Smooth Projective Hashing for Conditionally Extractable Commitments

David Pointcheval
Joint work with Michel Abdalla and Céline Chevalier
Ecole normale supérieure, CNRS & INRIA
EPFL – Lausanne – Switzerland
June 18th, 2009

Outline
1 Smooth Projective Hash Functions
 • Definitions
 • Conjunctions and Disjunctions
2 Extractable Commitments
 • Properties
 • Conditional Extractability
 • Application: Certification of Public Keys
3 Equivocable and Extractable Commitments
 • Description
 • Analysis
4 Password-Authenticated Key Exchange

Smooth Projective Hash Functions

Family of Hash Function H
Let $\{H\}$ be a family of functions:
- X, domain of these functions
- L, subset (a language) of this domain such that, for any point x in L, $H(x)$ can be computed by using
 - either a secret hashing key hk: $H(x) = Hash_L(hk; x)$;
 - or a public projected key hp: $H(x) = ProjHash_L(hp; x, w)$

While the former works for all points in the domain X, the latter works for $x \in L$ only, and requires a witness w to this fact. There is a public mapping that converts the hashing key hk into the projected key hp: $hp = ProjKG_L(hk)$
Properties

For any \(x \in X \), \(H(x) = \text{Hash}_L(hk; x) \)

For any \(x \in L \), \(H(x) = \text{ProjHash}_L(hp; x, w) \) \(w \) witness that \(x \in L \)

Smoothness

For any \(x \not\in L \), \(H(x) \) and \(hp \) are independent

Pseudo-Randomness

For any \(x \in L \), \(H(x) \) is pseudo-random, without a witness \(w \)

The latter property requires \(L \) to be a hard partitioned subset of \(X \):

Hard-Partitioned Subset

\(L \) is a hard-partitioned subset of \(X \) if it is computationally hard to distinguish a random element in \(L \) from a random element in \(X \setminus L \)

Element-Based Projection

Initial Definition [Cramer-Shoup EC ’02]

The projected key \(hp \) depends on the hashing key \(hk \) only:

\[
hp = \text{ProjKG}_L(hk)
\]

New Definition [Gennaro-Lindell EC ’03]

The projected key \(hp \) depends on the hashing key \(hk \), and \(x \):

\[
hp = \text{ProjKG}_L(hk; x)
\]

Applications: Encryption and Commitments

The input \(x \) can be a ciphertext or a commitment, where the indistinguishability for the hard partitioned subset relies

- either on the semantic security of the encryption scheme
- or the hiding property of the commitment scheme

Examples

Commitment [Gennaro-Lindell EC ’02]

\(L_{pk,m} = \{ c \} \) such that \(c \) is a commitment of \(m \)

using public parameter \(pk \):

- there exists \(r \) such that \(c = \text{com}_{pk}(m; r) \)

where \(\text{com} \) is the committing algorithm

Labeled Encryption [Canetti-Halevi-Katz-Lindell-MacKenzie EC ’05]

\(L_{pk,(\ell,m)} = \{ c \} \) such that \(c \) is an encryption of \(m \)

with label \(\ell \), under the public key \(pk \):

- there exists \(r \) such that \(c = \mathcal{E}_{pk}^\ell(m; r) \)

where \(\mathcal{E} \) is the encryption algorithm

Smooth Projective Hash Functions [Gennaro-Lindell EC ’03]

A family of smooth projective hash functions \(\text{HASH}(L_{pk,aux}) \), for a language \(L_{pk,aux} \subset X \), onto the set \(G \), based on

- either a labeled encryption scheme with public key \(pk \)
- or on a commitment scheme with public parameters \(pk \)

consists of four algorithms:

\[
\text{HASH}(L_{pk,aux}) = (\text{HashKG}, \text{ProjKG}, \text{Hash}, \text{ProjHash})
\]

Key-Generation Algorithms

- Probabilistic hashing key algorithm:

\[
hk \overset{\$}{\leftarrow} \text{HashKG}()
\]

- Deterministic projection key algorithm

\[
hp = \text{ProjKG}(hk; c)
\]

