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Introduction
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Electronic Cash

Electronic Cash

Electronic Coins

Expected properties:
@ coins are signed by the bank, for unforgeability
@ coins must be distinct to detect/avoid double-spending
o the bank should not know to whom it gave a coin, for anonymity

Electronic Cash

The process is the following one:
@ Withdrawal: the user gets a coin ¢ from the bank
@ Spending: the user spends a coin ¢ in a shop
@ Deposit: the shop gives back the money to the bank

[Chaum, 1981]
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Blind Signatures

Blind Signatures

Blind Signatures.

We thus want:
@ Anonymity: the bank cannot link a withdrawal to a deposit
to know where a user spent a coin
—  blind signature

@ No double-spending: a coin should not be used twice
—fair blind signature

Perfectly Blind Signatures

A blind signature allows a user to get a message m
signed by an authority into o so that the authority (even powerful)
cannot recognize later the pair (m, ).

Introduction

Blind Signatures

Blind RSA

[Chaum, 1981]

The easiest way for blind signatures, is to blind the message:
To get an FDH RSA signature on m under RSA public key (n, e),
@ The user computes a blind version of the hash value:
M = H(m)and M’ = M- r® mod n
@ The signer signs M’ into ¢/ = M? mod n
@ The user unblinds the signature: o = o’/r mod n
Indeed,

o= /r=Mr=M-r®/r=M"r/r=Mmodn
—  Proven under the One-More RSA Assumption

[Bellare, Namprempre, Pointcheval, Semanko, 2001]

—  Perfectly blind signature

P p—

Blind Signatures

We thus want:
@ Anonymity: the bank cannot link a withdrawal to a deposit
to know where a user spent a coin
—  blind signature
@ No double-spending: a coin should not be used twice
— fair blind signature

Computationally/Fair Blind Signatures

Unlinkability between the signing process and the pair (m, o) is
either computational, or even revocable (fair blind signatures).

The latter property allows to know/trace the defrauder
after double-spending detection.

Introduction

Blind Signatures.

Blind Signatures and NIZK

[Fischlin, 2006]

Fischlin Approach
To get a signature on m,
@ The user commits minto ¢
@ The signer signs c into o
@ The user generates a NIZK proof of knowledge of ¢ and o,
valid with respect to m and the signer public key
This can be instantiated within the Groth-Sahai methodology

This method is in the same vein as the Blind RSA:
@ The user commits minto c: blinding of the message
@ The signer signs c into o: signature on the blinded message

@ The user generates a NIZK proof of knowledge of ¢ and o
— Could we do an unblinding?
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Cryptographic Tools
e

Computational Assumptions

Assumptions: Linear Problem

Assumptions: Diffie-Hellman

G a cyclic group of prime order p.

The CDH assumption |n G states:
for any generator g <~G and any scalars a, b& z,
given (g, 92, g?), it is hard to compute g2°.

Definition (The Decisional Diffie-Hellman problem (DDH))
G a cyclic group of prime order p.
The DDH assumption |n G states:
for any generator g & G, and any scalars a, b, c&z; s
given (g, g%, g%, g°), it is hard to decide whether ¢ = ab or not.

In some pairing-friendly groups, the latter assumption is wrong.

Cryptographic Tools.
LY

Signature & Encryption

Definition (Decision Linear Assumption (DLin))
G a cyclic group of prime order p.
The DLin assumption s!ales
for any generator ge G, and any scalars a, b, x, y, cé z,
given (¢.9%,9”, 9% 0", ¢%).

itis hard to decide whether ¢ = a+ b or not.

Equivalently, given a reference triple (u = g*,v =g9".9)
and a new triple (U = u? = g"@, V = vb = g/ T = g°),
decide whether T = g2 or not (that is ¢ = a+ b).
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General Tools: Signature

Definition (Signature Scheme)
S = (Setup, SKeyGen, Sign, Verif):
@ Setup(1¥) — global parameters param;

@ SKeyGen(param) — pair of keys (sk, vk);

@ Sign(sk,m;s) — signature o, using the random coins s;
@ Verif(vk,m,s) — validity of o

If one signs F = F(M), for any function F, one extends the above
definitions: Sign(sk, (F, F,Muy); s) and Verif(vk, (F, F,My), o) where
F details the function that is applied to the message M yielding F,
and MMy is a proof of knowledge of a preimage of F under F.
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Cryptographic Tools

