Summary

• Introduction
• Signature
 – FDH
 – PSS
 – Forking Lemma
 – Generic Model
• Conclusion
Summary

- Introduction
- Signature
 - FDH
 - PSS
 - Forking Lemma
 - Generic Model
- Conclusion

(Trapdoor) One-Way Functions

- In the following, we consider any function f which is assumed to be one-way:

$$\text{Succ}^{\text{ow}}_f(A) = \Pr_x[f(A(y)) = y | y = f(x)]$$

- This function may be trapdoor:
 - g is the inverse function, available granted a private information

Examples:
- OW function = DL
- Trapdoor OW function = RSA or CDH
- Trapdoor OW permutation = RSA
Proof by Reduction

Reduction of a problem P to an attack Atk:

- Let A be an adversary that breaks the scheme then A can be used to solve P

Instance I of P

Solution of I

P intractable \Rightarrow scheme unbreakable

Complexity Estimates

Estimates for integer factoring Lenstra-Verheul 2000

<table>
<thead>
<tr>
<th>Modulus (bits)</th>
<th>Mips-Year (\log_2)</th>
<th>Operations (en log_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>13</td>
<td>58</td>
</tr>
<tr>
<td>1024</td>
<td>35</td>
<td>80</td>
</tr>
<tr>
<td>2048</td>
<td>66</td>
<td>111</td>
</tr>
<tr>
<td>4096</td>
<td>104</td>
<td>149</td>
</tr>
<tr>
<td>8192</td>
<td>156</td>
<td>201</td>
</tr>
</tbody>
</table>

Can be used for RSA too

Lower-bounds for DL in \mathbb{Z}_p^*
Practical Security

- Complexity theory: T polynomial
- Exact Security: T explicit
- Practical Security: T small (linear)

Authentication

- Signature Algorithm, S
- Verification Algorithm, V

Security: impossible to forge a valid σ without k_s
Basic Goal

- **Existential Forgery:**
 without the private key,
 it is computationally impossible to forge
 a valid message-signature pair

\[
\text{Succ}^\text{ef} (A) = \Pr[\mathbf{V}(m, \sigma) = 1 | A(k_v) = (m, \sigma)]
\]

Chosen-Message Attacks

- **Chosen-Message Attacks (CMA)**
 In the list of message-signature pairs,
 the messages are adaptively chosen
 by the adversary
 \[\Rightarrow \text{strongest attack} \]
• Introduction
• Signature
 – FDH
 – PSS
 – Forking Lemma
 – Generic Model
• Conclusion
FDH Signature

- f is a trapdoor one-way permutation onto X
- g, is the inverse (granted the trapdoor)
- H is hash function in the full domain X of f
- f: public key
- g: private key

\[
S(m) = g(H(m)) \quad V(m, \sigma) = (f(\sigma) = H(m))
\]

$H =$ identity: Existential Forgery = easy!

$H =$ random oracle: EF-CMA = OW

FDH EF-CMA: Result

\[
\text{Succ}^{\text{ef-cma}}(A) \leq (q_H + q_S + 1) \text{Succ}^{\text{ow}}(t')
\]

where $t' = t + (q_H + q_S) T_f$

\[
\text{Succ}^{\text{ef-cma}}(t) \leq (q_H + q_S + 1) \times \text{Succ}^{\text{ow}}_f(t + (q_H + q_S) T_f)
\]
Comments: FDH

\[\text{Succ}^{e_{-\text{cma}}}(t) \leq (q_H + q_s + 1) \times \text{Succ}^{ow}_f (t + (q_H + q_s)T_f) \]

Security bound: \(2^{75}\), and
\(2^{55}\) hash queries and \(2^{30}\) signing queries
If one can break the scheme within time \(T\),
one can invert \(f\) within time
\[T' \leq (q_H + q_s + 1) (T + (q_H + q_s) T_f) \]
\[\leq 2^{56} T + 2^{112} T_f \]

