Authenticated Key Exchange

passwords, groups, low-power devices

Caen – March 2004
Joint work with Emmanuel Bresson
and Olivier Chevassut

David Pointcheval
CNRS-ENS, Paris, France

Summary

- Provable Security
- Authenticated Key Exchange
 - Security Model
 - Examples
 - Authentication
 - Password-based
- Group Key Exchange
 - Security Model
 - Example
 - Dynamic groups
Summary

- **Provable Security**
 - Authenticated Key Exchange
 - Security Model
 - Examples
 - Authentication
 - Password-based
 - Group Key Exchange
 - Security Model
 - Example
 - Dynamic groups

Algorithmic Assumptions

necessary

- $n = pq$: **public** modulus
- e: **public** exponent
- $d = e^{-1} \mod \varphi(n)$: **private**

RSA Encryption

- $E(m) = m^e \mod n$
- $D(c) = c^d \mod n$

If the RSA problem is easy, secrecy is not satisfied: anybody may recover m from c
Algorithmic Assumptions sufficient?

Security proofs give the guarantee that the assumption is **enough** for secrecy:
- if an adversary can break the secrecy
- one can break the assumption
 ⇒ “reductionist” proof

Proof by Reduction

Reduction of a problem \mathbf{P} to an attack Atk:
- Let A be an adversary that breaks the scheme
- Then A can be used to solve \mathbf{P}
Proof by Reduction

Reduction of a problem P to an attack Atk:
- Let A be an adversary that breaks the scheme
- Then A can be used to solve P

P intractable \Rightarrow scheme unbreakable

Provably Secure Scheme

To prove the security of a cryptographic scheme, one has to make precise
- the algorithmic assumptions
 - the RSA problem, the Diffie-Hellman problems, ...
- the security notions to be guaranteed
 - depends on the scheme
- a reduction
 - an adversary can help to break the assumption
 - simulation of the « view » of the adversary
Summary

- Provable Security
- Authenticated Key Exchange
 - Security Model
 - Examples
 - Authentication
 - Password-based
- Group Key Exchange
 - Security Model
 - Example
 - Dynamic groups

Authenticated Key Exchange

Two parties (Alice and Bob) agree on a common secret key sk, in order to establish a secret channel

- Intuitive goal: implicit authentication
 - only the intended partners can compute the session key
- Formally: semantic security
 - the session key sk is indistinguishable from a random string r, to anybody else
Further Properties

- **Mutual authentication**
 - They are both sure to actually share the secret with the people they think they do

- **Forward-secrecy**
 - Even if a long-term secret data is corrupted, previously shared secrets are still semantically secure

Semantic Security

- For breaking the semantic security, the adversary asks one test-query which is answered, according to a random bit b, by
 - the actual secret data sk (if $b=0$)
 - a random string r (if $b=1$)

\Rightarrow the adversary has to guess this bit b
The Leakage of Information

- The protocol is run over a public network, then the transcripts are public:
 - an **execute**-query provides such a transcript to the adversary
- The secret data sk may be misused (with a weak encryption scheme, ...):
 - the **reveal**-query is answered by this secret data sk

Passive/Active Adversaries

- **Passive adversary**: history built using
 - the **execute**-queries \rightarrow transcripts
 - the **reveal**-queries \rightarrow session keys
- **Active adversary**: entire control of the network
 - the **send**-queries
 - *active, adaptive adversary on concurrent executions*
 - to send message to Alice or Bob
 - (in place of Bob or Alice respectively)
 - to intercept, forward and/or modify messages
Security Model

As many **execute**, **send** and **reveal** queries as the adversary wants

But one **test**-query, with b to be guessed...

Formal Model

Bellare-Rogaway model revisited by Shoup

A can ask:
- **send**-queries
- **reveal**-queries
- **execute**-queries
- **test**-query
- **corrupt**-queries

0/1
Forward Secrecy

Forward secrecy means that the adversary cannot distinguish a session key established \textit{before} any corruption of the long-term private keys:

- the \texttt{corrupt}-query is answered by the long-term private key of the corrupted party
- then the \texttt{test}-query must be asked on a session key established \textit{before} any \texttt{corrupt}-query

Freshness

\textit{sk} is \textbf{fresh} if it is \textit{known} by the players but not clearly known by the adversary.

