Outline

1 Smooth Projective Hash Functions
 - Definitions
 - Conjunctions and Disjunctions

2 Extractable Commitments
 - Properties
 - Conditional Extractability
 - Application: Certification of Public Keys

3 Equivocable and Extractable Commitments
 - Description
 - Analysis

4 Adaptive Security and UC PAKE
 - Universal Composability
 - Previous Schemes
 - Our Scheme

Smooth Projective Hashing for Conditionally Extractable Commitments

David Pointcheval

Joint work with Michel Abdalla and Céline Chevalier
Ecole normale supérieure, CNRS & INRIA

NTT – Tokyo – Japan
April 10th, 2009

Definitions
Smooth Projective Hash Functions

\[\{ H \} \]

- Family of Hash Function \(H \)
- Let \(\{ H \} \) be a family of functions:
 - \(X \), domain of these functions
 - \(L \), subset (a language) of this domain
 - such that, for any point \(x \) in \(L \), \(H(x) \) can be computed by using
 - either a secret hashing key \(h_k \): \(H(x) = \text{Hash}_L(h_k; x) \);
 - or a public projected key \(h_p \): \(H(x) = \text{ProjHash}_L(h_p; x, w) \)

While the former works for all points in the domain \(X \), the latter works for \(x \in L \) only, and requires a witness \(w \) to this fact. There is a public mapping that converts the hashing key \(h_k \) into the projected key \(h_p \): \(h_p = \text{ProjKG}_L(h_k) \).
Properties

For any $x \in X$, $H(x) = \text{Hash}_L(hk; x)$
For any $x \in L$, $H(x) = \text{ProjHash}_L(hp; x, w)$ w witness that $x \in L$

Smoothness

For any $x \not\in L$, $H(x)$ and hp are independent

Pseudo-Randomness

For any $x \in L$, $H(x)$ is pseudo-random, without a witness w

The latter property requires L to be a hard partitioned subset of X:

Hard-Partitioned Subset

L is a hard-partitioned subset of X if it is computationally hard to distinguish a random element in L from a random element in $X \setminus L$

Examples

Commitment

$L_{pk,m} = \{c\}$ such that c is a commitment of m
using public parameter pk:
- there exists r such that $c = \text{com}_{pk}(m; r)$
where com is the committing algorithm

Labeled Encryption

$L_{pk,(\ell,m)} = \{c\}$ such that c is an encryption of m
with label ℓ, under the public key pk:
- there exists r such that $c = \mathcal{E}_{pk}^\ell(m; r)$
where \mathcal{E} is the encryption algorithm

Smooth Projective Hash Functions

A family of smooth projective hash functions $\text{HASH}(pk)$,
for a language $L_{pk,aux} \subset X$, onto the set G, based on
- either a labeled encryption scheme with public key pk
- or on a commitment scheme with public parameters pk
consists of four algorithms:

- $\text{HASH}(pk) = (\text{HashKG}, \text{ProjKG}, \text{Hash}, \text{ProjHash})$

Key-Generation Algorithms

- Probabilistic hashing key algorithm:
 \[hk \xleftarrow{\$} \text{HashKG}(pk, aux) \]
- Deterministic projection key algorithm
 \[hp = \text{ProjKG}(hk, pk, aux, c) \]
 (where c is either a ciphertext or a commitment in X)
Smooth Projective Hash Functions

Definitions

- **HASH**(pk) = (HashKG, ProjKG, Hash, ProjHash)

Properties

- **Pseudorandomness**
 If \(c \in L_{pk,aux} \), without a witness \(w \) of this membership, the two distributions are computationally indistinguishable:

\[
\{pk, aux, c, hp = ProjKG(hk; pk, aux, c), g = Hash(hk; pk, aux, c)\} \not\approx \{pk, aux, c, hp = ProjKG(hk; pk, aux, c), g \leftarrow G\}
\]

This requires \(L_{pk,aux} \) to be a hard partitioned subset of \(X \):
- the uniform distributions in \(L_{pk,aux} \) and in \(X \backslash L_{pk,aux} \)
- are computationally indistinguishable