Signature & Encryption

Cryptographic Tools

Signature & Encryption

Signature: Example

In a group G of order p, with a generator g,
and a bilinearmap e: G x G — Gr
Waters Signature [Wa
For a message M = (M, ..., M) € {0,1}%,
we define F(M) = uo [T, uM, where i = (uo. ..., ug) & GF+1,
For an additional generator h < G.
o SKeyGen: vk= X = g¥, sk=Y = %, for x & Z;
@ Sign(sk=Y,M;s), for M € {0,1}* and S&Zp
- o= (171 =Y. F(M)s 02 :g’s);
@ Verif(vk = X, M, o = (01,02)) checks whether
(g, 1) - (F(M), 02) = (X, h).

General Tools: Encryption

& = (Setup, EKeyGen, Encrypt, Decrypt):
o Setup(1¥) — global parameters param;
@ EKeyGen(param) — pair of keys (pk, dk);
@ Encrypt(pk,m;r) — ciphertext c, using the random coins r;
@ Decrypt(dk,c) — plaintext, or L if the ciphertext is invalid.

For some group laws: & on the plaintext, @ on the ciphertext,

and © on the randomness

Encrypt(pk, my; ry)® Encrypt(pk, my; r.) = Encrypt(pk, my&my; i ©rp)
Decrypt(sk, Encrypt(pk, my; ry) @ Encrypt(pk, ma; r2)) = my & ma

Cryptographic Tools

Signature & Encryption

Cryptographic Tools.
33

Security

Encryption: Example

In a group G of order p, with a generator g:

Linear Encryption

[Boneh, Boyen, Shacham, 2004]
@ EKeyGen: dk = (X1, x2) @Z%, pk=(Xg = g, Xo = g*);
@ Encrypt(pk = (X1, X2), m; (r1, r2)), for m € G and (ry, r2) éZ%
= c=(cr=X"co= X2, cs=9"""%-m);
= (c1,¢2,3))

@ Decrypt(dk = (1, X2), ¢ > m=ocs/c}/ My,

Homomorphism

(&M = x,®¢ = X, ®r = +)-homomorphism
Withm=g" — (®u=+,®c = x,®r = -+)-homomorphism
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Security Notions: Signature

Signature: EF-CMA
Existential Unforgeability
under Chosen-Message
Attacks

An adversary should not be
able to generate a new valid
message-signature pair
even if it is allowed to ask
signatures on any message
of its choice

(m’, 6)=

to forge signatures
Waters signature reaches EF-CMA under the CDH assumption
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Security

Security Notions: Encryption

Encryption: IND-CCA
Indistinguishability under
Chosen-Plaintext Attacks
An adversary that chooses
two messages, and receives
the encryption of one of
them, should not be able to
decide which one has been
encrypted

be(01} ke Gk

rrandom

Groth-Sahai Methodology

Cryptographic Tools

Groth-Sahai Methodology

Groth-Sahai Commitments

Under the DLin assumption, the commitment key is:

(u1 = (t1,1,1,9), U2 = (1,U22,9), U3 = (Us 1, Us 2, Ua3)) € (G°)°

Initialization

—wout = Y oyt — oM
U = U3 O U = (Uzg = Ujq,Us2 = Uy,  Usg =g ")

with A, p & Zj, and random elements uy 1, Uz 2 &g

It means that u is a linear tuple w.r.t. (us 1, Uz 2, 9)-

Groth-Sahai Methodology

Groth-Sahai Commitments

To commit a group element X € G,
one chooses random coins sy, Sp, 83 € Zp and sets
C(X):=(1,1.X)ouf ©ouF ou

— St Sa S2 S3 S1+8; S3
= (Urly - U3y, Up - Ugp, X - 971 - Ugy).

