Summary

- Encryption
 - PKCS #1 v1.5
 - PKCS #1 v2.0 : OAEP
- Signature
 - PKCS #1 v1.5/2.0
 - PKCS #1 v2.1 : PSS
- Conclusion
Summary

- Encryption
 - PKCS #1 v1.5
 - PKCS #1 v2.0 : OAEP
- Signature
 - PKCS #1 v1.5/2.0
 - PKCS #1 v2.1 : PSS
- Conclusion

RSA

Rivest - Shamir - Adleman 1978

- $n = pq$: public modulus
- e : public exponent
- $d = e^{-1} \mod \varphi(n)$: private

en/de-cryption

$E(m) = m^e \mod n$

$D(c) = c^d \mod n$

Relies on the so-called RSA problem:
extracting e-th roots mod n
Plain-RSA: Weak Security

• One-Wayness = RSA Problem
• Deterministic:
 cannot achieve **Semantic Security**
 Does c encrypt m_0 or m_1?
 Re-encrypt m_0, and check whether it is c

• Multiplicativity:
 cannot prevent **Chosen-Ciphertext Attacks**
 With $c = E_e(m) = m^e \mod n$
 Compute $c' = 2^e c \mod n$, ask for m'
 Note that $c' = (2m)^e \mod n$, thus $m = m'/2 \mod n$

⇒ need of padding

PKCS #1 v 1.5

<table>
<thead>
<tr>
<th>EM</th>
<th>00</th>
<th>02</th>
<th>Padding String length ≥ 8 bytes ≠ 0</th>
<th>00</th>
<th>Data Block</th>
</tr>
</thead>
</table>

• Efficient encoding/decoding
• Probabilistic encryption
• Breaks multiplicativity
• But…
 a random ciphertext is valid
 with non-negligible probability $\approx 2^{-16}$
PKCS #1 v 1.5

Valid ciphertext
⇒ the MSB of the encoded message is at zero
 – The bit-security of RSA says that any bit of the e-th root is as hard as the whole e-th root
 – Any bit-leakage is serious
 – Here: 2 full bytes are leaked!

Breaking PKCS #1 v 1.5

Valid ciphertext $C = EM^e \mod n$
⇒ $2 \times 256^{k-2} \leq EM < 3 \times 256^{k-2}$

Challenge ciphertext $C = EM^e \mod n$
 – Find small S such that $C' = C \times S^e \mod n$ valid:
 for some $0 < r < S$,

 $2 \times 256^{k-2} - rn \leq EM \times S < 3 \times 256^{k-2} - rn$

⇒ EM lies in a small interval $[a, b]$
Breaking PKCS #1 v 1.5

Choose a new S such that the sets

$$\{ a \ S \mod n, \ (a+1) \ S \mod n, \ldots, \ b \ S \mod n \}$$

and $[2 \times 256^{k-2}, 3 \times 256^{k-2}]$ overlap

Validity of $C' = C \ S^e \mod n$ tells in which part it is

\Rightarrow new small inverval $[a', b']$ for EM

Approx.: any new valid ciphertext
reduces the interval by $1/2$

Breaking PKCS #1 v 1.5

- Reaction Attack (validity requests) breaks the One-Wayness
- Given a challenge ciphertext c^*, after a few thousand of requests c, one can recover the plaintext m^*
Summary

- Encryption
 - PKCS #1 v1.5
 - PKCS #1 v2.0 : OAEP
- Signature
 - PKCS #1 v1.5/2.0
 - PKCS #1 v2.1 : PSS
- Conclusion

Summary

- Encryption
 - PKCS #1 v1.5
 - PKCS #1 v2.0 : OAEP
- Signature
 - PKCS #1 v1.5/2.0
 - PKCS #1 v2.1 : PSS
- Conclusion

OAEP

Bellare-Rogaway '94

f a trapdoor one-way permutation (e.g. RSA)
then (with $G \rightarrow \{0,1\}^n$ and $H \rightarrow \{0,1\}^\ell$)

\[M = m || 0^k \]
\[r \text{ random} \]

\[\begin{align*}
M & \quad \Downarrow \quad G \\
M & \quad \Downarrow \quad H \\
EM & \quad \Downarrow \quad t
\end{align*}\]