- **Correctness**
 Let \(c \in L_{pk,aux} \) and \(w \) a witness of this membership.

\[
hk \leftarrow HashKG(pk, aux) \text{ and } hp = ProjKG(hk; pk, aux, c) \implies \text{Hash}(hk; pk, aux, c) = \text{ProjHash}(hp; pk, aux, c; w)
\]

- **Smoothness**

If \(c \not\in L_{pk,aux} \), the two distributions are statistically indistinguishable:

\[
\{pk, aux, c, hp = ProjKG(hk; pk, aux, c), g = Hash(hk; pk, aux, c)\} \not\approx \{pk, aux, c, hp = ProjKG(hk; pk, aux, c), g \leftarrow G\}
\]

ElGamal Encryption

Definitions

- \(G = \langle g \rangle \), a cyclic group of prime order \(q \).

ElGamal Encryption Schemes

- Let \(pk = h = g^x \) (public key), where \(sk = x \leftarrow \mathbb{Z}_q \) (private key)

 - If \(M \in G \), the multiplicative ElGamal encryption is:
 - \(EG^+_p(k)(M; r) = (u_1 = g^r, e = h^r M) \)
 - which can be decrypted by \(M = e / u_1^x \).

 - If \(M \in \mathbb{Z}_q \), the additive ElGamal encryption is:
 - \(EG^-_p(k)(M; r) = (u_1 = g^r, e = h^r g^M) \)
 - Note that \(EG^+_p(g^M; r) = EG^-_p(M; r) \)
 - It can thus be decrypted as above, but after an additional discrete logarithm computation: \(M \) must be small enough.

Properties

- IND-CPA security = DDH assumption.
Smooth Projective HF Family for ElGamal

The CRS: $\rho = (G, q, g, pk = h)$
Language: $L = L_{(EG^{+}, \rho), M} = \{ C = (u, e) = EG_{pk}^{+}(M; r), r \leftarrow \mathbb{Z}_{q} \}$

- L is a hard partitioned subset of $X = G^{2}$, under the semantic security of the ElGamal encryption scheme (DDH assumption)
- the random r is the witness to L-membership

Definitions

Conjunctions and Disjunctions

Notations

We assume that G possesses a group structure, and we denote by \oplus the commutative law of the group (and by \ominus the opposite operation)
We assume to be given two smooth hash systems SHS_{1} and SHS_{2}, on the sets G_{1} and G_{2} (included in G) corresponding to the languages L_{1} and L_{2} respectively:

\[SHS_{i} = \{ HashKG_{i}, ProjKG_{i}, Hash_{i}, ProjHash_{i} \} \]

Let $c \in X$, and r_{1} and r_{2} two random elements:

- $hk_{1} = HashKG_{1}(\rho, aux, r_{1})$
- $hk_{2} = HashKG_{2}(\rho, aux, r_{2})$
- $hp_{1} = ProjKG_{1}(hk_{1}; \rho, aux, c)$
- $hp_{2} = ProjKG_{2}(hk_{2}; \rho, aux, c)$

Conjunction of Languages

A hash system for the language $L = L_{1} \cap L_{2}$ is then defined as follows, if $c \in L_{1} \cap L_{2}$ and w_{i} is a witness that $c \in L_{i}$, for $i = 1, 2$:

\[
\text{HashKG}_{L}(\rho, aux, r = r_{1} \parallel r_{2}) = hk = (hk_{1}, hk_{2}) \\
\text{ProjKG}_{L}(hk; \rho, aux, c) = hp = (hp_{1}, hp_{2}) \\
\text{Hash}_{L}(hk; \rho, aux, c) = \text{Hash}_{1}(hk_{1}; \rho, aux, c) \\
\oplus \text{Hash}_{2}(hk_{2}; \rho, aux, c) \\
\text{ProjHash}_{L}(hp; \rho, aux, c; (w_{1}, w_{2})) = \text{ProjHash}_{1}(hp_{1}; \rho, aux, c; w_{1}) \\
\oplus \text{ProjHash}_{2}(hp_{2}; \rho, aux, c; w_{2})
\]

