
Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Round-Optimal Waters Blind Signatures

David Pointcheval

Joint work with Olivier Blazy, Georg Fuchsbauer and Damien Vergnaud

Ecole normale supérieure, CNRS & INRIA

Institute of Advanced Studies of Tsinghua University
Beijing – China – October 18th, 2010

David Pointcheval – 1/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Outline

1 Introduction

2 Cryptographic Tools

3 Signatures on Randomizable Ciphertexts

4 Blind Signatures

David Pointcheval – 2/45
Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Outline

1 Introduction
Electronic Cash
Blind Signatures

2 Cryptographic Tools

3 Signatures on Randomizable Ciphertexts

4 Blind Signatures

David Pointcheval – 3/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Electronic Cash

Electronic Cash

Electronic Coins [Chaum, 1981]

Expected properties:
coins are signed by the bank, for unforgeability
coins must be distinct to detect/avoid double-spending
the bank should not know to whom it gave a coin, for anonymity

Electronic Cash
The process is the following one:

Withdrawal: the user gets a coin c from the bank
Spending: the user spends a coin c in a shop
Deposit: the shop gives back the money to the bank

David Pointcheval – 4/45



Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Blind Signatures

Blind Signatures

We thus want:
Anonymity: the bank cannot link a withdrawal to a deposit
to know where a user spent a coin
→ blind signature

No double-spending: a coin should not be used twice
→ fair blind signature

Perfectly Blind Signatures
A blind signature allows a user to get a message m
signed by an authority into σ so that the authority (even powerful)
cannot recognize later the pair (m, σ).

David Pointcheval – 5/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Blind Signatures

Blind Signatures

We thus want:
Anonymity: the bank cannot link a withdrawal to a deposit
to know where a user spent a coin
→ blind signature

No double-spending: a coin should not be used twice
→ fair blind signature

Computationally/Fair Blind Signatures
Unlinkability between the signing process and the pair (m, σ) is
either computational, or even revocable (fair blind signatures).

The latter property allows to know/trace the defrauder
after double-spending detection.

David Pointcheval – 6/45
Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Blind Signatures

Blind RSA [Chaum, 1981]

The easiest way for blind signatures, is to blind the message:
To get an FDH RSA signature on m under RSA public key (n,e),

The user computes a blind version of the hash value:
M = H(m) and M ′ = M · re mod n

The signer signs M ′ into σ′ = M ′d mod n
The user unblinds the signature: σ = σ′/r mod n

Indeed,

σ = σ′/r = M ′d/r = (M · re)d/r = Md · r/r = Md mod n

→ Proven under the One-More RSA Assumption
[Bellare, Namprempre, Pointcheval, Semanko, 2001]

→ Perfectly blind signature

David Pointcheval – 7/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Blind Signatures

Blind Signatures and NIZK [Fischlin, 2006]

Fischlin Approach
To get a signature on m,

The user commits m into c
The signer signs c into σ
The user generates a NIZK proof of knowledge of c and σ,
valid with respect to m and the signer public key

This can be instantiated within the Groth-Sahai methodology

This method is in the same vein as the Blind RSA:
The user commits m into c: blinding of the message
The signer signs c into σ: signature on the blinded message
The user generates a NIZK proof of knowledge of c and σ
→ Could we do an unblinding?

David Pointcheval – 8/45



Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Outline

1 Introduction

2 Cryptographic Tools
Computational Assumptions
Signature & Encryption
Security
Groth-Sahai Methodology

3 Signatures on Randomizable Ciphertexts

4 Blind Signatures

David Pointcheval – 9/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Computational Assumptions

Assumptions: Diffie-Hellman

Definition (The Computational Diffie-Hellman problem (CDH))
G a cyclic group of prime order p.
The CDH assumption in G states:

for any generator g $←G, and any scalars a,b $←Z∗p,
given (g,ga,gb), it is hard to compute gab.

Definition (The Decisional Diffie-Hellman problem (DDH))
G a cyclic group of prime order p.
The DDH assumption in G states:

for any generator g $←G, and any scalars a,b, c $←Z∗p,
given (g,ga,gb,gc), it is hard to decide whether c = ab or not.

In some pairing-friendly groups, the latter assumption is wrong.