Scalar Commitment
To commit a scalar x € Zp,
one chooses random coins 4,72 € Zp and sets
C'(x) == (U4, U3, (Us39)") © U] © U
— +72 1
= (7%,

X% X Xt
Uz Ugg™ - g ).
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Groth-Sahai Proofs

@ If ug a linear tuple, these commitments are perfectly binding

@ With the initialization parameters, the committed values can even
be extracted — extractable commitments

@ Using pairing product equations, one can make proofs
on many relations between scalars and group elements:

1T e, %) T e(vi. B)* ] e(Xi, i) = t,
i i ij
where the A;, B;, and t are constant group elements,
aj, B, and v;; are constant scalars,
and X; and Y; are either group elements in G4 and Gy,
or of the form gf’ or gzy', respectively, to be committed.
@ The proofs are perfectly sound
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Groth-Sahai Methodology

Groth-Sahai Proofs

@ If uz a linear tuple, these commitments are perfectly binding
@ The proofs are perfectly sound

@ If ug is a random tuple, the commitments are perfectly hiding
@ The proofs are perfectly witness hiding

@ Under the DLin assumption, with a correct initialization,
proofs are witness hiding

Can be used for any Pairing Product Equation
If one re-randomizes the commitments, the proof can be adapted

Signatures on Ciphertexts
.

New Primitive

Signatures on Randomizable Ciphertexts

Random; .
Encryple © _ Randomizable
Py .
P ———— \Encryption
P —

Malleable
wlo e y Signature on
|8 5 Randomizable

#|° Encryption
() e
C \)&‘&
e
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Signatures on Ciphertexts.
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Signatures on Ciphertexts
e000!

Example

Linear Encryption

In a group G of order p, with a generator g,
and a bilinearmap e: G x G — Gr

Linear Encryption
@ EKeyGen: dk =

(x1.xz)<£ZZ,pk: X =

© Encrypt(pk = (X1, Xo), m:
S5 c= (01 :X1H,Q:X£2vca :g’w+rz_m).
@ Decrypt(dk = (x1,X),¢ = (¢1,C2,03)) — m=c3/c,

[Boneh, Boyen, Shacham, 2004]
g, Xe = g%);
i (r1,12)), forme G and (1, 12) &Zf,

Re-Randomization
@ Randomg(pk =
- d=(¢=c- X [Ch=0Cp" X2,03

(X1, Xe), € = (e1. 2, Ca)i (1 ) for (rf 13) &
- gith).




Signatures on Ciphertexts.

Example

Waters Signature

In a group G of order p, with a generator g,
and a bilinearmap e: G x G — Gr

Waters Signature [Waters, 2005]

For a message M = (M., My) € {0,1}%,
we define F = F(M) = uo [T, uM, where & = (uo, ..., t) & GK+1.
For an additional generator h< G.

@ SKeyGen: vk= X = g%, sk=Y = h*, for X{—Zp,

@ Sign(sk=Y,F;s),for M € {0, 1}k, F = F(M), and seZ,J

— o= ((71 =Y. Fs, dzfg’s),
@ Verif(vk = X, M, o = (c1,02)) checks whether
e(g,01) - e(F,02) = (X, h).

We define F = F(M) = ug [T, u

Signatures on Ciphertexts

Example

Re-Randomization of Ciphertext

=X, 0 =X, G=g"""-F )
72 = (¢.69). 5= (G X0 X))

c=(c

o=(o1=Y c3.
after re-randomization by  (r{,r)

d=(ci=cr Xl =chXF, =gt )

, ntn g n n
o' =(0y = 0103y %, 0= (020 051,021 055), 0y =03 )

Anybody can publicly re-randomize c into ¢’
with additional random coins (r{, r3),
and adapt the signature o of ¢ into o’ of ¢/
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Signatures on Ciphertexts.
coeo:

Example

Waters Signature on a Linear Ciphertext: Idea

“, and encrypt it
= (c1= X[, 0= XP, 05 = g"*" - F)
o KeyGen: vk X =g sk Y = h*, for erp
= (x1,%2) & 22, pk = (X; = g°, Xo = g°)
o Sign((Xy, Xg)‘ Y.c;s), forc = (cy, o, C3)
— o= (01=Y-c§,00=(c5.C5), 03 = (9% X7, X5))
o Verif((Xy,X2), X, c,o) checks  e(g,01) = e(X, h) - e(03,0.C3)
(020, 9) = e(¢r,03,0) e(2,1,9) = (Cz.73,0)
e(03,1,9) = (X1, 030) 8(032.9) = (X2, 030)

o3 is needed for ciphertext re-randomization

Signatures on Ciphertexts
Pt

Security Notions

Unforgeability under Chosen-Ciphertext Attacks

Chosen-Ciphertext Attacks
The adversary is allowed to ask any valid ciphertext of his choice
to the signing oracle

Because of the re-randomizability of the ciphertext-signature,
we cannot expect resistance to existential forgeries,
but we should allow a restricted malleability only:

A valid ciphertext-signature pair, so that the plaintext is different
from all the plaintexts in the ciphertexts sent to the signing oracle

Y



Signatures on Ciphertexts. Signatures on Ciphertexts.

