

PAKE

			École Normale Supérie	ure	David Pointcheval	2/40
PAKE ●000000000	Game-based Security	Universal Composability	PAKE ○●○○○○○○○	Game-based Security	Universal Composability	LAKE 0000
Introduction			Introduction			
Key Exchange Protocols			Diffie-He	ellman Key Exch	ange	

A fundamental problem in cryptography:

Enable secure communication over insecure channels A common scenario:

Users encrypt and authenticate their messages using a shared secret key

How to obtain such a shared secret key? $\longrightarrow \mbox{Key exchange protocols}$

The classical Diffie-Hellman protocol allows such a key exchange: in a finite cyclic group \mathbb{G} , of prime order *p*, with a generator *g*

No authentication provided

Authenticated Key Exchange

Semantic security / Implicit Authentication:

Game-based Security

the session key should be indistinguishable from a random string to all except the expected players

LAKE

Universal Composability

Universal Composability

PAKE LAKE LAKE

A Case Study

Electronic Passport

Since 1998, some passports contain digital information on a chip.

Standards are specified by ICAO

(International Civil Aviation Organization)

- In 2004, security introduced:
 - encrypted communication between the chip and the reader
 - access control: BAC (Basic Access Control)
- The shared secret is on the MRZ (Machine Readable Zone) It has low entropy:

at most 72 bits. but actually approx. 40

 \implies low-entropy shared secret: a password pw

Off-line Dictionary Attacks

École Normale Supérieure		David Pointcheval	5/40	École Normale Supérie	ure	David Pointcheval	6/
PAKE ○○○ ○ ●○○○○○	Game-based Security	Universal Composability	LAKE 0000	PAKE ○○○○○● ○ ○○○	Game-based Security	Universal Composability	LAKE
A Case Study				Attacks			

BAC: Basic Access Control

Game-based Security

Assume the existence of a public-key infrastructure

Each party holds a pair of secret and public keys

Authentication Techniques

• 2-party and group settings

Users share a random secret key

• 2-party or server-based settings

Asymmetric technique

Symmetric technique

Password-based technique

• 2-party and group settings

The symmetric encryption and MAC keys are derived from pw

Users share a random low-entropy secret: password

Passport Reader $r_{P}, k_{P} \stackrel{\$}{\leftarrow} \{0, 1\}^{64} \xrightarrow{r_{P}} r_{R}, k_{R} \stackrel{\$}{\leftarrow} \{0, 1\}^{64} \xrightarrow{C_{R}, M_{R}} r_{R}, k_{R} \stackrel{\$}{\leftarrow} \{0, 1\}^{64} \xrightarrow{C_{R}, M_{R}} R_{R} \stackrel{C_{R} \leftarrow Enc_{pw}(r_{R}, r_{P}, k_{R})}{C_{R} \leftarrow Enc_{pw}(r_{R}, r_{P}, k_{R})} \xrightarrow{C_{P}, M_{P}} M_{R} \leftarrow Mac_{pw}(C_{R})$ $K \leftarrow k_{\mathsf{D}} \oplus k_{\mathsf{D}}$

From a pair (C_B, M_B) , one can make an exhaustive search on the password pw to check the validity of the Mac M_{B}

After a few eavesdroppings only : password recovery

What can we expect from a low-entropy secret?

As in the previous scenario, after having

- eavesdropped some (possibly many) transcripts
- interacted (guite a few times) with players

the adversary accumulates enough information to take the real password apart from the dictionary efficient password-recovery after off-line exhaustive search

For the BAC: quite a few passive eavesdroppings are enough to recover the password!

How many active interactions could one enforce?

