Computations on Encrypted Data and Privacy

11th International Conference on Provable Security
Xi'an, China - October 23rd, 2017

David Pointcheval
CNRS - ENS - INRIA

The Cloud

Dropbox
iCloud
Drive

Security Requirements

As from a local hard drive/server, one expects
- **Storage guarantees**
- **Privacy guarantees**
 - confidentiality of the data
 - anonymity of the users
 - obliviousness of the queries/processing

How to proceed?

Anything from Anywhere

One can store
- Documents to share
- Pictures to edit
- Databases to query

and access from everywhere

David Pointcheval

Introduction
Confidentiality vs Sharing & Computations

Classical Encryption allows to protect data
- The provider stores them without knowing them
- Nobody can access them either, except the owner/target receiver

How to share the data?
How to compute on the data?

Broadcast Encryption

The sender chooses a target set
Users get all-or-nothing about the data

Sharing to a Target Set but **No Computations!**

Fully Homomorphic Encryption

FHE allows any computations on encrypted data
But the result is encrypted as the inputs!

Computations But **No Controlled Sharing!**
Functional Encryption

The authority generates functional decryption keys DK_f according to functions f from $C = \text{Encrypt}(x)$, $\text{Decrypt}(DK_f, C)$ outputs $f(x)$. This allows controlled sharing of data.

Result in clear for a Specific Function for Specific Users

Functional Encryption is Powerful

Functional Encryption allows access control:
- with $f_{\text{id}}(x | y) = (\text{if } y = \text{id}, \text{ then } x, \text{ else } \perp)$: identity-based encryption
- with $f_G(x | y) = (\text{if } y \in G, \text{ then } x, \text{ else } \perp)$: broadcast encryption

Functional Encryption allows computations:
- any function f: in theory, with iO (Indistinguishable Obfuscation)
- concrete functions: inner product

FE: Concrete Case

Cells of derived tables are linear combinations of the grades \overrightarrow{a}_i of the grades \overrightarrow{b} from the main table:

$$c_i = \sum_j a_{i,j} b_j = \overrightarrow{a}_i \cdot \overrightarrow{b}$$

\overrightarrow{b}: vector of the private grades, encrypted in the main table
\overrightarrow{a}_i: vector of the public coefficients for the cell c_i, defines f_i

With ElGamal encryption:
- computations modulo p
- if grades, coefficients, and classes small enough: DLog computation

FE: Inner Product

Cells of derived tables are linear combinations of the grades \overrightarrow{a}_i of the grades \overrightarrow{b} from the main table:

$$c_i = \sum_j a_{i,j} b_j = \overrightarrow{a}_i \cdot \overrightarrow{b}$$

\overrightarrow{b}: vector of the private grades, encrypted in the main table
\overrightarrow{a}_i: vector of the public coefficients for the cell c_i, defines f_i

With ElGamal encryption:
- computations modulo p
- if grades, coefficients, and classes small enough: DLog computation
FE: Limitations

Initial result: selective security
But improved to adaptive security
Anyway:
- one key limits to one function on any vector
- a malicious player could ask many functional keys
- too many keys might reveal the plaintexts
- a unique sender only can encrypt all the inputs
- Multi-Input Functional Encryption (MIFE)

IP-FE: Concrete Security?

IP-FE: from $c = E(x)$ and dk_y, for n-vectors x and y, one gets $x \cdot y$
- n different keys reveal x
- for the indistinguishability between two sets of vectors, the adversary is not allowed to ask keys that trivially tell them appart
 \Rightarrow if n vectors in the sets, the adversary cannot ask any key!

IP-FE: Too Many Messages/Keys?

IP-FE with Helper:
from $c = E(x)$ and dk_y, for n-vectors x and y, one must ask an helper
- the helper
 - learns as few as possible about the input
 - (which ciphertext, which function, which user, etc)
 - limits the number of answers (according to a bound on the inputs)
 - learns nothing about the output
- whereas there are additional interactions
 - no much leakage of information to the helper
 - more reasonable security model

IP-MIFE: Concrete Security?

IP-MIFE: from $c_1 = E(x_1)$, \ldots, $c_n = E(x_n)$ and dk_y, one gets $x \cdot y$
- if no ordering: one immediately gets $n!$ linear relations on x
- even with ordering, $c_1 = E(1, x_1)$, \ldots, $c_n = E(n, x_n)$
 - if public encryption: only constant-functional keys allowed!
 - if private encryption: mix-and-match attacks
Multi-Client Functional Encryption

- In addition to the ordering, there is a label (or a time period)
 - Client \(C_i \) generates \(c_i = E(i, \lambda, x_i) \) for a label \(\lambda \)
 - \(\Rightarrow \) only one ciphertext for each index \(i \) and each label \(\lambda \)

- Multi-User Inputs
- Mix-and-match attacks avoided by private encryption
- More reasonable security model 😞
- But still a unique authority for the functional key generation 😞

Independent and Untrusted Clients

- Senders \((S_i)_i\) provide sensitive inputs \(x_i \) (e.g., financial data) in an encrypted way under secret encryption keys \(e_k \)
 - \(c_i = E(e_k, \lambda, x_i) \) for a label \(\lambda \) (or every time period)
- For some functions \(f \), an aggregator proposes, as a service, to communicate the aggregation \(f(x) \) for every label \(\lambda \), thanks to a functional decryption key \(d_k_f \)
- The senders want to keep control on \(f \)
 - \(d_k_f \) is generated by the senders

