Cryptography

Game-based Proofs

Assumptions

BLS Signature

Identity-Based Encryption

Conclusion

Public-Key Cryptography

Asymmetric cryptography

Encryption

Signature

Encryption guarantees privacy

Signature guarantees authentication, and even non-repudiation by the sender
Strong Security Notions

Signature

Existential Unforgeability under Chosen-Message Attacks
An adversary, allowed to ask for signature on any message of its choice, cannot generate a new valid message-signature pair.

Encryption

Semantic Security against Chosen-Ciphertext Attacks
An adversary that chooses 2 messages, and receives the encryption of one of them, is not able to guess which message has been encrypted, even if it is able to ask for decryption of any ciphertext of its choice (except the challenge ciphertext).

Provable Security

One can prove that:
- if an adversary is able to break the cryptographic scheme
- then one can break the underlying problem (integer factoring, discrete logarithm, 3-SAT, etc).

Game-based Methodology

Illustration: OAEP

- Reduction proven indistinguishable for an IND-CCA adversary (actually IND-CCA1, and not IND-CCA2) but widely believed for IND-CCA2, without any further analysis of the reduction

The direct-reduction methodology

Shoup showed the gap for IND-CCA2, under the OWP

Granted his new game-based methodology

FOPS proved the security for IND-CCA2, under the PD-OWP

Using the game-based methodology
Outline

1 Cryptography
 - Introduction
 - Provable Security

2 Game-based Methodology
 - Game-based Approach
 - Transition Hops

3 Assumptions

4 Short Signatures
 - Description of BLS
 - Security Proof

5 Identity-Based Encryption
 - Definition
 - Description of BF
 - Security Proof

6 Conclusion

Sequence of Games

Real Attack Game

The adversary plays a game, against a challenger (security notion)

Game 0

Simulation

The adversary plays a game, against a sequence of simulators
Sequence of Games

Simulation

The adversary plays a game, against a sequence of simulators.

Output

- The output of the simulator in Game 1 is related to the output of the challenger in Game 0 (adversary's winning probability).
- The output of the simulator in Game 3 is easy to evaluate (e.g. always zero, probability of one-half).
- The gaps (Game 1 ↔ Game 2, Game 2 ↔ Game 3, etc) are clearly identified with specific events.

Transition Hops

Two Simulators

- perfectly identical behaviors
- different behaviors, only if event Ev happens
 - Ev is negligible
 - Ev is non-negligible and independent of the output in $Game_A$
 - $Simulator B$ terminates in case of event Ev

Two Distributions

- perfectly identical input distributions
- different distributions
 - statistically close
 - computationally close
Two Simulations

- Identical behaviors: \(\Pr[\text{Game}_A] - \Pr[\text{Game}_B] = 0 \)
- The behaviors differ only if \(\text{Ev} \) happens:
 - \(\text{Ev} \) is negligible, one can ignore it
 - \(\text{Ev} \) is non-negligible and independent of the output in \(\text{Game}_A \), Simulator B terminates in case of event \(\text{Ev} \)

\[
|\Pr[\text{Game}_A] - \Pr[\text{Game}_B]| \leq \Pr[\text{Ev}]
\]

\(\Pr[\text{Ev}] \) is non-negligible and independent of the output in \(\text{Game}_A \), Simulator B terminates, in case of event \(\text{Ev} \)

Two Distributions

- Identical behaviors: \(\Pr[\text{Game}_A] - \Pr[\text{Game}_B] = 0 \)
- The behaviors differ only if \(\text{Ev} \) happens:
 - \(\text{Ev} \) is negligible, one can ignore it
 - \(\text{Ev} \) is non-negligible and independent of the output in \(\text{Game}_A \), Simulator B terminates and outputs 0, in case of event \(\text{Ev} \):

\[
\Pr[\text{Game}_B] = \Pr[\text{Game}_B|\text{Ev}] \Pr[\text{Ev}] + \Pr[\text{Game}_B|\neg\text{Ev}] \Pr[\neg\text{Ev}]
= \Pr[\text{Ev}] + \Pr[\text{Game}_A|\neg\text{Ev}] \times \Pr[\neg\text{Ev}]
= \Pr[\text{Game}_A|\neg\text{Ev}] \times \Pr[\neg\text{Ev}]
\]

Simulator B terminates and flips a coin, in case of event \(\text{Ev} \):

\[
\Pr[\text{Game}_B] = \Pr[\text{Game}_B|\text{Ev}] \Pr[\text{Ev}] + \Pr[\text{Game}_B|\neg\text{Ev}] \Pr[\neg\text{Ev}]
= \frac{1}{2} \times \Pr[\text{Ev}] + \Pr[\text{Game}_A|\neg\text{Ev}] \times \Pr[\neg\text{Ev}]
= \frac{1}{2} + (\Pr[\text{Game}_A|\neg\text{Ev}] \times \text{Pr}[\neg\text{Ev}])
\]