00000000000000000000000000000000000000	000000000000000000000000000000000000000
Attacks	Examples
On-line Dictionary Attacks	The Most Famous Examples
 On-line Dictionary Attacks The adversary interacts with a player, trying a password 	In a finite group $\mathbb{G},$ of prime order ${m ho},$ with key derivation function ${\cal K}$
	EKE: Encrypted Key Exchange [Bellovin-Merritt, 1992]
 In case of success: it has guessed the password In case of failure: it tries again with another password If the dictionary has a size N, the adversary wins after N/2 attempts 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
In Practice	$k \leftarrow Y^{\dot{x}} = g^{\dot{x}y} \qquad k \leftarrow X^{\dot{y}} = g^{\dot{x}y} \\ K \leftarrow \mathcal{K}(A, B, X, Y, k) K \leftarrow \mathcal{K}(A, B, X', Y', k)$
This attack is unavoidable	
If the failures for a target user can be detected:	SPEKE: Simple Password Exponential Key Exchange [Jablon, 1996]
the impact can be limited by various techniques (limited number of failures, delays between attempts,)	$x \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}, X \leftarrow g^{x} \frac{g \leftarrow \mathcal{G}(A, B, pw)}{X} y \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}, Y \leftarrow g^{y} \text{With a basis}$
 If the failures cannot be detected (anonymity, no check,) 	$k \leftarrow Y^x = g^{xy} \qquad \longleftrightarrow \qquad Y \qquad k \leftarrow X^y = g^{xy} \qquad \text{derived from pw}$

LAKE

Universal Composability

PAKE

Game-based Security

- $K \leftarrow \mathcal{K}(A, B, X, Y, k) K \leftarrow \mathcal{K}(A, B, g, X, Y, k)$ the impact can be dramatic École Normale Supérieure **David Pointcheval** 9/40École Normale Supérieure **David Pointcheval** 10/40 PAKE LAKE PAKE **Universal Composability** LAKE Game-based Security Universal Composability Game-based Security 0000000000 Examples Examples PACE: Password Authenticated **Security Models Connection Establishment** Game-based Security [Bellare-P.-Rogaway, 2000] Find-then-Guess The recent alternative to BAC is PACE: Real-or-Random [Abdalla-Fouque-P., 2005] Password Authenticated Connection Establishment Simulation-based Security [Boyko-MacKenzie-Patel, 2000] In the spirit of SPEKE: a generator derived from the password Universal Composability [Canetti-Halevi-Katz-Lindell-MacKenzie, 2005] With security analyses: Where PACE v1 [Bender-Fischlin-Kuegler, 2009] • The adversary controls all the communications: It can create, modify, transfer, alter, delete messages
 - PACE v2

PAKE

Game-based Security

[Coron-Gouget-Icart-Paillier, 2011]

What does security really mean?

where $q_{\rm S} = \#$ Active Sessions and N = #Dictionary

 \implies No adversary should win with probability greater than q_S/N

Instances of the players are denoted A^i and B^j

On-line dictionary attack should be the best attack

• Users can participate in concurrent executions of the protocol

11/40École Normale Supérieure

Universal Composability

LAKE

- a formal security model (security notions)
- a reduction: if one (Adversary) can break the security notions, then one (Simulator + Adversary) can break a hard problem
- acceptable computational assumptions (hard problems)

Game-based Security: PAKE

•••••

[Bellare–P.–Rogaway, 2000]

LAKE

Universal Composability

The adversary \mathcal{A} interacts with oracles:

Game-based Security

• Execute(Aⁱ, B^j)

PAKE

A gets the transcript of an execution between A and B It models passive attacks (eavesdropping)

• Send(U^i , m)

 \mathcal{A} sends the message *m* to the instance U^i It models active attacks against U^i (active sessions)

• Reveal(Uⁱ)

A gets the session key established by U^i and its partner It models the leakage of the session key, due to a misuse

- $Test(U^i)$ a random bit b is chosen
 - If b = 0, A gets the session key (*i.e.* Reveal(U^i))
 - If b = 1, A gets a random key

École Normale Supérieure		David Pointcheval	13/40	École Normale Supérieu	ure	David Pointcheval	14/40
PAKE 0000000000	Game-based Security ⊙●⊙○○○○○○	Universal Composability	LAKE 0000	PAKE 0000000000	Game-based Security ○○●○○○○○○	Universal Composability	LAKE 0000
Semantic Security				Semantic Security			

Security Game: Find-then-Guess

Secrecy of the key: guess *b*' of the bit *b* involved in the Test-query Is the obtained key real or random?