David Pointcheval – 10/45
Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Computational Assumptions

Assumptions: Linear Problem

Definition (Decision Linear Assumption (DLin))
G a cyclic group of prime order p.
The DLin assumption states:

for any generator g $←G, and any scalars a,b, x , y , c $←Z∗p,
given (g,gx ,gy ,gxa,gyb,gc),

it is hard to decide whether c = a + b or not.

Equivalently, given a reference triple (u = gx , v = gy ,g)
and a new triple (U = ua = gxa,V = vb = gyb,T = gc),
decide whether T = ga+b or not (that is c = a + b).

David Pointcheval – 11/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Signature & Encryption

General Tools: Signature

Definition (Signature Scheme)
S = (Setup,SKeyGen,Sign,Verif):

Setup(1k ) → global parameters param;
SKeyGen(param) → pair of keys (sk, vk);
Sign(sk,m; s) → signature σ, using the random coins s;
Verif(vk,m, σ) → validity of σ

If one signs F = F(M), for any function F , one extends the above
definitions: Sign(sk, (F ,F ,ΠM); s) and Verif(vk, (F ,F ,ΠM), σ) where
F details the function that is applied to the message M yielding F ,
and ΠM is a proof of knowledge of a preimage of F under F .

David Pointcheval – 12/45



Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Signature & Encryption

Signature: Example

In a group G of order p, with a generator g,
and a bilinear map e : G×G→ GT

Waters Signature [Waters, 2005]

For a message M = (M1, . . . ,Mk ) ∈ {0,1}k ,
we define F(M) = u0

∏k
i=1 uMi

i , where ~u = (u0, . . . ,uk )
$←Gk+1.

For an additional generator h $←G.
SKeyGen: vk = X = gx , sk = Y = hx , for x $←Zp;
Sign(sk = Y ,M; s), for M ∈ {0,1}k and s $←Zp
→ σ =

(
σ1 = Y · F(M)s, σ2 = g−s);

Verif(vk = X ,M, σ = (σ1, σ2)) checks whether

e(g, σ1) · e(F(M), σ2) = e(X ,h).

David Pointcheval – 13/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Signature & Encryption

General Tools: Encryption

Definition (Encryption Scheme)
E = (Setup,EKeyGen,Encrypt,Decrypt):

Setup(1k ) → global parameters param;
EKeyGen(param) → pair of keys (pk,dk);
Encrypt(pk,m; r) → ciphertext c, using the random coins r ;
Decrypt(dk, c) → plaintext, or ⊥ if the ciphertext is invalid.

Homomorphic Encryption
For some group laws: ⊕ on the plaintext, ⊗ on the ciphertext,
and � on the randomness
Encrypt(pk,m1; r1)⊗Encrypt(pk,m2; r2) = Encrypt(pk,m1⊕m2; r1�r2)

Decrypt(sk,Encrypt(pk,m1; r1)⊗ Encrypt(pk,m2; r2)) = m1 ⊕m2

David Pointcheval – 14/45
Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Signature & Encryption

Encryption: Example

In a group G of order p, with a generator g:

Linear Encryption [Boneh, Boyen, Shacham, 2004]

EKeyGen: dk = (x1, x2)
$←Z2

p, pk = (X1 = gx1 ,X2 = gx2);

Encrypt(pk = (X1,X2),m; (r1, r2)), for m ∈ G and (r1, r2)
$←Z2

p
→ c =

(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 ·m

)
;

Decrypt(dk = (x1, x2), c = (c1, c2, c3)) → m = c3/c
1/x1
1 c1/x2

2 .

Homomorphism
(⊕M = ×,⊗C = ×,�R = +)-homomorphism
With m = gM → (⊕M = +,⊗C = ×,�R = +)-homomorphism

David Pointcheval – 15/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Security

Security Notions: Signature

Signature: EF-CMA
Existential Unforgeability
under Chosen-Message
Attacks
An adversary should not be
able to generate a new valid
message-signature pair
even if it is allowed to ask
signatures on any message
of its choice

Impossibility to forge signatures
Waters signature reaches EF-CMA under the CDH assumption

David Pointcheval – 16/45



Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Security

Security Notions: Encryption

Encryption: IND-CCA
Indistinguishability under
Chosen-Plaintext Attacks
An adversary that chooses
two messages, and receives
the encryption of one of
them, should not be able to
decide which one has been
encrypted

Impossibility to learn any information about the plaintext
The Linear Encryption reaches IND-CPA under the DLin assumption

David Pointcheval – 17/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Groth-Sahai Methodology

Groth-Sahai Commitments [Groth, Sahai, 2008]

Under the DLin assumption, the commitment key is:

(u1 = (u1,1,1,g),u2 = (1,u2,2,g),u3 = (u3,1,u3,2,u3,3)) ∈ (G3)3

Initialization

u3 = uλ1 � uµ2 = (u3,1 = uλ1,1,u3,2 = uµ2,2,u3,3 = gλ+µ)

with λ, µ $←Z∗p, and random elements u1,1,u2,2
$←G.