(where \(c \) is either a ciphertext or a commitment in \(X \))
Smooth Projective Hash Functions

$$\text{HASH}(L_{pk,aux}) = (\text{HashKG}, \text{ProjKG}, \text{Hash}, \text{ProjHash})$$

Hashing Algorithms
- The hashing algorithm Hash computes,
 - on $c \in X$
 - using the secret hashing key hk
 - the value $g = \text{Hash}(hk; c) \in G$
- The projected hashing algorithm ProjHash computes,
 - on $c \in X$
 - using the projection key hp
 - and a witness w to the fact that $c \in L_{pk,aux}$
 - the value $g = \text{ProjHash}(hp; c, w) \in G$

Pseudorandomness
If $c \in L_{pk,aux}$, without a witness w of this membership, the two distributions are **computationally** indistinguishable:

$$\{c, hp = \text{ProjKG}(hk; c), g = \text{Hash}(hk; c)\}$$
$$\{c, hp = \text{ProjKG}(hk; c), g \xleftarrow{\$} G\}$$

This requires $L_{pk,aux}$ to be a **hard partitioned subset** of X:
- the uniform distributions in $L_{pk,aux}$ and in $X \setminus L_{pk,aux}$ are computationally indistinguishable.

Correctness
Let $c \in L_{pk,aux}$ and w a witness of this membership.

$$hk \xleftarrow{\$} \text{HashKG}()$$
$$\text{ProjKG}(hk; c) \implies \text{ProjHash}(hp; c, w)$$

Smoothness
If $c \notin L_{pk,aux}$, the two distributions are **statistically** indistinguishable:

$$\{c, hp = \text{ProjKG}(hk; c), g = \text{Hash}(hk; c)\}$$
$$\{c, hp = \text{ProjKG}(hk; c), g \xleftarrow{\$} G\}$$

with $hk \xleftarrow{\$} \text{HashKG}()$

ElGamal Encryption

$G = \langle g \rangle$, a cyclic group of prime order q.

ElGamal Encryption Schemes
Let $pk = h = g^x$ (public key), where $sk = x \xleftarrow{\$} \mathbb{Z}_q$ (private key)

- If $M \in G$, the multiplicative ElGamal encryption is:
 $$\text{EG}_{pk}^x(M; r) = (u_t = g^r, e = h^r M)$$
 which can be decrypted by $M = e/u_t^x$.
- If $M \in \mathbb{Z}_q$, the additive ElGamal encryption is:
 $$\text{EG}_{pk}^x(M; r) = (u_t = g^r, e = h^r g^M)$$
 Note that $\text{EG}_{pk}^x(g^M; r) = \text{EG}_{pk}^x(M; r)$
 It can thus be decrypted as above, but after an additional discrete logarithm computation: M must be small enough.

IND-CPA security = DDH assumption.
Smooth Projective HF Family for ElGamal

The CRS: \(\rho = (G, q, g, pk = h) \)

Language: \(L = \{ (EG_{g^m}, M), C \} = E_{g^m}^G(M; r), r \leftarrow \mathbb{Z}_q \}

- \(L \) is a hard partitioned subset of \(X = G^2 \), under the semantic security of the ElGamal encryption scheme (DDH assumption)
- the random \(r \) is the witness to \(L \)-membership

Algorithms

- \(\text{HashKG}(M) = hk = (\gamma_1, \gamma_3) \leftarrow \mathbb{Z}_q \times \mathbb{Z}_q \)
- \(\text{Hash}(hk; M, C) = (u_i, e) = E_{g^m}^G(M; r) \)
- \(\text{ProjKG}(hk; M, C) = hp = (g)^{\gamma_1} (h)^{\gamma_3} \)
- \(\text{ProjHash}(hp; M, C, r) = (hp)^r \)

Conjunctions and Disjunctions

Conjunction of Languages

A hash system for the language \(L = L_1 \cap L_2 \) is then defined as follows, if \(c \in L_1 \cap L_2 \) and \(w_i \) is a witness that \(c \in L_i \), for \(i = 1, 2 \):