FDH-RSA

Security bound: \(2^{75}\), and
\(2^{55}\) hash queries and \(2^{30}\) signing queries
RSA (\(K\) bits) small exponent
If one can break the scheme within time \(T\),
one can invert RSA within time
\[T' \leq 2^{131} + 2^{112} K^2 \]

RSA:
- 1024 bits \(\rightarrow 2^{132}\) (NFS: \(2^{80}\)) \(\times\)
- 2048 bits \(\rightarrow 2^{134}\) (NFS: \(2^{111}\)) \(\times\)
- 4096 bits \(\rightarrow 2^{136}\) (NFS: \(2^{149}\)) \(\checkmark\)
ESIGN

ESIGN is an application of the FDH paradigm to a many-to-one trapdoor OW function \(f \).

Under specific probabilistic properties, the previous proof still applies, but:

- A given \(y \) has many pre-images
- The signing oracle chooses a random one each time
- The simulator knows only one!

No EF but against SO-CMA only.

FDH-RSA: Improved Reduction

- In the case that \(f \) is random self-reducible, the reduction may be improved

\[
\text{Succ}_{\text{ef-cma}}(t) \leq (q_H + q_s + 1) \times \text{Succ}_{f}^{ow}(t + (q_H + q_s)T_f)
\]

\[
\Downarrow
\]

\[
\text{Succ}_{\text{ef-cma}}(t) \leq \frac{q_s + 1}{e} \times \text{Succ}_{f}^{ow}(t + (q_H + q_s + 1)T_f)
\]

Cf. Coron ‘00
FDH-RSA EF-CMA: Game 0

Adversary A
- $A_1(n,e) \rightarrow (m^*, \sigma^*)$

with permanent access to
- the signing oracle S q_S queries
- the random oracle H q_H queries

- One checks whether $(\sigma^*)^e \mod n = H(m^*)$

 Note: it may make one more call to H

- If the equality holds, and $m^* \notin \Lambda_S$, $s=1$,
 otherwise $s=0$

On this probability space, we consider event S: $s = 1$

In Game i: S_i

Note that

\[
\Pr[S_0] = \text{Succ}^{\text{ef-cma}}(A)
\]
FDH-RSA EF-CMA: Game 1

Any signing query is asked first to the random oracle H

One does not modify the probability space, but note that q_H becomes $q'_H = q_H + q_s$:
$$\Pr[S_1] = \Pr[S_0]$$

FDH-RSA EF-CMA: Game 2

We replace the random oracle H by the usual simulation: the list Λ_H
- is initially set to an empty list
- any new random answer is appended

One does not modify the probability space:
$$\Pr[S_2] = \Pr[S_1]$$
FDH-RSA EF-CMA: Game 3

One simulates the answers of H, using y^*, an external data $y^* = (x^*)^e \mod n$
For the i^{th} query m_i, one flips a biased coin b
which is 1 with probability p, and 0 otherwise
One chooses x, computes $y = (y^*)^b x^e \mod n$
and sets $H(m) \leftarrow y$
Then $\Lambda_H \leftarrow (m,y,b,x)$, and y is the output

One does not modify the probability space,
since f is a permutation:
$$\Pr[S_3] = \Pr[S_2]$$

FDH-RSA EF-CMA: Game 4

One now simulates the signing oracle S:
For a query m, one looks for $(m,y,b,x) \in \Lambda_H$,
and outputs x as the signature

By construction, $H(m) = y = (y^*)^b x^e \mod n$,
thus the simulation is perfect, unless $b = 1$.
One just conditions the game by an independent event, $b = 0$, of probability $1-p$:
$$\Pr[S_4] \geq \Pr[S_3] \times (1-p)^q_s$$
FDH-RSA EF-CMA: Game 4

One is given y^*
• $A_1(f) \rightarrow (m^*, \sigma^*)$

with permanent access to
- the signing oracle S simulation
- the random oracle H simulation
and $H(m^*) \leftarrow (y^*)^{b^*} (x^*)^e \mod n$