Constraint: no Test-query on a trivially known key

i.e. key already revealed thought the instance or its partner

Security Games: Advanced Security Notions

Semantic Security

The Find-then-Guess game models the secrecy of the key

- \implies the session key is unknown to the other players
 - What about this secrecy after the corruption of a player?
 - What about the knowledge of the two players?
- Forward Secrecy
 - An additional oracle: *Corrupt*(*U*) provides the password pw of the player *U* to the adversary
 - A new constraint: For any *Test*(*Uⁱ*), player *U* was not corrupted when *Uⁱ* was involved in its session
- Explicit Authentication

 \implies the session key is **really** known to the two expected players The attacker wins the Explicit Authentication Game if

- an instance terminates with a key
- without exactly one partner having the material to compute the key

Secure Protocols: EKE-like

0000000000

Game-based Security

With both Random Oracles and an Ideal Cipher

• EKE (ROM+ICM) \implies with Forward-Secrecy

OEKE (ROM+ICM) [Bresson-Chevassut-P., 2 \implies with Forward-Secrecy and Client-Authentication Formally verified with CryptoVerif [Blanchet, 2

With Random Oracles (and One-time Pad)

OMDHKE (ROM)

⇒ with Forward-Secrecy and Server-Authentication

SPAKE (ROM)

PAKE

Examples

[Abdalla-P., 2005]

Quite Simple Scheme

 $\begin{array}{cccc} x \xleftarrow{\$} & \mathbb{Z}_p, X \leftarrow g^{x} & & \\ X' \leftarrow X \cdot h^{\mathsf{pw}} & \xrightarrow{X'} & y \xleftarrow{\$} & \mathbb{Z}_p, Y \leftarrow g^{y} \\ & X \leftarrow X' / h^{\mathsf{pw}}, k \leftarrow X^{y} \end{array}$ $Y \leftarrow Y'/h^{pw}, k \leftarrow Y^{x} \leftarrow Y' \leftarrow Y \cdot h^{pw}$ $K \leftarrow \mathcal{K}(A, B, X', Y', pw, k)$

Universal Composability

Smooth Projective Hash Functions

Game-based Security

000000000

	Definition	[Cramer–Shoup, 2002]	[Gennaro-Lindell, 2003]		
[Bellare–P.–Rogaway, 2000] [Bresson–Chevassut–P., 2003]	and L a sub	nily of functions from X to \mathbb{G} oset (language) of this domain X			
Itication [Blanchet, 2012]	such that, for any point $x \in L$, and a witness w , • $H(x) = \text{Hash}_L(\text{hk}; x)$, with the secret hashing key hk				
		$jHash_L(hp; x, w)$, with the public			
[Bresson–Chevassut–P., 2004]	 Hard-Partitioned Subset: L and X hard to distinguish Smoothness: if x ∉ L, H(x) and hp are independent 				

• Pseudo-Randomness: if $x \in L$, H(x) is pseudo-random, with hp but without a witness w

École Normale Supérieure		David Pointcheval	17/40	0École Normale Supérieure		David Pointcheval		18/40
PAKE	Game-based Security ○○○○●○○○	Universal Composability	LAKE 0000	PAKE	Game-based Security	Universal Composa		LAKE 0000
Examples				Advanced Security				
Secure Protocols: KOY/GL-like				Security G	ame: Real-or-	Random	[Abdalla–Fouque–P.	, 2005]