\texttt{reveal} \hspace{1cm} \texttt{sk}

after a \texttt{reveal}-query, \textit{sk} is known

\texttt{corrupt}

after a \texttt{corrupt}-query, any future key is known
Summary

- **Provable Security**
- **Authenticated Key Exchange**
 - Security Model
 - **Examples**
 - Authentication
 - Password-based
- **Group Key Exchange**
 - Security Model
 - Example
 - Dynamic groups

Diffie-Hellman Key Exchange

The most classical key exchange scheme has been proposed by Diffie and Hellman:

- $\mathbf{G} = \langle g \rangle$, cyclic group of prime order q

- Alice chooses a random $x \in \mathbb{Z}_q$, computes and sends $X = g^x$

- Bob chooses a random $y \in \mathbb{Z}_q$, computes and sends $Y = g^y$

- They can both compute the value $K = Y^x = X^y$
Properties

- Without any authentication, no security is possible: man-in-the-middle attack
 - ⇒ some authentication is required
- If flows are **Strongly Authenticated** (ie. MAC or Signature), it provides the semantic security of the session key under the **DDH Problem**
- If one derives the session key as $sk = H(K)$, in the random oracle model, semantic security is relative to the **CDH Problem**

Replay Attack

No explicit authentication ⇒ replay attacks

- The adversary intercepts "Alice, $X, \textbf{Auth}(\text{Alice},X)"
- It can initiate a new session with it

Bob believes it comes from Alice
- Bob accepts the key, but does not share it with Alice
 - ⇒ **no mutual authentication**
- The adversary does not know the key either
 - ⇒ **still semantic security**
Summary

- Provable Security
- Authenticated Key Exchange
 - Security Model
 - Examples
- Authentication
 - Password-based
- Group Key Exchange
 - Security Model
 - Example
 - Dynamic groups

Mutual Authentication

Adding key confirmation rounds: mutual authentication

[Bellare-P.-Rogaway Eurocrypt ‘00]

Alice

\[k_1 = H_1(\text{Alice}, \text{Bob}, SK) \]

Bob

\[k_2 = H_2(\text{Alice}, \text{Bob}, SK) \]

\[sk = H(\text{Alice}, \text{Bob}, X, Y, SK) \]

\[k_1 \text{ correct?} \]

\[k_2 \text{ correct?} \]
Authentication

Asymmetric: \((sk_A, pk_A)\) and possibly \((sk_B, pk_B)\)
- they authenticate to each other using the knowledge of the private key associated to the certified public key

Symmetric: common (long – high-entropy) secret
- they use the long term secret to derive a secure and authenticated ephemeral key \(sk\)

Password: common (short - low-entropy) secret
- let us assume a 20-bit password

Asymmetric

- the most classical authentication mode is the signature (cf. SIGMA)
- the ability to decrypt (with an asymmetric encryption scheme) is also a way to provide authentication

Mutual Authentication for Low-Power Devices
[Jakobsson-P. - FC 01]
- Client: Schnorr signature with off-line pre-processing
 - very efficient signing process (for the client)
- Server: RSA decryption
 - efficient encryption process (for the client)
- Fixed random for the Server: precomputation
Summary

- Provable Security
- Authenticated Key Exchange
 - Security Model
 - Examples
 - Authentication
 - Password-based
- Group Key Exchange
 - Security Model
 - Example
 - Dynamic groups

Password-based Authentication

Password (short – low-entropy secret – say 20 bits)
- exhaustive search is possible
- basic attack: on-line exhaustive search
 - the adversary guesses a password
 - tries to play the protocol with this guess
 - failure ⇒ it erases the password from the list
 - and restarts…
- after 1,000,000 attempts, the adversary wins

cannot be avoided
Dictionary Attack

- The on-line exhaustive search
 - cannot be prevented
 - can be made less serious (delay, limitations, ...)
- We want it to be the best attack...
- The off-line exhaustive search
 - a few passive or active attacks
 - failure ⇒ erasure of MANY passwords from the list
 - this is called dictionary attack

Security

One wants to prevent dictionary attacks:
- a passive trial (execute + reveal)
 - does not reveal any information about the password
- an active trial (send)
 - allows to erase at most one password from the list of possible passwords
 - (or maybe 2 or 3 for technical reasons in the proof)
Example: EKE

The most famous scheme EKE: Encrypted Key Exchange

- Flows are encrypted with the password.
- Must be done carefully: no redundancy
- From X', for any password π
 - decrypt X'
 - check whether it begins with “Alice”

\[
\begin{align*}
&x \in \mathbb{Z}_q^*, X = g^x \\
&Y = D_x(Y') \quad K = Y^x
\end{align*}
\]

\[
\begin{align*}
&x \in \mathbb{Z}_q^*, X = g^x \\
&X' = E_x(Alice, X) \\
&y \in \mathbb{Z}_q^*, Y = g^y \\
&y \leftarrow D_x(Y') \\
&k_i = H_i(Alice, Bob, K)
\end{align*}
\]

