Introduction cooco	Cryptographic Tools	Signatures on Ciphertexts	Blind Signatures	Introduction 00000	Cryptographic Tools coocoocooco	Signatures on Ciphertexts	Blind Signatures			
				Outline						
Ro	und-Optimal Wa	aters Blind Signa	tures							
	David	Pointcheval		Introduction						
	Joint work with Olivier Blazy, G	Seorg Fuchsbauer and Damien Vergnaud		Cryptographic Tools						
	Ecole normale su	périeure, CNRS & INRIA								
		arc		Signatures on Randomizable Ciphertexts						
			NRIA	Blind Signatures						
In	stitute of Advanced S Beijing – China	tudies of Tsinghua Univ – October 18th, 2010	ersity							
	Boijing onnia	0010001 10111, 2010								
Introduction	Cryptographic Tools	Signatures on Ciphertexts	David Pointcheval – 1/45 Blind Signatures	Introduction	Cryptographic Tools	Signatures on Ciphertexts	David Pointcheval = 2/45 Blind Signatures			
Outline				Electronic Cash Electronic Cash						
				Electronic	Coins		[Chaum 1981]			
1 Introdu	iction			Expected pr	operties:		[Chaun, 1901]			
Elec	tronic Cash			 coins ar 	e signed by the bar	nk, for unforgeability				
Blind	Signatures			 coins m 	ust be distinct to de	tect/avoid double-spend	ling			
Crypto	graphic Tools			the bank	k should not know t	o whom it gave a coin, f	or anonymity			
				Electronic 0	Cash					
Signat				The process is the following one:						
Blind Signatures				• Withdrawal: the user gets a coin <i>c</i> from the bank						
				 Spending: the user spends a coin <i>c</i> in a shop Densities the characterized back the manage to the back 						
				- Deposit	. the shop gives bar	or the money to the ban	n l			

Introduction ceoco	Cryptographic Tools	Signatures on Ciphertexts	Blind Signatures	Introduction 0000	Cryptographic Tools coccoccocco	Signatures on Ciphertexts	Blind Signatures		
Blind Signatures				Blind Signatures					
Blind Sign	atures			Blind Sig	Inatures				
We thus want • Anonymitotic know with the know with the know with the hybrid sector with	t: ty: the bank cannot where a user spent ind signature le-spending: a coin ir blind signature	link a withdrawal to a de a coin should not be used twice	posit	We thus water the second seco	ant: mity: the bank canno w where a user spen blind signature uble-spending: a coir fair blind signature	nt link a withdrawal to a d t a coin n should not be used twic	eposit ce		
Perfectly Blin	nd Signatures			Computati	onally/Fair Blind Si	gnatures			
A blind signat signed by an	ture allows a user to authority into σ so the second se	get a message <i>m</i> hat the authority (even p	owerful)	Unlinkability between the signing process and the pair (m, σ) is either computational, or even revocable (fair blind signatures).					
cannot recogi	nize later the pair (<i>n</i>	η, σ).	The latter property allows to know/trace the defrauder after double-spending detection.						

Introduction cooec	Cryptographic Tools	Signatures on Ciphertexts	David Pointcheval – 5/45 Blind Signatures	Introduction	Cryptographic Tools	Signatures on Ciphertexts	David Pointcheval – 6/45 Blind Signatures 0000000000
Blind Signatures				Blind Signatures			
Blind RSA			[Chaum, 1981]	Blind Signa	atures and NIZI	K	[Fischlin, 2006]

The easiest way for blind signatures, is to blind the message: To get an FDH RSA signature on m under RSA public key (n, e),

- The user computes a blind version of the hash value: M = H(m) and $M' = M \cdot r^e \mod n$
- The signer signs M' into $\sigma' = {M'}^d \mod n$
- The user unblinds the signature: $\sigma = \sigma'/r \mod n$ Indeed.

$$\sigma = \sigma'/r = M'^d/r = (M \cdot r^e)^d/r = M^d \cdot r/r = M^d \mod n$$

→ Proven under the One-More RSA Assumption

[Bellare, Namprempre, Pointcheval, Semanko, 2001]

→ Perfectly blind signature

Fischlin Approach

To get a signature on m,

- The user commits m into c
- The signer signs c into σ
- The user generates a NIZK proof of knowledge of c and σ, valid with respect to m and the signer public key

This can be instantiated within the Groth-Sahai methodology

This method is in the same vein as the Blind RSA:

- The user commits m into c: blinding of the message
- The signer signs c into σ: signature on the blinded message
- The user generates a NIZK proof of knowledge of c and σ
 - \rightarrow Could we do an unblinding?