$E(m,r) : \text{Compute } a,b \text{ then } c = f(s||t) = EM^e \mod n$

$D(c) : \text{Compute } EM = s||t = f^{-1}(c) = c^d \mod n,$
inverting OAEP, and check redundancy
In 1994, Bellare and Rogaway proved that
• the OAEP construction provides an IND-CPA cryptosystem under the OW of f
• it is plaintext-aware (PA94)

\[
\text{proven: } \text{IND-CPA} + \text{PA94} \Rightarrow \text{IND-CCA1}
\]

But widely believed:
• not proven: \(\text{IND-CPA} + \text{PA94} \Rightarrow \text{IND-CCA2}\)

and namely for OAEP…

In 1998, improved plaintext-awareness (PA98)

\[
\text{proven: } \text{IND-CPA} + \text{PA98} \Rightarrow \text{IND-CCA2}
\]

But… PA98 of OAEP never studied
And IND-CCA2 of OAEP still widely believed under the sole OW of f

and namely for RSA-OAEP

\[
\text{RSA-OAEP: the most efficient and “provably secure” construction}
\]

\[
\Rightarrow \text{became the new PKCS #1 v2.0}
\]
IND-CCA2 under OW of f

However, in 2000, Shoup showed a counter-example:
- a trapdoor one-way permutation f
- so that f-OAEP can be broken: malleable
from a ciphertext c of an unknown message m,
 one can build a ciphertext c' of $m' = m \oplus 1$
\Rightarrow break OW-CCA2, and thus IND-CCA
 Given a challenge c, the encryption of m,
 one derives the ciphertext c' of $m \oplus 1$
 one request to the decryption oracle is enough!

Counter-Example

- Let g be a trapdoor one-way permutation
 so that there exists an algorithm A,
 which on a and $g(x)$ computes $g(x \oplus a)$
- Let us define $f(s,t) = s \parallel g(t)$, which is clearly
 a trapdoor one-way permutation
Malleability

\[m \oplus \delta \rightarrow m' \]

\[r \]

\[T = H(s) \oplus H(s') \]

\[s \]

\[t \]

\[\oplus \delta \| 0^k \rightarrow s' \]

\[\oplus T \rightarrow t' \]

Malleability (details)

One receives \(c = E(m,r) = f(s,t) = s \| g(t) \) where

\[M = m \| 0^k, \quad s = M \oplus G(r), \quad t = r \oplus H(s) \]

- One gets \(s \), and computes \(s' = s \oplus \Delta \)
 for some \(\Delta = \delta \| 0^k \)

- One computes \(T = H(s) \oplus H(s') \), and \(t' = t \oplus T \)
 as well as \(g(t \oplus T) \) granted \(A \) on \(g(t) \) and \(T \)

\[r' = t' \oplus H(s') = t \oplus T \oplus H(s') = t \oplus H(s) = r \]

\[M' = s' \oplus G(r) = s \oplus \Delta \oplus G(r) = M \oplus \Delta = (m \oplus \delta) \| 0^k \]

- \(c' = f(s',t') \) is a new ciphertext: of \(m \oplus \delta \)
Partial-Domain One-Wayness

From \(c = E(m,r) = f(s,t) \)

\[\Rightarrow c' = E(m \oplus \delta, r) \] for any \(\delta \) of his choice

- without asking \(G(r) \Rightarrow \text{OW of } f \) not broken
- but asking \(H(s) \Rightarrow \text{partial-domain OW of } f \)

This intuition can be made formal:

Break IND-CCA2 of \(f \)-OAEP,

\[\Rightarrow \text{partially invert } f \]

Fujisaki-Okamoto-Pointcheval-Stern Crypto ‘01

RSA: a Particular Case

The RSA permutation is particular:

Partial Domain One-Wayness

\[\Leftrightarrow \text{One-Wayness} \]

Consequence:

RSA-OAEP is IND-CCA2 under the classical RSA assumption

Note: Shoup repaired the proof for RSA exponent 3 only, we repaired it for any exponent
PKCS #1 v 2.0