Event \(\text{Ev} \)

- Either \(\text{Ev} \) is negligible, or the output is independent of \(\text{Ev} \)
- For being able to terminate simulation B in case of event \(\text{Ev} \), this event must be efficiently detectable
- For evaluating \(\Pr[\text{Ev}] \), one re-iterates the above process, with an initial game that outputs 1 when event \(\text{Ev} \) happens

\[
\Pr[\text{Game}_A] - \Pr[\text{Game}_B] \leq \text{Adv}(D_{\text{oracles}})
\]
Transition Hops

Two Distributions

\[\Pr[\text{Game}_A] - \Pr[\text{Game}_B] \leq \text{Adv}(\mathcal{D}_{\text{oracles}}) \]

- For identical/statistically close distributions, for any oracle:
\[\Pr[\text{Game}_A] - \Pr[\text{Game}_B] = \text{Dist}(\text{Distrib}_A, \text{Distrib}_B) = \text{negl}(\) \]
- For computationally close distributions, in general, we need to exclude additional oracle access:
\[\Pr[\text{Game}_A] - \Pr[\text{Game}_B] \leq \text{Adv}(\text{Distrib}(t)) \]

where \(t \) is the computational time of the distinguisher

Outline

1. Cryptography
 - Introduction
 - Provable Security
2. Game-based Methodology
 - Game-based Approach
 - Transition Hops
3. Assumptions
4. Short Signatures
5. Identity-Based Encryption
 - Definition
 - Description of BF
 - Security Proof
6. Conclusion

Bilinear Maps

Gap Groups

Definition (Pairing Setting)
- Let \(G_1 \) and \(G_2 \) be two cyclic groups of prime order \(p \)
- Let \(g_1 \) and \(g_2 \) be generators of \(G_1 \) and \(G_2 \) respectively
- Let \(e: G_1 \times G_2 \rightarrow G_T \) be a bilinear map

Definition (Admissible Bilinear Map)
Let \((p, G_1, g_1, G_2, g_2, G_T, e)\) be a pairing setting, with \(e: G_1 \times G_2 \rightarrow G_T \) a non-degenerated bilinear map
- Bilinear: for any \(g \in G_1, h \in G_2 \) and \(u, v \in \mathbb{Z} \),
\[e(g^u, h^v) = e(g, h)^{uv} \]
- Non-degenerated: \(e(g_1, g_2) \neq 1 \)

Bilinear Diffie-Hellman Problems

We focus on the symmetric case: \(G_1 = G_2 = G \)

Diffie-Hellman Problems
- \(\text{CDH in } G: \text{ Given } g, g^a, g^b \in G, \text{ compute } g^{ab} \)
- \(\text{DDH in } G: \text{ Given } g, g^a, g^b, g^c \in G, \text{ decide whether } c = ab \text{ or not } \)

\(\text{CDH} \) can be hard to solve, but \(\text{DDH} \) is easy in gap-groups

Bilinear Diffie-Hellman Problems
- \(\text{CBDH in } G: \text{ Given } g, g^a, g^b, g^c \in G, \text{ compute } e(g, g)^{abc} \)
- \(\text{DBDH in } G: \text{ Given } g, g^a, g^b, g^c \in G \text{ and } h \in G_T, \text{ decide whether } h \overset{?}{=} e(g, g)^{abc} \)
Description of BLS

Signature in Gap Groups

Let \(G \) be a cyclic group of prime order \(p \), with a generator \(g \).

Assumption: \(G \) gap-group (DDH easy, whereas CDH intractable)

Signature Scheme

- **Key generation:** choose \(x \in \mathbb{Z}_p \), and set \(y = g^x \);
- **Signature of** \(M \in G \): \(\sigma = M^x \);
- **Verification of** \((M, \sigma) \): check \(\text{DDH}(g, y, M, \sigma) \)

Full-Domain Hash

\(\mathcal{H} : \{0, 1\}^* \rightarrow G \)

- In order to sign \(m \), one first computes \(M = \mathcal{H}(m) \in G \)
- then \(\sigma = M^x = \text{CDH}(g, y, \mathcal{H}(m)) \)

EUF-CMA Security

Existential Unforgeability under Chosen-Message Attacks

An adversary, allowed to ask for signature on any message of its choice, cannot generate a new valid message-signature pair.