LAKE

PAKE

Examples

Secure Protocols: KOY/GL-like

With \mathcal{L} = language of the valid commitments of pw

(main steps - more details are required) GL (Standard + CRS) C_1 $C_1 \leftarrow Commit(pw; r_1)$ $C_2 \leftarrow Commit(pw; r_2)$ [Gennaro-Lindell, 2003] C_2 , hp_1 $hk_1, hp_1 \text{ on } C_1$ hp₂ \implies Forward-secrecy hk_2, hp_2 on C_2 $ProjHash(hp_1; C_1, r_1) = H_1 = Hash(hk_1; C_1)$ $\operatorname{Hash}(hk_2; C_2) = H_2 = \operatorname{ProjHash}(hp_2; C_2, r_2)$ $K \leftarrow H_1 \cdot H_2$

Generalization of the KOY protocol

[Katz-Ostrovsky-Yung, 2001]

With hp_1 and hp_2 independent of C_1 and C_2 resp. \implies can be made in One-Round only

[Katz–Vaikuntanathan, 2011]

Secrecy/independence of all the keys:

many *Test*-queries on any U^i with the same bit b

- If no key defined by the protocol yet: output \perp
- If dishonest/corrupted partner: output the real key
- If player/partner already tested: output the same key
- If b = 0: output the real key
- If b = 1: output a random key

 $Adv^{RoR}(\mathcal{A}) = 2 \times \Pr[b' = b] - 1$

19/40École Normale Supérieure

LAKE

	Game-based Security ○○○○○○●○	Universal Composability	LAKE 0000	PAKE 000000000	Game-based Security ○○○○○○○●	Universal Composability	LAKE 0000
Advanced Security Security Gar	me: Real-or-Ra	andom		Advanced Security	sed Security: I	Limitations	
Find-then-Guess where q_T is the	$Adv^{RoR}(t, q_T) \le d$ e number of Test-quer based Authenticated H $Adv^{FtG}(t) \le \frac{G}{\Rightarrow} Adv^{RoR}(t, q_T)$ $\implies Much strNo need of R$	Fries Key Exchange: $\frac{\mathcal{O}(q_s)}{N}$	valent	⇒ Maybe s Passwor Differen No secu ⇒ Universa	 hard to get optimal several passwords c rds chosen from pre- it passwords are ass 	can be excluded by each e-determined, known dist sumed to be independen der arbitrary composition pre appropriate?	tributions t
	D Game-based Security	David Pointcheval Universal Composability ●○○○○○○○○○○○	21/408 LAKE 0000	DÉcole Normale Supérieure PAKE 0000000000	Game-based Security	David Pointcheval Universal Composability ⊙●○○○○○○○○○○○	22/40 LAKE 0000
Introduction				Introduction			
Definition				Simulator			

Real Protocol

The real protocol \mathcal{P} is run by players P_1, \ldots, P_n , with their own private inputs x_1, \ldots, x_n . After interactions, they get outputs y_1, \ldots, y_n

Ideal Functionality

An ideal function ${\mathcal F}$ is defined:

- it takes as input x₁,..., x_n,
 the private information of each player,
- and outputs y_1, \ldots, y_n , given privately to each player

The players get their results, without interacting: this is a "by definition" secure primitive

 \mathcal{P} emulates \mathcal{F} if, for any environment \mathcal{Z} , for any adversary \mathcal{A} , there exists a simulator \mathcal{S} so that, the view of \mathcal{Z} is the same for

- ${\mathcal A}$ attacking the real protocol ${\mathcal P}$
- $\bullet \ {\cal S}$ attacking the ideal functionality ${\cal F}$

Universal Composability

can do against \mathcal{P} can be done by

nothing can be done against \mathcal{F}

the simulator S against \mathcal{F}

perfectly secure:

LAKE

PAKE

Password-based Authenticated Key Exchange

PAKE Ideal Functionality

Game-based Security

LAKE

[Canetti-Halevi-Katz-Lindell-MacKenzie, 2005]

Queries

- NewSession = a player joins the system with a password
- TestPwd = A attempts to guess a password (one per session) The adversary learns whether the guess was correct or not
- NewKey = A asks for the session key to be computed and delivered to the player

Corruption-Query

- A gets the long-term secrets (pw) and the internal state
- A takes the entire control on the player and plays on its behalf