- if c is not in one of the languages, then the corresponding hash value is perfectly random: smoothness
- without one of the witnesses, then the corresponding hash value is computationally unpredictable: pseudo-randomness

Disjunction of Languages

A hash system for the language $L = L_{1} \cup L_{2}$ is then defined as follows, if $c \in L_{1} \cup L_{2}$ and w is a witness that $c \in L_{i}$ for $i \in \{ 1, 2 \}$:

\[
\text{HashKG}_{L}(\rho, aux, r = r_{1} \parallel r_{2}) = hk = (hk_{1}, hk_{2}) \\
\text{ProjKG}_{L}(hk; \rho, aux, c) = hp = (hp_{1}, hp_{2}, hp_{\Delta}) \\
\text{where } hp_{\Delta} = \text{Hash}_{1}(hk_{1}; \rho, aux, c) \\
\oplus \text{Hash}_{2}(hk_{2}; \rho, aux, c) \\
\text{Hash}_{L}(hk; \rho, aux, c) = \text{Hash}_{1}(hk_{1}; \rho, aux, c) \\
\text{ProjHash}_{L}(hp; \rho, aux, c; w) = \text{ProjHash}_{1}(hp_{1}; \rho, aux, c; w) \text{ if } c \in L_{1} \\
\text{or } hp_{\Delta} \oplus \text{ProjHash}_{2}(hp_{2}; \rho, aux, c; w) \text{ if } c \in L_{2}
\]

hp_{Δ} helps to compute the missing hash value, if and only if at least one can be computed
Properties

Contrarily to the original Cramer-Shoup definition, the value of the projected key formally depends on the word c. But this dependence maybe invisible.

Uniformity

The projected key may or may not depend on c (and aux), but its distribution does not.

Independence

The projected key does not depend at all on c (and aux).

Outline

1 Smooth Projective Hash Functions
 - Definitions
 - Conjunctions and Disjunctions
2 Extractable Commitments
 - Properties
 - Conditional Extractability
 - Application: Certification of Public Keys
3 Equivocable and Extractable Commitments
 - Description
 - Analysis
4 Adaptive Security and UC PAKE
 - Universal Composability
 - Previous Schemes
 - Our Scheme

Commitments

Definition

A commitment scheme is defined by two algorithms:

- the committing algorithm, $C = \text{com}(x; r)$ with randomness r, on input x, to commit on this input;
- the decommitting algorithm, $(x, D) = \text{decom}(C, x, r)$, where x is the claimed committed value, and D the proof.

Properties

The commitment $C = \text{com}(x; r)$

- reveals nothing about the input x: the hiding property
- nobody can open C in two different ways: the binding property

Examples

In both cases, the CRS ρ is $(G, q, g, pk = h)$, and $(x, D = r) = \text{decom}(C, x, r)$.

ElGamal

- $C = \text{comEG}(pk)(x; r) = (u, e) = E_{pk}^+(x; r)$, with $r \leftarrow Z_q$;
- As any IND-CPA encryption scheme, this commitment is perfectly binding and computationally hiding, (DDH assumption)

Pedersen

- $C = \text{comPed}(x; r) = g^x h^r$, with $r \leftarrow Z_q$;
- This commitment is perfectly hiding and computationally binding, (DL assumption)
Additional Properties

Extractability
A commitment is extractable if there exists an efficient algorithm, called extractor, capable of generating a new CRS (with similar distribution) such that it can extract \(x\) from any \(C = \text{com}(x, r)\).

This is possible for computationally hiding commitments only: with an encryption scheme, the decryption key is the extraction key.

Equivocability
A commitment is equivocable if there exists an efficient algorithm, called equivocator, capable of generating a new CRS and a commitment (with similar distributions) such that the commitment can be opened in different ways.

This is possible for computationally binding commitments only.

Non-Malleability
A commitment is non-malleable if, for any adversary receiving a commitment \(C\) of some unknown value \(x\) that can generate a valid commitment for a related value \(y\), then a simulator could perform the same without seeing the commitment \(C\).

This is meaningful for perfectly binding commitments only: with an encryption scheme, IND-CCA2 security level guarantees non-malleability.