00000	000000000000000000000000000000000000000	00000000000	0000000000	00000	••••••••	00000000000	0000000000		
				Computational Ass	umptions				
Outline				Assump	tions: Diffie-He	llman			
Introduction Cryptographic Tools Computational Assumptions Signature & Encryption				Definition (The Computational Diffie-Hellman problem (CDH)) G a cyclic group of prime order p . The CDH assumption in G states: for any generator $g \leftarrow G$, and any scalars $a, b \leftarrow \mathbb{Z}_p^*$, given (g, g^a, g^b) , it is hard to compute g^{ab} .					
• Gro	th-Sahai Methodology			Definition (The Decisional Diffie-Hellman problem (DDH))					
3 Signat	 Signatures on Randomizable Ciphertexts Blind Signatures 				The <i>DDH</i> assumption in \mathbb{G} states: for any generator $a \in \mathbb{G}$, and any scalars $a, b, c \in \mathbb{Z}_{+}^{*}$.				
Blind					given (g, g^a, g^b, g^c) , it is hard to decide whether $c = ab$ or not.				
				In some pa	airing-friendly groups,	the latter assumption is	wrong.		

			David Pointcheval - 9/45				David Pointcheval - 10/45	
Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	Blind Signatures	Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts 00000000000	Blind Signatures	
Computational Assumptions				Signature & Encryption				
Assumptions: Linear Problem				Conoral Toole: Signature				

Definition (Decision Linear Assumption (DLin))

 $\begin{array}{l} \mathbb{G} \text{ a cyclic group of prime order } p. \\ \text{The } DLin \text{ assumption states:} \\ \text{ for any generator } g\overset{\varsigma}{\leftarrow} \mathbb{G}, \text{ and any scalars } a, b, x, y, c\overset{\varsigma}{\leftarrow} \mathbb{Z}_p^*, \\ \text{ given } (g, g^x, g^y, g^{xa}, g^{yb}, g^c), \\ \text{ it is hard to decide whether } c = a + b \text{ or not.} \end{array}$

Equivalently, given a reference triple $(u = g^x, v = g^y, g)$ and a new triple $(U = u^a = g^{xa}, V = v^b = g^{yb}, T = g^c)$, decide whether $T = g^{a+b}$ or not (that is c = a + b).

Definition (Signature Scheme)								
S = (Setup, SKeyGen, Sign, Verif):								
• Setup(1 ^k) \rightarrow global parameters param;								
• SKeyGen(param) \rightarrow pair of keys (sk, vk);								
• Sign(sk, m; s) \rightarrow signature σ , using the random coins s;								
• Verif(vk, m, σ) \rightarrow validity of σ								

If one signs $F = \mathcal{F}(M)$, for any function \mathcal{F} , one extends the above definitions: $Sign(sk, (\mathcal{F}, F, \Pi_M), o)$ where \mathcal{F} details the function that is applied to the message M yielding F, and Π_M is a proof of knowledge of a preimage of F under \mathcal{F} .

Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	Blind Signatures	Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	Blind Signatures		
Signature & Encrypti	on			Signature & Encryp	tion				
Signatur	e: Example			General Tools: Encryption					
In a group and a biline	\mathbb{G} of order p , with a grant part of p and p and p and p and p and p and p and p a	generator g , \mathbb{G}_T		Definition $\mathcal{E} = (Seture)$	(Encryption Schem	e) Decrypt):			
Waters Sig	nature		[Waters, 2005]	• Setup(1 ^k) \rightarrow global parameters param:					
For a message $M = (M_1, \ldots, M_k) \in \{0, 1\}^k$, we define $\mathcal{F}(M) = u_0 \prod_{k=1}^k u_k^{M_k}$ where $\vec{u} = (u_0, \ldots, u_k) \stackrel{\$}{\leftarrow} \mathbb{G}^{k+1}$. For an additional generator $h \leftarrow \mathbb{G}$.				 <i>EKeyGen(param)</i> → pair of keys (<i>pk, dk</i>); <i>Encrypt(pk, m; r)</i> → ciphertext c, using the random coins r; <i>Decrypt(pk, m; r)</i> → cliphertext is invalid 					