- \(\text{HashKG}_L(r = r_1 \| r_2) = hk = (hk_1, hk_2) \)
- \(\text{ProjKG}_L(hk; c) = hp = (hp_1, hp_2) \)
- \(\text{Hash}_L(hk; c) = \text{Hash}_1(hk_1; c) \oplus \text{Hash}_2(hk_2; c) \)
- \(\text{ProjHash}_L(hp; c, (w_1, w_2)) = \text{ProjHash}_1(hp_1; c, w_1) \oplus \text{ProjHash}_2(hp_2; c, w_2) \)

- if \(c \) is not in one of the languages, then the corresponding hash value is perfectly random: smoothness
- without one of the witnesses, then the corresponding hash value is computationally unpredictable: pseudo-randomness

Disjunction of Languages

A hash system for the language \(L = L_1 \cup L_2 \) is then defined as follows, if \(c \in L_1 \cup L_2 \) and \(w \) is a witness that \(c \in L_i \) for \(i \in \{1, 2\} \):

- \(\text{HashKG}_L(r = r_1 \| r_2) = hk = (hk_1, hk_2) \)
- \(\text{ProjKG}_L(hk; c) = hp = (hp_1, hp_2, hp) \)
- \(\text{Hash}_L(hk; c) = \text{Hash}_1(hk_1; c) \oplus \text{Hash}_2(hk_2; c) \)
- \(\text{ProjHash}_L(hp; c, w) = \text{ProjHash}_1(hp_1; c, w) \oplus \text{ProjHash}_2(hp_2; c, w) \)

- if \(c \in L_2 \)

\(hp \) helps to compute the missing hash value, if and only if at least one can be computed.
Properties

Contrarily to the original Cramer-Shoup definition, the value of the projected key formally depends on the word c. But this dependence maybe invisible.

Uniformity
The projected key may or may not depend on c (and aux), but its distribution does not.

Independence
The projected key does not depend at all on c (and aux).

Outline

1. Smooth Projective Hash Functions
 - Definitions
 - Conjunctions and Disjunctions

2. Extractable Commitments
 - Properties
 - Conditional Extractability
 - Application: Certification of Public Keys

3. Equivocable and Extractable Commitments
 - Description
 - Analysis

4. Password-Authenticated Key Exchange

Commitments

Definition
A commitment scheme is defined by two algorithms:
- the committing algorithm, $C = \text{com}(x; r)$ with randomness r, on input x, to commit on this input;
- the decommitting algorithm, $(x, D) = \text{decom}(C, x, r)$, where x is the claimed committed value, and D the proof.

Properties
The commitment $C = \text{com}(x; r)$
- reveals nothing about the input x: the hiding property
- nobody can open C in two different ways: the binding property

Examples

In both cases, the CRS ρ is $(G, q, g, \text{pk} = h)$, and $(x, D = r) = \text{decom}(C, x, r)$

ElGamal
- $C = \text{comEG}_{\text{pk}}(x; r) = (u_1, e) = \text{EG}^+_\text{pk}(x; r)$, with $r \overset{\$}{\leftarrow} \mathbb{Z}_q$;
- As any IND-CPA encryption scheme, this commitment is perfectly binding and computationally hiding, (DDH assumption)

Pedersen
- $C = \text{comPed}(x; r) = g^x h^r$, with $r \overset{\$}{\leftarrow} \mathbb{Z}_q$;
- This commitment is perfectly hiding and computationally binding, (DL assumption)
Extractability

A commitment is extractable if there exists an efficient algorithm, called extractor, capable of generating a new CRS (with similar distribution) such that it can extract x from any $C = \text{com}(x, r)$.

This is possible for computationally hiding commitments only: with an encryption scheme, the decryption key is the extraction key.

Equivocability

A commitment is equivocable if there exists an efficient algorithm, called equivocator, capable of generating a new CRS and a commitment (with similar distributions) such that the commitment can be opened in different ways.

This is possible for computationally binding commitments only.