• One checks whether $(\sigma^*)^e \mod n = H(m^*)$
Event $S_4 \Rightarrow (\sigma^*)^e = H(m^*) = (y^*)^{b^*} (x^*)^e \mod n$

Thus $(\sigma^*/x^*)^e = y^* \mod n$ if $b^* = 1$

FDH-RSA EF-CMA: Sum up

• $\Pr[S_0] = \text{Succ}_{\text{ef-cma}}(A)$
• $\Pr[S_3] = \Pr[S_2] = \Pr[S_1] = \Pr[S_0]$
• $\Pr[S_4] \geq \Pr[S_3] \times (1-p)^q_s$
• $\Pr[S_4] \leq \text{Succ}_{\text{ow}}(t_4) / p$

\[
\Pr[S_0] = \text{Succ}_{\text{ef-cma}}(A) \leq \Pr[S_4] / (1-p)^q_s \\
\leq \text{Succ}_{\text{ow}}(t_4) / p (1-p)^q_s
\]
FDH-RSA EF-CMA: Result

\[
\text{Succ}^{ef-cma}(A) \leq \text{Succ}^{ow}(t') / p \cdot (1-p)^q_s
\]

where \(t' = t + (q_H + q_s + 1) T_f \)

Note that \(p \mapsto p \cdot (1-p)^q_s \) is maximal

for \(p = 1 / (q_s+1) \) and is approximately, but less than \(e / (q_s+1) \)

\[
\text{Succ}^{ef-cma}(t) \leq \frac{q_s+1}{e} \times \text{Succ}^{ow}_f\left(t + (q_H + q_s + 1)T_f \right)
\]

Comments: FDH-RSA

Security bound: \(2^{75} \), and \(2^{55} \) hash queries and \(2^{30} \) signing queries

If one can break the scheme within time \(T \), one can invert RSA within time

\[
T' \leq (q_s + 1) \left(T + (q_H + q_s + 1) T_f \right) / e
\]

\[
\leq 2^{30} T + 2^{85} T_f
\]
FDH-RSA

Security bound: 2^{75}, and 2^{55} hash queries and 2^{30} signing queries

RSA (K bits) small exponent

If one can break the scheme within time T, one can invert RSA within time

$$T' \leq 2^{105} + 2^{85} K^2$$

RSA:
- 1024 bits $\rightarrow 2^{106}$ (NFS: 2^{80}) \times
- 2048 bits $\rightarrow 2^{107}$ (NFS: 2^{111}) \checkmark
- 4096 bits $\rightarrow 2^{109}$ (NFS: 2^{149}) \checkmark

Summary

- Introduction
- Signature
 - FDH
 - PSS
 - Forking Lemma
 - Generic Model
- Conclusion
Probabilistic Signature Scheme
Bellare-Rogaway '96

\[k = k_0 + k_1 + k_2 + 1 \]
\[\{0,1\}^{k-1} \subseteq X \subseteq \{0,1\}^k \]
\[f : X \rightarrow X \]

\[y = 0||w||s||t \]
\[\sigma = f^{-1}(y) \]

RSA-PSS

- \(n, k \)-bit RSA modulus \((k = k_0 + k_1 + k_2 + 1)\)
- \(n, e \): public key
- \(d \): private key

\[
F : \{0,1\}^{k_2} \rightarrow \{0,1\}^{k_0} \quad \text{and} \quad G : \{0,1\}^{k_2} \rightarrow \{0,1\}^{k_1}
\]
\[
H : \{0,1\}^x \rightarrow \{0,1\}^{k_2}
\]

\[
w = H(m, r), s = G(w) \oplus r, t = F(w)\]
\[
y = 0||w||s||t \quad \text{and} \quad \sigma = y^d \mod n\]
RSA-PSS EF-CMA: Game 0

Adversary A
- $A_1(n,e) \rightarrow (m^*, \sigma^*)$

with permanent access to
- the signing oracle S (q_S queries)
- the random oracles F,G,H (q_F, q_G, q_H queries)