- SKevGen: $vk = X = a^x$, $sk = Y = h^x$, for $x \leftarrow \mathbb{Z}_n$:
- Sign(sk = Y, M; s), for $M \in \{0, 1\}^k$ and $s \leftarrow \mathbb{Z}_p$ $\rightarrow \sigma = (\sigma_1 = Y \cdot \mathcal{F}(M)^s, \sigma_2 = q^{-s});$
- Verif($vk = X, M, \sigma = (\sigma_1, \sigma_2)$) checks whether

$$e(g, \sigma_1) \cdot e(\mathcal{F}(M), \sigma_2) = e(X, h)$$

Homomorphic Encryption

and ... on the randomness

 $Encrypt(pk, m_1; r_1) \otimes Encrypt(pk, m_2; r_2) = Encrypt(pk, m_1 \oplus m_2; r_1 \odot r_2)$

Decrypt(sk, Encrypt(pk, $m_1; r_1) \otimes Encrypt(pk, m_2; r_2)) = m_1 \oplus m_2$

Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	David Pointcheval – 13/45 Blind Signatures 0000000000	Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	David Pointcheval – 14/45 Blind Signatures
Signature & Encryption			Security				
Encryption: Example				Security Notions: Signature			

Encryption: Example

In a group G of order p, with a generator q;

Linear Encryption

[Boneh, Boyen, Shacham, 2004]

EKeyGen:
$$dk = (x_1, x_2) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$$
, $pk = (X_1 = g^{x_1}, X_2 = g^{x_2})$;

• Encrypt(
$$pk = (X_1, X_2), m; (r_1, r_2)$$
), for $m \in \mathbb{G}$ and $(r_1, r_2) \stackrel{\$}{\leftarrow} \mathbb{Z}^2_p$
 $\rightarrow c = (c_1 = X_1^{r_1}, c_2 = X_2^{r_2}, c_3 = g^{r_1+r_2} \cdot m);$

• Decrypt(dk =
$$(x_1, x_2), c = (c_1, c_2, c_3)$$
) $\rightarrow m = c_3/c_1^{1/x_1}c_2^{1/x_2}$.

Homomorphism

 $(\oplus_M = \times, \otimes_C = \times, \odot_R = +)$ -homomorphism With $m = g^M \rightarrow (\oplus_M = +, \otimes_C = \times, \odot_B = +)$ -homomorphism

Signature: EF-CMA

Existential Unforgeability under Chosen-Message Attacks

An adversary should not be able to generate a new valid message-signature pair even if it is allowed to ask signatures on any message of its choice

Impossibility to forge signatures

Waters signature reaches EF-CMA under the CDH assumption

 (m', σ') -

Security Notions: Encryption				Groth-Sah	nts	IGroth Sabai 20091	
Security				Groth-Sahai Methodolo	gy		
Introduction	Cryptographic Tools	Signatures on Ciphertexts	Blind Signatures	Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	Blind Signatures

Impossibility to learn any information about the plaintext The Linear Encryption reaches IND-CPA under the DLin assumption

Under the DLin assumption, the commitment key is:

$$(\mathbf{u}_1 = (u_{1,1}, 1, g), \mathbf{u}_2 = (1, u_{2,2}, g), \mathbf{u}_3 = (u_{3,1}, u_{3,2}, u_{3,3})) \in (\mathbb{G}^3)^3$$

Initialization

$$\begin{split} \mathbf{u}_3 &= \mathbf{u}_1^{\lambda} \odot \mathbf{u}_2^{\mu} = (u_{3,1} = u_{1,1}^{\lambda}, u_{3,2} = u_{2,2}^{\mu}, u_{3,3} = g^{\lambda+\mu}) \\ \text{with } \lambda, \mu \stackrel{\bigstar}{\leftarrow} \mathbb{Z}_{p^*}^* \text{ and random elements } u_{1,1}, u_{2,2} \stackrel{\bigstar}{\leftarrow} \mathbb{G}. \end{split}$$

It means that \mathbf{u}_3 is a linear tuple w.r.t. $(u_{1,1}, u_{2,2}, q)$.