Conditional Extractability

Motivation

ElGamal Commitment
\[\text{com}_E^G_{pk}(x; r) = E^G_{pk}(x; r) \], is extractable for small \(x\) only.

Example
If \(x \in \{0, 1\}\), any \(C(x) = \text{com}_E^G_{pk}(x; r)\) is extractable.

Homomorphic Property
Let us assume \(2^{k-1} < q < 2^k\), then for any \(x = \sum_{i=0}^{k-1} x_i \times 2^i \in \mathbb{Z}_q\), \(C(x) = \{C_i = \text{com}_E^G_{pk}(x_i; r_i) = E^G_{pk}(x_i; r_i)\}_{i=0}^{k-1}\), is extractable under the condition that \((x_i)_{i \in \{0, 1\}^k}\) is extractable.

Furthermore, \(\text{com}_E^G_{pk}(x; r) = \prod C_i^{2^i}\), for \(r = \sum_{i=0}^{k-1} r_i \times 2^i\).

Extended Languages

Extended Commitments
If \(x \in \{0, 1\}\), any \(C(x) = \text{com}_E^G_{pk}(x; r)\) is extractable.

We then define
\[L_{(E^G^+, \rho), 0} \cup L_{(E^G^+, \rho), 1} = L_{(E^G^+, \rho), 0} \cup L_{(E^G^+, \rho), 1} \]

To be extractable, \(C = (C_i)\) has to lie in
\[L = \{ (C_0, \ldots, C_{k-1}) \mid \forall i, C_i \in L_{(E^G^+, \rho), 0} \} \]
Certification of Public Keys

For the certification Cert of an ElGamal public key $y = g^x$, in most of the protocols, the simulator needs to be able to extract the secret key:

Classical Process
- the user sends his public key $y = g^x$;
- the user and the authority run a ZK proof of knowledge of x
- if convinced, the authority generates and sends the certificate Cert for y

But for extracting x in the simulation, the reduction requires a rewinding (that is not always allowed: e.g., in the UC Framework)

New Process
- the user and the authority use a smooth projective hash system for L:
 - $\text{HASH}(\text{pk}) = (\text{HashKG}, \text{ProjKG}, \text{Hash}, \text{ProjHash})$
- the user sends his public key $y = g^x$, together with an L-extractable commitment C of x, with random r;
- the authority generates
 - a hashing key $hk \leftarrow \text{HashKG}()$
 - the corresponding projected key on C, $hp = \text{ProjKG}(hk, C)$
 - the hash value $\text{Hash} = \text{Hash}(hk; C)$
- and sends hp along with $\text{Cert} \oplus \text{Hash}$;
- the user computes $\text{Hash} = \text{ProjHash}(hp; C, r)$, and gets Cert.

Commitment and Smooth Projective HF

The authority sends hp along with $\text{Cert} \oplus \text{Hash}$

Analysis: Correct Commitment
- If the user correctly computed the commitment ($C \in L$)
 - he knows the witness r, and can get the same mask Hash;
 - the simulator can extract x, granted the L-extractability

Analysis: Incorrect Commitment
- If the user cheated ($C \notin L$)
 - the simulator is not guaranteed to extract anything;
 - but, the smoothness property makes Hash perfectly unpredictable: no information is leaked about the certificate.

Outline

1. Smooth Projective Hash Functions
 - Definitions
 - Conjunctions and Disjunctions
2. Extractable Commitments
 - Properties
 - Conditional Extractability
 - Application: Certification of Public Keys
3. Equivocable and Extractable Commitments
 - Description
 - Analysis
4. Adaptive Security and UC PAKE
 - Universal Composability
 - Previous Schemes
 - Our Scheme
A First Approach [Canetti-Fischlin C ’01]

To get both extractability and equivocability (at the same time), one can combine perfectly hiding and perfectly binding commitments:

- Pedersen’s commitment is perfectly hiding
- ElGamal’s commitment is perfectly binding

Notations

if \(b \) is a bit, we denote its complement by \(\overline{b} \)

\(x[i] \) denotes the \(i \)th bit of the bit-string \(x \)

