

David Pointcheval CNRS - ENS - INRIA

11th International Conference on Provable Security Xi'an. China - October 23rd. 2017

Anything from Anywhere Security Requirements As from a local hard drive/server, one expects Storage guarantees Privacy guarantees One can store *confidentiality* of the data Documents to share *anonymity* of the users Pictures to edit obliviousness of the queries/processing Databases to query S 8 1 and access from everywhere How to proceed? David Pointcheval Introduction 3 / 26 David Pointcheval

Introduction

FE: Concrete Case

Student	English					CS				Math			
Name	W	/ritten	Sp	ooker	ו T	heory	r Pi	actic	e A	lgebi	ra	Analy	/sis
Year 1													
Year 2													
Year 3													
Class English	CS	Math		Eng	glish				ath	Class	Total	Class	
Year 1			Class	Written	Spoken	Theory	Practice	Algebra	Analysis	Year 1		Glubb	Total
Year 2								- good		Year 2		3Years	
Year 3			Total							Year 3			

- For each student: transcript with all the grades
- Access to partial information for each student
- And even global grades for the class

10/26

FE: Inner Product

[Abdalla-Bourse-De Caro-P. - PKC '15 - EPrint 2015/017]

Cells of derived tables are linear combinations $\overrightarrow{a_i}$ of the grades \overrightarrow{b} from the main table:

$$c_i = \sum_i a_{i,j} b_j = \overrightarrow{a_i} \cdot \overrightarrow{b}$$

 \overrightarrow{b} : vector of the private grades, encrypted in the main table

- \overrightarrow{o} : vector of the public coefficients for the cell c_i , defines f_i
- With ElGamal encryption:
- computations modulo p
- if grades, coefficients, and classes small enough: DLog computation

- no much leakage of information to the helper
- more reasonable security model

David Pointcheval

Interactions

14/26

Multi-Client Functional Encryption Independent and Untrusted Clients In addition to the ordering, there is a label (or a time period) Senders $(S_i)_i$ provide sensitive inputs x_i (e.g. financial data) Client **C**_{*i*} generates $c_i = \mathbf{E}(i, \lambda, x_i)$ for a label λ in an encrypted way under secret encryption keys ek_i \Rightarrow only one ciphertext for each index *i* and each label λ $\rightarrow c_i = \mathbf{E}(\mathbf{e}\mathbf{k}_i, \boldsymbol{\lambda}, \mathbf{x}_i)$ for a label $\boldsymbol{\lambda}$ (or every time period) For some functions f, an aggregator proposes, as a service, Multi-User Inputs to communicate the aggregation f(x) for every label λ , thanks to a functional decryption key dk_f Mix-and-match attacks avoided by private encryption The senders want to keep control on f More reasonable security model $\rightarrow dk_f$ is generated by the senders But still a unique authority for the functional key generation David Pointcheval Multi-User Functional Encryption 16/26 David Pointcheval Decentralized MCFE 17/26

	EIGamal Encryption		FE: IP with ElGamal				
e (ElGamal Encryption on $\mathbb{G} = \langle g \rangle$: Secret key: $s \in \mathbb{Z}_p$ Public key: $h = g^s$ Encryption: $c = (c_0 = g^r, c_1 = h^r \cdot m)$ Decryption: $m = c_1/c_0^s$ Semantically secure under DDH in $\mathbb{G} = \langle g \rangle$ Multiplicatively homomorphic Additive variant: <i>m</i> is replaced by g^m but requires discrete logarithm computation Encryption of vectors: with many h_i and the same randomness	IEEE TIT '85]	Decryption: Because	$[Abdalla-Bourse-De Caro-P - PKC '15 - EPrint 2015/017]$ a group $\mathbb{G} = \langle g \rangle$ of prime order p $\vec{s} = (s_j)_j$, for random scalars in \mathbb{Z}_p $\vec{h} = (h_j = g^{s_j})_j$ $c = g^r$ and $\vec{C} = (C_j = h_j^r \cdot g^{x_j})_j$ $D = \vec{f} \cdot \vec{C} = \prod_j C_j^{f_j}$ $= g^r \sum_j f_j s_j g \sum_j f_j x_j = g^{r \cdot \vec{f} \cdot \vec{s}} g^{\vec{f} \cdot \vec{x}}$ $dk_f = \sum_j f_j s_j = \vec{f} \cdot \vec{s}$ $D = c^{dk_f} \cdot g^m \longrightarrow m = \log_g(\vec{f} \cdot \vec{C}/c^{dk_f}) = \vec{f} \cdot \vec{x}$ of the common r in the ciphertext, sender must encrypt the full vector			
David Pointcheval	Decentralized MCFE	20/26	David Pointcheval	Decentralized MCFE 21/26			