It means that u3 is a linear tuple w.r.t. (u1,1,u2,2,g).

David Pointcheval – 18/45
Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Groth-Sahai Methodology

Groth-Sahai Commitments

Group Element Commitment
To commit a group element X ∈ G,
one chooses random coins s1, s2, s3 ∈ Zp and sets

C(X ) := (1,1,X )� us1
1 � us2

2 � us3
3

= (us1
1,1 · u

s3
3,1,u

s2
2,2 · u

s3
3,2,X · gs1+s2 · us3

3,3).

Scalar Commitment
To commit a scalar x ∈ Zp,
one chooses random coins γ1, γ2 ∈ Zp and sets

C′(x) := (ux
3,1,u

x
3,2, (u3,3g)x )� uγ1

1 � uγ2
3

= (ux+γ2
3,1 · uγ1

1,1,u
x+γ2
3,2 ,ux+γ2

3,3 · gx+γ1).

David Pointcheval – 19/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Groth-Sahai Methodology

Groth-Sahai Proofs

If u3 a linear tuple, these commitments are perfectly binding
With the initialization parameters, the committed values can even
be extracted → extractable commitments
Using pairing product equations, one can make proofs
on many relations between scalars and group elements:

∏

j

e(Aj ,Xj)
αj
∏

i

e(Yi ,Bi)
βi
∏

i,j

e(Xi ,Yj)
γi,j = t ,

where the Aj , Bi , and t are constant group elements,
αi , βj , and γi,j are constant scalars,
and Xj and Yi are either group elements in G1 and G2,
or of the form gxj

1 or gyi
2 , respectively, to be committed.

The proofs are perfectly sound
David Pointcheval – 20/45



Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Groth-Sahai Methodology

Groth-Sahai Proofs

If u3 a linear tuple, these commitments are perfectly binding
The proofs are perfectly sound

If u3 is a random tuple, the commitments are perfectly hiding
The proofs are perfectly witness hiding

Under the DLin assumption, with a correct initialization,
proofs are witness hiding

Can be used for any Pairing Product Equation
If one re-randomizes the commitments, the proof can be adapted

David Pointcheval – 21/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Outline

1 Introduction

2 Cryptographic Tools

3 Signatures on Randomizable Ciphertexts
New Primitive
Example
Security Notions
Improvement

4 Blind Signatures

David Pointcheval – 22/45
Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

New Primitive

Signatures on Randomizable Ciphertexts

M

S
ig

n S

sk
;s

σ(M)

EncryptE
pk, r

C

RandomE

r ′

Randomizable
Encryption

S
ig

n S
E

sk
,p

k,
c;

s

σ(C)

RandomE

r ′

Ran
do

mSE

r′

Malleable
Signature on
Randomizable
Encryption

David Pointcheval – 23/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Example

Linear Encryption

In a group G of order p, with a generator g,
and a bilinear map e : G×G→ GT

Linear Encryption [Boneh, Boyen, Shacham, 2004]

EKeyGen: dk = (x1, x2)
$←Z2

p, pk = (X1 = gx1 ,X2 = gx2);

Encrypt(pk = (X1,X2),m; (r1, r2)), for m ∈ G and (r1, r2)
$←Z2

p
→ c =

(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 ·m

)
;

Decrypt(dk = (x1, x2), c = (c1, c2, c3)) → m = c3/c
1/x1
1 c1/x2

2 .

Re-Randomization

RandomE(pk = (X1,X2), c = (c1, c2, c3); (r ′1, r
′
2)), for (r ′1, r

′
2)

$←Z2
p

→ c′ =
(
c′1 = c1 · X r ′1

1 , c
′
2 = c2 · X r ′2

2 , c
′
3 = c3 · gr ′1+r ′2

)
.