Theorem

The BLS signature achieves EUF-CMA security, under the CDH assumption in \(G \), in the Random Oracle Model:

\[
\text{Adv}_{\text{euf-cma}}(t) \leq q_{\mathcal{H}} \times \text{Adv}_{\text{cdh}}(t + q_{H^*})
\]

Assumptions:
- any signing query has been first asked to \(\mathcal{H} \)
- the forgery has been asked to \(\mathcal{H} \)
Simulations

- **Game₀**: use of the oracles \mathcal{K}, \mathcal{S} and \mathcal{H}
- **Game₁**: use of the simulation of the Random Oracle

Simulation of \mathcal{H}

$\mathcal{H}(m) \overset{R}{\leftarrow} \mathbb{Z}_p$, output $M = g^\mu$

\implies **Hop-D-Perfect**: $\Pr[\text{Game}_1] = \Pr[\text{Game}_0]$

- **Game₂**: use of the simulation of the Signing Oracle

Simulation of \mathcal{S}

$\mathcal{S}(m)$: find μ such that $M = \mathcal{H}(m) = g^\mu$, output $\sigma = pk^\mu$

\implies **Hop-S-Perfect**: $\Pr[\text{Game}_2] = \Pr[\text{Game}_1]$

\mathcal{H}-Query Selection

- **Game₃**: random index $t \overset{R}{\leftarrow} \{1, \ldots, q_H\}$

Event Ev

If the t-th query to \mathcal{H} is not the output forgery

We terminate the game and output 1 if Ev happens

\implies **Hop-S-Non-Negl**

Then, clearly

$$\Pr[\text{Game}_3] = \Pr[\text{Game}_2] \times \Pr[\neg \text{Ev}]$$

$$\Pr[\text{Ev}] = 1 - \frac{1}{q_H}$$

$$\Pr[\text{Game}_3] = \Pr[\text{Game}_2] \times \frac{1}{q_H}$$

CDH Instance

- **Game₄**: CDH instance $(g, A = g^a, B = g^b)$

Use of the simulation of the Key Generation Oracle

Simulation of \mathcal{K}

$\mathcal{K}()$: set $pk \leftarrow A$

Modification of the simulation of the Random Oracle

Simulation of \mathcal{H}

If this is the t-th query, $\mathcal{H}(m) \leftarrow B$, output M

The unique difference is for the t-th simulation of the random oracle, for which we cannot compute a signature.

But since it corresponds to the forgery output, it cannot be queried to the signing oracle:

\implies **Hop-S-Perfect**: $\Pr[\text{Game}_4] = \Pr[\text{Game}_3]$
Identity-Based Cryptography

Public-Key Cryptography

Each user ID owns
- a public key pk
- a certificate that guarantees the link between ID and pk
- a private key sk, related to pk

One has to access a dictionary in order to get pk, the public key of ID, together with the certificate, in order to encrypt a message to ID.

Identity-Based Cryptography

Each user ID owns
- a private key sk, related to ID
- the public key pk is indeed ID itself

Security Model: $IND − ID − CCA$

Definition ($IND − ID − CCA$ Security)

- A receives the global parameters
- A asks any extraction-query, and any decryption-query
- A outputs a target identity ID^* and two messages (m_0, m_1)

The challenger flips a bit b, and encrypts m_b for ID^* into c^*
- A asks any extraction-query, and any decryption-query
- A outputs its guess b' for b

Restriction: ID^* never asked to the extraction oracle, and (ID^*, c^*) never asked to the decryption oracle.

CPA: no decryption-oracle access

$$Adv^{ind−id−cca} = 2 \times Pr[b' = b] − 1$$
Identity-Based Encryption

Description of BF

Identity-Based Encryption

[Boneh-Franklin – Crypto ‘01]

Setup

- The authority sets up a gap-group framework:
 - a group \(G \) of prime order \(p \), with a generator \(g \), equipped with an admissible bilinear map \(e : G \times G \rightarrow G^T \)
 - It selects a master secret key \(msk = s \in \mathbb{Z}_p \)
 - It publishes the public parameters: \(PK = (p, G, e, g, P = g^s) \)

Extraction

Given an identity \(ID \), the authority computes the private key \(sk = H(ID)^s \)

Note that \(sk \) is a BLS signature of \(ID \): \(e(sk, g) = e(H(ID), P) \)

BF IBE (Cont’d)

Encryption

- In order to encrypt a message \(m \) to a user \(ID \):
 - one chooses a random \(r \in \mathbb{Z}_p \)
 - computes \(A = g^r \) and \(K = e(P, H(ID)^r) \)
 - sends \((A, B = K \times m) \)

Decryption

- Upon reception of \((A, B) \), user \(ID \)
 - computes \(K = e(A, sk) \)
 - gets \(m = B/K \)

BF IBE Security Analysis

The BF IBE is IND – 1D – CPA secure under the DBDH problem, in the random oracle model.