After Bleichenbacher’s attack, the OAEP construction was adopted by RSA in PKCS #1 v 2.0 (and still in v 2.1)

Even if a construction is provably secure, careless implementations often lead to very weak cryptosystems

e.g. invalidity reasons must be indistinguishable
– MSB different of zero
– Redundancy not satisfied

Summary

- Encryption
 - PKCS #1 v1.5
 - PKCS #1 v2.0 : OAEP
- Signature
 - PKCS #1 v1.5/2.0
 - PKCS #1 v2.1 : PSS
- Conclusion
Plain-RSA Signature

\[S(m) = m^d \mod n \]
\[V(m, \sigma) = (m = \sigma^e \mod n) \]

Existential forgery:
- choose a random \(\sigma \)
- compute \(m = \sigma^e \mod n \)

PKCS #1 v 1.5/2.0

<table>
<thead>
<tr>
<th>EM</th>
<th>00</th>
<th>01</th>
<th>Padding String length ≥ 8 bytes ≠ 0</th>
<th>00</th>
<th>Digest Info</th>
</tr>
</thead>
</table>

\[S(m) = f^{-1}(EM) \]
\[V(m, \sigma) = (f(\sigma) = EM) \]
PKCS #1 v 1.5/2.0

<table>
<thead>
<tr>
<th>EM</th>
<th>00</th>
<th>01</th>
<th>Padding String length ≥ 8 bytes ≠ 0</th>
<th>00</th>
<th>Digest Info</th>
</tr>
</thead>
</table>

- Digest Info = \(\text{HashID and } H(m) \)
 - It is small, and the padding string can be long… under the control of the adversary
- Using the multiplicativity of RSA
 - A weakness has been found in 1999

Attack Idea

- A lot of freedom in the Padding String
- Get many \(\text{EM}_i \) for several \(i \) such that
 \[
 \text{EM} = \prod \text{EM}_i \Rightarrow \sigma = \prod \sigma_i
 \]
 - After several queries to the signing oracle, one can build a new signature
New Version

Applied on a slight variant of ISO 9796-1
But theoretical only on PKCS #1 v1.5
... less efficient than factoring!

Anyway, a provably secure construction was better.

Summary

- Encryption
 - PKCS #1 v1.5
 - PKCS #1 v2.0: OAEP
- Signature
 - PKCS #1 v1.5/2.0
 - PKCS #1 v2.1: PSS
- Conclusion
Probabilistic Signature Scheme

Bellare-Rogaway ‘96

\[m \quad r \]

\[H \quad G \quad \oplus \]

\[0 \quad w \quad s \quad t \]

\[F \]

\[k = k_0 + k_1 + k_2 + 1 \]
\[\{0,1\}^{k-1} \subset X \subset \{0,1\}^k \]
\[f : X \to X \]

\[y = 0 \| w \| s \| t \]
\[\sigma = f^{-1}(y) \]

RSA - PSS

- \(n, k \)-bit RSA modulus \((k = k_0 + k_1 + k_2 + 1)\)
- \(n, e \): public key
- \(d \): private key

\[
F : \{0,1\}^{k_2} \to \{0,1\}^{k_0} \text{ and } G : \{0,1\}^{k_2} \to \{0,1\}^{k_1} \\
H : \{0,1\}^x \to \{0,1\}^{k_2}
\]

\[w = H(m, r), s = G(w) \oplus r, t = F(w) \]

\[y = 0 \| w \| s \| t \text{ and } \sigma = y^d \mod n \]
RSA - PSS

- Provably secure
 no existential forgeries
 under chosen-message attacks
- *Efficient* security proof
 \Rightarrow practical security
- Probabilistic
 \Rightarrow PKCS #1 v2.1

Summary

- Encryption
 - PKCS #1 v1.5
 - PKCS #1 v2.0 : OAEP
- Signature
 - PKCS #1 v1.5/2.0
 - PKCS #1 v2.1 : PSS
- Conclusion
Almost all the previously defined paddings, without any security proof, have been showed to be flawed.

Any new standard (ISO, IEEE, IETF, PKCS, …) needs a security proof.