On this probability space, we consider event S: $V(m^*, \sigma^*) = 1$

In Game i: S_i

Note that

$$\Pr[S_0] = \text{Succ}^{ef-cma}(A)$$

$V(m^*, \sigma^*) = 1 \iff$ with $y = f(\sigma^*) = 0||w||s||t$

and $r = G(w) \oplus s$

then $t = F(w)$ and $w = H(m^*, r)$
We replace the random oracles F, G and H by the usual simulations: the lists Λ_F, Λ_G and Λ_H

- initially set to an empty list
- any new random answer is appended

One does not modify the probability space:

$\Pr[S_1] = \Pr[S_0]$
RSA-PSS: Game 1 to Game 2

\[w, s \text{ and } t \text{ are uniformly distributed, thus } t, r \oplus s \text{ and } w \text{ are so too} \]

The distributions are thus unchanged.

A problem may occur if \(F(w) \) or \(G(w) \) have already been queried or defined.

- \(q_F \) values for \(w \) have been queried to \(F \) by \(A \)
- \(q_G \) values for \(w \) have been queried to \(G \) by \(A \)
- \(q_s \) values for \(w \) have been queried to \(F/G \) by \(S \)
- \(q_H \) values for \(w \) have been defined for \(F \) and \(G \)

\[| \Pr[S_2] - \Pr[S_1] | \leq (q_s + q_H)(q_F + q_G + q_s + q_H) / 2^{k_2} \]

RSA-PSS EF-CMA: Game 3

In the simulation of \(H \) in Game 2:

“choose a random \(u \in \mathbb{Z}_n \),
and compute \(y = (y^*)^b \cdot u^e \mod n \),
until the most significant bit is 0”

This may take a long time:
we limit it to \(k_2 \) iterations

This makes a difference,
only if \(y \) is still undefined after \(k_2 \) iterations:

\[| \Pr[S_3] - \Pr[S_2] | \leq (q_s + q_H) / 2^{k_2} \]
RSA-PSS EF-CMA: Game 4

One now simulates the signing oracle S: Before simulating it, one stops the game if the signature of m involves a pair $(m,r,b=1,*,*) \in \Lambda_H$ (already asked by A)

This may only happen if there is a collision on the value of r between
- the q_H possibly defined values
- the q_S queries

$$| \Pr[S_4] - \Pr[S_3] | \leq q_S q_H / 2^{k_1}$$

RSA-PSS EF-CMA: Game 5

One can simulate the signing oracle S: Using the same (m,r) as did S, by simulation of H: for some (u,w),
- $(m,r,0,u,w) \in \Lambda_H$
- $0||w||s||t = y = u^e \mod n$
- $H(m,r)=w$, $F(w) = t$ and $r \oplus G(w) = s$

Thus u is the signature.

The simulation is perfect:

$$\Pr[S_5] = \Pr[S_4]$$
RSA-PSS EF-CMA: Game 5

Adversary A

- $A_1(n,e) \rightarrow (m^*, \sigma^*)$ with permanent access to
 - the signing oracle S simulation
 - the random oracles F,G,H simulations

For any query $H(m,r)$ asked by A, there exists (u,w) such that

$s(m,r,1,u,w) \in \Lambda_H$

$s \| w \| s \| t = y = y^* u^e \mod n$

$sH(m,r)=w$, $F(w) = t$ and $r \oplus G(w) = s$

Event S_5 (without chance)

$\Rightarrow (\sigma^*)^e = y = y^* u^e \mod n$

Thus $(\sigma^*/u)^e = y^* \mod n$

$\Pr[S_5] \leq \text{Succ}^{ow}(t_5) + 1/2^{k_2}$

RSA-PSS EF-CMA: Sum up

- $\Pr[S_0] = \text{Succ}^{ef-cma}(A)$
 \[\Pr[S_1] = \Pr[S_0] \]