			David Pointcheval - 17/45				David Pointcheval - 18/45	
Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	Blind Signatures	Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	Blind Signatures	
Groth-Sahai Methodology				Groth-Sahai Methodology				
Groth-Sahai Commitments				Groth-Sahai Proofs				

Group Element Commitment

To commit a group element $X \in \mathbb{G}$. one chooses random coins $s_1, s_2, s_3 \in \mathbb{Z}_p$ and sets $\mathcal{C}(X) := (1, 1, X) \odot \mathbf{u}_1^{s_1} \odot \mathbf{u}_2^{s_2} \odot \mathbf{u}_2^{s_3}$

$$=(u_{1,1}^{s_1}\cdot u_{3,1}^{s_3}, u_{2,2}^{s_2}\cdot u_{3,2}^{s_3}, X\cdot g^{s_1+s_2}\cdot u_{3,3}^{s_3})$$

Scalar Commitment

To commit a scalar $x \in \mathbb{Z}_n$. one chooses random coins $\gamma_1, \gamma_2 \in \mathbb{Z}_p$ and sets $C'(x) := (u_{3,1}^x, u_{3,2}^x, (u_{3,3}g)^x) \odot \mathbf{u}_1^{\gamma_1} \odot \mathbf{u}_2^{\gamma_2}$ $=(u_{31}^{x+\gamma_2}\cdot u_{11}^{\gamma_1}, u_{32}^{x+\gamma_2}, u_{33}^{x+\gamma_2}\cdot g^{x+\gamma_1}).$

- If u₃ a linear tuple, these commitments are perfectly binding.
- With the initialization parameters, the committed values can even be extracted \rightarrow extractable commitments
- Using pairing product equations, one can make proofs on many relations between scalars and group elements:

$$\prod_{j} e(A_{j}, X_{j})^{\alpha_{j}} \prod_{i} e(Y_{i}, B_{i})^{\beta_{i}} \prod_{i,j} e(X_{i}, Y_{j})^{\gamma_{i,j}} = t,$$

where the A_i, B_i, and t are constant group elements. α_i, β_i , and $\gamma_{i,i}$ are constant scalars.

and X_i and Y_i are either group elements in \mathbb{G}_1 and \mathbb{G}_2 , or of the form $g_{1}^{x_{j}}$ or $g_{2}^{y_{j}}$, respectively, to be committed.

The proofs are perfectly sound

Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	Blind Signatures	Introduction	Cryptographic Tools coccocccocco	Signatures on Ciphertexts	Blind Signatures		
Groth-Sahai Methodol	hai Proofs			Outline					
 If u₃ a l The pro If u₃ is The pro 	 If u₃ a linear tuple, these commitments are perfectly binding The proofs are perfectly sound If u₃ is a random tuple, the commitments are perfectly hiding The proofs are perfectly witness hiding Under the <i>DLin</i> assumption, with a correct initialization, proofs are witness hiding 				 Introduction Cryptographic Tools Signatures on Randomizable Ciphertexts 				
 Under the <i>DLin</i> assumption, with a correct initialization, proofs are witness hiding Can be used for any Pairing Product Equation If one re-randomizes the commitments, the proof can be adapted 				New Frimitive Example Security Notions Improvement Blind Signatures					
Introduction	Cryptographic Tools	Signatures on Ciphertexts	David Pointcheval – 21/45 Blind Signatures cooccoccoco	Introduction	Cryptographic Tools cooccooccooco	Signatures on Ciphertexts	David Pointcheval – 22/4 Blind Signatures occooccooco		
Signature	es on Randomiz	zable Ciphertexts		Linear En	cryption				
		$\begin{array}{c} crypt_{\mathcal{E}} \\ k,r \\ k,r \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	andomizable cryption alleable gnature on andomizable cryption	In a group G and a bilinear Linear Encr \bullet EKeyGe \bullet Encrypt \bullet C \bullet Decrypt Re-Random \bullet Random \bullet C	of order p, with a get or map $e: \mathbb{G} \times \mathbb{G} \to \mathbb{I}$ yption $m: dk = (x_1, x_2), \xi \in \mathbb{Z}$ $(pk = (X_1, X_2), m; (r_1 + r_2), r_2 = X$ $(dk = (x_1, x_2), c = (c_1 + c_1), x_2 = x_2$ $(dk = (x_1, x_2), c = (c_1 + c_1), x_2 = x_2$ $r_2(pk = (X_1, X_2), c = (c_1 + c_1), x_1 = x_2$	$ \begin{array}{l} & \qquad $	en, Shacham, 2004] g^{x_2} ; $, r_2$) $\stackrel{\xi}{\leftarrow} \mathbb{Z}_p^2$ $_3/c_1^{1/x_1}c_2^{1/x_2}$. $: (r'_1, r'_2) \stackrel{\xi}{\leftarrow} \mathbb{Z}_p^2$ $+r'_2$).		

