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Two Keys...

e e

Asymmetric _
Cryptography

Diffie-Hellman 1976
Asymmetric Encryption:
Bob owns two “keys”

— A public key (encryption k)
so that anybody can encrypt = known by everybody

a message for him (included Alice)
— A private key (decryption k)
to help him to decrypt = known by Bob only
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Encryption / decryption
attack

Granted Bob’s public key,
Alice can lock the safe,

% with the message inside
(encrypt the message)

Excepted Bob,
granted his private key
(Bob can decrypt)

Alice sends the safe to Bob
Nno one can unlock it

7
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Encryption Scheme

3 algorithms :
* G - key generation

« E - encryption o . (k)
D - decryption .

K

|

c }m
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Conditional Secrecy

The ciphertext comes from c = E,_(m;r)
e The encryption key k. Is public

e A unique m satisfies the relation
(with possibly several r)

At least exhaustive search on mand r
can lead to m, maybe a better attack!

= unconditional secrecy impossible

Algorithmic assumptions
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Integer Factoring and RSA

« Multiplication/Factorization : One-Way
— p, g— n= p.q easy (quadratic) Function
— n=p.q— p, qdifficult (super-polynomial)

* RSA Function, from £ in Z_ (with n=pq)

for a fixed exponent e Rivest-Shamir-Adleman 1978
— X — Xx¢mod n easy (cubic) RSA b

_ y=x¢ mod n - x difficult (without por g)  °Plem,
X = ydmod n where|d = e mod ¢(n) trapdgj

key
decryption
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The Discrete Logarithm

 Let G =(<g>, %) be any finite cyclic group
* For any ylIG, one defines
Logy(y) = min{x=0|y =g}
* One-way function
— X —» y=g¢ easy (cubic)
—y=0¢ > X difficult (super-polynomial)

Succg (A) = XDPzrq [A(y) = x‘y = QXJ

David Pointcheval Provable Security - Asymmetric Encryption - 10




The Diffie-Hellman Problems

* The Diffie-Hellman Problem (1976):

e Given A=g? and B=¢gP
e Compute DH(A,B) = C=¢g®

e The Decisional Diffie-Hellman Problem:

 Given A, Band Cin <g>
 Decide whether C = DH(A,B)

Adv*® (A) =

Pr

a,b,c{]Zq

a,bDZq

[A(A B,C) :ﬂA: g°,B=g°,C=g°
- Pr [A(A B,C) :ﬁA: i B=g G= gab]

David Pointcheval
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Complexity Estimates

Estimates for integer factoring Lenstra-Verheul 2000

Mile-stone

David Pointcheval

Modulus | Mips-Year | Operations
(bits) (log,) (en log,)
512 13 58
1024 35 80
2048 66 111
4096 104 149
8192 156 201

Can be used for RSA too )
Lower-bounds for DL in Zp
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Algorithmic Assumptions
necessary

If the RSA problem is easy,
secrecy Is not satisfied:
anybody may recover mfrom c
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Algorithmic Assumptions
sufficient?

Security proofs give the guarantee that
the assumption is enough for secrecy:

e If an adversary can break the secrecy
e one can break the assumption

= “reductionist” proof
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Proof by Reduction

Reduction of a problem P to an attack Atk:

* Let A be an adversary that breaks the scheme
then A can be used to solve P

Instance

lof P — .
0 Solution

—  of |

P intractable = scheme unbreakable
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Provably Secure Scheme

To prove the security of a cryptographic
scheme, one has to make precise

 the algorithmic assumptions
 the security notions to be guaranteed

* a reduction:
an adversary can help
to break the assumption
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Practical Security

Z _ .
Adversary @ ] 0. Algorithm
within t ‘ P=va=ig, against P
KO 1 | withint’ = T (t)

o Complexity theory: T polynomial
o Exact Security: T explicit
* Practical Security: T small (linear)
Eg:t =4t
P intractable within less than 28° operations

— scheme unbreakable
within less than 278 operations

David Pointcheval Provable Security - Asymmetric Encryption - 18




Security Notions

According to the needs, one defines
» the goals of an adversary

e the means of an adversary,
l.e. the available information
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Asymmetric Encryption

