 bits (] Lossy reduction: T = k° x t .
2392 December 2009 | 768 bits Modulus Adversary Algorlthm Best Knoyvn
/ Bit-length | Complexity | Complexity | Complexity
k =2048 | t< 20 T <2™® 2™z e
k=3072 | t<2M"0 T < 2146 2128 p ¢
768 bits — 254 op. | 3072 bits — 2728 op. k =4096 | t< 2110 T < 2146 2150 {
1024 bits — 280 op. | 4096 bits — 21°0 op. e Tight reduction: T ~ t
2048 bits — 212 op. | 7680 bits — 2192 op. With k — 2048 and t < 2110, one gets T < 2110
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Encryption Encryption
° 0

PU bl iC'Key Encryption RSA'OAEP (PKCS #1 V2.1 ) [Bellare-Rogaway — Eurocrypt *94]

The Plain RS A Encryption [Rivest-Shamir-Adleman 1978]

Goal: Privacy/Secrecy of the plaintext
@ G(1%): n= pq, sk +— d = e~ mod ¢(n) and pk + (n, e)

k
IT ld ‘ G -k @ £(pk,m)=c=m® mod n;D(sk,c) =m=c’mod n
»0{0,1} |
r;’ 7 E £ D r random T é Deterministic and malleable: randomness and redundancy
o P
| ZT; m r @ mis the message to encrypt
L "Z”L A e e age @ ris the additional randomness to
B N .~ 2D © make encryption probabilistic
b>’=b A :
— 7 @ 00...00 is redundancy to be
No adversary can distinguish o D4 checked at decryption};ime
a ciphertext of mg from a ciphertext of my. IND-CPA X Y Then, ¢ = RSA(X||Y)
Even with an access to the decryption oracle : — )
. . Theorem (IND-CCA Securit isaki-Okar -Poir val-Stern — Cr ’
(to model leakage of information). IND-CCA ( L T SO T B G Tl Gl OO,

RSA-OAEP is IND-CCA secure under the RSA assumption
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Encryption Assumptions
oce ®O0

RSA'OA E P SeC u I‘ity P I‘OOf [Fujisaki-Okamoto-Pointcheval-Stern — Crypto *01] C I ass i Ca| ASS um pt i ons

: L e=1HX]Y) Main Assumptions
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— w0 To get in:lorlrpation_on nfv,fH(X ) queried @ Integer Factoring
T - — partial inversion o
@ o ¢ = RSA(X|Y) @ Modular Roots (Square roots and e-th roots)
RSA: partial inversion and full inversion @ Discrete Logarithm (in Finite Fields and in Elliptic Curves)
F L are cquivalent (outataloss
If an adversary breaks IND-CCA within time t, one can break RSA @ Advantages: easy to implement, and widely used

within time T ~ 2t + 3g42k® (qy = number of Hashing queries ~ 260) o Drawbacks:

k=2048 (2"2) | t <2110 | T <2195 | % large modulus: ) o :

o o) <o | 7am X~ “Tieww o Fmmuootnmete ssmemileios
REACT-RSA [Okamoto-Pointcheval - CT-RSA *01]
E(pk,m,r) = (c1 = ré mod n,c; = G(r) © m,c3 = H(r, m, ¢y, ¢2)) @ Error-Correcting Codes

Security reduction between IND — CCA and the RSA assumption: @ Systems of Multi-Variate Equations

T ~ t = 2048-bit RSA moduli provide 21 security o Lattices
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Assumptions
oe

Lattice-Based Cryptography Conclusion
Lattice Problems With provable security, one can precisely get:

@ Shortest Vector . @ the security games one wants to resist against any adversary
@ Small Basis (Reduced) @ the security level, according to the resources of the adversary
@ Closest Vector But, it is under some assumptions:
@ the best attackls agains.t the underlying problems
o Worst-case/Average-case > @ no leakage of information excepted from the given oracles
Reductions Cryptographers’ goals are thus
@ No quantum attack known @ analysis of the underlying problems / new problems

o

@ realistic and strong security notions (games)
@ accurate model for leakage of information (oracle access)
@ tight security reductions

Related Problems

Cryptographic Primitives

@ Learning With Errors @ Identity Based Encryption
@ Knapsack Problem @ Fully Homomorphic Encryption

Implementations and uses must satisfy the constraints!
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