Extractable and Equivocable Commitment

Common Reference String Model

The commitment is realized in the common reference string model: the CRS \(\rho \) contains

- \((G, pk)\), where \(pk \) is an ElGamal public key and the private key is unknown to anybody (except to the commitment extractor)
- the tuple \((y_1, \ldots, y_m) \in G^m\), for which the discrete logarithms in basis \(g \) are unknown to anybody (except to the commitment equivocator)

Let the input of the committing algorithm be a bit-string

\[
\pi = \sum_{i=1}^{m} \pi_i \cdot 2^{i-1}
\]

In order to commit to \(\pi \), for \(i = 1, \ldots, m \),

- one chooses a random value \(x_{i,\pi_i} = \sum_{j=1}^{n} x_{i,\pi_i[j]} \cdot 2^{j-1} \in \mathbb{Z}_q \)
 and sets \(x_{i,\pi_i} = 0 \)
- one commits to \(\pi_i \), using the random \(x_{i,\pi_i} \):
 \[
 a_i = \text{comPed}(\pi_i, x_{i,\pi_i}) = g^{x_{i,\pi_i} y_i^{\pi_i}}
 \]

This defines \(a = (a_1, \ldots, a_m) \)

- one commits to \(x_{i,\delta_i} \) for \(\delta = 0, 1 \): \(b_{i,\delta} = (b_{i,\delta}[j]) = \text{comEG}_{pk}(x_{i,\delta}) \)
 where \(b_{i,\delta}[j] = \text{EG}_{pk}^+(x_{i,\delta} \cdot 2^{j-1}, r_{i,\delta}[j]) \)

Then, \(B_{i,\delta} = \prod_j b_{i,\delta}[j] = \text{EG}_{pk}^+(x_{i,\delta}, r_{i,\delta}) \), where \(r_{i,\delta} = \sum_j r_{i,\delta}[j] \).

Random string:

\[
R = (x_{1,\pi_1}, (r_{1,0}[j], r_{1,1}[j]), \ldots, x_{m,\pi_m}, (r_{m,0}[j], r_{m,1}[j]))
\]

Commitment: \(\text{com}_{pk}(\pi; R) = (a, b) \)

where
\[
\begin{align*}
 a &= (a_i = \text{comPed}(\pi_i, x_{i,\pi_i}))_i \\
 b &= (b_{i,0}[j] = \text{EG}_{pk}^+(x_{i,0}[j] \cdot 2^{j-1}, r_{i,0}[j]), b_{i,1}[j] = \text{EG}_{pk}^+(x_{i,1}[j] \cdot 2^{j-1}, r_{i,1}[j]))_{i,\delta,j}
\end{align*}
\]

Witness: the values \(r_{i,\pi_i}[j] \) can be erased,

\[
w = (x_{1,\pi_1}, (r_{1,\pi_1}[j]), \ldots, x_{m,\pi_m}, (r_{m,\pi_m}[j]))
\]

Opening: given the above witness, and the value \(\pi \)

\[
\forall i, j: b_{i,\pi_i[j]} \overset{?}{=} \text{EG}_{pk}^+(x_{i,\pi_i[j]} \cdot 2^{j-1}, r_{i,\pi_i[j]})
\]

\[
\forall i: a_i \overset{?}{=} \text{comPed}(\pi_i, x_{i,\pi_i})
\]
Properties

comₚ(π; R) = (a, b) : a = comPed(πᵢ, xᵢ,πᵢ))ᵢ
b = (bᵢ,δᵢ[j] = EG⁺ₚk(xᵢ,δᵢ[j] · 2⁻ᵢ, rᵢ,δᵢ[j]))ᵢ,δ,j

Intuition
- Granted the perfectly hiding property of the Pedersen commitment, without any information on the xᵢ,δᵢ[j]'s, no information is leaked about the πᵢ's
- Granted the semantic security of the ElGamal encryption scheme, the former privacy on the xᵢ,δᵢ[j]'s is guaranteed
- Granted the computationally binding property of the Pedersen commitment, the aᵢ's cannot be open in two ways