EKE - AuthA

AuthA

Bellare-Rogaway 2000
One-flow Encrypted Key Exchange

- EKE: security claimed, but never fully proved
- AuthA: security = open problem
Security Results

- Assumptions
 - the ideal-cipher model – for (E,D)
 - the random-oracle model – for H and H₁
- Semantic security of AuthA:
 - Advantage \(\geq 3 \frac{q_{\text{send}}}{\sqrt{N} + \varepsilon} \),
 - \(\Rightarrow \) CDH problem: probability \(\geq \varepsilon / 8q_{\text{hash}} \)
 (within almost the same time)
- Similar (but less efficient) results for EKE

New Security Results

- Assumptions
 - the random-oracle model
- Symmetric encryption = one-time pad:
 - \(E_{\pi}(X) = X \times G(\pi) \)
- Semantic security of AuthA:
 - Advantage \(\geq 12 \frac{q_{\text{send}}}{\sqrt{N} + \varepsilon} \),
 - \(\Rightarrow \) CDH problem: probability \(\geq \varepsilon / 12q_{\text{hash}}^2 \)
- Similar (but less efficient) results for EKE
Summary

- Provable Security
- Authenticated Key Exchange
 - Security Model
 - Examples
 - Authentication
 - Password-based
- Group Key Exchange
 - Security Model
 - Example
 - Dynamic groups

Model of Communication

- A set of n players, modelled by oracles
- A multicast group consisting of a set of players
Modelling the Adversary

- **send**: send messages to instances
- **execute**: obtain honest executions of the protocol
- **reveal**: obtain an instance’s session key
- **corrupt**: obtain the value of the authentication secret

Summary

- Provable Security
- **Authenticated Key Exchange**
 - Security Model
 - Examples
 - Authentication
 - Password-based
- **Group Key Exchange**
 - Security Model
 - Example
 - Dynamic groups
A Group Key Exchange

- Generalization of the 2-party DH, the session key is $sk = H(g^{x_1 x_2 \cdots x_n})$
- Ring-based algorithm
 - up-flow: the contributions of each instance are gathered
 - down-flow: the last instance broadcasts the result
 - end: instances compute the session key

\[
\begin{align*}
 x_1 & \rightarrow g \\
 x_2 & \rightarrow g^{x_1} \\
 x_3 & \rightarrow g^{x_2 x_3} \\
 x_4 & \rightarrow g^{x_2 x_3 x_4}
\end{align*}
\]

The Algorithm

- Up-flow: U_i raises received values to the power x_i
- Down-flow: U_n broadcasts (except $g^{x_1 x_2 \cdots x_n}$)

Everything is authenticated (Signature/MAC)

\[
\begin{align*}
 x_1 & \rightarrow [g, g^{x_1}] \\
 x_2 & \rightarrow [g^{x_2}, g^{x_1}, g^{x_1 x_2}] \\
 x_3 & \rightarrow [g^{x_2 x_3}, g^{x_1 x_3}] \\
 \text{sk} & = H(g^{x_1 x_2 x_3})
\end{align*}
\]
Group CDH

- The CDH generalized to the multi-party case
 - given the values $g^{\prod x_i}$ for some choice of proper subset of \{1, ..., n\}
 - one has to compute the value $g^{x_1 x_2 ... x_n}$

- Example ($n=3$ and $I=\{1,2,3\}$)
 - given the set of the blue values
 $g, g^{x_1}, g^{x_2}, g^{x_1 x_2}$
 - compute the red value
 $g^{x_1 x_3}, g^{x_2 x_3}, g^{x_1 x_2 x_3}$

GCDH \geq DDH or CDH

[BCP - SAC ‘02]

Security Result

- Theorem (in the random-oracle model)
 [BCPQ – ACM CCS ‘01]

\[
\text{Adv}^{ake} \leq 2q_{send}^n q_{hash} \cdot \text{Succ}^{gcdh}(n,T) \\
+ 2n \cdot \text{Succ}^{sign}(q_s,T)
\]

- Idea:
 - we introduce a Group Diffie-Hellman instance in the tested session
 - we have to guess in which send-queries: factor q_{send}^n
 - When the adversary has broken the scheme, the Group Diffie-Hellman solution is in the list of the queries to H
 - we have to guess it: factor q_{hash}
Improvements

- Security result: exponential in n
- Improvements
 - No guess of the tested pool
 - Use of the random self-reducibility of the DH problems
 \Rightarrow reduction linear in n
 - Standard model (MAC and Left-Over-Hash Lemma)
- Dynamic groups
 - If one party leaves or joins the group, the protocol does not need to be restarted from scratch