Corruptions can occur before the execution: Static Corruptions Corruptions can occur at any moment: Adaptive Corruptions

École Normale Supérieur	e	David Pointcheval	25/40	École Normale Supérie	ure	David Pointcheval	26/40
PAKE 0000000000	Game-based Security	Universal Composability		PAKE 0000000000	Game-based Security	Universal Composability	LAKE 0000
Password-based Auth	enticated Key Exchange			Password-based Aut	thenticated Key Exchange		
PAKE Ide	/		PAKE Id	eal Functionality	1		

Session Key

[Canetti-Halevi-Katz-Lindell-MacKenzie, 2005]

- no corrupted players, same passwords \Rightarrow same key, randomly chosen
- no corrupted players, different passwords \Rightarrow independent keys, randomly chosen
- a corrupted player (with the secret from the environment) \Rightarrow key chosen by the adversary
- correct password guess (TestPwd-query) \Rightarrow key chosen by the adversary
- incorrect password guess (TestPwd-query) \Rightarrow independent keys, randomly chosen

Properties

- The TestPwd-query models the on-line dictionary attacks
- The Corruption-query includes forward-secrecy

Advantages wrt Game-based Security

- No assumption on the distribution of passwords
- Passwords can be related (it models mistyping)
- Security under arbitrary compositions \implies secure channels

• Everything that the adversary \mathcal{A} • But the ideal functionality \mathcal{F} is \mathcal{P} \mathcal{F}

Then, nothing can be done against \mathcal{P}

Game-based Security

PAKE

Introduction

Security

PAKE Game-based Security Universal Composability LAKE 000000000000000000000000000000000000	PAKE Game-based Security Universal Composability LAKE 000000000 00000000 0000000 000000 000000 Examples Secure Protocols LAKE LAKE		
Game-based SecurityIn the reduction, the simulator has to emulate the protocol execution only up to an evidence the adversary has won ($pw \implies$ not negl.)In a global system, the simulation may thus fail as soon as an adversary breaks one of the components whereas other parts could provide protection ($pw \implies$ weak proof!)	 In the standard model, with CRS: GL⁺ (with ZK proofs) [Canetti-Halevi-Katz-Lindell-MacKenzie, 2005] ⇒ Static Corruptions With an equivocable/extractable commitment (<i>bit-by-bit</i>) ⇒ GL secure against Adaptive Corruptions [Abdalla-Chevalier-P., 2009] With hp independent of the commitment (<i>with NIZK</i>) ⇒ one-round only [Groce-Katz, 2010] 		
UC Security Handles compositions, but proofs are more complex: the simulator must have an indistinguishable behavior, even when the adversary wins! In the case of password-based cryptography:	[Katz–Vaikuntanathan, 2011] With random oracles and an ideal cipher: OEKE [Abdalla–Catalano–Chevalier–P., 2008] $\begin{bmatrix} x & \xi & \mathbb{Z}_{p}, X \leftarrow g^{x} & \xrightarrow{A, X} & y & \xi & \mathbb{Z}_{p}, Y \leftarrow g^{y} \\ Y \leftarrow \mathcal{D}_{pw}(Y'), K = Y^{x} & \xrightarrow{Y'} & Y' \leftarrow \mathcal{E}_{pw}(Y), K = X^{y} \\ Auth = \mathcal{H}(A, B, X, Y', K) & \xrightarrow{Auth} & Auth \stackrel{?}{=} \mathcal{H}(A, B, X, Y', K) \\ sk = \mathcal{K}(A, B, X, Y', K) \end{bmatrix}$		
the adversary can win with non-negligible probability!	⇒ First efficient scheme secure against Adaptive Corruptions Décole Normale Supérieure PAKE Game-based Security COCOCOCCC Advanced Security Notions COCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		
Weak Authentication: Split Functionality	Limitations of the NewKey-Query		
No initial authentication: anybody can join the protocol In a multi-party protocol, the adversary can emulate all the other players against one victim, and can do it <i>n</i> times, against the <i>n</i> real players $P_{2} \qquad P_{1} \qquad P_{2} \qquad P_{1} \qquad P_{2} \qquad P_{1} \qquad P_{2} \qquad P_{1} \qquad P_{2} \qquad P_{2} \qquad P_{1} \qquad P_{2} $	 Session Key: NewKey-Query a corrupted player ⇒ key chosen by the adversary correct password guess ⇒ key chosen by the adversary The NewKey-query is weak A lot of control by the adversary: 		
 Split Functionality: initiates a sub-functionality for each sub-session Real player P_i : P_i non-corrupted at the beginning Adversary on behalf of P_j: P_j corrupted from the beginning GPAKE: Each sub-session allows to test one password 	 as soon as it controls a player, it controls the key Key Distribution vs. Key Agreement: Contributiveness Not much information leaked to the adversary: whether the protocol succeeds or not In practice, the communication continues or stops ⇒ some information leaks! 		