Security Notions Security Notions

Unforgeability Chosen-Message Attacks

From a valid ciphertext ¢ = (¢t = X{",co = X2, ¢3 = g" "2 - F),
and the additional proof of knowledge of M,
c=(cr=X{",co=Xz.c3=9"""%F) one extracts M and asks for a Waters signature:

L= (5 =Y -F5=¢)

In this signature, the random coins s are unknown,

From a valid ciphertext-signature pair:

o= (01=Y 5,02 =(cf.c3).03 = (g° X{. X3))

and the decryption key (xi, x2), one extracts we thus need to know the coins in ¢
Fo cs/(c:/x‘ C;'/XQ) Ab“nsed.s ofa prpof of knowledge MM, of ry, rz in c
-by-bit commitment of rq, r, and Groth-Sahai proof
= 51 = o1 /(ogX oy, o = 050) From the random coins r1, 1, (and the decryption key):
—( s o) o= (=T T op= (S EF), 0= (L2.55.5F) )
=Y.q =(c7.65), = (g% X7, %5)

Security of Waters signature is for a pair (M, x)
— needs of a proof of knowledge My of Min F = F(M)
bit-by-bit commitment of M and Groth-Sahai proof

Ciphertexts Ciphertexts

Security Notions Security Notions

Security Properties

Security Level
Since the Waters signature is EF-CMA under the CDH assumption,
our signature on randomizable ciphertext is Unforgeable

against Chosen-Ciphertext Attacks under the CDH assumption

Chosen-Ciphertext Attacks
A valid ciphertext C = (c1, Cz, ¢s, My, 1) is @
@ ciphertext ¢ = (¢4, ¢z, C3)
@ a proof of knowledge My, of the plaintext M in F = F(M)
@ a proof of knowledge [, of the random coins ry, r>

From such a ciphertext and the decryption key (x1, X2),
and a Waters signing oracle, one can generate a signature on C

Since we use the Groth-Sahai methodology for the proofs My and M,
@ in case of re-randomization of ¢, one can adapt My and I,

@ because of the need of M, but also r; and r» in the simulation,
we need bit-by-bit commitments: — Cis large!

From a valid ciphertext-signature pair (C. ), where C encrypts M,

one can generate a Waters signature on M
We can improve efficiency: shorter signatures
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Signatures on Ciphertexts.
o
Improvement

Revisited Waters Signature

In a group G of order p, with a generator g,
and a bilinearmap e: G x G — Gr

Improved Signature
@ SKeyGen: vk= X = g*, sk=Y = h¥, for pr;
@ Sign(sk=Y,(M.Ry,Ro, T);s), if e(R1 Rz, X) = e(g, T),

which guarantees existence of rq, r> € Z, such that
Ry =g", Ro=g"and T = X"t"
= o= (01=Y-(FIMR1R)* 02 = (9%, Ry *, Ry ®));
@ Verif(vk = X,(M, Ry, R, T),0 = (01,02)) checks whether
e(g.01) - e(F(M)R1 Rz, 020) = (X, h) e(RiRz,X) = e(g, T)
€(g,02,1) = 6(020, A1) e(g, 02.2) = €(02,0, R2)

Blind Signatures

Outline

@ Blind Signatures
@ Extractable Signatures
@ Randomizable Signatures
@ Randomizable Commutative Signature/Encryption
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Signatures on Ciphertexts.
oe

Improvement

Properties

Revisited Waters Signature: EF-CMA

Our Waters Signature Variant is EF-CMA under the CDH assumption

Signature on a Linear Ciphertext
Ciphertext signatures queries

o still need a proof of knowledge of M (bit-by-bit)
@ but only proof of knowledge of Ry = g", R, = g% and T = X"+