By masking \(m \) with \(H(K) \): \(B = m \oplus H(K) \), the BF IBE is IND – 1D – CPA secure under the CBDH problem, in the random oracle model.

Theorem

The BLS signature achieves EUF – CMA security, under the CDH assumption in \(G \), in the Random Oracle Model.

Real Attack Game

Theorem

The BF IBE is IND – 1D – CPA secure under the DBDH problem, in the random oracle model.

By masking \(m \) with \(H(K) \): \(B = m \oplus H(K) \), the BF IBE is IND – 1D – CPA secure under the CBDH problem, in the random oracle model.

Theorem

The BLS signature achieves EUF – CMA security, under the CDH assumption in \(G \), in the Random Oracle Model.

Security Proof

Setup

- \(R \in \mathbb{Z}_p \)
 - \(msK \leftarrow Z_p \)
 - \(P = g^{msk} \)

Random Oracle

- \(H(ID) \rightarrow G \), output \(M \)

Setup Oracle

- \(R \in \mathbb{Z}_p \)
 - \(pk \leftarrow R^{msk} \)

Extraction Oracle

- \(Ext(ID) \rightarrow M = H(ID) \), output \(sk = M^{msk} \)
Simulations

- **Game₀**: use of the oracles Setup, Ext, and ℋ
- **Game₁**: use of the simulation of the Random Oracle

Simulation of ℋ

\[ℋ(ID): \mu \overset{R}{\leftarrow} \mathbb{Z}_p, \text{ output } M = g^\mu \]

\[\implies \text{Hop-D-Perfect: } \Pr[\text{Game}_2] = \Pr[\text{Game}_1] \]

- **Game₂**: use of the simulation of the Extraction Oracle

Simulation of Ext

\[Ext(ID): \text{ find } \mu \text{ such that } M = ℋ(ID) = g^\mu, \text{ output } sk = P^\mu \]

\[\implies \text{Hop-S-Perfect: } \Pr[\text{Game}_2] = \Pr[\text{Game}_1] \]

Challenge ID

- **Game₄**: True DBDH instance \((g, g^\alpha, g^\beta, g^\gamma)\) with \(h = e(g, g)^{\alpha \beta \gamma}\)

 Use of the simulation of the Setup Oracle

Simulation of Setup

\[\text{Setup(): set } P \leftarrow g^\alpha \]

Modification of the simulation of the Random Oracle

Simulation of ℋ

If this is the \(t\)-th query, \(ℋ(ID) : M \leftarrow g^\beta, \text{ output } M \)

Difference for the \(t\)-th simulation of the random oracle: we cannot extract the secret key. Since this is the challenge \(ID\), it cannot be queried to the extraction oracle:

\[\implies \text{Hop-D-Perfect: } \Pr[\text{Game}_4] = \Pr[\text{Game}_3] \]

H-Query Selection

- **Game₃**: random index \(\mu \overset{R}{\leftarrow} \{1, \ldots, q_H\} \)

Event Ev

If the \(t\)-th query to ℋ is not the challenge \(ID\)

We terminate the game and flip a coin if \(\text{Ev}\) happens

\[\implies \text{Hop-S-Non-Negl} \]

\[\Pr[\text{Game}_3] = \frac{1}{2} + \left(\Pr[\text{Game}_2] - \frac{1}{2} \right) \times \Pr[\neg\text{Ev}] \]

\[\Pr[\text{Ev}] = 1 - 1/q_H \]

Challenge Ciphertext

- **Game₅**: True DBDH instance \((g, g^\alpha, g^\beta, g^\gamma)\) with \(h = e(g, g)^{\alpha \beta \gamma}\)

 We have set \(P \leftarrow g^\alpha\), and for the \(t\)-th query to ℋ: \(M = g^\beta\)

Ciphertext

Set \(A \leftarrow g^\gamma\) and \(K \leftarrow h\) to generate the encryption of \(mb\) under \(ID\)

\[\implies \text{Hop-D-Perfect: } \Pr[\text{Game}_5] = \Pr[\text{Game}_4] \]

- **Game₆**: Random DBDH instance \((g, g^\alpha, g^\beta, g^\gamma)\) with \(h \overset{R}{\leftarrow} \mathbb{G}^T\)

\[\implies \text{Hop-D-Comp: } \]

\[|\Pr[\text{Game}_6] - \Pr[\text{Game}_5]| \leq \text{Adv}_{\text{dbdh}}(t + q_{H^T}) \]
The game-based methodology uses a sequence of games

- The transition hops
 - are simple
 - easy to check

It leads to easy-to-read and easy-to-verify security proofs:

- Some mistakes have been found granted this methodology
 - [Analysis of OAEP]

- Some security analyses became possible to handle
 - [Analysis of EKE]

This approach can be automized
 - [CryptoVerif]