David Pointcheval – 24/45



Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Example

Waters Signature

In a group G of order p, with a generator g,
and a bilinear map e : G×G→ GT

Waters Signature [Waters, 2005]

For a message M = (M1, . . . ,Mk ) ∈ {0,1}k ,
we define F = F(M) = u0

∏k
i=1 uMi

i , where ~u = (u0, . . . ,uk )
$←Gk+1.

For an additional generator h $←G.
SKeyGen: vk = X = gx , sk = Y = hx , for x $←Zp;
Sign(sk = Y ,F ; s), for M ∈ {0,1}k , F = F(M), and s $←Zp
→ σ =

(
σ1 = Y · F s, σ2 = g−s);

Verif(vk = X ,M, σ = (σ1, σ2)) checks whether
e(g, σ1) · e(F , σ2) = e(X ,h).

David Pointcheval – 25/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Example

Waters Signature on a Linear Ciphertext: Idea

We define F = F(M) = u0
∏k

i=1 uMi
i , and encrypt it

c =
(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 · F

)

KeyGen: vk = X = gx , sk = Y = hx , for x $←Zp
dk = (x1, x2)

$←Z2
p, pk = (X1 = gx1 ,X2 = gx2)

Sign((X1,X2),Y , c; s), for c = (c1, c2, c3)
→ σ =

(
σ1 = Y · cs

3, σ2 = (cs
1, c

s
2), σ3 = (gs,X s

1 ,X
s
2 )
)

Verif((X1,X2),X , c, σ) checks e(g, σ1) = e(X ,h) · e(σ3,0, c3)

e(σ2,0,g) = e(c1, σ3,0) e(σ2,1,g) = e(c2, σ3,0)

e(σ3,1,g) = e(X1, σ3,0) e(σ3,2,g) = e(X2, σ3,0)

σ3 is needed for ciphertext re-randomization

David Pointcheval – 26/45
Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Example

Re-Randomization of Ciphertext

c = (c1 = X r1
1 , c2 = X r2

2 , c3 = gr1+r2 · F )

σ = (σ1 = Y · cs
3, σ2 = (cs

1, c
s
2), σ3 = (gs,X s

1 ,X
s
2 ) )

after re-randomization by (r ′1, r
′
2)

c′ = (c′1 = c1 · X r ′1
1 , c′2 = c′2 · X

r ′2
2 , c′3 = c3 · gr ′1+r ′2 )

σ′ = (σ′1 = σ1 · σr ′1+r ′2
3,0 , σ′2 = (σ2,0 · σr ′1

3,1, σ2,1 · σr ′2
3,2), σ′3 = σ3 )

Anybody can publicly re-randomize c into c′

with additional random coins (r ′1, r
′
2),

and adapt the signature σ of c into σ′ of c′

David Pointcheval – 27/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Security Notions

Unforgeability under Chosen-Ciphertext Attacks

Chosen-Ciphertext Attacks
The adversary is allowed to ask any valid ciphertext of his choice
to the signing oracle

Because of the re-randomizability of the ciphertext-signature,
we cannot expect resistance to existential forgeries,
but we should allow a restricted malleability only:

Forgery
A valid ciphertext-signature pair, so that the plaintext is different
from all the plaintexts in the ciphertexts sent to the signing oracle

David Pointcheval – 28/45



Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Security Notions

Unforgeability

From a valid ciphertext-signature pair:

c =
(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 · F

)

σ =
(
σ1 = Y · cs

3, σ2 = (cs
1, c

s
2), σ3 = (gs,X s

1 ,X
s
2 )
)

and the decryption key (x1, x2), one extracts

F = c3/(c1/x1
1 c1/x2

2 )

Σ =
(

Σ1 = σ1/(σ
1/x1
2,0 σ

1/x2
2,1 ), Σ2 = σ3,0

)

=
(

= Y · F s = gs)

Security of Waters signature is for a pair (M,Σ)
→ needs of a proof of knowledge ΠM of M in F = F(M)

bit-by-bit commitment of M and Groth-Sahai proof
David Pointcheval – 29/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Security Notions

Chosen-Message Attacks

From a valid ciphertext c =
(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 · F

)
,

and the additional proof of knowledge of M,
one extracts M and asks for a Waters signature:

Σ =
(
Σ1 = Y · F s,Σ2 = gs)

In this signature, the random coins s are unknown,
we thus need to know the coins in c
→ needs of a proof of knowledge Πr of r1, r2 in c

bit-by-bit commitment of r1, r2 and Groth-Sahai proof
From the random coins r1, r2 (and the decryption key):
σ =

(
σ1 = Σ1 · Σr1+r2

2 , σ2 = (Σx1r1
2 ,Σx2r2

2 ), σ3 = (Σ2,Σ
r1
2 ,Σ

r2
2 )

)

= Y · cs
3, = (cs

1, c
s
2), = (gs,X s

1 ,X
s
2 )

David Pointcheval – 30/45
Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Security Notions

Security

Chosen-Ciphertext Attacks
A valid ciphertext C = (c1, c2, c3,ΠM ,Πr ) is a

ciphertext c = (c1, c2, c3)

a proof of knowledge ΠM of the plaintext M in F = F(M)

a proof of knowledge Πr of the random coins r1, r2

From such a ciphertext and the decryption key (x1, x2),
and a Waters signing oracle, one can generate a signature on C

Forgery
From a valid ciphertext-signature pair (C, σ), where C encrypts M,
one can generate a Waters signature on M

David Pointcheval – 31/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Security Notions

Properties

Security Level
Since the Waters signature is EF-CMA under the CDH assumption,
our signature on randomizable ciphertext is Unforgeable

against Chosen-Ciphertext Attacks under the CDH assumption

Proofs
Since we use the Groth-Sahai methodology for the proofs ΠM and Πr

in case of re-randomization of c, one can adapt ΠM and Πr

because of the need of M, but also r1 and r2 in the simulation,
we need bit-by-bit commitments: → C is large!

Efficiency
We can improve efficiency: shorter signatures

David Pointcheval – 32/45



Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Improvement

Revisited Waters Signature

In a group G of order p, with a generator g,
and a bilinear map e : G×G→ GT

Improved Signature
SKeyGen: vk = X = gx , sk = Y = hx , for x $←Zp;
Sign(sk = Y , (M,R1,R2,T ); s), if e(R1R2,X ) = e(g,T ),

which guarantees existence of r1, r2 ∈ Zp such that
R1 = gr1 , R2 = gr2 and T = X r1+r2

→ σ =
(
σ1 = Y · (F(M)R1R2)s, σ2 = (g−s,R−s

1 ,R−s
2 )
)
;

Verif(vk = X , (M,R1,R2,T ), σ = (σ1, σ2)) checks whether
e(g, σ1) · e(F(M)R1R2, σ2,0) = e(X ,h) e(R1R2,X ) = e(g,T )

e(g, σ2,1) = e(σ2,0,R1) e(g, σ2,2) = e(σ2,0,R2)

David Pointcheval – 33/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Improvement

Properties

Revisited Waters Signature: EF-CMA
Our Waters Signature Variant is EF-CMA under the CDH assumption

Signature on a Linear Ciphertext
Ciphertext signatures queries

still need a proof of knowledge of M (bit-by-bit)
but only proof of knowledge of R1 = gr1 , R2 = gr2 and T = X r1+r2

→ M, and R1 = gr1 , R2 = gr2 , T = X r1+r2 are enough
to simulate signatures on ciphertexts from a signing oracle

Efficiency
For an `-bit message, a pair (C, σ) consists of 9`+ 33 group elements

David Pointcheval – 34/45
Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Outline

1 Introduction

2 Cryptographic Tools

3 Signatures on Randomizable Ciphertexts

4 Blind Signatures
Extractable Signatures
Randomizable Signatures
Randomizable Commutative Signature/Encryption

David Pointcheval – 35/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Extractable Signatures

Extractability

As already noted, from a valid ciphertext-signature pair:

c =
(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 · F

)

σ =
(
σ1 = Y · cs

3, σ2 = (cs
1, c

s
2), σ3 = (gs,X s

1 ,X
s
2 )
)

and the decryption key (x1, x2), one extracts

F = c3/(c1/x1
1 c1/x2

2 )

Σ =
(

Σ1 = σ1/(σ
1/x1
2,0 σ

1/x2
2,1 ), Σ2 = σ3,0

)

=
(

= Y · F s = gs)