- $| \Pr[S_2] - \Pr[S_1] | \leq (qs + q_H)(q_F + q_G + qs + q_H)/2^{k_2}$

- $| \Pr[S_3] - \Pr[S_2] | \leq (qs + q_H) / 2^{k_2}$

- $| \Pr[S_4] - \Pr[S_3] | \leq qs q_H / 2^{k_1}$

- $\Pr[S_5] \leq \text{Succ}^{ow}(t_5) + 1 / 2^{k_2}$

\[
\text{Succ}^{ef-cma}(t) \leq \frac{qs + q_H}{2^{k_2}}(qs + q_F + q_G + q_H + 1) + \frac{qs q_H}{2^{k_1}} + \text{Succ}^{ow}(t_5) + \frac{1}{2^{k_2}}
\]
Comments: RSA-PSS

Security bound: 2^{75}, and 2^{55} hash queries and 2^{30} signing queries

If one can break the scheme within time T, one can invert RSA within time $T' \leq T + (q_H + q_s)k_2T_f \leq T + 2^{65}T_f$

RSA-PSS

Security bound: 2^{75}, and 2^{55} hash queries and 2^{30} signing queries

RSA (K bits) small exponent

If one can break the scheme within time T, one can invert RSA within time $T' \leq 2^{75} + 2^{65}K^2$

RSA:
- 1024 bits $\rightarrow 2^{85}$ (NFS: 2^{80}) \times
- 2048 bits $\rightarrow 2^{87}$ (NFS: 2^{111}) \checkmark
- 4096 bits $\rightarrow 2^{89}$ (NFS: 2^{149}) \checkmark
Jonsson’s Trick: Game 3

In the simulation of H in Game 2:
“choose a random $u \in \mathbb{Z}_n$,
and compute $y = (y^*)^b \pmod{n}$,
until the most significant bit is 0”
Instead of limiting each simulation to k_2 iterations
we limit the global number to $2(q_s + q_H)$

One can show that some y may not be defined,
but with probability $\leq 1 / 2^\ell$: for any $\ell \leq (q_s + q_H)$
$\left| \Pr[S_3] - \Pr[S_2] \right| \leq 1 / 2^\ell$

Comments: RSA-PSS

Security bound: 2^{75}, and
2^{55} hash queries and 2^{30} signing queries
If one can break the scheme within time T,
one can invert RSA within time
$T' \leq T + 2(q_H + q_s)T_f \leq T + 2^{56}T_f$
RSA-PSS: Practical Security

Security bound: 2^{75}, and 2^{55} hash queries and 2^{30} signing queries

RSA (K bits) small exponent

If one can break the scheme within time T, one can invert RSA within time

$$T' \leq 2^{75} + 2^{56} K^2$$

RSA:
- 1024 bits $\rightarrow 2^{76}$ (NFS: 2^{80})
- 2048 bits $\rightarrow 2^{78}$ (NFS: 2^{111})
- 4096 bits $\rightarrow 2^{80}$ (NFS: 2^{149})

Summary

- Introduction
- Signature
 - FDH
 - PSS
 - Forking Lemma
 - Generic Model
- Conclusion
Schnorr Signature (1989)

\[G, g \text{ and } q: \text{common elements} \]

\[x: \text{private key} \]

\[y = g^x: \text{public key} \]

Signing \(m \):

choose \(k \in \mathbb{Z}_q \) and compute \(r = g^k \)
as well as \(e = H(m, r) \)
and \(s = k - xe \mod q \)

\[\sigma = (e, s) \]

Verifying \((m, \sigma)\):

\[u = g^s y^e \quad (= g^{k-xe} g^{xe}) \]

\[\text{test if } e = H(m, u) \]

Security Proof Pointcheval-Stern ‘96

Existential Forgery = DL problem

Idea: forking lemma

\[A \xrightarrow{H(m, r)} e \xrightarrow{(e, s)} \] \[e', (e', s') \]

\[g^s y^e = r = g^{s'} y^{e'} \]

\[g^{s-s'} = y^{e'-e} \]

Let \(\alpha = (s - s')/(e' - e) \mod q \)

Then \(y = g^\alpha \)
A asks q_H queries $(m_i, r_i): h_i = H(m_i, r_i)$ and outputs (m^*, r^*, e^*, s^*) such that