David Pointcheval - 23/45

	00000000000	0000000000	000000000		00000000000	00000000000	000000000		
Example				Example					
Waters S	Signature			Waters Signature on a Linear Ciphertext: Idea					
In a group $\mathbb G$ of order p , with a generator g , and a bilinear map $e : \mathbb G \times \mathbb G \to \mathbb G_T$				We defir	the $F = \mathcal{F}(M) = u_0 \prod_{i=1}^{k} c_i$	$u_i^{M_i}$, and encrypt it $a = X^{r_2}$, $c_2 = a^{r_1 + r_2} \cdot F$			
Waters Si	anature		[Waters, 2005]		$0 = (0_1 - M_1, 0_2)$	$2 - n_2, v_3 - g$			

For a message $M = (M_1, ..., M_k) \in \{0, 1\}^k$, we define $F = \mathcal{F}(M) = u_0 \prod_{i=1}^{k} u_i^{M_i}$, where $\vec{u} = (u_0, \dots, u_k) \stackrel{\$}{\leftarrow} \mathbb{G}^{k+1}$. For an additional generator $h \stackrel{s}{\leftarrow} \mathbb{G}$.

- SKevGen: $vk = X = q^x$, $sk = Y = h^x$, for $x \leftarrow \mathbb{Z}_n$:
- Sign(sk = Y, F; s), for $M \in \{0, 1\}^k$, $F = \mathcal{F}(M)$, and $s \notin \mathbb{Z}_n$ $\rightarrow \sigma = (\sigma_1 = Y \cdot F^s, \sigma_2 = q^{-s});$
- Verif($vk = X, M, \sigma = (\sigma_1, \sigma_2)$) checks whether
 - $e(q, \sigma_1) \cdot e(F, \sigma_2) = e(X, h),$

$$\begin{aligned} c &= (c_1 = X_1^{n}, c_2 = X_2^{n}, c_3 = g^{r_1 + r_2} \cdot F) \\ \bullet \ KeyGen: \ vk = X = g^{x}, sk = Y = h^{x}, \text{ for } x \notin \mathbb{Z}_p \\ dk &= (x_1, x_2) \notin \mathbb{Z}_p^{2}, pk = (X_1 = g^{x_1}, X_2 = g^{x_2}) \\ \bullet \ Sign((X_1, X_2), Y, c; s), \text{ for } c = (c_1, c_2, c_3) \\ \to \sigma &= (\sigma_1 = Y \cdot c_3^{x}, \sigma_2 = (c_1^{x}, c_2^{z}), \sigma_3 = (g^{x}, X_1^{x}, X_2^{z})) \\ \bullet \ Verif((X_1, X_2), X, c, \sigma) \text{ checks} \quad e(g, \sigma_1) = e(X, h) \cdot e(\sigma_{3,0}, c_3) \\ e(\sigma_{2,0}, g) &= e(c_1, \sigma_{3,0}) \quad e(\sigma_{2,1}, g) = e(c_2, \sigma_{3,0}) \\ e(\sigma_{2,0}, g) &= e(C_1, \sigma_{3,0}) \quad e(\sigma_{2,0}, g) = e(C_2, \sigma_{3,0}) \end{aligned}$$

 σ_3 is needed for ciphertext re-randomization

Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	David Pointcheval – 25/45 Blind Signatures 000000000	Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	David Pointcheval – 26/45 Blind Signatures 0000000000
Example				Security Notions			
Re-Rando	omization of C	iphertext		Unforge	eability under Ch	osen-Ciphertex	t Attacks
				Chosen-	Ciphertext Attacks		

$$\begin{aligned} c &= (c_1 = X_1^{r_1}, & c_2 = X_2^{r_2}, & c_3 = g^{r_1 + r_2} \cdot F \\ \sigma &= (\sigma_1 = Y \cdot c_3^s, & \sigma_2 = (c_1^s, c_2^s), & \sigma_3 = (g^s, X_1^s, X_2^s) \end{aligned}$$

after re-randomization by (r'_1, r'_2)

$$\begin{array}{ll} c' = (c'_1 = c_1 \cdot X_1^{r'_1}, & c'_2 = c'_2 \cdot X_2^{r'_2}, & c'_3 = c_3 \cdot g''_1 + r'_2 \\ \sigma' = (\sigma'_1 = \sigma_1 \cdot \sigma_{3,0}^{r'_1 + r'_2}, \sigma'_2 = (\sigma_{2,0} \cdot \sigma_{3,1}^{r'_1}, \sigma_{2,1} \cdot \sigma_{3,2}^{r'_2}), \, \sigma'_3 = \sigma_3 \end{array})$$