MCFE: IP with ElGamal

[Chotard-Dufour Sans-Phan-P. - EPrint 2017/989]

Parameters:	$\mathbb{G}=\langle g angle$ of prime order p , hash function $\mathcal H$
Encryption/Secret key:	$m{e}m{k}_i=m{s}m{k}_i=s_i$, for random scalar in \mathbb{Z}_p
Encryption:	$C_i = \mathcal{H}(\lambda)^{s_i} \cdot g^{x_i}$
	$D = \vec{f} \cdot \vec{C} = \prod_i C_i^{f_i}$
	$= \mathcal{H}(\lambda)^{\sum_i f_i s_i} g^{\sum_i f_i x_i} = \mathcal{H}(\lambda)^{\vec{f} \cdot \vec{s}} g^{\vec{f} \cdot \vec{x}}$
Functional key:	$dk_f = \sum_i f_i s_i = \vec{f} \cdot \vec{s}$
Decryption:	$D = \mathcal{H}(\lambda)^{dk_f} \cdot g^m \longrightarrow m = \log_a(\vec{f} \cdot \vec{C} / \mathcal{H}(\lambda)^{dk_f}) = \vec{f} \cdot \vec{x}$

Encryption can be performed by independent senders

Decentralized MCFE

DMCFE: IP with ElGamal

[Chotard-Dufour Sans-Phan-P. - EPrint 2017/989]

Functional key: $dk_f = \sum_i f_i s_i = \vec{f} \cdot \vec{s} = \vec{1} \cdot \vec{X}$ where $\vec{X} = (X_i = f_i s_i)_i$

- The senders can encrypt $(X_i=f_is_i)_i$ under another IP-MCFE and the label f
- \bigcirc The aggregator knows the functional key for (1,...,1)
- Solution From the ciphertext of $(X_i = f_i s_i)_i$, it can extract dk_f
- This would work with a perfect IP-MCFE: any plaintext can be decrypted
- Here, only small plaintexts can be decrypted: dk_f is large!

22/26

DMCFE: IP with Pairings	DMCFE: IP with Pairings
[Chotard-Dufour Sans-Phan-P EPrint 2017/989]	[Chotard-Dufour Sans-Phan-P EPrint 2017/989]
• Two IP-MCFE: \mathbf{E}_1 in \mathbf{G}_1 and \mathbf{E}_2 in \mathbf{G}_2 • The senders encrypt the messages x_i with \mathbf{E}_1 • The senders encrypt the functional key shares X_i with \mathbf{E}_2 • The aggregator knows the functional key for $(1,,1)$ in $\mathbf{E}_2 \rightarrow$ it gets g_2^{dkf} • From g_2^{dkf} and ciphertexts of x_i with \mathbf{E}_1 in $\mathbf{G}_1 \rightarrow$ one gets g_T^{fx}	 Our Decentralised Multi-Client Functional Encryption: Selective Security Even with Adaptive Corruptions of the Clients/Senders Under the classical SXDH assumption Efficient Setup: generation of the functional key for (1,,1) Efficient DKeyGen protocol: just one ciphertext sent by each sender
The discrete logarithm is small: can be extracted!	
David Pointcheval Decentralized MCFE 24/26	David Pointcheval Decentralized MCFE 25/26

Conclusion	
 Functional Encryption Ideal functionalities on encrypted data Authority-based functionality Inputs from a unique sender 	
 DMCFE Aggregation of multi-source inputs Functionality under control of the senders 	

26/26