- $m^* = m_j$
- $e^* = H(m^*, r^*)$
- $V(m^*, r^*, e^*, s^*) = 1$

with probability ε

- $\varepsilon = \Pr[\text{Success}]$
- $\varepsilon_i = \Pr[\text{Success} \land m^* = m_i]$
- $\varepsilon = \sum \varepsilon_i$

For any i, one defines

$\Omega = \{(\omega, h_1, \ldots, h_{i-1}, h_i, \ldots h_{qH})\} = X_i \times Y_i$

- $x_i = (\omega, h_1, \ldots, h_{i-1})$
- $y_i = (h_i, \ldots h_{qH})$

$\varepsilon_i = \Pr_{X_i \times Y_i} [\text{Success} \land m^* = m_i]$

$Z_i = \left\{ x_i \in X_i \mid \Pr_{Y_i} [\text{Success} \land m^* = m_i] \geq \alpha_i \right\}$
Splitting Lemma

Assume $\Pr[x_i \in Z_i] < \varepsilon_i - \alpha_i$

$$\varepsilon_i = \Pr[S_i] = \Pr[S_i | x_i \in Z_i] \Pr[x_i \in Z_i] + \Pr[S_i | x_i \not\in Z_i] \Pr[x_i \not\in Z_i]$$

$$< 1 \times (\varepsilon_i - \alpha_i) + \alpha_i \times 1 = \varepsilon_i$$

$$\Pr[x_i \in X_i | S_i] \geq 1 - \frac{\alpha_i}{\varepsilon_i}$$

\[
\Pr[X_i | S_i] = 1 - \Pr[x_i \not\in X_i | \neg S_i]
\]

$$\geq 1 - \alpha_i \times 1 / \varepsilon_i$$

Forking Lemma - 3

- Run A once: for any i
 - success and $m^* = m_i$ with probability greater than ε_i
 - $x_i \in Z_i$ with probability greater than $1 - \alpha_i / \varepsilon_i$

- Run A a second time with same x_i but random y_i
 - new success with probability greater than α_i

$$p = \sum \varepsilon_i \times \left(1 - \frac{\alpha_i}{\varepsilon_i}\right) \times \alpha_i = \sum (\varepsilon_i - \alpha_i) \times \alpha_i$$
Forking Lemma - 4

With $\alpha_i = \rho \varepsilon_i$

\[
p = \sum \varepsilon_i \times \left(1 - \frac{\alpha_i}{\varepsilon_i}\right) \times \alpha_i = \sum (\varepsilon_i - \alpha_i) \times \alpha_i
\]
\[
= \sum (\varepsilon_i^2 (1 - \rho) \times \rho) = (1 - \rho) \rho \times \sum \varepsilon_i^2
\]
\[
\geq (1 - \rho) \rho \times (\sum \varepsilon_i)^2 / q_H = (1 - \rho) \rho \times \varepsilon^2 / q_H
\]

Optimal for $\rho = 1/2 : p \geq \varepsilon^2 / 4 q_H$

Forking Lemma: Result

- Run A once with random $(\omega, h_1, \ldots, h_{i-1}, h_i, \ldots, h_{q_H}) = (x_i, y_i)$
- In case of success:
 run A again with same x_i but random y'_i
- One gets two successes (m_1, r_1, e_1, s_1) and (m_2, r_2, e_2, s_2) such that
 \[
 (m_1, r_1) = (m_2, r_2)
 \]
 \[
 \mathbf{V}(m_1, r_1, e_1, s_1) = 1 \text{ and } \mathbf{V}(m_2, r_2, e_2, s_2) = 1
 \]
 with probability greater than $\varepsilon^2 / 4 q_H$
Forking Lemma - Improvement