Conditional Extractability

Constraints
- bit-by-bit encryption of the xᵢ,δ[i]: with the ElGamal decryption key, one decrypts all the bᵢ,δ[i], and gets the xᵢ,πᵢ (unless the plaintexts are different to 0 and 2⁻ᵢ)
- then, one can confirm, for i = 1, . . . , m, whether aᵢ = comPed(0, xᵢ,0) or aᵢ = comPed(1, xᵢ,1), which provides πᵢ (unless none of the equalities is satisfied)

The above conditions define the language for extractability:

Lₚ,π = \{ C \mid \exists R such that C = comₚ(π, R) and \forall i \vee bᵢ,δᵢ[i] ∈ L(EG⁺, πk),0 \vee 1 and \forall i Bᵢ,πᵢ \in L(EG⁺, δk) \}

Non-Malleability

Using a non-malleable encryption scheme (Cramer-Shoup), one can make the commitment non-malleable:
- Random string:
 \[R = (xᵢ,πᵢ, (rᵢ,0[i], rᵢ,1[i]), . . . , xᵢ,m,πm, (rᵢ,m,0[i], rᵢ,m,1[i])) \]
- Commitment: comₚ(π; R) = (a, b)

where
 \[aᵢ = \text{comPed}(πᵢ, xᵢ,πᵢ) \]
 \[bᵢ,δᵢ[j] = \text{CS⁺ₚk}(xᵢ,δᵢ[j] · 2⁻ᵢ, rᵢ,δᵢ[j])ᵢ,δ,j \]

Opening: given the above witness, and the value π

\[\forall i, j : bᵢ,πᵢ[j] \stackrel{?}{=} \text{CS⁺ₚk}(xᵢ,πᵢ[j] · 2⁻ᵢ, rᵢ,πᵢ[j]) \]
\[\forall i : aᵢ \stackrel{?}{=} \text{comPed}(πᵢ, xᵢ,πᵢ) \]
The protocol Π securely realizes \mathcal{F}, if \forall adversary A, \exists a simulator S such that no environment Z can tell whether it interacts with a run of Π with A or with an ideal run with \mathcal{F} and S.

S has to simulate the view generated by the honest users without the private inputs.
Password-Authenticated Key Exchange

Definition

Two players want to establish a common secret key, using a short password as authentication means: exhaustive search is possible

- **on-line dictionary attack**: Elimination of one candidate per attack. This is unavoidable.
- **off-line dictionary attack**: the transcript of a communication helps to eliminate one or a few candidates. This is avoidable, and should be avoided.

One wants to prove that eliminating one candidate per active attempt is the best attack.

TestPwd to model on-line dictionary attacks (once per session)

Ideal Functionality

Functionality F_{pwd}

The functionality F_{pwd} is parameterized by a security parameter k. It interacts with an adversary S and a set of parties via the following queries:

- **Upon receiving a query** $(\text{NewSession}, \text{sid}, P_i, P_j, \text{pw}, \text{role})$ **from party** P_i:

 Send $(\text{NewSession}, \text{sid}, P_i, P_j, \text{role})$ to S. In addition, if this is the first NewSession query or if this is the second NewSession query and there is a record (P_j, P_i, pw') then record (P_i, P_j, pw) and mark this record fresh.

- **Upon receiving a query** $(\text{TestPwd}, \text{sid}, P_i, \text{pw}')$ **from the adversary** S:

 If there is a record of the form (P_i, P_j, pw) which is fresh, then do: If $\text{pw} = \text{pw}'$, mark the record compromised and reply to S with “correct guess”. If $\text{pw} \neq \text{pw}'$, mark the record interrupted and reply with “wrong guess”.

- **Upon receiving a query** $(\text{NewKey}, \text{sid}, P_i, sk)$ **from S, where** $(\text{sid}) = k$:

 If there is a record of the form (P_i, P_j, pw), and this is the first NewKey query for P_i, then:

 - If this record is compromised, or either P_i or P_j is corrupted, then output (sid, sk) to player P_i.
 - If this record is fresh, and there is a record (P_j, P_i, pw') with $\text{pw}' = \text{pw}$, and a key sk was sent to P_j, and (P_j, P_i, pw) was fresh at the time, then output (sid, sk') to P_j.