Anybody can publicly re-randomize c into c' with additional random coins (r'_1, r'_2) , and adapt the signature σ of c into σ' of c'

The adversary is allowed to ask any valid ciphertext of his choice to the signing oracle

Because of the re-randomizability of the ciphertext-signature, we cannot expect resistance to existential forgeries, but we should allow a restricted malleability only:

Forgery

A valid ciphertext-signature pair, so that the plaintext is different from all the plaintexts in the ciphertexts sent to the signing oracle

troduction		

raphic Tools

Signatures on Ciphertexts

Blind Signatures

Introduction 00000 Security Notions ryptographic Tools

Signatures on Ciphertexts

Blind Signatures

Security Notions

Unforgeability

From a valid ciphertext-signature pair:

$$\begin{aligned} \mathbf{c} &= \left(\mathbf{c}_{1} = X_{1}^{r_{1}}, \mathbf{c}_{2} = X_{2}^{r_{2}}, \mathbf{c}_{3} = g^{r_{1}+r_{2}} \cdot \mathbf{F}\right) \\ \sigma &= \left(\sigma_{1} = \mathbf{Y} \cdot \mathbf{c}_{3}^{s}, \sigma_{2} = \left(\mathbf{c}_{1}^{s}, \mathbf{c}_{2}^{s}\right), \sigma_{3} = \left(g^{s}, X_{1}^{s}, X_{2}^{s}\right)\right) \end{aligned}$$

and the decryption key (x_1, x_2) , one extracts

$$\begin{array}{lll} F = & c_3/(c_1^{1/x_1}c_2^{1/x_2}) \\ \Sigma = (& \Sigma_1 = \sigma_1/(\sigma_{2,0}^{1/x_1}\sigma_{2,1}^{1/x_2}), & \Sigma_2 = \sigma_{3,0}) \\ = (& = Y \cdot F^s & = g^s) \end{array}$$

Security of Waters signature is for a pair (M, Σ)

→ needs of a proof of knowledge Π_M of M in $F = \mathcal{F}(M)$ bit-by-bit commitment of M and Groth-Sahai proof

Chosen-Message Attacks

From a valid ciphertext $c = (c_1 = X_1^{r_1}, c_2 = X_2^{r_2}, c_3 = g^{r_1 + r_2} \cdot F)$, and the additional proof of knowledge of M, one extracts M and asks for a Waters signature:

 $\Sigma = (\Sigma_1 = Y \cdot F^s, \tilde{\Sigma}_2 = g^s)$

In this signature, the random coins s are unknown, we thus need to know the coins in c

→ needs of a proof of knowledge Π_r of r_1, r_2 in c bit-by-bit commitment of r_1, r_2 and Groth-Sahai proof

From the random coins r_1, r_2 (and the decryption key):

$$\begin{split} \sigma &= \left(\sigma_1 = \Sigma_1 \cdot \Sigma_2^{r_1 + t_2}, \qquad \sigma_2 = \left(\Sigma_2^{x_1 t_1}, \Sigma_2^{x_2 t_2} \right), \ \sigma_3 = \left(\Sigma_2, \Sigma_2^{r_1}, \Sigma_2^{t_2} \right) \ \right) \\ &= Y \cdot c_3^s, \qquad \qquad = \left(c_1^s, c_2^s \right), \qquad = \left(g^s, X_1^s, X_2^s \right) \end{split}$$

Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	David Pointcheval – 29/45 Blind Signatures 000000000	Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	David Pointcheval – 30/45 Blind Signatures 0000000000
Security Notions				Security Notions			
Security				Propertie	es		

Chosen-Ciphertext Attacks

A valid ciphertext $C = (c_1, c_2, c_3, \Pi_M, \Pi_r)$ is a

- ciphertext *c* = (*c*₁, *c*₂, *c*₃)
- a proof of knowledge Π_M of the plaintext M in $F = \mathcal{F}(M)$
- a proof of knowledge Π_r of the random coins r₁, r₂

From such a ciphertext and the decryption key (x_1, x_2) , and a Waters signing oracle, one can generate a signature on *C*

Forgery

From a valid ciphertext-signature pair (C, σ), where C encrypts M, one can generate a Waters signature on M

Security Level

Since the Waters signature is EF-CMA under the *CDH* assumption, our signature on randomizable ciphertext is <u>Unforgeable</u> against <u>Chosen-Ciphertext Attacks</u> under the *CDH* assumption

Proofs

Since we use the Groth-Sahai methodology for the proofs Π_M and Π_r

- in case of re-randomization of c, one can adapt Π_M and Π_r
- because of the need of *M*, but also *r*₁ and *r*₂ in the simulation, we need bit-by-bit commitments: → *C* is large!