- Run A until one gets a success:
on average $= 1/\varepsilon$ iterations: for any i
 - $m^* = m_i$ with prob greater than $\Pr[S_i \mid S] \geq \varepsilon_i / \varepsilon$
 - $x_i \in Z_i$ with probability greater than $1 - \alpha_i / \varepsilon_i$
- Run A again with same x_i, but random y_i
 until a success: on average $1 / \alpha_i$ times
- On average:

$$T = \frac{1}{\varepsilon} + \sum \frac{\varepsilon_i}{\varepsilon} \times \left(1 - \frac{\alpha_i}{\varepsilon_i}\right) \times \frac{1}{\alpha_i} = \frac{1}{\varepsilon} + \frac{1}{\varepsilon} \times \sum \frac{1 - \rho}{\rho} = \frac{q_H + 1}{\varepsilon}$$

Comments: Forking Lemma

Security bound: 2^{75}, and 2^{55} hash queries
If one can break the scheme within time $T = t/\varepsilon$,
one can extract two tuples within time
$$T' \leq q_H t/\varepsilon = q_H T \leq 2^{130}$$
This is not a practical result:
4096 bit moduli are required
Chosen-Message Attacks

The random oracle provides an easy simulation of the signing oracle.

The forking lemma applies to:

- Fiat-Shamir
- Guillou-Quisquater
- Schnorr
- …

Summary

- Introduction
- Signature
 - FDH
 - PSS
 - Forking Lemma
 - Generic Model
- Conclusion
Generic Model: ECDSA

\[G = \langle P \rangle \text{ and } q: \text{common elements} \]
\[x: \text{private key} \quad Y = x.P: \text{public key} \]

Signing \(m \):
choose \(k \in \mathbb{Z}_q \) and compute \(R = k.P \)
as well as \(r = f(R) \) and \(e = H(m) \)
and \(s = (e + xr)/k \mod q \)

\[\sigma = (r, s) \]

Verifying \((m, r, s) \): first \(0 < r, s < q \)
\[R' = e s^{-1}.P + r s^{-1}.Y \]
test if \(r = f(R') \)

Non-Malleability: ECDSA

Under some assumptions about the function \(f \) and the hash function \(H \), one can show

In the generic model,
one cannot break non-malleability of ECDSA with probability significantly greater than

\[(n+1)(n+q_s+1)/2q \]

- \(q_s \) is the number of signing queries
- \(n \) is the number of group law operations
Malleability: ECDSA

In the description of ECDSA: \(f(R) = x_R \) (the first coordinate of \(R \))

Thus \(f(-R) = f(R) \)

If \((m,r,s)\) is a valid signature:

\[
0 < r, s < q \text{ and } f(e s^{-1}P + r s^{-1}Y) = r
\]

Then \((m,r,q-s)\) is a valid signature too:

\[
s' = -s \mod q \text{ and } 0 < r, s' < q
\]

\[
f(e s'^{-1}P + r s'^{-1}Y) = f(-e s^{-1}P - r s^{-1}Y)
= f(e s^{-1}P + r s^{-1}Y) = r
\]

Comments: ECDSA

However, this function \(f \) satisfies the requirements of the security theorem!

\(\Rightarrow \) The problem comes from the generic model

Indeed, when one knows \(E(P) \), one usually knows \(E(-P) \):

they are not independent

Thus \(f(R) \) and \(f(-R) \) are not independent!

If \(f \) random oracle: provably secure relative to DL in the random oracle model only (KCDSA)
The generic model should thus be used with care: automorphisms in the group may break the genericity of the encoding.

Summary

- Introduction
- Signature
 - FDH
 - PSS
 - Forking Lemma
 - Generic Model
- Conclusion
Generic Constructions

FDH: trapdoor OW permutation
Bad reduction to EF-CMA: $T' \approx q_H T$
 – If many-to-one function: SO-CMA only
 – If random self-reducibility (RSR):
 better reduction: $T' \approx q_s T$

PSS: RSR trapdoor OW permutation
Tight reduction: $T' \approx T$ \textit{practical security}

Forking lemma: identification scheme
secure against passive attacks
Bad reduction: $T' \approx q_H T$

Ideal Models

Ideal models to be handled with care
 – Random oracle model:
 seems correct in practice
 – Generic model: less convincing