 In any other case, pick a new random key sk' of length k and send (sid, sk') to P_j.

 Either way, mark the record (P_i, P_j, pw) as completed.

Figure 2: The password-based key-exchange functionality F_{pwd}

Analysis

Security in the classical framework:

- **Commitment to an incorrect password**: smoothness leads to a perfectly random session key.
- **Replay of a commitment**: pseudo-randomness leads to a computationally random session key (witness unknown).

Simulation of the honest players: use of a dummy password

- indistinguishable, unless A committed to the correct password: S cannot compute the correct key $\implies S$ aborts
- in the UC framework, Z sees the difference between a real-execution and the simulation: when A wins, S aborts

Because of the short password, this is not negligible.
Analysis

If A plays the server role:
- S can extract the committed password, and check it granted the TestPwd query
- password valid: S uses it
- else: dummy password

\implies perfect simulation

If A plays the client role:
- S does not know yet the password sent by A: dummy password
- when A sends its commitment, S extracts the password and checks it granted the TestPwd query
- if the password is invalid, S follows with the dummy password
- else, S is stuck

Scheme II

Previous Schemes

Adaptive Corruption

If A plays the server role:
- S does not know the password: dummy password in c_0
- S extracts the password from c_1, checks it (TestPwd query)
- if invalid: S follows with the dummy password in c_2
- else, S uses the correct password in c_2 and simulates the ZKP

What about if A corrupts the client right after c_0?
S gets the correct password, but cannot open c_0 correctly!

\implies security against static-corruptions only (before the session starts)

Non-malleable, L-extractable, equivocable commitment provides adaptive security
Adaptively Secure UC-PAKE

Our Scheme

(U1) $(VK_I, SK_I) \leftarrow SKG$
$\ell_I = I \circ \text{ssid} \circ VK_I$
$com_I = \text{com}_{\ell_I}(\ell_I, pw_I; R_I)$

(S2) (publicly) checks the validity of com_I
$(VK_I, SK_I) \leftarrow SKG$
$\ell_I = I \circ \text{ssid} \circ VK_I$
$com_I = \text{com}_{\ell_I}(\ell_I, pw_I; R_I)$
$hp_I = \text{ProjKG}(hk_I; \ell_I, pw_I)$
$sk_I = \text{ProjHash}(hp_I; \ell_I, pw_I, com_I)$
$\sigma_I = \text{Sign}(SK_I; (com_I, com_J, hp_I, hp_J), \ell_I)$
$\text{if } \text{Ver}(VK_I, (com_I, com_J, hp_I, hp_J), \sigma_I) = 0$
outputs $(sid, ssid, sk_I)$
erases everything
sets the session as **accepted**

(U3) (publicly) checks the validity of com_J
$hk_J = \text{HashKG}(\rho; (\ell_J, pw_J), r_J)$
$hp_J = \text{ProjKG}(hk_J; \ell_J, pw_J)$
$sk_J = \text{ProjHash}(hp_J; \ell_J, pw_J, com_J)$
$\sigma_J = \text{Sign}(SK_J; (com_I, com_J, hp_I, hp_J), \ell_J)$
$\text{if } \text{Ver}(VK_J, (com_I, com_J, hp_I, hp_J), \sigma_J) = 0$
outputs $(sid, ssid, sk_J)$
erases everything
sets the session as **accepted**

(S4) aborts if
$\text{Ver}(VK_I, (com_I, com_J, hp_I, hp_J), \sigma_I) = 0$
$\sigma_J = \text{Sign}(SK_J; (com_I, com_J, hp_I, hp_J), \ell_J)$
$sk_J = \text{ProjHash}(hp_J; \ell_J, pw_J, com_J)$
$\text{if } \text{Ver}(VK_J, (com_I, com_J, hp_I, hp_J), \sigma_J) = 0$
outputs $(sid, ssid, sk_I)$
erases everything
sets the session as **accepted**

Conclusion

Smooth Projective Hash Functions for Complex Languages

Various Applications
- in place of some ZK proofs
- conditional secure channels
- adaptive security in UC PAKE