Non-Malleability

A commitment is non-malleable if, for any adversary receiving a commitment C of some unknown value x that can generate a valid commitment for a related value y, then a simulator could perform the same without seeing the commitment C.

This is meaningful for perfectly binding commitments only: with an encryption scheme, IND-CCA2 security level guarantees non-malleability.

Extended Languages

Motivation

ElGamal Commitment

$\text{comEG}_{pk}(x; r) = \text{EG}^{+}_{pk}(x; r)$, is extractable for small x only.

Example

If $x \in \{0, 1\}$, any $C(x) = \text{comEG}_{pk}(x; r)$ is extractable.

Homomorphic Property

Let us assume $2^k - 1 < q < 2^k$, then for any $x = \sum_{i=0}^{k-1} x_i \times 2^i \in \mathbb{Z}_q$, $C(x) = \{C_i = \text{comEG}_{pk}(x_i; r_i) = \text{EG}^{+}_{pk}(x_i; r_i)\}_{i=0}^{k-1}$, is extractable under the condition that $(x_i)_i \in \{0, 1\}^k$.

Furthermore, $\text{comEG}_{pk}(x; r) = \prod C_i^{2^i}$, for $r = \sum_{i=0}^{k-1} r_i \times 2^i$.

We then define

$L_{(\text{EG}^{+}_{}, \rho), 0 \lor 1} = L_{(\text{EG}^{+}_{}, \rho), 0} \cup L_{(\text{EG}^{+}_{}, \rho), 1}$

To be extractable, $C = (C_i)_i$ has to lie in

$L = \{(C_0, \ldots, C_{k-1}) \mid \forall i, C_i \in L_{(\text{EG}^{+}_{}, \rho), 0 \lor 1}\}$

A conjunction of disjunctions.
Certification of Public Keys

For the certification Cert of an ElGamal public key $y = g^x$, in most of the protocols, the simulator needs to be able to extract the secret key:

Classical Process
- the user sends his public key $y = g^x$;
- the user and the authority run a ZK proof of knowledge of x;
- if convinced, the authority generates and sends the certificate Cert for y.

But for extracting x in the simulation, the reduction requires a rewinding (that is not always allowed: e.g., in the UC Framework).

New Process
the user and the authority use a smooth projective hash system for L: $\text{HASH}(\text{pk}) = (\text{HashKG, ProjKG, Hash, ProjHash})$
- the user sends his public key $y = g^x$, together with an L-extractable commitment C of x, with random r;
- the authority generates
 - a hashing key $hk \xleftarrow{} \text{HashKG}()$,
 - the corresponding projected key on C, $hp = \text{ProjKG}(hk, C)$
 - the hash value $\text{Hash} = \text{Hash}(hk; C)$
- and sends hp along with $\text{Cert} \oplus \text{Hash}$;
- The user computes $\text{Hash} = \text{ProjHash}(hp; C, r)$, and gets Cert.

Commitment and Smooth Projective HF

The authority sends hp along with $\text{Cert} \oplus \text{Hash}$

Analysis: Correct Commitment
- If the user correctly computed the commitment ($C \in L$)
 - he knows the witness r, and can get the same mask Hash;
 - the simulator can extract x, granted the L-extractability.

Analysis: Incorrect Commitment
- If the user cheated ($C \not\in L$)
 - the simulator is not guaranteed to extract anything;
 - but, the smoothness property makes Hash perfectly unpredictable: no information is leaked about the certificate.

Outline

1. Smooth Projective Hash Functions
 - Definitions
 - Conjunctions and Disjunctions

2. Extractable Commitments
 - Properties
 - Conditional Extractability
 - Application: Certification of Public Keys

3. Equivocable and Extractable Commitments
 - Description
 - Analysis

4. Password-Authenticated Key Exchange
A First Approach

To get both extractability and equivocability (at the same time), one can combine perfectly hiding and perfectly binding commitments:

- Pedersen's commitment is perfectly hiding
- ElGamal's commitment is perfectly binding

Notations

If \(b \) is a bit, we denote its complement by \(\overline{b} \).