Efficiency

We can improve efficiency: shorter signatures

Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	Blind Signatures	Introduction 00000	Cryptographic Tools 000000000000	Signatures on Ciphertexts	Blind Signatures
Improvement				Improvement			
Revisite	d Waters Signa	ture		Properti	es		
In a group and a biline	\mathbb{G} of order p , with a grant of order $p \in \mathbb{G} \times \mathbb{G} \to \mathbb{G}$	enerator g , \mathbb{G}_T		Revisited Our Waters	Waters Signature: E s Signature Variant is	F-CMA EF-CMA under the <i>CDI</i>	H assumption
Improved	Signature						
 SKey0 	Gen: $vk = X = g^x$, sk	$Y = Y = h^x$, for $x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$;		Signature	on a Linear Ciphert	ext	
 Sign(s 	$sk = Y, (M, R_1, R_2, T)$; s), if $e(R_1R_2, X) = e(g, X)$, T),	Ciphertext	signatures queries		

which guarantees existence of $r_1, r_2 \in \mathbb{Z}_p$ such that

 $\rightarrow \quad \sigma = (\sigma_1 = Y \cdot (\mathcal{F}(M)R_1R_2)^s, \sigma_2 = (g^{-s}, R_1^{-s}, R_2^{-s}));$ • Verif(vk = X, (M, R_1, R_2, T) , $\sigma = (\sigma_1, \sigma_2)$) checks whether $e(q, \sigma_1) \cdot e(\mathcal{F}(M)R_1R_2, \sigma_{2,0}) = e(X, h) \quad e(R_1R_2, X) = e(q, T)$ $e(q, \sigma_{2,1}) = e(\sigma_{2,0}, R_1)$ $e(q, \sigma_{2,2}) = e(\sigma_{2,0}, R_2)$

 $R_1 = a^{r_1}, R_2 = a^{r_2}$ and $T = X^{r_1+r_2}$

- still need a proof of knowledge of M (bit-by-bit)
- but only proof of knowledge of $R_1 = g^{r_1}$, $R_2 = g^{r_2}$ and $T = X^{r_1+r_2}$

 \rightarrow M, and $R_1 = a^{r_1}$, $R_2 = a^{r_2}$, $T = X^{r_1+r_2}$ are enough

to simulate signatures on ciphertexts from a signing oracle

Efficiency

For an ℓ -bit message, a pair (C, σ) consists of $9\ell + 33$ group elements

Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	David Pointcheval – 33/45 Blind Signatures	Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	David Pointcheval – 34/45 Blind Signatures
				Extractable Signatur	res		
Outline				Extracta	bility		

Blind Signatures

- Extractable Signatures
- Randomizable Signatures
- Randomizable Commutative Signature/Encryption

As already noted, from a valid ciphertext-signature pair:

$$\begin{aligned} \mathbf{c} &= \left(\mathbf{c}_1 = X_1^{r_1}, \mathbf{c}_2 = X_2^{r_2}, \mathbf{c}_3 = \mathbf{g}^{r_1 + r_2} \cdot \mathbf{F}\right) \\ \sigma &= \left(\sigma_1 = Y \cdot \mathbf{c}_3^s, \sigma_2 = \left(\mathbf{c}_1^s, \mathbf{c}_2^s\right), \sigma_3 = \left(\mathbf{g}^s, X_1^s, X_2^s\right) \end{aligned}$$

and the decryption key (x_1, x_2) , one extracts

$$\begin{array}{ll} {\it F} = & {\it C}_3/(c_1^{1/x_1}c_2^{1/x_2}) \\ {\it \Sigma} = (& {\it \Sigma}_1 = \sigma_1/(\sigma_{2,0}^{1/x_1}\sigma_{2,1}^{1/x_2}), & {\it \Sigma}_2 = \sigma_{3,0}) \\ = (& = {\it Y}\cdot{\it F}^s & = {\it g}^s) \end{array}$$