David Pointcheval

École Normale Supérieure

David Pointcheval

35/40École Normale Supérieure

David Pointcheval

Advanced Security	Notions

PAKE

Contributiveness

[Adalla-Catalano-Chevalier-P., 2009]

LAKE

PAKE

Universal Composability

Initial Definition of the Session Key

Game-based Security

- no corrupted players, same passwords \Rightarrow same random key
- corrupted player or correct *TestPwd* \Rightarrow key chosen by A
- otherwise \Rightarrow independent random keys

With Contributiveness

- at least one non-corrupted player, same passwords \Rightarrow same random key
- all players corrupted \Rightarrow key chosen by \mathcal{A}
- otherwise \Rightarrow independent random keys

It extends to Group protocols, with threshold: (t, n)-Contributiveness No player more important than others: \neq key distribution Prevents from weak random coins or Trojan horses

École Normale Supérieure

PAKE Game-based Security

Advanced Security Notions

Simpler (but Stronger) Functionality

Queries

- NewSession = a player joins the protocol with a password or \mathcal{A} joins the protocol with a password on behalf of a player $\implies \mathcal{A}$ impersonates P_i : it receives the messages for it
- NewKey = A asks for the session key to be generated
- SendKey = A asks for the session key to be delivered

NewKey-Query

- the two players are controlled by the adversary \Rightarrow No need to inform anybody: the adversary plays alone!
- Same passwords \Rightarrow same random key A informed: OK
- otherwise $\Rightarrow \perp \mathcal{A}$ informed: NOK

More general \implies not limited to passwords: Consistent Inputs?

Advanced Security Notions

Success Information

The players could learn whether the authentication succeeded

Universal Composability

LAKE

Explicit Authentication

At the Key Delivery time, the player learns: Success or Failure

Together with the Split Functionality:

Game-based Security

the adversary makes a user try a password

it then learns whether it is correct \implies similar to TestPwd

The adversary should learn this information too (available in practice!)

Successful Agreement

At the Key Computation time, the adversary learns: OK or NOK

In both cases, one can remove the **TestPwd**-query allowing the adversary to join a session with a NewSession-query!

id Pointcheval	33/40	École Normale Supérieu	Jre	David Pointcheval	34/40
Universal Composability ○○○○○○○○○●	LAKE 0000	PAKE 0000000000	Game-based Security	Universal Composability	LAKE ●○○○
		Definitions			

Generalized Functionality: LAKE

Language-based Authenticated Key Exchange

[Blazy-Chevalier-Pointcheval-Vergnaud, 2012]

Two players want to agree on a common secret key,

IFF their partner actually knows a word in an appropriate language:

- Alice owns a word w_a in a language $L_a(Pub_a, Priv_a)$;
- Bob owns a word w_b in a language $L_b(Pub_b, Priv_b)$;
- If Alice and Bob implicitly agree on the languages, and own valid words (implicit authentication),
 - \implies they agree on a common session key (semantic security)