A plain Waters Signature
One can do the same from the random coins (r1, r2)

David Pointcheval – 36/45



Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Extractable Signatures

Extractable Signatures

M

σ(M)

S
ig

n S

sk
;s

EncryptE
pk, r

C
dk

DecryptE

r

S
ig

n S
E

sk
,p

k,
c;

s

σ(C)

SigExtSE

dk

r

David Pointcheval – 37/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Extractable Signatures

Blind Signatures

A New Approach
To get a signature on M,

The user commits/encrypts M into C, under random coins r
The signer signs C into σ(C), under random coins s
The user extracts a signature σ(M), granted the random coins r

Weakness
The signer can recognize his signature: the random coins s in σ(M)

→ Randomizable Signature

David Pointcheval – 38/45
Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Randomizable Signatures

Randomizable Signatures

Waters Signature
SKeyGen: vk = X = gx , sk = Y = hx , for x $←Zp;
Sign(sk = Y ,M; s), for M ∈ {0,1}k and s $←Zp
→ σ =

(
σ1 = Y · F(M)s, σ2 = g−s);

Verif(vk = X ,M, σ = (σ1, σ2)) checks whether

e(g, σ1) · e(F(M), σ2) = e(X ,h).

Re-Randomization

RandomS(vk = X ,M, σ; s′) : σ′ =
(
σ′1 = σ1 · F(M)s′ , σ′2 = σ2 · g−s′)

this is exactly Sign(sk = Y ,M; s + s′)

David Pointcheval – 39/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Randomizable Signatures

Randomizable Signatures

M

S
ig

n S

sk
;s

σ(M)

RandomS

s′

Randomizable
Signature

EncryptE
pk, r

C

RandomE

r ′

Randomizable
Encryption

S
ig

n S
E

sk
,p

k,
c;

s

σ(C)

RandomE

r ′

Ran
do

mSE

r′

Randomizable
Encryption

r′ ,
s
′

Randomizable
Signature on

David Pointcheval – 40/45



Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Randomizable Signatures

Blind Signatures

Our Approach
To get a signature on M,

The user commits/encrypts M into C, under random coins r
The signer signs C into σ(C), under random coins s
The user extracts a signature σ(M), granted the random coins r
The user re-randomizes the signature σ(M),

under additional random coins s′

Security
encryption hides M
re-randomization hides σ(M)

David Pointcheval – 41/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Randomizable Signatures

Blind Signatures

Such a primitive can be used for a Waters Blind Signature:
Unforgeability: one-more forgery would imply a forgery

against the signature scheme (CDH assumption)
Blindness: a distinguisher would break indistinguishability

of the encryption scheme (DLin assumption)

Efficiency
We obtain a plain Waters Signature

→ Blind Signature: with a real Waters Signature

David Pointcheval – 42/45
Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Randomizable Signatures

Fair Blind Signatures

One can even exploit double trapdoor: random coins r
and decryption key dk

Fair Blind Signatures
To get a signature on M,

The user encrypts M into C, under random coins r ,
and the authority encryption key

The signer signs C into σ(C), under random coins s
The user extracts a signature σ(M), granted the random coins r
The user re-randomizes the signature σ(M),

under additional random coins s′

Double-spending: the authority can decrypt the ciphertexts C
to find the defrauder.

David Pointcheval – 43/45

Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Randomizable Commutative Signature/Encryption

Our New Primitive

M

σ(M)
S

ig
n S

sk
;s

RandomS

s′

EncryptE
pk, r

C
dk

DecryptE

r

RandomE

r ′

S
ig

n S
E

sk
,p

k,
c;

s

σ(C)

Ran
do

mSE

r′ ,
s
′

SigExtSE

dk

r

David Pointcheval – 44/45



Introduction Cryptographic Tools Signatures on Ciphertexts Blind Signatures

Conclusion

Conclusion

Extractable Randomizable Signature on Randomizable Ciphertexts

Various Applications
non-interactive receipt-free electronic voting scheme
(fair) blind signature

Security relies on the CDH and the DLin assumptions
For an `-bit message, ciphertext-signature:

9`+ 33 group elements

A more efficient variant with asymmetric pairing
on the CDH∗ and the SXDH assumptions

Ciphertext-signature: 6`+ 15 group elements in G1
and 6`+ 7 group elements in G2

David Pointcheval – 45/45