Summary

- Provable Security
- Authenticated Key Exchange
 - Security Model
 - Examples
 - Authentication
 - Password-based
- Group Key Exchange
 - Security Model
 - Example
 - Dynamic groups
Dynamic Groups

- **Join**: the last broadcast is sent to the new player and becomes the last up-flow \(\Rightarrow \) the new player introduces a new random

- **Remove**: the last remaining player introduces a new random \(x'_i \) in place of his \(x_i \) and broadcasts the useful values only

\[
\text{Remove 2 and 4 } \quad g^{x_i 2^i x_i 4} \quad g^{x_i 1^i x_i 3 x_i 4} \quad g^{x_i 1^i x_i 2 x_i 4} \quad g^{x_i 1^i x_i 2 x_i 3} \quad g^{x_i 1^i x_i 2 x_i 3 x_i 4} \quad g^{x_i 1^i x_i 2 x_i 3 x_i 4}
\]

Dynamic Groups: Security Result

- Group of \(n \) people
- Tested group of size \(s \)
- Number of operations (setup, join, remove): \(O \)
- Time: \(T \)

\[
\text{Adv}^{\text{ake}} \leq 2 \cdot Q \cdot C_n^s \cdot q_{\text{hash}} \cdot \text{Succ}^{\text{gcdh}}(s, T) + 2n \cdot \text{Succ}^{\text{sign}}(q_{\text{send}}, T)
\]

- **Idea:**
 - Guess the players in the tested group
 - Guess the last operation before the tested key
 - Guess the solution among the \(H \) queries
Improved Security Result

- Number of people involved in the group before the test-query (maybe removed) = s
- Number of operations (setup, join, remove): Q
- Time: T

\[\text{Adv}^{\text{ake}} \leq 2nQ \cdot \text{Adv}^{\text{gddh}}(s,T) + 2n \cdot \text{Succ}^{\text{sign}}(q_{\text{send}}, T) \]

Idea:
- Guess the last operation before the tested key
- Guess of the index of the player which makes the last down-flow

Details

- Given instance:
 \[g^{x_2} \quad g^{x_1} \quad g^{x_2 x_3} \quad g^{x_1 x_3} \quad g^{x_1 x_2} \quad g^{x_2 x_3 x_4} \quad g^{x_1 x_3 x_4} \quad g^{x_1 x_2 x_4} \quad g^{x_1 x_2 x_3} \quad g^{x_1 x_2 x_3 x_4} \]

- Use a new line for a new player, up to the s-1st
 - For additional players: known random
 \[\Rightarrow \] known keys (reveal-queries)
 - Use the last line for the tested group, introducing \(x_4 \) at the \(Q^{th} \) operation
 \[\Rightarrow \] test-query answered by the red value
 - After: back to s-1st line, but not necessarily removing \(x_4 \)
Details (Con'd)

- Extended instance:
 \[
 \begin{array}{ccccccc}
 g^{x_2} & g^{x_1} \\
 g^{x_2 x_3} & g^{x_1 x_3} & g^{x_1 x_2} \quad g^{x_1 x_4} & g^{x_2 x_4} \quad g^{x_3 x_4} \\
 g^{x_2 x_3 x_4} & g^{x_1 x_3 x_4} & g^{x_1 x_2 x_4} & g^{x_1 x_2 x_3} & g^{x_1 x_2 x_3 x_4}
 \end{array}
 \]

- In the \(s-1\)st line: all the combinations of \(s-2\) exponents
 - We remain on this line
 - We know the session key (in the \(s^{th}\) line)

Password-Based

[BCP – Eurocrypt '02]

- Generalization of the 2-party PAKE DH
- Encrypt each flow with password (in ICM)
 - Redundancy: dictionary attack
 \[\Rightarrow \text{Randomization: } sk = H(g^{a_1 a_2 \ldots a_n x_1 x_2 \ldots x_n}) \]

\[
\begin{array}{ccccccc}
 a_1, x_1 & g & g^{a_1} & g^{a_1 x_1} \\
 a_2, x_2 & g^{a_1 a_2 x_2} & g^{a_1 a_2 x_1} & g^{a_1 a_2 x_1 x_2} \\
 a_3, x_3 & g^{a_1 a_2 a_3 x_3 x_4} & g^{a_1 a_2 a_3 x_1 x_3 x_4} & g^{a_1 a_2 a_3 x_1 x_2 x_3 x_4} \\
 a_4, x_4 & g^{a_1 a_2 a_3 a_4 x_3 x_4} & g^{a_1 a_2 a_3 a_4 x_1 x_3 x_4} & g^{a_1 a_2 a_3 a_4 x_1 x_2 x_3 x_4} & g^{a_1 a_2 a_3 a_4 x_2 x_3 x_4}
 \end{array}
\]