— M, and Ry = g", R, = g, T = X"t*"2 are enough
to simulate signatures on ciphertexts from a signing oracle

For an (-bit message, a pair (C, o) consists of 9/ + 33 group elements

Extractable Signatures

Extractability

As already noted, from a valid ciphertext-signature pair:

c=(c1=X"co=XP,ca=g""F)
o= (o1= Y- Goz = (¢, 05).00 = (0°. X7, X5)

and the decryption key (x1, X2), one extracts

F= as/(e;™ ;™)
= ( 1 = o1/ (o 03y?), Tp = 030)
= ( =Y. .FS - gs)

A plain Waters Signature
One can do the same from the random coins (ry, r2)
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Blind Signatures.
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Extractable Signatures Extractable Signatures
Extractable Signatures Blind Signatures

A New Approach

Encrypte

pk.r
—— To get a signature on M,

Dil;rypl» @ The user commits/encrypts M into C, under random coins r
¢ @ The signer signs C into o(C), under random coins s

@ The user extracts a signature (M), granted the random coins r

sk, pk, c; s
Signse

The signer can recognize his signature: the random coins s in o(M)

SigExtss

(o)

— Randomizable Signature

Blind Signatures
o

Ty T
Randomizable Signatures Randomizable Signatures

Randomg .
Encrypte Randomizable

@ (pk;r) @:) Encryption

Waters Signature
@ SKeyGen: vk = X = g%, sk=Y = h, for pr;
o Sign(sk= Y, M:s), for M € {0,1}* and s & 7,

= o= (01=Y -F(M)S,00=97%);
@ Verif(vk= X,M,o = (01, 02)) checks whether Randomizable ol
. o |& Sl
(g, 1) - (F(M), 02) = (X, h). Signature o B Randomizable
v Signature on
Randomizable

Re-Randomization C Encryption
s <
Y o
LR

Randoms(vk = X,M,0;8') : o' = (0 = 0 CF(M)¥ oy =02+ g—S’)
this is exactly Sign(sk= Y ,M; s+ s') Randoms &
<

Y

David Bolndohasal _ S0/88



Blind Signatures.

Randomizable Signatures

Blind Signatures

Randomizable Signatures

Blind Signatures

Our Approach
To get a signature on M,

@ The user commits/encrypts M into C, under random coins r

@ The signer signs C into o(C), under random coins s

@ The user extracts a signature (M), granted the random coins r

@ The user re-randomizes the signature o(M),
under additional random coins s

Blind Signatures

Such a primitive can be used for a Waters Blind Signature:

@ Unforgeability: one-more forgery would imply a forgery
against the signature scheme (CDH assumption)

@ Blindness: a distinguisher would break indistinguishability
of the encryption scheme (DLin assumption)

We obtain a plain Waters Signature

@ encryption hides M
@ re-randomization hides o(M)

Randomizable Signatures

Fair Blind Signatures

One can even exploit double trapdoor: random coins r
and decryption key dk

Fair Blind Signatures
To get a signature on M,
@ The user encrypts M into C, under random coins r,
and the authority encryption key
@ The signer signs C into o(C), under random coins s
@ The user extracts a signature (M), granted the random coins r
@ The user re-randomizes the signature o(M),
under additional random coins s’
Double-spending: the authority can decrypt the ciphertexts C
to find the defrauder.
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— Blind Signature: with a real Waters Signature

Blind Signatures
Y

Randomizable Commutative Signature/Encryption

Our New Primitive

Encrypts Randomg
pk,r
[ — P r
- i
dk
Decrypts
«
o w
wle sy
418 4 UE-}»
4
SigExtse
C :
s/ . A—
o ———
dk 3 o
Randoms & o
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Conclusion

Conclusion

Extractable Randomizable Signature on Randomizable Ciphertexts

Various Applications
@ non-interactive receipt-free electronic voting scheme
@ (fair) blind signature
Security relies on the CDH and the DLin assumptions
For an ¢-bit message, ciphertext-signature:
9¢ + 33 group elements

A more efficient variant with asymmetric pairing
on the CDH* and the SXDH assumptions
Ciphertext-signature: 6/ + 15 group elements in G4
and 6/ + 7 group elements in Gz

David Pointcheval - 45/45