A plain Waters Signature

One can do the same from the random coins (r_1, r_2)

troductio	

Signatures on Ciph

liphertexts o Blind Signatures Introdu 0000000000 00000 Cryptographic Too

Signatures on Cipherte cooocoocooco Blind Signatures

Extractable Signatures

Extractable Signatures

Blind Signatures

Extractable Signatures

A New Approach

To get a signature on M,

- The user commits/encrypts M into C, under random coins r
- The signer signs C into σ(C), under random coins s
- The user extracts a signature $\sigma(M)$, granted the random coins r

Weakness

The signer can recognize his signature: the random coins s in $\sigma(M)$

→ Randomizable Signature

Introduction coocco	Cryptographic Tools	Signatures on Ciphertexts	David Pointcheval – 37/45 Blind Signatures	Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	David Pointcheval – 38/45 Blind Signatures
Randomizable Signatures				Randomizable Signatur	es		
Randomiza	hle Signatures			Randomiz	able Signatur	96	

Waters Signature

- SKeyGen: $vk = X = g^x$, $sk = Y = h^x$, for $x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$;
- Sign(sk = Y, M; s), for $M \in \{0, 1\}^k$ and $s \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ $\rightarrow \sigma = (\sigma_1 = Y \cdot \mathcal{F}(M)^s, \sigma_2 = g^{-s});$
- Verif(vk = X, M, σ = (σ₁, σ₂)) checks whether

$$e(g, \sigma_1) \cdot e(\mathcal{F}(M), \sigma_2) = e(X, h)$$

Re-Randomization

$$\begin{array}{l} \textit{Random}_{\mathcal{S}}(\textit{vk}=\textit{X},\textit{M},\sigma;\textit{s}'): \sigma' = (\sigma'_1 = \sigma_1 \cdot \mathcal{F}(\textit{M})^{s'}, \sigma'_2 = \sigma_2 \cdot g^{-s'}) \\ \textit{this is exactly } \textit{Sign}(\textit{sk}=\textit{Y},\textit{M};\textit{s}+s') \end{array}$$

Introduction	Cryptographic Tools cooocoocooco	Signatures on Ciphertexts	Blind Signatures	Introduction 00000	Cryptographic Tools cooccoccocco	Signatures on Ciphertexts	Blind Signatures
Randomizable Signatures				Randomizable Signatures			
Blind Sign	atures			Blind Signa	atures		

Our Approach

To get a signature on M,

- The user commits/encrypts M into C, under random coins r
- The signer signs C into σ(C), under random coins s
- The user extracts a signature σ(M), granted the random coins r
- The user re-randomizes the signature σ(M), under additional random coins s'

Security

- encryption hides M
- re-randomization hides σ(M)

Such a primitive can be used for a Waters Blind Signature:

- Unforgeability: one-more forgery would imply a forgery against the signature scheme (CDH assumption)
- Blindness: a distinguisher would break indistinguishability of the encryption scheme (*DLin* assumption)

Efficiency

We obtain a plain Waters Signature

 $\rightarrow~$ Blind Signature: with a real Waters Signature

Introduction 00000	Cryptographic Tools	Signatures on Ciphertexts	David Pointcheval – 41/45 Blind Signatures	Introduction 00000	Cryptographic Tools coccoccocco	Signatures on Ciphertexts	David Pointcheval – 42/45 Blind Signatures
Randomizable Signatures				Randomizable Comm	nutative Signature/Encryption		
Fair Blind	Signatures			Our New	Primitive		

One can even exploit double trapdoor: random coins *r* and decryption key *dk*

Fair Blind Signatures

To get a signature on M,

- The user encrypts *M* into *C*, under random coins *r*, and the authority encryption key
- The signer signs C into σ(C), under random coins s
- The user extracts a signature σ(M), granted the random coins r
- The user re-randomizes the signature σ(M), under additional random coins s'

Double-spending: the authority can decrypt the ciphertexts *C* to find the defrauder.

Introduction cooco	Cryptographic Tools cccccccccccccc	Signatures on Ciphertexts	Blind Signatures
Conclusion			
Conclus	ion		

Extractable Randomizable Signature on Randomizable Ciphertexts

Various Applications

- · non-interactive receipt-free electronic voting scheme
- (fair) blind signature

Security relies on the *CDH* and the *DLin* assumptions For an ℓ -bit message, ciphertext-signature:

 $9\ell + 33$ group elements

A more efficient variant with asymmetric pairing on the *CDH*⁺ and the *SXDH* assumptions Ciphertext-signature: $6\ell + 15$ group elements in \mathbb{G}_1 and $6\ell + 7$ group elements in \mathbb{G}_2

David Pointcheval - 45/45