[Chotard-Dufour Sans-Phan-P. - EPrint 2017/989]

Decentralized MCFE

- Setup() \(\rightarrow \) secret key \(s_k_i \) and encryption key \(e_k_i \) for each sender \(S_i \) and \(m_p_k \), the master public key
- Encrypt(\(e_k, \lambda, x_i \)) \(\rightarrow c_i = E(e_k, \lambda, x_i) \) for the label \(\lambda \)
- DKeyGen((\(s_k_i \), \(f \)) \(\rightarrow d_k_f \)
- Decrypt(\(d_k_f, \lambda, C \)) \(\rightarrow f(x) \) if \(C = (c_i = E(e_k, \lambda, x_i)) \):

[Chotard-Dufour Sans-Phan-P. - EPrint 2017/989]

- Encrypt/Decrypt are non-interactive algorithms
- Setup/DKeyGen are interactive protocols between the senders
- DKeyGen should be a one-round protocol only
ElGamal Encryption

ElGamal Encryption on $\mathbb{G} = \langle g \rangle$:
- Secret key: $s \in \mathbb{Z}_p$
- Public key: $h = g^s$
- Encryption: $c = (c_0 = g^r, c_1 = h^r \cdot m)$
- Decryption: $m = c_1/c_0^s$
- Semantically secure under DDH in $\mathbb{G} = \langle g \rangle$
- Multiplicatively homomorphic
- Additive variant: m is replaced by g^m but requires discrete logarithm computation
- Encryption of vectors:
 - with many h_i and the same randomness

FE: IP with ElGamal

Parameters:
- a group $\mathbb{G} = \langle g \rangle$ of prime order p
- Secret key: $\tilde{s} = (s_i)_i$ for random scalars in \mathbb{Z}_p
- Public key: $\overline{h} = (h_j = g^{s_j})_j$
- Encryption:
 - $c = g^r$ and $\overline{C} = (C_j = h_j^r \cdot g^{r_j})_j$
 - $D = \overline{f} \cdot \overline{C} = \prod_j C_j^f_j = g^{\sum_j f_j s_j \cdot 1} = g^{\sum_j f_j \tilde{s}} g^{\overline{f} \cdot \overline{x}}$
- Functional key: $dk_f = \sum_j f_j s_j = \overline{f} \cdot \overline{s}$
- Decryption:
 - $D = e^{dk_f} \cdot g^m \rightarrow m = \log_g (\overline{f} \cdot \overline{C} / e^{dk_f}) = \overline{f} \cdot \overline{x}$

Because of the common r in the ciphertext, a unique sender must encrypt the full vector

MCFE: IP with ElGamal

Parameters:
- $\mathbb{G} = \langle g \rangle$ of prime order p, hash function \mathcal{H}
- Encryption/Secret key: $e k_i = s k_i = s_i$, for random scalar in \mathbb{Z}_p
- Encryption:
 - $C_i = \mathcal{H}(\lambda)^{s_i} \cdot g^{r_i}$
 - $D = \overline{f} \cdot \overline{C} = \prod_i C_i^{f_i} = \mathcal{H}(\lambda)^{\sum_i f_i s_i} g^{\sum_i f_i r_i} = \mathcal{H}(\lambda)^{\overline{f} \cdot \overline{s}} g^{\overline{f} \cdot \overline{x}}$
- Functional key: $dk_f = \sum_i f_i s_i = \overline{f} \cdot \overline{s}$
- Decryption:
 - $D = \mathcal{H}(\lambda)^{dk_f} \cdot g^m \rightarrow m = \log_g (\overline{f} \cdot \overline{C} / \mathcal{H}(\lambda)^{dk_f}) = \overline{f} \cdot \overline{x}$

Encryption can be performed by independent senders

DMCFE: IP with ElGamal

Functional key: $dk_f = \sum_i f_i s_i = \overline{f} \cdot \overline{s}$ where $\overline{X} = (X_i = f_i s_i)_i$

- The senders can encrypt $(X_i = f_i s_i)$ under another IP-MCFE and the label f
- The aggregator knows the functional key for $(1,\ldots,1)$
- From the ciphertext of $(X_i = f_i s_i)_i$, it can extract dk_f
- This would work with a perfect IP-MCFE: any plaintext can be decrypted 😨
- Here, only small plaintexts can be decrypted: dk_f is large! 😭
DMCFE: IP with Pairings

- Two IP-MCFE: E_1 in G_1 and E_2 in G_2
- The senders encrypt the messages x_i with E_1
- The senders encrypt the functional key shares X_i with E_2
- The aggregator knows the functional key for $(1,\ldots,1)$ in $E_2 \rightarrow$ it gets $g_2^{E_{f,f}}$
- From $g_2^{E_{f,f}}$ and ciphertexts of x_i with E_1 in $G_1 \rightarrow$ one gets $g_1^{E_{f,x}}$

The discrete logarithm is small: can be extracted!

DMCFE: IP with Pairings

- Our Decentralised Multi-Client Functional Encryption:
 - Selective Security
 - Even with Adaptive Corruptions of the Clients/Senders
 - Under the classical SXDH assumption
 - Efficient Setup: generation of the functional key for $(1,\ldots,1)$
 - Efficient $DKeyGen$ protocol: just one ciphertext sent by each sender

Conclusion

- Functional Encryption
 - Ideal functionalities on encrypted data
 - Authority-based functionality
 - Inputs from a unique sender
- DMCFE
 - Aggregation of multi-source inputs
 - Functionality under control of the senders