E.g. Pub = M, Priv = vk: the language L(Pub, Priv) contains the valid signatures of M under the verification key vk,

where M = public message, but vk = implicit verification key

PAKE 0000000000	Game-based Security	Universal Composability			
Definitions					
LAKE: Ideal Functionality					

Queries

- NewSession = a player or \mathcal{A} (for a player) joins the protocol with
 - its own language parameters: Pub and Priv
 - its partner's language parameters: Pub' and Priv'
 - its word w
- NewKey = A asks for the session key to be generated
- SendKey = A asks for the session key to be delivered

Consistent Inputs

The protocol succeeds with the same key if and only if

 $\begin{array}{ll} (\textit{Pub}_a,\textit{Priv}_a) = (\textit{Pub}_b',\textit{Priv}_b'), & (\textit{Pub}_b,\textit{Priv}_b) = (\textit{Pub}_a',\textit{Priv}_a') \\ w_a \in L_a(\textit{Pub}_a,\textit{Priv}_a), & w_b \in L_b(\textit{Pub}_b,\textit{Priv}_b) \end{array}$

cole Normale Supérieure	David Pointcheval		37/40École Normale Supérieure		David Pointcheval	38/	
PAKE 0000000000	Game-based Security	Universal Composability	LAKE ○○○●	Conclusion			
Approach							

LAKE: Applications

The improved NewKey-query

is more powerful/general than the TestPwd-query!

LAKE is a quite general framework that includes all the AKE variants:

Particular Instantiations

- Pub = Ø, Priv = pw and L(Pub, Priv) = {Priv} ⇒ PAKE (15 group elements exchanged) With Priv = (g^{pw}, h^{pw}): verifier-based PAKE (29 group elements)
 Pub = M, Priv = vk, L(Pub, Priv) = {σ, Verif(Priv, Pub, σ) = 1}
 - Secret Handshake [Balfanz-Durfee-Shankar-Smetters-Staddon-Wong, 2003] (43 group elements for Waters Signatures)

Admits efficient instantiations!

Conclusion

Theoretical Aspects

Can be instantiated

under the **DLin** assumption

or the **DDH** assumption

- Many security models for AKE and PAKE: Mature Topic
- Many PAKE candidates:
 - EKE-like protocols are quite efficient, but ideal models
 - GL approach is quite powerful, and reasonably efficient
- LAKE: more general applications, and efficient instantiations

PAKE in Practice

- While appealing, PAKE not really used in practice:
 - IETF RFC 2945 for SRP (no security analysis!)
 - EKE-like: quite efficient but patented \Longrightarrow not used so far
- EKE Patent expired late 2011 \implies recent IETF RFC 6124

With EKE-like (efficient) or GL-based (fine-grained authentication) approaches, any situation should find an AKE solution!

 \implies much more complex check!

allows to implement all these private/implicit checks

• $Pub_a = Pub'_b \& Pub_b = Pub'_a$: public matching verification

• $Priv_a = Priv_b^{\prime} \& Priv_b = Priv_a^{\prime}$: implicit matching verification

• $w_a \in L_a(Pub_a, Priv_a) \& w_b \in L_b(Pub_b, Priv_b)$: implicit verification

The GL approach, with advanced Smooth Projective Hash Functions,

(many more details are required)

 hk_2 , hp_2 on C_2

 $C_1 \leftarrow \textit{Commit}(\cdot; r_1) \quad \xrightarrow{C_1} \quad$

 C_2 , hp_1

 $ProjHash(hp_1; C_1, r_1) = H_1 = Hash(hk_1; C_1)$

 $\begin{aligned} \text{Hash}(hk_2; C_2) &= H_2 = \text{ProjHash}(hp_2; C_2, r_2) \\ K \leftarrow H_1 \cdot H_2 \end{aligned}$

hp2,

LAKE: General Approach

 \implies as in PAKE

 $C_2 \leftarrow Commit(\cdot; r_2)$

 hk_1 , hp_1 on C_1

Universal Composability

LAKE

0000

Approach

Verification

PAKE

LAKE

0000