\(x[i] \) denotes the \(i \)th bit of the bit-string \(x \).

Description

Extractable and Equivocable Commitment

In order to commit to \(\pi \), for \(i = 1, \ldots, m \),

- one chooses a random value \(x_{i,\pi_i} = \sum_{j=1}^{\pi_i} x_{i,j} \cdot 2^{j-1} \in \mathbb{Z}_q \)
 and sets \(x_{i,\pi_i} = 0 \)
- one commits to \(\pi_i \), using the random \(x_{i,\pi_i} \):
 \[
 a_i = \text{comPed}(\pi_i, x_{i,\pi_i}) = g^{x_{i,\pi_i}} y_i^{\pi_i}
 \]

This defines \(a = (a_1, \ldots, a_m) \)

- one commits to \(x_{i,\delta_i} \), for \(\delta = 0, 1 \): \(b_{i,\delta} = (b_{i,\delta}[j]) = \text{comEG}_p(x_{i,\delta}), \)
 where \(b_{i,\delta}[j] = \text{EG}_p(x_{i,[j]} \cdot 2^{j-1}, r_{i,[j]}) \)

Then, \(B_{i,\delta} = \prod_j b_{i,\delta}[j] = \text{EG}_p^+(x_{i,\delta}, r_{i,\delta}) \), where \(r_{i,\delta} = \sum_j r_{i,[j]} \).

Extractable

Random string:

\[
R = (x_{1,\pi_1}, (r_{1,0}[j], r_{1,1}[j]), \ldots, x_{m,\pi_m}, (r_{m,0}[j], r_{m,1}[j]))
\]

Commitment: \(\text{comPed}(\pi; R) = (a, b) \)

where:

- \(a = (a_i = \text{comPed}(\pi_i, x_{i,\pi_i})) \)
- \(b = (b_{i,\delta}[j] = \text{EG}_p^+(x_{i,\delta}[j] \cdot 2^{j-1}, r_{i,\delta}[j]))_{i,\delta,j} \)

Equivocable

Witness: the values \(r_{i,\pi_i}[j] \) can be erased,

\[
w = (x_{1,\pi_1}, (r_{1,\pi_1}[j]), \ldots, x_{m,\pi_m}, (r_{m,\pi_m}[j]))
\]

Opening: given the above witness, and the value \(\pi \)

\[
\forall i, j : b_{i,\pi_i}[j] \overset?= \text{EG}_p^{+}(x_{i,\pi_i}[j] \cdot 2^{j-1}, r_{i,\pi_i}[j])
\]

\[
\forall i : a_i \overset?= \text{comPed}(\pi_i, x_{i,\pi_i})
\]
Properties

\[\text{com}_\rho(\pi; R) = (a, b) : \quad a = (a_i = \text{comPed}(\pi_i, x_i, \pi_i))_{i} \]
\[b = (b_{i,\delta}[j] = \text{EG}_{\text{pk}}^{+}(x_{i,\delta}[j], 2^{i-1}, r_{i,\delta}[j]))_{i,\delta,j} \]

Intuition

- Granted the perfectly hiding property of the Pedersen commitment, without any information on the \(x_{i,\delta}[j]\)'s, no information is leaked about the \(\pi_i\)'s.
- Granted the semantic security of the ElGamal encryption scheme, the former privacy on the \(x_{i,\delta}[j]\)'s is guaranteed.
- Granted the computationally binding property of the Pedersen commitment, the \(a_i\)'s cannot be open in two ways.

Equivocability

Normal Procedure

- One takes a random \(x_{i,\pi_i}\) and then \(x_{i,\pi_i} = 0\), which specifies \(\pi_i\).
- One commits on \(\pi_i\) using randomness \(x_{i,\pi_i}\).
- One encrypts both \(x_{i,\pi_i}\) and \(x_{i,\pi_i}\), bit-by-bit.