 Formal Security Model
« Examples
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Encryption Scheme

3 algorithms :

* G - key generation

« E - encryption

* D - decryption . G —
l |

E

OW-Security: it is impossible to get back m
just from c, k., E and D (without k)

1 Nas
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Basic Secrecy

 One-Wayness (OW) :

without the private key, it is computationally
iImpossible to recover the plaintext

SUCC™(A) = E[[A(ke .c)=mc=E(mr)]

Not enough if one already has some
Information about m:

o “Subject: XXXXX”
« “My answer is XXX” (XXX = Yes/No)
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Strong Secrecy

e Semantic Security (IND - Indistinguishability) :
GM 1984

the ciphertext reveals no more information
about the plaintext to a polynomial adversary

Adv™ (A) =

m,s) « A (K,
(M, m;,S) — A ( )}_1

ZI?br{Az(”b,”h,C,S)=b ¢« E(m.r)
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Non-Malleability

* Non-Malleability (NM):
DDN 1991

No polynomial adversary can derive, from a
ciphertext c=E(m;r), a second one ¢c'=E(m’;r’")
so that the plaintexts mand m' are meaningfully

related N
non-malleability

U

semantic security

one-wayness
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Basic Attacks

* Chosen-Plaintext Attacks (CPA)

In public-key cryptography setting,
the adversary can encrypt any message
of his choice, granted the public key

— the basic attack
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Improved Attacks

e More information: oracle access

* Chosen-Ciphertext Attacks (CCA)

The adversary has access to the strongest oracle:
the decryption oracle

The adversary can obtain the plaintext of any
ciphertext of his choice (excepted the challenge)

— non-adaptive (CCA1) NY 1990
only before receiving the challenge
— adaptive (CCAZ2) RS 1991

___unlimited oracle access .
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IND-CCAZ2
k— @ — Kk
l
c
b(0,1) o cem
r random rrlnwo<— mor U
P
T":. & A c ZC
B
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Relations BDPR C-1998

Implications and separations

NM-CPA O NM-CCA10 NM-CCA2
U U 0

NNB*EPA| 0 IND-CCA1D IND-CCA2

U —
ow-cpa | Mnima N
e security

weak security strong security: CCA
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RSA Encryption

 n=pq, product of large primes

o ¢, relatively prime to ¢(n) = (p-1)(g-1)
e n,e: public key

e d=elmodd(n): private key

E(m)=m*modn D(c) =c® modn

OW-CPA = RSA problem
Nothing to prove = definition
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El Gamal Encryption

« G =(<g>, x) group of order g
e X:private key
o y=0g*:public key

E(ma)=(g%,y’m) - (c,d) D(c,d)=d/c”

OW-CPA = CDH Assumption
IND-CPA = DDH Assumption
To be proven to see the restrictions
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El Gamal: OW-CPA

E(ma)=(g% y’m) - (c,d) D(c,d)=d/c”
Suec™(A) = PrlA(y, (¢, d)) = mi(c,d) = E(m;a))

B is given as input G = (<g>, X) and (A,B)
e Yy~ Aandc - B
e choose a random value d: A(y,(c,d)) - m
e output d/m
If mis correct, DH(A,B)=d/m
Succed (B) = Succo(A)
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El Gamal: IND-CPA

(M, m;,8) - &(y)}_l
(c,d) — E(m,;a)

Adv'™ (A)=2Pr | 4. (m.m. (.d).5) =

B is given as input G = (<g>, x) and (A, B, C)
e Yy~ Aandc ~ B: Ay(y) - (my, m)
« bJ{0,1} andd - Cm: A,(cd) - D
o output = (b=Db)
Let us assume that my, m, U G:
— If C=DH(A,B), Pr[b=b'] = Pr{A(c,d) = b]
— If CZDH(A,B), Pr[b=b"] = 1/2
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El Gamal: IND-CPA (Cnt'd)

If the messages are encoded into G:
— If C=DH(A,B), Pr[b=b'] = Pr[A(c,d) = b]
— If CZDH(A,B), Pr{b=b'] = 1/2
Adv* (B) = Pr[p =1/C = CDH(A, B)| - Pr|g =1/C # CDH(A B))