Equivocable Procedure

- Granted the Pedersen commitment trapdoor
 - one takes a random \(x_{i,0}\) and extracts \(x_{i,1}\) such that
 - \(a_i = \text{comPed}(0, x_{i,0}) = \text{comPed}(1, x_{i,1})\)
 - the rest of the commitment procedure remains the same.
- One can open any bit-string for \(\pi_i\), using the appropriate \(x_{i,\pi_i}\) and the corresponding random elements (no erasure).

Conditional Extractability

Constraints

- bit-by-bit encryption of the \(x_{i,\delta}[j]\):
 - with the ElGamal decryption key, one decrypts all the \(b_{i,\delta}[j]\), and gets the \(x_{i,\pi_i}\) (unless the plaintexts are different to 0 and \(2^{i-1}\)).
- then, one can confirm, for \(i = 1, \ldots, m\), whether
 - \(a_i = \text{comPed}(0, x_{i,0})\) or \(a_i = \text{comPed}(1, x_{i,1})\), which provides \(\pi_i\) (unless none of the equalities is satisfied).

The above conditions define the language for extractability:

\[
L_{\rho,\pi} = \left\{ C \left| \begin{array}{l}
\exists R \text{ such that } C = \text{com}_\rho(\pi, R) \\
\text{and } \forall i \lor b_{i,\pi_i}[j] \in L_{(\text{EG}^+,\rho),0\lor1} \\
\text{and } \forall i \lor B_{i,\pi_i} \in L_{(\text{EG}^-,\rho),1\lor1}
\end{array} \right. \right\}
\]

Non-Malleability

Using a non-malleable encryption scheme (Cramer-Shoup), one can make the commitment non-malleable:

- Random string:
 \[
 R = (x_{1,\pi_1}, (r_{1,0}[j], r_{1,1}[j]), \ldots, x_{m,\pi_m}, (r_{m,0}[j], r_{m,1}[j]))
 \]
- Commitment: \(\text{com}_\rho(\pi; R) = (a, b)\)

 where
 \[
 a = (a_i = \text{comPed}(\pi_i, x_{i,\pi_i}))_{i}
 \]
 \[
 b = (b_{i,\delta}[j] = \text{CS}_{\text{pk}}^{+}(x_{i,\delta}[j], 2^{i-1}, r_{i,\delta}[j]))_{i,\delta,j}
 \]
- Opening: given the above witness, and the value \(\pi\)
 \[
 \forall i,j : b_{i,\pi_i}[j] \equiv \text{CS}_{\text{pk}}^{+}(x_{i,\pi_i}[j], 2^{i-1}, r_{i,\pi_i}[j])
 \]
 \[
 \forall i : a_i \equiv \text{comPed}(\pi_i, x_{i,\pi_i})
 \]
Outline

1. **Smooth Projective Hash Functions**
 - Definitions
 - Conjunctions and Disjunctions

2. **Extractable Commitments**
 - Properties
 - Conditional Extractability
 - Application: Certification of Public Keys

3. **Equivocable and Extractable Commitments**
 - Description
 - Analysis

4. **Password-Authenticated Key Exchange**

Introduction

Password-Authenticated Key Exchange (PAKE) involves two players who want to establish a common secret key, using a short password as authentication means. Exhaustive search is possible:

- **Online dictionary attack:** Elimination of one candidate per attack. This is unavoidable.
- **Offline dictionary attack:** The transcript of a communication helps to eliminate one or a few candidates. This is avoidable, and should be avoided.

One wants to prove that eliminating one candidate per active attempt is the best attack.

Previous Schemes

- **Scheme I**
 - [Katz-Ostrovsky-Yung EC '01, Gennaro-Lindell C '03]
 - Not UC secure!

- **Scheme II**
 - [Canetti-Halevi-Katz-Lindell-MacKenzie EC '05]
 - Add of a first commitment round: for non-adaptive UC security.

Password-Authenticated Key Exchange

Definition

Two players want to establish a common secret key, using a short password as authentication means: exhaustive search is possible:

- **Online dictionary attack:** Elimination of one candidate per attack. This is unavoidable.
- **Offline dictionary attack:** The transcript of a communication helps to eliminate one or a few candidates. This is avoidable, and should be avoided.

One wants to prove that eliminating one candidate per active attempt is the best attack.

Scheme I

<table>
<thead>
<tr>
<th>P_1 (client)</th>
<th>CRS: pke</th>
<th>P_2 (server)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_2 = E_{pke}(pw, r_2)$</td>
<td>c_1, vk</td>
<td>$(sk, vk) \rightarrow \text{sigKey}($)$</td>
</tr>
<tr>
<td>$hk \leftarrow H$</td>
<td>$c_1 = E_{pke}(pw, r_1)$</td>
<td></td>
</tr>
<tr>
<td>$hp \leftarrow \alpha(hk; c_1)$</td>
<td>c_2, hp</td>
<td></td>
</tr>
<tr>
<td>$h_{hp'} \leftarrow H$</td>
<td>$\sigma \leftarrow \text{Sign}_{k_1}(c_2, hp, hp')$</td>
<td></td>
</tr>
<tr>
<td>if (Verify$_{sk}$ ($(c_2, hp, hp'), \sigma = 1$)</td>
<td>session-key $\leftarrow H_{sk}(c_1, pw)$</td>
<td>session-key $\leftarrow h_{hp}(c_1, pw, r_1)$</td>
</tr>
<tr>
<td>$+$ $h_{hp}(c_2, pw, r_2)$</td>
<td>$+$ $H_{sk}(c_2, pw)$</td>
<td></td>
</tr>
</tbody>
</table>

Not UC secure!

Scheme II

<table>
<thead>
<tr>
<th>P_1 (client)</th>
<th>CRS: pke</th>
<th>P_2 (server)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_0 \rightarrow E_{pke}(pw, r_0)$</td>
<td>c_0</td>
<td>$(sk, vk) \rightarrow \text{sigKey}($)$</td>
</tr>
<tr>
<td>c_1, ek</td>
<td>$c_1 = E_{pke}(pw, r_1)$</td>
<td></td>
</tr>
<tr>
<td>$c_2 = E_{pke}(pw, r_2)$</td>
<td>c_2, hp</td>
<td></td>
</tr>
<tr>
<td>$hk \leftarrow H$</td>
<td>$h_{hp'} \leftarrow \alpha(hk', c_2)$</td>
<td></td>
</tr>
<tr>
<td>$hp \leftarrow \alpha(hk; c_1)$</td>
<td>$\sigma \leftarrow \text{Sign}_{k_1}(c_2, hp, hp')$</td>
<td></td>
</tr>
<tr>
<td>ZKP($c_0 \equiv c_2$)</td>
<td>session-key $\leftarrow H_{sk}(c_1, pw)$</td>
<td>session-key $\leftarrow h_{hp}(c_1, pw, r_1)$</td>
</tr>
<tr>
<td>$+$ $h_{hp}(c_2, pw, r_2)$</td>
<td>$+$ $H_{sk}(c_2, pw)$</td>
<td></td>
</tr>
</tbody>
</table>

Add of a first commitment round: for non-adaptive UC security.
If \(A \) plays the client role:
- \(S \) can extract the committed password, and check it granted the TestPwd query
- password valid: \(S \) uses it
- else: dummy password

\[\implies \text{perfect simulation} \]

If \(A \) plays the server role:
- \(S \) does not know the password: dummy password in \(c_0 \)
- when \(A \) sends its commitment \(c_1 \), \(S \) extracts the password and checks it granted the TestPwd query
- if the password is invalid, \(S \) follows with the dummy password
- else, \(S \) uses the correct password in \(c_2 \) and simulates the ZKP

What about if \(A \) corrupts the client right after \(c_0 \)?
\(S \) gets the correct password, but cannot open \(c_0 \) correctly!
\[\implies \text{security against static-corruptions only (before the session starts)} \]

Non-malleable, L-extractable, equivocable commitment provides adaptive security to the KOY/GL construction

Conclusion

Smooth Projective Hash Functions for Complex Languages

Various Applications
- in place of some ZK proofs
- conditional secure channels
- adaptive security in UC PAKE