=Plbi=b]-2 = Adv™ ()

Adv(D) = 2Pr[b'=b|-1
Prlo'=b|b=1]+Prlb'=bJo=0]-1
Prlo'=b|b=1|-Prlo'# bjp=0]
Thus, =Prlb'=1b=1]-Prlo'=1jp = 0]

Advir(t) < 2 Adve ()
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Strong Security Notions

It is very difficult to reach CCA security
Maybe possible, but with inefficient schemes
Inefficient schemes are unuseful in practice:

Everybody wants security,
but only if it is transparent
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ldeal Models

= one makes some ideal assumptions:

— ideal random hash function:
random oracle model

— ideal symmetric encryption:
ideal cipher model

— ideal group:
generic model (generic adversaries)
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The Random Oracle Model

 Introduced by Bellare-Rogaway Acwm-cCS ‘93

 The most admitted model

e It consists in considering some functions
as perfectly random functions,
or replacing them by random oracles:
— each new query is returned a random answer

— a same guery asked twice receives twice
the same answer
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Modeling a Random Oracle

A usual way to model a random oracle H
IS to maintain a list A, which contains

all the query-answers (x,p):
e Ay IS initially set to an empty list
« A query xto H is answered the following way
— iIf for some p, (x,p) U Ay, p is returned

— otherwise,
sa random p is drawn from the appropriate range
S (x,p) Is appended to A,
Sp is returned
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Generic Construction Bellare-Rogaway ‘93

——

Let f be a trapdoor one-way permutation
then (with G - {0,1}Y and H - {0,1}K)
E(m;r) =1(r) [[mDO G(r) || H(myr)
D(ab,.c): r=f-1(a)
m="Db [ G(r)
c=H(m,r) ?
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IND-CCAZ2: Security Proof

Adversary A=(A,,A,)

* Af) - (mpmy)
* One randomly chooses (3(1{0,1} and r,
and computes C = E(mg,r) = (a,b,C):
a=f(r),b=my U G(r), c=H(mr)

* AC) - P
with permanent access to

— the decryption oracle D Jp queries

— the random oracles G and H Jc: Oy queries
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IND-CCAZ2: Security Proof (2)

Adversary A=(A,A,) - Simulator B

* B(f, y=f (x)): runs A,(f) - (m,m)
« randomly chooses b[]{0,1}* and c[0{0,1} ¥
and outputs C = E(mg,r) = (y,b,c)

this implicitly defines:
r=fy) =x G(r) =mg O b, H(mg,r) = c
* ANC) - P
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IND-CCAZ2: Simulation (3)

B has to answer oracle queries:

« Random oracles Gand H
a new query is answered by
a new random value in the proper range
Problem if G(r) (AskG) or H(mg,r) (AskH)

* Decryption oracleon C' =(a’',b’,C")
one looks up for ¢’ = H(n',I’)
and checks whether C = E(m’,I'’)
Problem if H(m',r’) not asked: rejection of a
valid ciphertext (BadD), but with probability 2%
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IND-CCAZ2: Simulation (4)

Without AskG, AskH or BadD: perfect simulation

New event ASK: G(r) or H(*,r)

Pro[B" = B] < Pry[B’ = B]
+ Pr,JAskG OAskH] + Pr,[BadD]
< Pry[p’ = B] + Pry[ASK] + gp 2
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IND-CCAZ2: Extraction (5)

Without ASK adversary A has no information
Pyl = B] = Pry[B" = B| ASK] PryfASK]
+ Pr B =B |-ASK] Pr[-ASK]
< PrJASK] +%
Succ™(t') = Pr,[ASK] = Pr[B =[] - %
> Pry[B =P - ¥%2- Pry[ASK] - gp 2*
Yo Adve(t) < Prg[B’ = B] - Y2
< 2 Succ™(t') + gp 2K
wheret' =t+ (g + qy) T;
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IND-CCAZ2: Result (6)

Al = dSlice (et (e = Al = %

If the parameters are properly chosen so that
f I1s indeed hard to invert, the encryption
scheme is semantically secure against any
CCA-adversary, in the random oracle model
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